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Abstract

The graph edit distance (GED) is a well-established distance measure widely used
in many applications, such as bioinformatics, data mining, pattern recognition, and
graph classification. However, existing solutions for computing the GED suffer from
several drawbacks: large search spaces, excessive memory requirements, and many
expensive backtracking calls. In this paper, we present BSS GED, a novel vertex-
based mapping method that calculates the GED in a reduced search space created
by identifying invalid and redundant mappings. BSS GED employs the beam-stack
search paradigm, a widely utilized search algorithm in AI, combined with two specially
designed heuristics to improve the GED computation, achieving a trade-off between
memory utilization and expensive backtracking calls. Through extensive experiments,
we demonstrate that BSS GED is highly efficient on both sparse and dense graphs and
outperforms the state-of-the-art methods. Furthermore, we apply BSS GED to solve
the well-investigated graph similarity search problem. The experimental results show
that this method is dozens of times faster than state-of-the-art graph similarity search
methods.

Keywords: Graph Edit Distance, Reduced Search Space, Beam-stack Search,
Heuristics, Graph Similarity Search

1. Introduction

Graphs are widely used to model various structured data, including road maps [2],
social networks [4], and molecular structures [8, 18]. Due to the extensive applications
of graph data, considerable efforts have been made to develop techniques for effective
graph data management and analysis, such as graph mining [5, 11], graph matching [6],
and graph similarity search [24, 28].
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Within these studies, computing the similarity between two labeled graphs is
a core and essential problem. In this paper, we focus on a similarity measure
based on the graph edit distance (GED) because it can be applied to all types of
graphs and can precisely capture the structural differences between graphs. Because
of GED’s flexible and error-tolerant characteristics, it has been successfully used
in many fields, such as protein network analysis in bioinformatics [3], molecular
comparison in chemistry [18], object recognition in computer vision [6], and graph
classification [8, 10].

The GED of two graphs is defined as the minimum cost of an edit path between
them, where an edit path is a sequence of edit operations (inserting, deleting, and
relabeling vertices or edges) that transforms one graph into another. Unfortunately,
computing the GED is known to be an NP-hard [27] problem. The GED’s fault
tolerance allows a vertex of one graph to be mapped to any vertex of the other graph,
regardless of their labels and degrees. As a result, the complexity of computing the
GED is exponential with respect to the number of vertices of the compared graphs.

The solutions for the GED computation are usually based on the tree-based
search algorithm that explores all possible mappings of the vertices and edges of
the compared graphs. This search space can be organized as an ordered search tree,
where the inner nodes denote partial mappings and the leaf nodes denote complete
mappings. Based on the way they generate node’s successors, existing methods can be
divided into two broad categories: vertex-based and edge-based mapping methods.
When generating successors, the former method extends unmapped vertices of the
compared graphs, while the latter method extends unmapped edges. A?-GED [17]
and DF-GED [26] are two vertex-based mapping methods. A?-GED utilizes the best-
first search paradigm A? [15] to extend partial mappings. The first complete mapping
found yields the GED. During this process, however, A?-GED stores numerous partial
mappings, leading to high memory consumption. To overcome this bottleneck, DF-
GED adopts the depth-first search paradigm, requiring minimal memory. DF-GED also
uses a branch-and-bound strategy to prune the useless search space. In contrast to
A?-GED and DF-GED, CSI GED [12] is a novel edge-based mapping method based
on common substructure isomorphism and works well for sparse graphs. Similar to
DF-GED, CSI GED also adopts the depth-first search paradigm.

Although the above methods have achieved promising preliminary results, they
still suffer from several drawbacks: (1) Both A?-GED and DF-GED attempt to
enumerate all possible mappings between the compared graphs. However, some of
these mappings are certainly unable to induce the minimum edit cost, called invalid
mappings; and some induce the same edit cost, called redundant mappings. A better
approach would be to avoid generating invalid mappings and to generate only one
of the redundant mappings rather than many of them. Nevertheless, both A?-GED
and DF-GED require a large search space because they generate numerous invalid
and redundant mappings. (2) Although both DF-GED and CSI GED perform a depth-
first search to reduce the memory consumption, they easily become trapped into a
local suboptimal solution and thus result in many expensive backtracking calls. (3)
CSI GED’s search space is exponential with respect to the number of edges of the
compared graphs, which makes CSI GED unsuitable for dense graphs.

To solve the above issues, we propose a novel vertex-based mapping method,
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BSS GED, based on the beam-stack search [20], which has demonstrated excellent
performance in the AI literature. Our paper makes the following contributions:

• We propose a method of identifying invalid and redundant mappings and thereby
can compute the GED in a reduced search space.

• We introduce the beam-stack search paradigm to establish a trade-off between
memory utilization and backtracking calls during the GED computation, leading
to better performance than the best-first and depth-first search paradigms. In
addition, we propose two efficient heuristics to accelerate the search.

• Extensive experiments on both real and synthetic datasets show that BSS GED
is highly efficient on sparse as well as dense graphs and outperforms the state-
of-the-art methods.

• We apply BSS GED to solve the graph similarity search problem. The experimental
results show that it is dozens of times faster than the state-of-the-art graph
similarity search methods.

The remainder of this paper is organized as follows: In Section 2, we introduce the
problem definition and summarize the vertex-based methods for the GED computation.
In Section 3, we describe a method to identify invalid and redundant mappings. In
Section 4, we show how to use the beam-stack search paradigm to compute the GED.
In Section 5, we propose two heuristics to accelerate the search. In Section 6, we report
the experimental results and analysis. We extend BSS GED to create a standard graph
similarity search query method in Section 7. Finally, we review related research works
in Section 8 and draw conclusions in Section 9.

2. Preliminaries

In this section, we introduce some basic notation. For simplicity, we focus on
simple undirected graphs without multi-edges or self-loops.

2.1. Problem Definition

Let Σ be a set of discrete-valued labels. A labeled graph is a triplet G =
(VG, EG, L), where VG is the set of vertices, EG ⊆ VG × VG is the set of edges,
and L : VG ∪EG → Σ is a labeling function that assigns a label to a vertex or an edge.
For a vertex u, we use L(u) to denote its label. Similarly, L(e(u, v)) is the label of an
edge e(u, v). ΣVG = {L(u) : u ∈ VG} and ΣEG = {L(e(u, v)) : e(u, v) ∈ EG} are
the label multisets of VG and EG, respectively. The graph size refers to |VG| in this
paper.

Definition 1 (Subgraph Isomorphism [25]). Given two graphsG andQ,G is subgraph
isomorphic to Q, denoted by G ⊆ Q, if there exists an injective function φ : VG → VQ,
such that (1) ∀u ∈ VG, φ(u) ∈ VQ and L(u) = L(φ(u)), and (2) ∀e(u, v) ∈ EG,
e(φ(u), φ(v)) ∈ EQ and L(e(u, v)) = L(e(φ(u), φ(v))). If G ⊆ Q and Q ⊆ G,
then G and Q are graph isomorphic to each other, denoted by G ∼= Q.
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Figure 1: An optimal edit path P between graphs G and Q.
Given two graphs G and Q, six edit operations [22, 29] can be used to transform

one graph into another: inserting/deleting an isolated vertex, inserting/deleting an edge,
and substituting the label of a vertex or an edge. An edit path P = 〈p1, . . . , pk〉 is a
sequence of edit operations that transforms G to Q (or vice versa) such as G = G0 p1−→
, . . . ,

pk−→ Gk ∼= Q. The edit cost of P is defined as the total cost of all the operations
in P , i.e.,

∑k
i=1 c(pi), where c(pi) is pi’s cost. In this paper, we focus on the uniform

cost model, namely, c(pi) = 1. Clearly, the edit cost of P is its length, denoted by |P |.
We call P optimal only when it has the minimum length among all the possible edit
paths.

Definition 2 (Graph Edit Distance). Given two graphs G and Q, the graph edit
distance between them, denoted by ged(G,Q), is the length of the optimal edit path
that transforms G to Q (or vice versa).

Example 1. Figure 1 shows an optimal edit path P between graphs G and Q. In this
example, |P | = 4, where we delete two edges e(u1, u2) and e(u1, u3), substitute the
label of vertex u1 with label A, and insert one edge e(u1, u4) with label a.

2.2. Graph Mapping
In this section, we introduce graph mapping between two graphs, which can

induce an edit path between them. To match graphs G and Q of any size, we extend
their vertex sets as follows: V ∗G = VG ∪ {ε} and V ∗Q = VQ ∪ {ε}, where ε is a dummy
vertex. We define the graph mapping as follows:

Definition 3 (Graph Mapping). A graph mapping from graph G to graph Q is a
bijection ψ : V ∗G → V ∗Q such that ∀u ∈ V ∗G, ψ(u) ∈ V ∗Q, and at least one of u
and ψ(u) is not a dummy vertex.

Given a graph mapping ψ from G to Q, it induces an unlabeled graph H =
(VH , EH), where VH = {u : u ∈ VG ∧ ψ(u) ∈ VQ} and EH = {e(u, v) : e(u, v) ∈
EG∧e(ψ(u), ψ(v)) ∈ EQ}. Clearly,H is a common substructure ofG andQ. LetGψ

(resp., Qψ) be the labeled version of H embedded in G (resp., Q). We obtain an edit
path Pψ : G→ Gψ → Qψ → Q that transforms G to Q.

Let CD(ψ), CS(ψ), and CI(ψ) be the edit cost of transforming G to Gψ , Gψ

to Qψ , and Qψ to Q, respectively. Because Gψ is a subgraph of G, we only need to
delete the vertices and edges in G that do not belong to Gψ , when transforming G
to Gψ . Thus, CD(ψ) = |VG| − |VH | + |EG| − |EH |. Similarly, CI(ψ) = |VQ| −
|VH | + |EQ| − |EH |. Because Gψ and Qψ have the same structure H , we only need
to substitute the corresponding vertex and edge labels between them. Thus, CS(ψ) =
|{u : u ∈ VH ∧ L(u) 6= L(ψ(u))}| + |{e(u, v) : e(u, v) ∈ EH ∧ L(e(u, v)) 6=
L(e(ψ(u), ψ(v)))}|.
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Theorem 1 ([12]). Given a graph mapping ψ from graph G to graph Q, let Pψ be the
edit path induced by ψ. Then |Pψ| = CD(ψ) + CI(ψ) + CS(ψ).

Example 2. Consider the graphs G and Q in Figure 1. Given a graph mapping ψ :
{u1, u2, u3, u4} → {v1, v2, v3, v4}, where ψ(u1) = v1, ψ(u2) = v2, ψ(u3) = v3,
and ψ(u4) = v4, we have H = ({u1, u2, u3, u4}, {e(u2, u4), e(u3, u4)}). Then ψ
induces an edit path Pψ : G → Gψ → Qψ → Q shown in Figure 1, where Gψ = G1

and Qψ = Q1. We compute that CD(ψ) = 2, CI(ψ) = 1, and CS(ψ) = 1. From
Theorem 1, the edit cost of P is |Pψ| = CD(ψ) + CI(ψ) + CS(ψ) = 4.

Among all possible graph mappings, we call the mapping that induces the optimal
edit path optimal. Hereafter, for ease of presentation, we assume that G and Q are
the two compared graphs and that VG = {u1, . . . , u|VG|} and VQ = {v1, . . . , v|VQ|}.
Given a processing order π = [ui1 , . . . , ui|VG| ] of vertices in G, we rewrite the graph

mapping ψ from V ?G to V ?Q as ψ =
⋃|V ∗G|
l=1 {(uil → vjl)} such that (1) uil = ε when

il > |VG|; (2) vjl = ε when jl > |VQ|; and (3) vjl = ψ(uil), for 1 ≤ l ≤ |V ∗G|. Next
we give an overview of the vertex-based mapping method of computing ged(G,Q).

2.3. GED computation: Vertex-based Mapping Approach

Computing the GED of graphs G and Q is typically based on a tree-based search
procedure that explores all possible graph mappings from G to Q. This search space
can be organized as an ordered search tree, where the inner nodes denote partial graph
mappings and the leaf nodes denote complete graph mappings. Such a search tree is
created dynamically at runtime by iteratively generating successors linked by edges to
the currently considered node.

Algorithm 1: BasicGenSuccr(r, l, π)
1 succ← ∅;
2 CrG ← VG\{ui1 , . . . , uil}, C

r
Q ← VQ\{vj1 , . . . , vjl};

3 if |CrG| > 0 then
4 uil+1 ← π[l + 1];
5 foreach z ∈ CrQ do
6 generate a successor q such that q ← r ∪ {(uil+1 → z)};
7 succ← succ ∪ {q};
8 generate a successor q such that q ← r ∪ {(uil+1 → ε)};
9 succ← succ ∪ {q};

10 else
11 generate a leaf node ψ such that ψ ← r ∪

⋃
z∈Cr

Q
{(ε→ z)};

12 succ← succ ∪ {ψ};
13 return succ;

Consider a node r = {(ui1 → vj1), . . . , (uil → vjl)} in layer l in the search
tree, where uik(= π[k ]) is the kth processed vertex in G and vjk is the mapped vertex
of uik , for 1 ≤ k ≤ l. Clearly, the sets of unmapped vertices in G and Q are CrG =
VG\{ui1 , . . . , uil} and CrQ = VQ\{vj1 , . . . , vjk}, respectively. If |CrG| > 0, for the
vertex uil+1

= π[l + 1] to be processed, we choose a vertex z from CrQ or {ε} as
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its mapped vertex and obtain a successor q of r such that q = r ∪ {(uil+1
→ z)}.

Otherwise, all the vertices in G have been processed; thus, we insert all the vertices
in CrQ into G and obtain a leaf node ψ = r∪

⋃
z∈CrQ

{(ε→ z)}. Algorithm 1 describes
the process of generating r’s successors.

Starting from a dummy node, root = ∅, we logically create the search tree
layer by layer by iteratively generating successors using BasicGenSuccr. For a leaf
node ψ, we compute its induced cost |Pψ| according to Theorem 1. Thus, when we
generate all the leaf nodes, we must find an optimal graph mapping, and finally, we
obtain ged(G,Q). The existing methods A?-GED [17] and DF-GED [26] use the best-
first and depth-first search paradigms to traverse this search tree to seek the optimal
graph mapping, respectively.
Example 3. Consider the graphsG andQ in Figure 1. Figure 2 shows the entire search
tree created by generating successors layer by layer using BasicGenSuccr, where the
vertices in G are processed in the order π = [u1, u2, u4, u3]. The sequence of vertices
on the path from the root to each leaf node yields a complete graph mapping. In this
example, we find that the mappingψ = {(u1 → v1), (u2 → v2), (u4 → v4), (u3 → v3)}
is optimal; therefore, ged(G,Q) = |Pψ| = 4.

Layer π

1

2

3

4

u1

u2

u4

u3

root

v1 v2 v3 v4 ε

v2 v3 v4 ε

v3 v4 ε

v4 ε v3 ε . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2: The entire search tree created by BasicGenSuccr.

However, the method BasicGenSuccr used in A?-GED [17] and DF-GED [26]
generates all possible successors of each node. Consequently, both A?-GED and DF-
GED may enumerate all possible graph mappings. Among these mappings, some
are invalid when they are certainly unable to induce the optimal path; and some
are redundant when they induce the same edit cost. We do not need to generate invalid
mappings, and for redundant mappings, we only generate one version. To accomplish
this, we next present how to identify invalid and redundant mappings.

3. Creating Reduced Search Space

3.1. Identifying Invalid Mappings

Let |ψ| be the length of a graph mapping ψ. We estimate |ψ| in Theorem 2, which
can be used to identify invalid mappings.

Theorem 2. Given an optimal graph mapping ψ from graph G to graph Q, |ψ| =
max{|VG|, |VQ|}.

Proof. Suppose for the purpose of contradiction that |ψ| > max{|VG|, |VQ|}. Then
(x→ ε) and (ε→ y) must be present simultaneously in ψ, where x ∈ VG and y ∈ VQ.
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We construct another graph mapping ψ′ = (ψ\{(x→ ε), (ε→ y)})∪ {(x→ y)} and
then prove that |Pψ′ | < |Pψ| as follows.

Let H and H ′ be two unlabeled graphs induced by ψ and ψ′, respectively. Then
VH′ = {u : u ∈ VG ∧ ψ′(u) ∈ VQ} = {u : u ∈ VG ∧ ψ(u) ∈ VQ} ∪ {x : ψ′(x) ∈
VQ} = VH ∪ {x}. Let Ax = {z : z ∈ VH ∧ e(x, z) ∈ EG ∧ e(y, ψ(z)) ∈ EQ}.
Then EH′ = {e(u, v) : e(u, v) ∈ EG ∧ e(ψ′(u), ψ′(v)) ∈ EQ} = {e(u, v) : e(u, v) ∈
EG ∧ e(ψ(u), ψ(v)) ∈ EQ} ∪ {e(x, z) : z ∈ VH′ ∧ e(x, z) ∈ EG ∧ e(y, ψ(z)) ∈
EQ} = EH ∪ {e(x, z) : z ∈ Ax}. Because x /∈ VH , we have e(x, z) /∈ EH for
z ∈ Ax. Thus, |VH′ | = |VH |+ 1 and |EH′ | = |EH |+ |Ax|.

BecauseCD(ψ) = |VG|−|VH |+|EG|−|EH | andCI(ψ) = |VQ|−|VH |+|EQ|−
|EH |, we have CD(ψ′) = CD(ψ) − (1 + |Ax|) and CI(ψ′) = CI(ψ) − (1 + |Ax|).
Because CS(ψ) = |{u : u ∈ VH ∧ L(u) 6= L(ψ(u))}| + |{e(u, v) : e(u, v) ∈
EH ∧ L(e(u, v)) 6= L(e(ψ(u), ψ(v)))}|, we have CS(ψ′) = CS(ψ) + c(x → y) +∑
z∈Ax c(e(x, z) → e(y, ψ(z))), where c(·) is the cost of relabeling a vertex or an

edge such that c(a → b) = 0 when L(a) = L(b) and c(a → b) = 1 otherwise. Thus,
CS(ψ′) ≤ CS(ψ) + 1 + |Ax|. Therefore, |Pψ′ | = CD(ψ′) + CI(ψ

′) + CS(ψ′) ≤
CD(ψ) − (1 + |Ax|) + CI(ψ) − (1 + |Ax|) + CS(ψ) + 1 + |Ax| = |Pψ| − (1 +
|Ax|) < |Pψ|. This would be contradict the assertion that ψ is optimal. Hence, |ψ| =
max{|VG|, |VQ|}.

Theorem 2 states that a graph mapping must be invalid when its length is greater
than max{|VG|, |VQ|}. For example, consider the graphs G and Q in Figure 1. Given
a graph mapping ψ = {(u1 → ε), (u2 → v1), (u4 → v3), (u3 → v2), (ε→ v3)}, we
know thatψ with an edit cost of 5 must be invalid because |ψ| = 5 > max{|VG|, |VQ|} =
4.

3.2. Identifying Redundant Mappings

For a vertex u in VQ, its neighborhood information is defined as NQ(u) =
{(v, L(e(u, v))) : v ∈ VQ ∧ e(u, v) ∈ EQ}.

Definition 4 (Vertex Isomorphism). Given two vertices u, v ∈ VQ, u is isomorphic
to v, denoted by u ∼ v, if and only if L(u) = L(v) and NQ(u) = NQ(v).

By Definition 4, it is trivial to find that the isomorphic relationship between
vertices is an equivalence relation. Thus, we can divide VQ into λQ equivalent classes
V 1
Q, . . . , V

λQ
Q of isomorphic vertices. Each vertex u is said to belong to class ρ(u) = m

if u ∈ V mQ . The dummy vertices in {ε} are isomorphic to each other, and let
ρ(ε) = λQ + 1.

Definition 5 (Canonical Code). Given a graph mapping ψ =
⋃|V ∗G|
l=1 {(uil → vjl)},

where vjl = ψ(uil) for 1 ≤ l ≤ |V ∗G|, the canonical code of ψ is defined as code(ψ) =
〈ρ(vj1), . . . , ρ(vj|ψ|)〉.

Given two graph mappings ψ and ψ′ of the same length, we say that code(ψ) =
code(ψ′) if and only if ρ(vjl) = ρ(v′jl) for 1 ≤ l ≤ |ψ|, where vjl = ψ(uil) and
v′jl = ψ′(uil).
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Theorem 3. Given two graph mappingsψ andψ′, let Pψ and Pψ′ be edit paths induced
by ψ and ψ′, respectively. If code(ψ) = code(ψ′) then |Pψ| = |Pψ′ |.

Proof. As discussed in Section 2.2, |Pψ| = CI(ψ) + CD(ψ) + CS(ψ). To prove that
|Pψ| = |Pψ′ |, we first prove that CI(ψ) = CI(ψ

′) and CD(ψ) = CD(ψ′); then, we
prove that CS(ψ) = CS(ψ′).

Let H and H ′ be two unlabeled graphs induced by ψ and ψ′, respectively. For
a vertex u in VH , ψ(u) is u’s mapped vertex. Because code(ψ) = code(ψ′), we have
ρ(ψ(u)) = ρ(ψ′(u)), and hence, we obtain ψ(u) ∼ ψ′(u). Because ψ(u) 6= ε, we
know that ψ′(u) 6= ε by Definition 4. Thus, u ∈ VH′ , and hence, we obtain VH ⊆ VH′ .
Similarly, we also obtain VH′ ⊆ VH . Therefore, VH = VH′ .

For an edge e(u, v) in EH , e(ψ(u), ψ(v)) is its mapped edge in EQ. Because
ρ(ψ(u)) = ρ(ψ′(u)), we have ψ(u) ∼ ψ′(u), and then, we obtain NQ(ψ(u)) =
NQ(ψ′(u)). Thus, we have e(ψ′(u), ψ(v)) ∈ EQ. Because ρ(ψ(v)) = ρ(ψ′(v)), we
know that ψ(v) ∼ ψ′(v); consequently, edges must exist between ψ(u) and ψ′(v),
and between ψ′(u) and ψ′(v) (an illustration is shown in Figure 3). Therefore,
e(ψ′(u), ψ′(v)) ∈ EQ, and hence, e(u, v) ∈ EH′ . Thus, we have EH ⊆ EH′ .
Similarly, we also obtain EH′ ⊆ EH . Therefore, EH = EH′ .

Because VH = VH′ and EH = EH′ , we have H = H ′. Thus, CI(ψ) = CI(ψ
′)

and CD(ψ) = CD(ψ′). Hereafter, we do not distinguish between H and H ′.

u

v

ψ(u) ψ′(u)

ψ(v) ψ′(v)

Figure 3: Illustration of isomorphic vertices.

For any vertex u in VH , we have L(ψ(u)) = L(ψ′(u)) because ψ(u) ∼ ψ′(u).
Thus, |{u : u ∈ VH ∧ L(u) 6= L(ψ(u))}| = |{u : u ∈ VH ∧ L(u) 6= L(ψ′(u))}|. For
any edge e(u, v) in EH , because ψ(u) ∼ ψ′(u), we know that L(e(ψ(u), ψ(v))) =
L(e(ψ′(u), ψ(v))). Similarly, we obtain L(e(ψ′(u), ψ(v))) = L(e(ψ′(u), ψ′(v)))
because ψ(v) ∼ ψ′(v). Thus, L(e(ψ(u), ψ(v))) = L(e(ψ′(u), ψ′(v))). Hence, we
have |{e(u, v) : e(u, v) ∈ EH ∧ L(e(u, v)) 6= L(e(ψ(u), ψ(v)))}| = |{e(u, v) :
e(u, v) ∈ EH ∧L(e(u, v)) 6= L(e(ψ′(u), ψ′(v)))}|. Therefore, CS(ψ) = CS(ψ′), and
consequently, |Pψ| = |Pψ′ |.

Example 4. Consider the graphs G and Q shown in Figure 1. For Q, we know
that L(v1) = L(v2) = L(v3) = A, and NQ(v1) = NQ(v2) = NQ(v3) = {(v4,a)};
thus, v1 ∼ v2 ∼ v3. Hence, we can divide VQ into two equivalent classes: V 1

Q =

{v1, v2, v3} and V 2
Q = {v4}. Clearly, ρ(v1) = ρ(v2) = ρ(v3) = 1 and ρ(v4) = 2.

Given two graph mappings, ψ = {(u1 → v1), (u2 → v2), (u4 → v4), (u3 → v3)} and
ψ′ = {(u1 → v2), (u2 → v3), (u4 → v4), (u3 → v1)}, we know that code(ψ) = 〈ρ(v1),
ρ(v2), ρ(v4), ρ(v3)〉 = 〈1, 1, 2, 1〉. Similarly, we compute that code(ψ′) = 〈1, 1, 2, 1〉.
Thus, we have code(ψ) = code(ψ′); therefore, |Pψ| = |Pψ′ | = 4.

Theorem 3 states that graph mappings with the same canonical code induce the
same edit cost. Thus, among those mappings, only one needs to be generated. Next,
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we incorporate Theorems 2 and 3 into BasicGenSuccr to avoid generating the invalid
and redundant mappings discussed above.

3.3. Generating Successors

Consider a node r = {(ui1 → vj1), . . . , (uil → vjl)} in the search tree. Then
the sets of unmapped vertices in G and Q are CrG = VG\{ui1 , . . . , uil} and CrQ =
VQ\{vj1 , . . . , vjl}, respectively. Let z ∈ CrQ ∪ {ε} be a possible mapped vertex of the
vertex uil+1

to be processed.
According to Theorem 2, if |VG| ≤ |VQ|, then |ψ| = |VQ|; this means that none

of the vertices in VG can be mapped to a dummy vertex, i.e., (u→ ε) /∈ ψ for ∀u ∈ VG.
Therefore, we establish Rule 1 as follows:
Rule 1. If |CrG| ≤ |CrQ|, then z ∈ CrQ; otherwise, z = ε or z ∈ CrQ.

Applying Rule 1 to BasicGenSuccr (i.e., Alg. 1) to generate the successors of
each node, we know that when |VG| ≤ |VQ|, none of the vertices in VG are mapped
to ε; otherwise, only |VG| − |VQ| vertices are mapped as such. Consequently, the
obtained graph mapping ψ must satisfy |ψ| = max{|VG|, |VQ|}.

Definition 6 (Partial Order of Canonical Code). Let ψ and ψ′ be two graph mappings
such that code(ψ) = code(ψ′). We define that ψ � ψ′, if ∃l, 1 ≤ l ≤ |ψ|, satisfies
ψ(uik) = ψ′(uik) for 1 ≤ k < l and ψ(uil) < ψ′(uil).

Among the graph mappings with the same canonical code, we only need
to generate the smallest according to the partial order introduced in Definition 6.
Specifically, we map uil+1

to the smallest unmapped vertex in V mQ for 1 ≤ m ≤ λQ.
Therefore, we establish Rule 2 as follows:
Rule 2. z ∈

⋃λQ
m=1 min{CrQ ∩ V mQ }.

Based on Rules 1 and 2, we propose the method of generating r’s successors in
Algorithm 2. Lines 5–9 correspond to Rule 2, and lines 10–12 correspond to Rule 1.
Note that we have divided VQ into λQ equivalent classes V 1

Q, . . . , V
λQ
Q before this

algorithm executes.
Example 5. Consider the graphsG andQ in Figure 1. Figure 4 shows the entire search
tree created by iteratively generating successors using GenSuccr. In this example, we
generate a total of four graph mappings and trivially compute that ged(G,Q) = 4. In
contrast, the search tree created by BasicGenSuccr shown in Figure 2 contains more
than 24 graph mappings.

Layer π

1

2

3

4

u1

u2

u4

u3

root

v1 v4

v2 v4 v1

v3 v4 v2 v2

v4 v3 v3 v3

Figure 4: The entire search tree created by GenSuccr.
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Algorithm 2: GenSuccr(r, l, π)
1 succ← ∅;
2 CrG ← VG\{ui1 , . . . , uil}, C

r
Q ← VQ\{vj1 , . . . , vjl};

3 if |CrG| > 0 then
4 uil+1 ← π[l + 1];
5 for m← 1 to λQ do
6 if CrQ ∩ V mQ 6= ∅ then
7 z ← min{CrQ ∩ V mQ };
8 generate a successor q such that q ← r ∪ {(uil+1 → z)};
9 succ← succ ∪ {q};

10 if |CrG| > |CrQ| then
11 generate a successor q such that q ← r ∪ {(uil+1 → ε)};
12 succ← succ ∪ {q};

13 else
14 generate a leaf node ψ such that ψ ← r ∪

⋃
z∈Cr

Q
{(ε→ z)};

15 succ← succ ∪ {ψ};
16 return succ;

3.4. Search Space Analysis
By replacing BasicGenSuccr with GenSuccr to generate successors, we eliminate

many invalid and redundant mappings, and thus we create a reduced search tree. In this
section, we analyze the size of the search tree, denoted by SR, which is the total number
of nodes in the search tree.

Nodes in the search tree are grouped into different layers based on their distances
from the root node. Hence, the search tree is divided into layers, one layer for each
depth. When all the vertices in VG have been processed, for any node in layer |VG|
(starting from 0), we generate a unique leaf node (see line 14 in GenSuccr); thus,
we can regard this layer as the last layer. Specifically, we only need to generate the
first |VG| layers. LetNl be the number of nodes in layer l. Therefore, SR =

∑|VG|
l=0 Nl.

Let BlG = {ui1 , . . . , uil} be the set of processed vertices in G in layer l.
Correspondingly, we choose l vertices from VQ ∪ {ε} as their mapped vertices. Let
BlQ = {vj1 , . . . , vjl} be the l selected vertices. We use a vector x = [x1, . . . , xλQ+1]

to represent BlQ, where xm is the number of vertices in BlQ that belong to V mQ , i.e.,
xm = |BlQ ∩ V mQ | for 1 ≤ m ≤ λQ, and xλQ+1 is the number of dummy vertices
in BlQ. Thus, we have

λQ+1∑
m=1

xm = l, (1)

where 0 ≤ xm ≤ |V mQ | for 1 ≤ m ≤ λQ, and xλQ+1 ≥ 0.
A solution x to Equation (1) corresponds to a uniqueBlQ. The reason for this is as

follows: In Rule 2, we select the smallest unmapped vertex in V mQ as the mapped vertex
each time. Thus, for xm in x, BlQ will contain the first xm smallest vertices in V mQ .
For example, consider the search tree in Figure 4. Let l = 3 and x = [2, 1, 0]. BlQ will

10



contain the first two smallest vertices v1 and v2 in V 1
Q and the smallest vertex v4 in V 2

Q;
thus, BlQ = {v1, v2, v4}.

Let Ψl be the set of solutions for Equation (1). Then, Ψl covers all possible BlQ.

For a solution x ∈ Ψl, it produces a total of l!
/∏λQ+1

m=1 xm! different (partial) canonical
codes. For example, for x = [2, 1, 0], we produce three partial canonical codes 〈1, 1, 2〉,
〈1, 2, 1〉 and 〈2, 1, 1〉. We know that each (partial) canonical code corresponds to a
(partial) mapping from BlG to BlQ; thus,

Nl =
∑
x∈Ψl

l!∏λQ+1
m=1 xm!

. (2)

From Rule 1, we select ε as the mapped vertex only when there are more
unmapped vertices in G than in Q. Consequently, the number of dummy vertices
in B|VG|Q is 0 when |VG| ≤ |VQ| and |VG| − |VQ| otherwise. Let l = |VG|. We consider
the following two cases:

Case I. When |VG| > |VQ|, for any x ∈ Ψ|VG|, we have xλQ+1 = |VG| − |VQ|.
Equation (1) can be reduced to

∑λQ
m=1 xm = |VQ|. Because

∑λQ
m=1 |V mQ | = |VQ|

and 0 ≤ xm ≤ |V mQ | for 1 ≤ m ≤ λQ, Equation (1) has a unique solution x =

[|V 1
Q|, . . . , |V

λQ
Q |, |VG| − |VQ|]. Substituting x into Equation (2), we have

N|VG| =
|VG|!

(|VG| − |VQ|)!
∏λQ
m=1 |V mQ |!

. (3)

Because N0 = 1 and N1 ≤ · · · ≤ N|VG|, we have

SR ≤ |VG|
|VG|!

(|VG| − |VQ|)!
∏λQ
m=1 |V mQ |!

+ 1. (4)

Case II. When |VG| ≤ |VQ|, for any x ∈ Ψ|VG|, we have xλQ+1 = 0. Equation (1)
can be reduced to

∑λQ
m=1 xm = |VG|. Because |VG| ≤ |VQ|, we have

N|VG| =
∑

x∈Ψ|VG|,
xλQ+1=0

|VG|!∏λQ
m=1 xm!

≤
∑

x∈Ψ|VQ|,

xλQ+1=0

|VQ|!∏λQ
m=1 xm!

=
|VQ|!∏λQ

m=1 |V mQ |!
. (5)

Because N0 = 1 and N1 ≤ · · · ≤ N|VG|, we have

SR ≤ |VG|
|VQ|!∏λQ

m=1 |V mQ |!
+ 1. (6)

In Case II, when we do not consider the isomorphic vertices in BlQ, a total of l!
mappings from BlG to BlQ exist. Because there are at most

(|VQ|
l

)
possible BlQ, we
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have

Nl ≤
(
|VQ|
l

)
· l! =

|VQ|!
(|VQ| − l)!

. (7)

Therefore,

SR =

|VG|∑
l=0

Nl ≤
|VG|∑
l=1

|VQ|!
(|VQ| − l)!

+ 1

=
|VQ|!

(|VQ| − |VG|)!

|VG|∑
l=1

1∏|VG|−l
m=1 (|VQ| − |VG|+m)

+ 1

≤ 2
|VQ|!

(|VQ| − |VG|)!
+ 1. (8)

In summary, by (4), (6), and (8), we have

SR =


O
( |VG||VG|!

(|VG|−|VQ|)!
∏λQ
m=1 |VmQ |!

)
if |VG| > |VQ|

O
(
min{ |VG||VQ|!∏λQ

m=1 |VmQ |!
,

|VQ|!
(|VQ|−|VG|)!}

)
otherwise

(9)

4. GED Computation using Beam-stack Search

The previous section showed how we created a reduced search space; however,
we still need an efficient search paradigm to traverse this search space to seek an
optimal graph mapping. In this section, by incorporating the beam-stack search [20],
we give the approach to compute the GED.

4.1. Data Structures
For a node r in the search tree, f(r) = g(r) + h(r) is the total edit cost (also

called the f -cost) assigned to r, where g(r) is the incurred edit cost from root to r,
and h(r) is the estimated edit cost from r to a leaf node that is less than or equal to the
real cost. g(r) and h(r) will be discussed in Section 5.1. Before formally presenting
the algorithm, we first introduce the data structures used.

• A beam stack, bs , is a generalized stack in which each item is a half-open interval
[fmin, fmax). We use bs[l] to denote the interval of layer l. For a node r in layer l,
its successor n in the next layer l + 1 is allowed to expand only when f(n) lies
in the interval bs[l] (i.e., bs[l].fmin ≤ f(n) < bs[l].fmax).

• Priority queues, open[0], . . . , open[|VG|], where open[l], for 0 ≤ l ≤ |VG|,
stores the expanded nodes in layer l. We use |open[l]| to denote the number of
nodes in open[l].

• A table, new , where new [H(r)] stores r’s successors andH(r) is a hash function
that assigns a unique ID to r.

12



4.2. Algorithm

Algorithm 3 performs an iterative search to obtain an increasingly tight upper
bound ub until ub = ged(G,Q). In each iteration, we perform the following two steps:
(1) We first use beam search [19] to quickly find a leaf node whose cost is an upper
bound of ged(G,Q). Then we update ub (line 6). Because the beam search expands
at most w nodes in each layer, some nodes are inadmissibly pruned (i.e., nodes are
pruned due to memory limitations, which may cause the algorithm to miss the optimal
solution) when the number of nodes in a layer is greater than the beam width w. (2)
We backtrack and pop items from bs until bs.top().fmax < ub (lines 7–8). Let l be the
layer where we stop backtracking. When l = −1, we have completed the search and
obtain ub = ged(G,Q) (lines 9–10); otherwise, we shift the range of bs.top() (line 11)
to re-expand the inadmissibly pruned nodes from layer l and continue the search for a
tighter ub in the next iteration. Note that at the beginning of this algorithm, we first
determine the vertex processing order of G (line 1, see Section 5.2) and then divide the
vertices in Q into λQ subsets of isomorphic vertices (line 2, see Section 3.2).

The procedure BeamSearch performs a beam search to seek a tighter ub, where
PQL and PQLL are two temporary priority queues used to record expanded nodes in
two adjacent layers. In each layer, we sequentially pop nodes according to their f -cost1.
Let r be the node currently associated with the smallest f -cost (line 4). If r is a leaf
node, we update ub and stop the search because g(z) ≥ g(r) holds for ∀z ∈ PQL
(line 7); otherwise, we call ExpandNode to generate r’s successors that are allowed
to expand and insert them into PQLL (lines 8–9). Because at most w successors are
allowed to expand in each layer, we keep only the best w nodes (i.e., those with the
smallest f -cost) in PQLL. The remaining nodes are inadmissibly pruned (lines 10–13).
Correspondingly, we modify the right boundary of bs.top() as the lowest f -cost among
all the inadmissibly pruned nodes (line 12). After that, we move to the next layer and
repeat the above process until we find a leaf node (lines 14–15).

The ExpandNode procedure generates r’s successors that are allowed to expand.
When first generated, all nodes are marked as false. If r has not been visited (i.e.,
r.visited = false), then we call GenSuccr to generate r’s successors and mark r as
visited (lines 2–4); otherwise, we read r’s successors directly from new (line 6). For a
successor n of r, if f(n) ≥ ub or n.visited = true, then we can safely prune it (see
Lemma 1); meanwhile, we delete its successors from new (line 9). Otherwise, when
bs.top().fmin ≤ f(n) < bs.top().fmax, we expand n. When all the successors of r have
been safely pruned, we prune r and delete its successors from new (line 13).

Lemma 1. In ExpandNode, if f(n) ≥ ub or n.visited = true, i.e., line 8, we can
safely prune n.

Proof. In ExpandNode, we assume that r and its successors n are in layers l and l + 1,
respectively. For the case in which f(n) ≥ ub, the proof is trivial. Next we prove this
lemma in the other case.

1When two or more nodes have the same f -cost, we use the tie-breaking rule in [20] to impose a total
ordering on these nodes.
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Algorithm 3: BSS GED(G,Q,w)

1 π ← DetermineOrder(G);

2 divide VQ into λQ equivalent classes V 1
Q, . . . , V

λQ
Q ;

3 root ← ∅, bs ← ∅, open[]← ∅,new []← ∅, l← 0, ub←∞;
4 bs.push([0, ub)), open[0].push(root);
5 while bs 6= ∅ do
6 BeamSearch (l, ub, bs, open,new , π);
7 while bs.top().fmax ≥ ub do
8 bs.pop(), l← l − 1;

9 if l = −1 then
10 return ub;

11 bs.top().fmin ← bs.top().fmax, bs.top().fmax ← ub;

12 return ub;
procedure BeamSearch(l, ub, bs, open,new , π)

1 PQL← open[l], PQLL← ∅;
2 while PQL 6= ∅ or PQLL 6= ∅ do
3 while PQL 6= ∅ do
4 r ← argminn{f(n) : n ∈ PQL};
5 PQL← PQL\{r};
6 if r is a complete graph mapping then
7 ub← min{ub, g(r)}, return;

8 succ ←ExpandNode (r, l, ub,new , π);
9 PQLL← PQLL ∪ succ;

10 if |PQLL| > w then
11 keepNodes ← the best w nodes in PQLL;
12 bs.top().fmax ← min{f(n) : n ∈ PQLL ∧ n /∈ keepNodes};
13 PQLL← keepNodes;

14 open[l + 1]← PQLL,PQL← PQLL;
15 PQLL← ∅, l← l + 1, bs.push([0, ub));

procedure ExpandNode(r, l, ub,new , π)
1 expand ← ∅;
2 if r.visited = false then
3 succ ←GenSuccr(r, l, π);
4 new [H(r)]← succ, r.visited← true;

5 else
6 succ ← new [H(r)];
7 foreach n ∈ succ do
8 if f(n) ≥ ub or n.visited = true then
9 new [H(n)]← ∅, continue;

10 if bs.top().fmin ≤ f(n) < bs.top().fmax then
11 expand ← expand ∪ {n};

12 if ∀n ∈ succ, f(n) ≥ ub or n.visited = true then
13 new [H(r)]← ∅;
14 return expand ;
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Consider the items in bs in the last iteration. Assume that we perform the
BeamSearch from layer k (i.e., we backtrack to layer k in the last iteration, see
lines 7–8 in Alg. 3). Clearly, k ≤ l and bs[m].fmax ≥ ub for l + 1 ≤ m ≤ |VG |.
If n.visited = true, then we have called ExpandNode to generate n’s successors in
the last iteration. For a successor x of n in layer l+ 2, if x is inadmissibly pruned, then
f(x) ≥ bs[l + 1].fmax ≥ ub; thus we can safely prune x. Otherwise, we consider a
successor of x and repeat this decision process until we reach a leaf node z. Then the
condition that f(z) = g(z) ≥ ub must hold. Therefore, none of n’s descendants can
produce a tighter ub; consequently, we can safely prune n.

Lemma 2. A node r is visited at most O(|VQ|) times.

Proof. For a node r in layer l, GenSuccr generates at most |VQ| + 1 successors; thus,
at most |open[l]| · (|VQ| + 1) nodes are expanded in layer l in each iteration. To fully
generate all the successors in layer l + 1, we backtrack to layer l at most |open[l]| ·
(|VQ| + 1)/w ≤ |VQ| + 1 times because |open[l]| ≤ w. Later, when we again visit r,
all the successors of r have either been pruned or marked; thus, we can safely prune
them according to Lemma 1. Consequently, r cannot produce a tighter ub during this
iteration; thus we can safely prune it (i.e., lines 12–13 in ExpandNode). Adding the
first time when generating r, we visit r at most |VQ|+ 3 times–that is, O(|VQ|).

Theorem 4. Given two graphs G and Q, BSS GED returns ged(G,Q) and its time
complexity is O(|VQ| · SR), where SR is the total number of nodes in the search tree.

Proof. From Lemma 2, a node is visited at most O(|VQ|) times; thus, all nodes are
visited at mostO(|VQ|·SR) times (see SR in Section 3.4). Therefore, BSS GED always
terminates in a finite number of iterations and its time complexity is O(|VQ| · SR).
In BeamSearch, we update ub = min{ub, g(r)} each time. Thus ub becomes
progressively tighter. We prove by contradiction that ub converges to ged(G,Q) when
BSS GED terminates.

Suppose that ub > ged(G,Q). Let x and y be two leaf nodes such that g(x) = ub
and g(y) = ged(G,Q). Let z be the common ancestor of x and y, which is furthest
from the root node. Let z′ be a z’s successor, which is also an ancestor of y. We have
f(z′) ≤ g(y) = ged(G,Q) < ub.

Because z′ is not in the path from z to x, it must be pruned during an iteration,
that is, f(z′) ≥ ub or z′.visited = true (if z′ has been inadmissibly pruned, we
backtrack and re-expand it until it is either pruned or marked). The case when
f(z′) ≥ ub contradicts f(z′) < ub, and for the other case z′.visited = true, we obtain
g(y) ≥ ub using the same analysis as in Lemma 1, which contradicts g(y) < ub. Thus,
ub = ged(G,Q).

Theorem 5. Given two graphs G and Q and the beam width w, the space complexity
of BSS GED is O(w|V |2), where |V | = max{|VG|, |VQ|}.

Proof. The storage space of BSS GED consists of a beam stack bs, priority queues
open[0], . . . , open[|VG|], and a table new . Because the height of the search tree is |VG|,
the space of bs isO(|VG|). For a layer l, 0 ≤ l ≤ |VG|, open[l] stores at most w nodes;
thus, the space of open[l] isO(w). Therefore, all priority queues takeO(w|VG|) space.
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A node r generates at most (|VQ| + 1) successors using GenSuccr; thus, new [H(r)]
requires O(|VQ|) space. Because all priority queues store at most w(|VG| + 1) nodes,
new requires O(w · (|VG| + 1) · |VQ|) space. Combining the space of bs, open[l]
(0 ≤ l ≤ |VG|) and new , the space complexity of BSS GED is O(|VG| + w|VG| +
w|VG||VQ|) = O(w|V |2).
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Figure 5: Example of computing GED with BSS GED.

Example 6. Figure 5 shows how to use BSS GED to compute ged(G,Q), where G
and Q are shown in Figure 1, and w = 2. “×” implies that nodes are inadmissibly
pruned, and the gray nodes denote the expanded nodes in each layer. The priority
queues open[0], . . . , open[4] and table new are omitted due to space limitations. The
values of g and h near a node give the incurred and estimated cost of this node,
respectively.

In this example, starting from a dummy node root, we expand at most two
nodes in each layer. In both layers 2 and 3, we generate three successors; thus, we
inadmissibly prune the least desired node with the highest f -cost (i.e., the sum of g
and h). When two nodes have the same f -cost, we preferentially prune the node with a
higher g value. Correspondingly, we modify bs.top() from [0,∞) to [0, 7). When
we search to the last layer (i.e., l = 4), we obtain ub = 4. After that, we perform
backtracking and pop items from bs. Because the right boundaries of all items in bs
are greater than ub, bs will be empty when we stop backtracking. Finally, ub = 4 is
the best edit cost we obtain–that is, ged(G,Q) = 4.

5. Search Space Pruning

In BSS GED, when the f -cost of node r is greater than the upper bound ub, i.e.,
f(r) = g(r) + h(r) ≥ ub, we can safely prune r. Because g(r) is the irreversible cost,
the upper bound ub and the lower bound h(r) are the keys to perform pruning. In this
section, we present two heuristics to prune the useless search space: (1) we propose
an efficient heuristic function to estimate h(r), and (2) we order the vertices in G to
enable a fast search for a tight ub.
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5.1. Estimating h(r)

A graph mapping ψ fromG toQ induces an edit path Pψ : G→ Gψ → Qψ → Q
(see Section 2.2). Clearly, Pψ contains at least max{|VG|, |VQ|} − |ΣVG ∩ ΣVQ |
vertex edit operations used to convert ΣVG to ΣVQ . Next we consider edit operations
performed only on edges. Assume that we first delete γ1 edges when converting G
to Gψ and then change γ2 edge labels when converting Gψ to Qψ , and finally, that we
insert γ3 edges when converting Qψ to Q.

First, when converting G to Gψ by deleting γ1 edges, we obtain ΣE
Gψ
⊆ ΣEG .

Then, we change γ2 edge labels when converting Gψ to Qψ . Because in this
transformation we need to change at least |EQψ | − |ΣEGψ ∩ ΣE

Qψ
| labels to convert

ΣE
Gψ

to ΣE
Qψ

, we have γ2 ≥ |EQψ | − |ΣEGψ ∩ ΣE
Qψ
|. Finally, we insert γ3 edges

when converting Qψ to Q; thus, ΣE
Qψ
⊆ ΣEQ and γ3 = |EQ| − |EQψ |. Clearly, we

obtain γ2 + γ3 ≥ |EQ| − |ΣE
Gψ
∩ΣE

Qψ
|. Because ΣE

Gψ
⊆ ΣEG and ΣE

Qψ
⊆ ΣEQ ,

we have |ΣEG ∩ ΣEQ | ≥ |ΣEGψ ∩ ΣE
Qψ
|. Therefore,

|ΣEG ∩ ΣEQ |+ γ2 + γ3 ≥ |EQ|. (10)

We estimate the lower bounds of γ1 and γ3 below. For a vertex u in G,
its degree du is the number of edges adjacent to u. The degree sequence δG =
[δG[1], . . . , δG[|VG|]] of G is a permutation of d1, . . . , d|VG| such that δG [i ] ≥ δG [j ]
for i < j. When G and Q are of different sizes, we extend δG and δQ as δ′G =
[δG[1], . . . , δG[|VG|], 01, . . . , 0|V |−|VG|] and δ′Q = [δQ[1], . . . , δQ[|VQ|], 01, . . . , 0|V |−|VQ|],
respectively, where |V | = max{|VG|, |VQ|}. Let ∆1(G,Q) = d

∑
δ′G[i]>δ′Q[i](δ

′
G[i] −

δ′Q[i])/2e and ∆2(G,Q) = d
∑
δ′G[i]≤δ′Q[i](δ

′
Q[i] − δ′G[i])/2e, for 1 ≤ i ≤ |V |. We

have the following theorem.

Theorem 6 ([24]). Given two graphs G and Q, γ1 ≥ ∆1(G,Q) and γ3 ≥ ∆2(G,Q).

Based on Inequality (10) and Theorem 6, we know that
∑3
i=1 γi ≥ ∆1(G,Q) +

|EQ|−|ΣEG∩ΣEQ | and
∑3
i=1 γi ≥ ∆1(G,Q)+∆2(G,Q). Adding the edit operations

performed on vertices, we then establish the lower bound of ged(G,Q) as follows.

Theorem 7. Given two graphs G and Q, we have ged(G,Q) ≥ LB(G,Q), where
LB(G,Q) = max{|VG|, |VQ|}−|ΣVG∩ΣVQ |+max{∆1(G,Q)+∆2(G,Q),∆1(G,Q)+
|EQ| − |ΣEG ∩ ΣEQ |}.

Consider a node r = {(ui1 → vj1), . . . , (uil → vjl)} in the search tree. We
divide G into two subgraphs Gr1 and Gr2, where Gr1 is the mapped part of G such
that VGr1 = {ui1 , . . . , uil} and EGr1 = {e(u, v) : u, v ∈ VGr1 ∧ e(u, v) ∈ EG},
and Gr2 is the unmapped part such that VGr2 = VG\VGr1 and EGr2 = {e(u, v) : u, v ∈
VGr2 ∧ e(u, v) ∈ EG}. We obtain Qr1 and Qr2 similarly. Clearly, r induces an edit
path Pr that transforms Gr1 to Qr1. Thus, the incurred cost from root to r, g(r), is set
to |Pr| in BSS GED.

For the unmapped parts Gr2 and Qr2, according to Theorem 7, we know that
LB(Gr2, Q

r
2) is the lower bound of ged(Gr2, Q

r
2); thus, we can adopt it as h(r).

However, LB(Gr2, Q
r
2) does not cover the potential edit cost on the edges between Gr1

(resp., Qr1) and Gr2 (resp., Qr2).
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Definition 7 (Outer Edge Set). The outer edge set of a vertex u in VGr1 is defined as
Ou = {e(u, v) : v ∈ VGr2 ∧ e(u, v) ∈ EG}, which consists of edges adjacent to u that
belong to neither EGr1 nor EGr2 .

Correspondingly, Or(u) is the outer edge set of r(u), where r(u) is the mapped
vertex of u. Thus, ΣOu = {L(e(u, v)) : e(u, v) ∈ Ou} is the label multiset of Ou.
We assume that in the optimal edit path we first delete ξu1 edges and then change ξu2
edge labels, and finally, we insert ξu3 edges on u. Similar to the previous analysis of
obtaining Inequality (10), we have{

|Ou| − ξu1 + ξu3 = |Or(u)|
|ΣOu ∩ ΣOr(u) |+ ξu2 + ξu3 ≥ |Or(u)|

(11)

Clearly, we can find that
∑3
i=1 ξ

u
i ≥ max{|Ou|, |Or(u)|} − |ΣOu ∩ ΣOr(u) | by

Inequality (11). Adding all the vertices in Gr1, we obtain the lower bound LBr1 as
follows:

LBr1 = LB(Gr2, Q
r
2) +

∑
u∈VGr1

(max{|Ou|, |Or(u)|}

−|ΣOu ∩ ΣOr(u) |).
(12)

Definition 8 (Outer Vertex Set). The outer vertex set of a vertex u in Gr1 is defined as
Au = {v : v ∈ VGr2 ∧ e(u, v) ∈ EG}, which consists of vertices in Gr2 adjacent to u.

Correspondingly, Ar(u) denotes the outer vertex set of r(u). Thus, ArG =⋃
u∈VGr1

Au denotes the set of vertices in Gr2 adjacent to the outer edges between Gr1
and Gr2. Similarly, we obtain ArQ =

⋃
z∈VQr1

Az . When |ArG| ≤ |ArQ|, we must

insert at least |ArQ| − |ArG| outer edges on some vertices in Gr1; hence,
∑
u∈VGr1

ξu3 ≥
|ArQ| − |ArG| and

∑
u∈VGr1

ξu1 ≥ |ArG| − |ArQ| otherwise. Considering Inequality (11),

for a vertex u in VGr1 , we have ξu2 + ξu3 ≥ |Or(u)| − |ΣOu ∩ ΣOr(u) |. Thus,∑
u∈VGr1

(ξu1 +ξu2 +ξu3 ) ≥
∑
u∈VGr1

(|Or(u)|−|ΣOu∩ΣOr(u) |)+max{0, |ArG|−|ArQ|}.
Because |Ou|+ξu3 = |Or(u)|+ξu1 , we have

∑
u∈VGr1

(ξu1 +ξu2 +ξu3 ) ≥
∑
u∈VGr1

(|Ou|−
|ΣOu ∩ΣOr(u) |)+max{0, |ArQ|−|ArG|}. Therefore, we obtain the lower bounds, LBr2
and LBr3 , as follows:

LBr2 = LB(Gr2, Q
r
2) +

∑
u∈VGr1

(|Or(u)| − |ΣOu ∩ ΣOr(u) |)

+max{0, |ArG| − |ArQ|}.
(13)

LBr3 = LB(Gr2, Q
r
2) +

∑
u∈VGr1

(|Ou| − |ΣOu ∩ ΣOr(u) |)

+max{0, |ArQ| − |ArG|}.
(14)

Based on LBr1 , LBr2 and LBr3 , we adopt h(r) = max{LBr1 , LBr2 , LBr3} as the
heuristic function in BSS GED.
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Example 7. Consider the search process of computing ged(G,Q) in Figure 5, whereG
and Q are given in Figure 1. Given a node r = {(u1 → v1), (u2 → v2)} (i.e.,
the leftmost node in the second layer), we obtain Gr2 = ({u3, u4}, {e(u3, u4)}, L)
and Qr2 = ({v3, v4}, {e(v3, v4)}, L). From Theorem 7, we can compute that
LB(Gr2, Q

r
2) = 0. For the processed vertices u1 and u2, we have Ou1

= {e(u1, u3)},
Ou2 = {e(u2, u4)}, Au1 = {u3} and Au2 = {u4}. Clearly ΣOu1 = {b},
ΣOu2 = {a} and ArG = Au1 ∪ Au2 = {u3, u4}. Similarly we obtain ΣOv1 = {a},
ΣOv2 = {a} and ArQ = {v4}. Thus we can compute that LBr1 = LB(Gr2, Q

r
2) +∑

u∈{u1,u2}(max{|Ou|, |Or(u)|} − |ΣOu ∩ ΣOr(u) |) = 1. Because ArG = {u3, u4}
and ArQ = {v4}, we obtain LBr2 = LB(Gr2, Q

r
2) +

∑
u∈{u1,u2}(|Oψ(u)| − |ΣOu ∩

ΣOr(u) |)+max{0, |ArG|−|ArQ|} = 2, and LBr3 = LB(Gr2, Q
r
2)+

∑
u∈{u1,u2}(|Ou|−

|ΣOu ∩ΣOr(u) |) + max{0, |Ar
Q | − |Ar

G |} = 1. So, h(r) = max{LBr1 , LBr2 , LBr3} =
max{1, 2, 1} = 2.

5.2. Ordering Vertices in G

In BSS GED, we utilize GenSuccr to generate successors. Initially, we need to
determine the processing order π of vertices in G (i.e., line 1 in Alg. 3). The most
primitive way is to adopt the default vertex order π = [u1, . . . , u|VG|], which is also
used in A?-GED [17] and DF-GED [26]. However, this order may be inefficient because
it does not consider the structural relationships among vertices.

For two vertices u and v such that e(u, v) ∈ EG, if u has been processed, then
to obtain an early estimate of the edit cost on e(u, v), we should process v as soon as
possible. Hence our policy is to traverse G in a depth-first order to obtain π. However,
starting the traversal from different vertices may result in different orders.

In Section 5.1, we proposed the heuristic function h(r), an important part of
which, LB(Gr2, Q

r
2), is presented in Theorem 7. As we know, the more structure

that Gr2 and Qr2 retain, the tighter LB(Gr2, Q
r
2) that we may obtain. Accordingly, we

preferentially consider vertices with small degrees; this is because that when we first
process those vertices, the remaining unmapped parts Gr2 and Qr2 retain the structure to
the greatest extent possible.

Algorithm 4 gives the method for computing the order π. First, we sort the
vertices according to their degrees (line 2). Then, we call DFSTraverse to traverse G
in a depth-first order (lines 3–6). When two vertices have the same degree, we
preferentially consider the smaller vertex.

In the DFSTraverse procedure, we sequentially insert u into π and then mark u
as visited (i.e., we set F [u] = true) (line 1). Then, we compute Nu, the set of vertices
adjacent to u (line 2). Finally, we select the unvisited vertex v from Nu with the
smallest degree and then recursively call DFSTraverse to traverse the subtree rooted
at v (lines 3–7).
Example 8. For the graph G shown in Figure 1, we first compute that rank =
[u1, u2, u3, u4]. Starting from u1, we traverse G in a depth-first order, and finally,
we obtain π = [u1, u2, u4, u3].
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Algorithm 4: DetermineOrder(G)

1 F [1..|VG|]← false, π[]← ∅, count ← 1;
2 rank ← sort vertices in VG according to their degrees;
3 for i← 1 to |VG| do
4 u← rank [i];
5 if F [u] = false then
6 DFSTraverse(u, F, rank, π, count)

7 return π;
procedure DFSTraverse(u, F, rank, π, count)

1 π[count]← u, count← count+ 1, F [u]← true;
2 Nu ← {v : v ∈ VG ∧ e(u, v) ∈ EG};
3 while |Nu| > 0 do
4 v ← min{rank [j] : j ∈ Nu};
5 Nu ← Nu\{v};
6 if F [v] = false then
7 DFSTraverse(v, F, rank, π, count);

6. Experimental Results

In this section, we perform comprehensive experiments and then analyze the
obtained results.

6.1. Datasets and Settings

We chose several real and synthetic datasets for use in the experiments. These
datasets are described below.

• GREC [13]. The GREC dataset consists of 1,100 images, each of which
represents a symbol from architecture, electronics, or another technical field.
Vertices represent subparts of lines and are labeled with their types (circle,
corner, endpoint, or intersection). Edges represent the connection points of lines
and are labeled by line or arc.

• AIDS2. The AIDS dataset is an antiviral screening dataset from the NCI/NIH
Development and Therapeutics Program and contains 42,687 chemical compounds.
We generate labeled graphs from these compounds but omit the hydrogen atoms,
as in [21, 24].

• Synthetic. The Synthetic dataset consists of dense graphs generated by the
synthetic graph data generator GraphGen3. In the experiment, we generated the
dataset S1K.E30.D30.L20, which contains 1000 graphs; the average number of

2http://dtp.nci.nih.gov/docs/aids/aidsdata.html
3http://www.cse.ust.hk/graphgen/
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edges in each graph is 30; the density4 of each graph is 30%; and the numbers of
distinct vertex and edge labels are 20 and 5, respectively.

Tested datasets. Due to the difficulty of computing the GED, existing methods are
unable to obtain the GED of large graphs within a reasonable amount of time. For
the GREC and AIDS datasets, we excluded the large graphs (those with more than 35
vertices), as in [1], and then randomly selected 1,000 and 10,000 graphs to construct
the datasets GREC-1K and AIDS-10K, respectively. For S1K.E30.D30.L20, we used
the entire dataset.
Query Groups. In CSI GED, for each tested dataset, given a specific graph size i, the
authors suggested randomly choosing three data graphs whose sizes are i − 1, i and
i+ 1 to constitute the query group i± 1. We adopted the same approach in this study.
Specifically, the query groups used in the experiment are 6 ± 1, 9± 1, 12 ± 1, 15 ±
1, 18± 1 and 21± 1.
Evaluation Metrics. Given a tested dataset G = {G1,G2, . . . } (e.g., AIDS-10K) and a
query group T = {T1, T2, T3} (e.g., 12 ± 1), for each tested algorithm (i.e., A?-GED,
DF-GED, CSI GED and BSS GED), we perform 3 × |G| pairwise GED computations.
Considering a GED computation of one graph pair Gi and Tj , we set the available time
and memory to 1 hour and 24 GB, respectively. When an algorithm required more
than 1 hour or more than 24 GB to compute ged(Gi, Tj), we set slove(Gi,Qj) = 0;
otherwise, we set slove(Gi,Qj) = 1. Finally, we defined a metric named solvable ratio
(sr) to evaluate the methods listed above. The sr is computed as follows:

sr =

∑3
j=1

∑|G|
i=1 slove(Gi, Tj)
3× |G|

. (15)

Obviously, a larger sr reflects a better performance by an algorithm. In addition,
we measured the average running time for processing these 3 × |G| pairwise GED
computations. For a pairwise GED computation, when the running time of an algorithm
exceeded 1 hour, we halted the algorithm and recorded the running time for this
pairwise GED computation as 1 hour.
Environment. We conducted all the experiments on an HP Z800 PC running the
Ubuntu 12.04 LTS operating system and equipped with a 2.67GHz GPU and 24 GB
of memory. We implemented BSS GED in C++, using -O3 to compile and run it. In
BSS GED, we set the beam width w = 15 for the sparse graphs in GREC-1K and
AIDS-10K and w = 50 for the dense graphs in S1K.E30.D30.L20.

6.2. Comparing with Existing GED Computation Methods

In this section, we compare BSS GED with state-of-the-art GED computation
methods, including A?-GED [17], DF-GED [26] and CSI GED [12]. Table 1 shows the
solvable ratio (sr) and the average running time (time), where G and T denote the
tested dataset and query group, respectively. “-OM” means that the memory usage

4the density of a graph G is defined as 2|EG|
|VG|(|VG|−1)

.
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Table 1: Solvable ratio and average running time of the tested methods.

G T A?-GED DF-GED CSI GED BSS GED
sr time sr time sr time sr time

G
R

E
C

-1
K

6± 1 100% 0.4 s 100% 81 ms 100% 0.6 ms 100% 0.8 ms
9± 1 100% 11.9 s 100% 2.1 s 100% 5.6 ms 100% 1.7 ms
12± 1 0% -OM 56.7% 38.6 m 100% 96.3 ms 100% 9.2 ms
15± 1 0% -OM 3.1% 59.1 m 100% 1.3 s 100% 0.2 s
18± 1 0% -OM 0% >1 h 100% 16.8 s 100% 0.7 s
21± 1 0% -OM 0% >1 h 100% 46.5 s 100% 2.1 s

A
ID

S-
10

K

6± 1 100% 0.7 s 100% 94.2 ms 100% 1.1 ms 100% 3.1 ms
9± 1 100% 27.3 s 100% 9.1 s 100% 0.1 s 100% 0.2 s
12± 1 0% -OM 42.2% 32.7 m 100% 2.5 s 100% 1.9 s
15± 1 0% -OM 0% >1 h 100% 21.1 s 100% 13.5 s
18± 1 0% -OM 0% >1 h 100% 1.2 m 100% 0.5 m
21± 1 0% -OM 0% >1 h 100% 5.8 m 100% 0.9 m

S1
K

.E
30

.D
30

.L
20 6± 1 100% 12.4 s 100% 2.4 s 100% 96 ms 100% 17 ms

9± 1 100% 14.3 m 100% 3.2 m 100% 27.7 s 100% 0.43 s
12± 1 0% -OM 25.8% 48.1 m 69.1% 20.1 m 100% 5.9 s
15± 1 0% -OM 0% >1 h 32.6% 52.1 m 100% 1.1 m
18± 1 0% -OM 0% >1 h 0% >1 h 100% 12.3 m
21± 1 0% -OM 0% >1 h 0% >1 h 75.4% 37.5 m

exceeds 24 GB. The abbreviations “ms”, “s”,“m” and “h” represent milliseconds,
seconds, minutes and hours, respectively.

From Table 1, we can see that BSS GED completes almost all the pairwise GED
computations and performs the best in terms of the sr. A?-GED cannot calculate the
GED of graphs with more than 12 vertices within 24 GB, and DF-GED cannot finish
the GED computation within 1 hour when the graphs have more than 15 vertices.
CSI GED performs well on the sparse graphs in GREC-1K and AIDS-10K; however,
for the dense graphs in S1K.E30.D30.L20, the sr drops sharply as the query group size
increases, confirming that it is unsuitable for dense graphs.

BSS GED also achieves the best running time in most cases. DF-GED performs
better than A?-GED, which is consistent with the previous results reported in [26].
Compared with DF-GED, BSS GED is faster by at least two orders of magnitude.
This improvement is because of several techniques used in BSS GED, including the
reduced search space, the efficient search paradigm, and the two heuristics. CSI GED
slightly outperforms BSS GED on the sparse graphs in GREC-1K and AIDS-10K when
the query group size is less than 9; in contrast, when the query group size is greater
than 12, BSS GED achieves 5x–20x and 1.5x–6x speedups on the above two datasets,
respectively. Moreover, on the S1K.E30.D30.L20 dataset, BSS GED achieves a 5x–
220x speedup over CSI GED. These results show that BSS GED is highly efficient on
both sparse and dense graphs.

6.3. Evaluating BSS GED

As described earlier in this paper, we adopt several techniques in BSS GED,
including (1) GenSuccr, which is used to decrease the number of invalid and redundant
mappings (Section 3); (2) the beam-stack search, which is used to establish a trade-off
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between memory utilization and backtracking calls (Section 4); and (3) two heuristics,
where one estimates the node’s cost (Section 5.1) and the other is a vertex sorting
strategy (Section 5.2). Thus, it is necessary to study the contributions of these
techniques to BSS GED.

In the following tests, we fix the query group 12 ± 1 as the tested query group.
Then, we separately evaluate the techniques listed above. Note that even when we are
evaluating one technique, the other techniques are still included in BSS GED.

6.3.1. Evaluating GenSuccr
In this section, we evaluate the effect of GenSuccr on the performance of

BSS GED. To implement the comparison, we replace GenSuccr with three other
methods: BasicGenSuccr, GenSuccr-R1 and GenSuccr-R2, to generate a node’s
successors. BasicGenSuccr is the basic method used in A?-GED [17] and DF-GED [26].
GenSuccr-R1 (resp., GenSuccr-R2) denotes that we only use Rule 1 (resp., Rule 2).
Table 2 reports the obtained results, where #nodes shows the average number of
nodes generated during the GED computation and time shows the average running
time. Here, we do not display the sr for the four methods because they are all 100%.

Table 2: Average number of nodes generated and average running time.

Methods GREC-1K AIDS-10K S1K.E30.D30.L20
#nodes time #nodes time #nodes time

BasicGenSuccr 4.23× 103 11.64 ms 5.99× 105 2.28 s 1.38× 106 8.63 s
GenSuccr-R1 3.96× 103 10.69 ms 5.53× 105 2.13 s 1.01× 106 6.03 s
GenSuccr-R2 3.54× 103 10.25 ms 5.24× 105 2.07 s 1.37× 106 8.58 s
GenSuccr 3.26× 103 9.21 ms 5.02× 105 1.94 s 0.99× 106 5.89 s

From Table 2, we can clearly see that GenSuccr generates the smallest number of
nodes and that both GenSuccr-R1 and GenSuccr-R2 perform better than BasicGenSuccr.
On the GREC-1K and AIDS-10K datasets, GenSuccr-R2 performs better than GenSuccr-
R1, which means that more redundant mappings than invalid mappings can be reduced.
In contrast, for S1K.E30.D30.L20, GenSuccr-R1 performs better. Compared to
BasicGenSuccr, GenSuccr generates 23%, 16% and 27% fewer nodes on GREC-
1K, AIDS-10K and S1K.E30.D30.L20, respectively; accordingly, GenSuccr results
in speedups of 25%, 18% and 32% on the above three datasets, respectively, compared
to BasicGenSuccr. Thus, using GenSuccr we create a reduced search space.

6.3.2. Evaluating Beam-stack Search
In this section, we evaluate the effect of the beam-stack search (BSS) by

comparing it with two other search paradigms: the best-first search used in A?-GED
and the depth-first search (DFS) used in DF-GED. Note that DFS is a special case of
BSS when w = 1. In addition, we also select four different w values (w = 5, 15, 50
and 100) to evaluate the effect of w on the performance of BSS.

Figure 6 reports the obtained results. The left subfigure shows the average
memory usage of different search paradigms, and the right subfigure gives the average
number of backtracking calls. For A?, we do not show the number of backtracking
calls because it does not incur backtracking. Note that when we measure the average
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Figure 6: Average memory usage and number of backtracking calls.

memory usage of A? for a pairwise GED computation, if A? takes more than 24 GB,
then the computation fails, and we record this computation’s memory usage as 24 GB.

From Figure 6, clearly, A? requires considerably more memory than DFS and
BSS. DFS stores only the nodes of a path from the root to a leaf node; thus, it consumes
the least memory but incurs the greatest number of backtracking calls. Although BSS
consumes more memory than DFS, its memory usage is typically small (e.g., < 3 MB)
and can be ignored; however, it substantially reduces the number of backtracking calls.
For example, when w = 15, the number of backtracking calls in BSS is only 10% of
that in DFS.

Table 3: Solvable ratio and average running time.

Search GREC-1K AIDS-10K S1K.E30.D30.L20
sr time sr time sr time

A* 100% 93.1 ms 98.2% 8.34 s 95.9% 18.79 s
DFS 100% 12.5 ms 100% 3.47 s 100% 11.41 s
BSS-5 100% 9.8 ms 100% 2.15 s 100% 8.43 s
BSS-15 100% 9.2 ms 100% 1.94 s 100% 7.29 s
BSS-50 100% 11.2 ms 100% 2.53 s 100% 5.89 s
BSS-100 100% 14.9 ms 100% 2.93 s 100% 7.94 s

In addition, we show the sr and the average running time of the different search
paradigms in Table 3. Clearly, A? is unable to complete all the pairwise computations
and suffers from the highest running time. This result occurs because the priority queue
used in A? stores numerous nodes, and updating the priority queue each time is also
computationally expensive. In contrast, the update costs of DFS and BSS are much
lower. Moreover, both DFS and BSS can quickly find a leaf node and use the obtained
upper bound to prune nodes in the subsequent search. Compared to DFS, BSS runs
faster because it requires fewer backtracking calls. In conclusion, BSS consumes more
memory than DFS but incurs fewer backtracking calls; this means that BSS achieves a
trade-off between memory utilization and backtracking calls.

One additional trend to consider is that as w increases, the running time first
decreases and then increases; the running time is maximized when w = 15 on the
GREC-1K and AIDS-10K datasets and when w = 50 on the S1K.E30.D30.L20
dataset. Two factors may contribute to this trend: (1) When w is too small, BSS
becomes trapped in a local suboptimal solution, resulting in many backtracking calls,
and (2) when w is too large, BSS may unnecessarily expand too many nodes in each
layer.
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6.3.3. Evaluating h(r)

In BSS GED, we proposed a new heuristic function h(r) to prune the useless
search space. In this section, we evaluate h(r) by comparing it with two other
heuristics: LS1 and LS2. LS1 used in both A?-GED and DF GED is the label multiset
lower bound5. LS2 used in CSI GED also computes the degree distance, but it ignores
the edge labels. Figure 7 shows the solvable ratio and the average running time.
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Figure 7: Solvable ratio and average running time.

Clearly, our heuristic function estimates a tighter lower bound and provides more
pruning ability than LS1 and LS2. LS1, which only considers the labels and ignores
the structure information, performs the worst. In contrast, LS2 is more similar to our
approach, as it also uses the degree information; however, it ignores the edge labels.
Compared with LS2, our heuristic achieves speedups of 1.7x, 3x and 50x on the GREC-
1K, AIDS-10K and S1K.E30.D30.L20 datasets, respectively. Thus, we can conclude
that the proposed heuristic function efficiently prunes the useless search space.

6.3.4. Evaluating DetermineOrder
The other heuristic that we proposed is the vertex sorting strategy discussed in

Section 5.2. In this section, we evaluate this heuristic by comparing it with a basic
method (i.e., no sorting). Figure 8 shows the average number of generated nodes and
the average running time. We do not show the sr because both versions achieve 100%.
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Figure 8: Average number of nodes generated and running time.

From Figure 8, we can see that the sorting method generates fewer nodes and
requires less time. Specifically, compared to the unsorted method, sorting decreases the
number of generated nodes by 65%, 40% and 7% on the GREC-1K, AIDS-10K and
S1K.E30.D50.L20 datasets, respectively. Accordingly, the sorting method achieves
speedups of about 2x, 1.3x and 0.1x on the above three datasets, respectively. Thus, we
can conclude that using the sorting strategy further improves BSS GED’s efficiency.

5Both A?-GED and DF GED use the bipartite graph matching to compute the minimum label
substitution cost. In fact, its unweighted version is the label multiset lower bound.
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7. Extension of BSS GED

In this section, we investigate extending BSS GED to solve the graph similarity
search problem: Given a graph database G = {G1,G2, . . . }, a query graph Q, and a
threshold τ , the problem aims to find all graphs in G satisfying ged(Gi ,Q) ≤ τ . Almost
all the well-known solutions to this problem [22, 24, 27, 28, 29, 30] are based on the
filtering-and-verification schema–that is, they first filter G to obtain candidate graphs
and then verify the candidate graphs using expensive GED computations.

We also use the same strategy. For each data graph Gi, we first compute the
lower bound LB(Gi,Q) from Theorem 7. If LB(Gi,Q) > τ , then ged(Gi,Q) ≥
LB(Gi,Q) > τ ; hence, we filter Gi. Otherwise, Gi becomes a candidate graph.

To verify each candidate graph Gi, we need to compute ged(Gi,Q). The basic
approach is to first compute ged(Gi,Q) and then determine whether Gi is a required
graph by judging ged(Gi,Q) ≤ τ . By incorporating τ within BSS GED, we can further
accelerate the verification. First, we set the initial upper bound ub to τ + 1 (line 3 in
Alg. 3). Then, during the execution of BSS GED, when we reach a leaf node r, if r’s
cost (i.e., g(r)) satisfies g(r) ≤ τ , then Gi must be a required graph, and we terminate
BSS GED. The underlying reason for this is that g(r) is an upper bound of ged(Gi,Q);
hence, we have ged(Gi,Q) ≤ g(r) ≤ τ . When verifying all the candidate graphs, we
obtain the final required graphs.

7.1. Performance Evaluation on Graph Similarity Search

In this section, we evaluate the performance of BSS GED as a standard graph
similarity search query method. To perform the comparison, we select two other
methods GSimJoin [28] and CSI GED [12]6. GSimJoin is a path-based q-gram
indexing method and filters data graphs based on a q-gram counting lower bound and
a label multiset lower bound; it uses indexing to accelerate the filtering process and
adopts a modified A?-GED as its verifier. Similar to BSS GED, CSI GED also provides
support for graph similarity search.

In this experiment, we used the full datasets GERC, AIDS and S1K.E30.D30.L20
and randomly selected 100 graphs from each dataset as the query graphs. We varied
the threshold τ from 2 to 12 to evaluate the performance of GSimJoin, CSI GED and
BSS GED. Table 4 reports the total running time by each method under different τ
values, where GJ, CG and BG are short for GSimJoin, CSI GED and BSS GED,
respectively.

From Table 4, clearly, BSS GED achieves the best performance in most cases,
especially when τ is large. GSimJoin is unable to finish the graph similarity search
when τ ≥ 8 on the GREC and AIDS datasets because its verifier A?-GED depletes
the 24 GB of memory. Compared with GSimJoin for τ values where it can finish,
BSS GED achieves speedups of 280x–75000x, 6.5x–15000x and 4x–3000x on the
GREC, AIDS and S1K.E30.D30.L20 datasets, respectively. CSI GED performs

6In CSI GED, the author ignored other indexing-based graph similarity search query methods such as
κ-AT [22] and Mixed [29] because the experimental results had confirmed that CSI GED performed far
better than those methods. Here we also used the same setting.
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Table 4: Total running time on the complete test datasets.

τ
GREC AIDS S1K.E30.D30.L20

GJ CG BG GJ CG BG GJ CG BG
2 4.7 m 1.0 s 1.0 s 36.8 s 3.4 s 5.6 s 0.4 s 0.2 s 0.1 s
4 4.3 h 17.3 s 2.6 s 43.6 m 15.2 s 10.8 s 0.9 s 0.4 s 0.2 s
6 227.5 h 6.7 m 11.1 s 265.9 h 2.4 m 1.1 m 1.8 s 0.6 s 0.4 s
8 -OM 1.5 h 1.4 m -OM 1.1 h 8.5 m 64.1 s 3.2 s 0.6 s

10 -OM 6.4 h 11.5 m -OM 96.7 h 1.9 h 31.4 m 42.9 s 2.1 s
12 -OM 32.3 h 57.6 m -OM 262.4 h 25.9 h 8.5 h 32.2 m 10.3 s

slightly better than BSS GED when τ = 2 on the AIDS dataset. In contrast,
BSS GED performs much better when τ ≥ 4 and the gap between them widens as τ
increases; specifically, BSS GED achieves speedups of 30x–60x, 2x–50x and 1.1x–
180x compared to CSI GED on the GREC, AIDS and S1K.E30.D30.L20 datasets,
respectively. Thus, we can conclude that BSS GED efficiently finishes the graph
similarity search and runs much faster than the existing methods.

8. Related Works

Recently, the GED computation has received considerable attention. Riesen et
al. [17] proposed the first standard method, A?-GED, based on the best-first search
paradigm. A?-GED organizes all possible graph mappings as an ordered search tree,
where the inner nodes denote partial mappings and the leaf nodes denote complete
mappings. Provided that the heuristic function estimates the lower bound of the
GED, A?-GED guarantees that the first complete mapping found yields the GED.
However, A?-GED needs to store numerous partial mappings, resulting in a huge
memory consumption; in practice, it can only address small graphs. To overcome
this bottleneck, Abu-Aisheh et al. [26] proposed a depth-first search method, DF-
GED, whose memory requirement increases linearly with the number of vertices of
the compared graphs. In addition, DF-GED employs a branch-and-bound strategy to
prune the useless search space.

In contrast to A?-GED and DF-GED, Gouda et al. [12] proposed a novel edge-
based mapping method, CSI GED, for computing the GED. The core idea of CSI GED
is to enumerate all possible common isomorphic substructures between the compared
graphs, where each common substructure corresponds to an edit path. CSI GED
organizes all the enumerated substructures as an edge-based mapping search tree
and applies the depth-first search paradigm to traverse this search tree. In addition,
CSI GED proposed three heuristics to accelerate the search. Empirical results showed
that CSI GED achieved an excellent performance on sparse graphs. Because CSI GED
only works for the uniform model, Blumenthal et al. [1] generalized it to cover the
non-uniform model.

In addition, Justice et al. [14] first formulated the GED computation as a binary
linear programming (BLP) problem, therein searching for the permutation matrix that
minimizes the cost of transforming one graph to another; however, their solution has
two limitations: it only considers unweighted graphs, and it is unable to process graphs
with edge labels. Lerouge et al. [31] developed a new BLP formulation to overcome
Justice’s limitations and solved the BLP by calling a commercial solver.
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Another work closely related to GED computation is the graph similarity search
problem, namely, finding data graphs in the database that are similar to a given query
graph within a threshold. Due to the difficulty of computing the GED, most graph
similarity search methods [22, 24, 27, 28, 29, 30] adopt a filtering-and-verification
strategy to speed up the graph similarity search. In the filtering phase, the GED lower
bounds are employed to prune as many false positive graphs from the database as
possible. The remaining unpruned graphs constitute a candidate set and are validated
with expensive GED computations in the verification phase. Using the same strategy,
BSS GED can easily be extended to solve the graph similarity search problem. Note
that most graph similarity search methods adopt A?-GED as their verifier; because
BSS GED outperforms A?-GED for the GED computation, BSS GED can also be
considered as a verifier to accelerate them.

9. Conclusions and Future Work

In this paper, we present a novel vertex-based mapping method BSS GED, for
computing the GED of two labeled graphs. BSS GED can be efficiently applied to
sparse and dense graphs, benefiting from two aspects: (1) It decreases many invalid
and redundant mappings during the GED computation and hence creates a reduced
search space; (2) It employs a novel search paradigm, beam-stack search, to establish
a trade off between memory utilization and expensive backtracking calls. Extensive
experiments showed that BSS GED performed better than the state-of-the-art methods.

As a measure, the GED has been widely served as a foundation in many
applications such as graph similarity search, image recognition, and protein structure
classification. Therefore, efficient GED computation is critical. For instance, in the
area of graph similarity search, the verification phase of computing the GED is the
most time-consuming; thereby, BSS GED can be employed to accelerate this phase,
and experiments of applying BSS GED to the graph similarity search described in
Section 7 have shown its efficiency. Alternatively, in the context of kernel machines
(e.g., SVM and PCA), many methods consider the GED as a similarity measure to
classify various objects represented by graphs; BSS GED can also be used to improve
those methods’ classification efficiency.

However, computing the GED is an NP-hard problem [27]; thus it is quite difficult
to obtain the GED of two large graphs within a reasonable amount of time. One
possible direction is to employ parallel processing techniques to accelerate the GED
computation. On the other hand, many works [16, 23, 32] focus on the suboptimal
solution for calculating the GED. How to apply BSS GED to quickly obtain a high-
quality suboptimal solution of GED is left for future work.
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