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We examine |/O-efficient data structures that provide indexing sup-
port for new data models. The database languages of these models
include concepts from constraint programming (e.g., relational tuples
are generated to conjunctions of constraints) and from object-oriented
programming (e.g., objects are organized in class hierarchies). Let n be
the size of the database, ¢ the number of classes, B the page size on
secondary storage, and t the size of the output of a query: (1) Indexing
by one attribute in many constraint data models is equivalent to external
dynamic interval management, which is a special case of external
dynamic two-dimensional range searching. We present a semi-dynamic
data structure for this problem that has worst-case space O(n/B) pages,
query 1/0 time O(logz n+t/B) and O(logz n + (logz n)?2/B) amortized
insert 1/O time. Note that, for the static version of this problem, this is
the first worst-case optimal solution. (2) Indexing by one attribute and
by class name in an object-oriented model, where objects are organized
as a forest hierarchy of classes, is also a special case of external dynamic
two-dimensional range searching. Based on this observation, we first
identify a simple algorithm with good worst-case performance, query
1/0 time O(log, c logg n + t/B), update 1/O time O(log, ¢ logz n) and
space O((n/B) log, c¢) pages for the class indexing problem. Using
the forest structure of the class hierarchy and techniques from the
constraint indexing problem, we improve its query 1/O time to
O(loggn+t/B+log, B). © 1996 Academic Press, Inc.
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1. INTRODUCTION

1.1. Motivation

The successful realization of any data model requires
supporting its language features with efficient secondary
storage manipulation. For example, the relational data
model [ 9] includes declarative programming in the form of
relational calculus and algebra and expresses queries of low
data complexity because every fixed relational calculus
query is evaluable in LOGSPACE and PTIME in the size
of the input database. More importantly, these language
features can be supported by data structures for searching
and updating that make optimal use of secondary storage.
B-trees and their variants B *-trees [ 1, 10] are examples of
such data structures. They have been an unqualified success
in supporting external dynamic one-dimensional range
searching in relational database systems.

The general data structure problem underlying efficient
secondary storage manipulation for many data models
is external dynamic k-dimensional range searching. The
problem of k-dimensional range searching in both main
memory and secondary memory has been the subject of
much research. To date, solutions approaching the worst-
case performance of B-trees for one-dimensional searching
have not been found for even the simplest cases of external
k-dimensional range searching. In this paper, we examine
new I/O-efficient data structures for special cases of the
general problem of k-dimensional range searching. These
special cases are important for supporting new language
features, such as constraint query languages [ 19] and class
hierarchies in object-oriented databases [ 21, 38].

We make the standard assumption that each secondary
memory access transmits one page or B units of data (typi-
cally bytes), and we count this as one I/O. (We will use the
terms page and disk block interchangeably, as also the
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terms in-core and main memory.) We also assume that at
least O(B?) units of main memory are available. This is not an
assumption that is normally made, but it is entirely reason-
able given that B is typically on the order of 10 to 103, and
today’s machines have main memories of many megabytes.

Let R be a relation with n tuples and let the output to a
query on R have ¢ tuples. We will also use » for the number
of objects in a class hierarchy with ¢ classes and ¢ for the out-
put size of a query on this hierarchy. The performance of our
algorithms will be measured in terms of the number of I/O’s
that they need for querying and updating and the number of
disk blocks they require for storage. The I/O bounds will
be expressed in terms of n, ¢, ¢, and B; i.e., all constants
will be independent of these four parameters. (For a survey
of state of the art I/O complexity, see [ 37].) We will review
B *-tree performance since we will use that as our point of
reference.

A B™-tree on attribute x of the n-tuple relation R uses
O(n/B) pages of secondary storage. The following opera-
tions define the problem of external dynamic one-dimen-
sional range searching on relational database attribute x,
with the corresponding I/O time performance bounds using
the B*-tree on x: (1) Find all tuples such that for their x
attribute (a, < x < a,). If the output size is 7 tuples, then this
range searching is in worst-case O(logn + t/B) secondary
memory accesses. If a; =a, and x is a key, i.e., if it uniquely
identifies the tuple, then this is key-based searching.
(2) Insert or delete a given tuple are in worst-case O(logy n)
secondary memory accesses. The problem of external
dynamic k-dimensional range searching on relational
database attributes x,, ..., x, generalizes one-dimensional
range searching to k attributes, with range searching on
k-dimensional intervals. If there are no deletes we say that
the problem is semi-dynamic. If there are not inserts or
deletes we say that the problem is static. In this paper we
will be concerned with external two-dimensional range
searching: dynamic (Section 2), semi-dynamic, and static
(Sections 3 and 4). We are concerned with algorithms which
have provably good worst-case I/O bounds.

In order to put our contributions into perspective we
point out (from the literature by using standard mappings
of in-core data structures to external ones) that external
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dynamic two-dimensional range searching, and thus the
problems examined here, can be solved using worst-case
O((n/B) log, n) pages, static query I/O time O(log, n + t/B)
using fractional cascading, dynamic query I/O time
O(log,nlogzn+t/B), and amortized update I/O time
O(log,nlogzn). (Note that log,n=(log, B)(logzn) is
asymptotically much larger than log, n.) Based on the spe-
cial structure of the indexing problems of interest we
improve on the above bounds.

1.2. Contributions to Indexing Constraints

Constraint programming paradigms are inherently
“declarative,” since they describe computations by speci-
fying how these computations are constrained. A general
constraint programming framework for database query
languages called constraint query languages or CQLs was
presented in [19]. This framework adapts ideas of con-
straint logic programming, e.g., from [ 18], to databases,
provides a calculus and algebra, guarantees low data com-
plexity, and is applicable to managing spatial data.

It s, of course, important to index constraints and thus to
support these new language features with efficient secondary
storage manipulation (see Section 2.1 for a detailed exposi-
tion of the problem). Fortunately, it is possible to do this by
combining CQLs with existing two-dimensional range-
searching data structures [ 19]. The basis of this observa-
tion is a reduction of indexing constraints, for a fairly
general class of constraints, to dynamic interval manage-
ment on secondary storage. Given a set of input intervals,
dynamic interval management involves being able to per-
form the following operations efficiently: (1) Answer inter-
val intersection queries, that is, to report all the input inter-
vals which intersect a query interval. (2) Delete or insert
intervals from the interval collection. Dynamic interval
management can be shown to be a special case of external
dynamic two-dimensional range searching.

Dynamic interval management is interesting because it
can be solved optimally in-core using the priority search tree
of McCreight [ 25] in query time O(log, n + t), update time
O(log, n), and space O(n), which are all optimal. Achieving
analogous I/O bounds is much harder. In Section 2.1, we
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reduce indexing constraints to a special case of external
dynamic two-dimensional range searching that involves
diagonal corner queries and updates. A diagonal corner
query is a two-sided range query whose corner must lie on
the line x =y and whose query region is the quarter plane
above and to the left of the corner. (See Fig. 1.) In Section 3,
we propose a new data structure, which we call the
metablock tree, for this problem. Our data structure has
optimal worst-case space O(n/B) pages, optimal query 1/O
time O(log z n + t/B) and O(log z n + (log z n)?/B) amortized
insert I/O time. This performance is optimal for the static
case and nearly optimal for the semi-dynamic case where
only insertions are allowed (modulo amortization).

1.3. Contributions to Indexing Classes

Indexing by one attribute and by class name in an object-
oriented model, where objects are organized as a static
forest hierarchy of classes, is also a special case of external
dynamic two-dimensional range searching. Together with
the different problem of indexing nested objects, as in [ 24 ],
it constitutes the basis for indexing in object-oriented
databases. Indexing classes has been examined in [ 20], and
more recently in [23], but the solutions offered there are
largely heuristic with poor worst-case performance.

We assume in this paper that the class—subclass rela-
tionship is static, although objects can be inserted in or
deleted from classes. Under this reasonable assumption,
we show in Section 2.2 that indexing classes can be reduced
to a special case of external dynamic two-dimensional
range searching where one dimension is static. For a class
hierarchy with ¢ classes having a total of n objects, we
identify a simple algorithm with worst-case space
O((n/B) log, ¢) pages, query I/O time O(log, clogzn+
t/B), and update 1/O time O(log, ¢ loggzn). Even with the
additional assumption of a static class—subclass rela-
tionship, the problem is a nontrivial case of two-dimen-
sional range searching. We show in Section 2.2 that it is
impossible to achieve optimal query time for this problem
(O(logz n+t/B) disk 1/O’s) with only one copy of each
object in secondary storage. (For lower bounds on range
searching in main memory, see [13, 7].) In Section 4,
analyzing the hierarchy using the hierarchical decomposi-
tion of [ 34], we reduce the problem of indexing classes to
a special case of external dynamic two-dimensional range
searching called 3-sided range searching. Three-sided range
queries are a special case of two-dimensional range queries.
In 3-sided range queries, one of the four sides defining the
query rectangle is always one of the coordinate axes or at
infinity.! Using techniques from the constraint indexing
problem to solve 3-sided range searching, we improve query

! Note that diagonal corner queries are a special case of 2-sided queries
and 2-sided queries are a special case of 3-sided queries. See Fig. 1.
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I/O time for the class indexing problem to O(log,zn + t/B +
log, B) using space O((n/B)log,c) pages. Amortized
update I/O time for the semi-dynamic problem with inserts
is O(log, c(logz n + (logz n)*/B)).

1.4. Related Research

A large literature exists for in-core algorithms for two-
dimensional range searching. The range tree [4] can be
used to solve the problem in O(nlog, n) space and static
worst-case query time O(log,n+t). By using fractional
cascading, we can achieve a worst-case dynamic query time
O(log,nlog,log,n + t) and update time O(log,nlog, log,n)
using the same space. We refer the reader to [8] for a
detailed survey of the topic.

The ideal worst-case I/O bounds would involve making
all the above logarithms have base B and compacting the
output term to ¢/B; any other improvements would of
course imply improvements to the in-core bounds. Unfor-
tunately, the various in-core algorithms do not map to
secondary storage in as smooth a fashion as balanced
binary trees map to BT-trees. For example, [28, 35]
examine mappings which contain the logarithmic overheads
and make the logarithms base B; however, their algorithms
do not compact the #-sized output on ¢/B pages.

The practical need for general I/O support has led to the
development of a large number of data structures for exter-
nal k-dimensional searching. These data structures do not
have good theoretical worst-case bounds, but they have
good average-case behavior for common spatial database
problems. Examples are the grid-file, various quad-trees,
z-orders and other space-filling curves, k-d-B-trees,
hB-trees, cell-trees, and various R-trees. For these external
data structures there has been a lot of experimentation but
relatively little algorithmic analysis. Their average-case per-
formance (e.g., some achieve the desirable static query I/O
time of O(logyzn+ t/B) on average inputs) is heuristic and
usually validated through experimentation. Moreover, their
worst-case performance is much worse than the optimal
bounds achievable for dynamic external one-dimensional
range searching using B™*-trees. We present here a brief
survey of general purpose data structures to solve external
two-dimensional range searching.

General purpose external k-dimensional range searching
techniques can be broadly divided into two categories: those
that organize the embedding space from which the input data
is drawn and those that organize the input data.

We will first consider data structures that organize the
embedding space with reference to our problem. Quad trees
[31, 32] were designed to organize two-dimensional data.
They work by recursively subdividing each region into four
equal pieces until the number of points in each region fits
into a disk block. Because they do not adapt to the input
data, they can have very bad worst-case times.
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The grid file [ 26] was proposed as a data structure that
treats all dimensions symmetrically, unlike many other data
structures like the inverted file which distinguish between
primary and secondary keys. The grid file works by dividing
each dimension into ranges and maintaining a grid direc-
tory that provides a mapping between regions in the search
space and disk blocks. The paper [26] does not provide
analysis for worst-case query times. They do mention that
range queries become very efficient when queries return
“many” records.

If we assume a uniform two-dimensional grid of points
(with a point on each integral coordinate) as input, the
grid file would produce regions which are of size
O(\/E) X O(\/E). Consider a query retrieving points along
a horizontal straight line. The time to report answers to this
query would then be (in the worst-case) O(t/\/E), where ¢
is the number of points in the query result. This is higher
than the optimal time of O(z/B). In fact, most data struc-
tures in the literature fail to give optimal performance for
this very simple example!

The second class of general purpose external k-dimen-
sional range searching data structures that have been
proposed for multi-attribute indexing are based on the prin-
ciple of building a search structure based on the recursive
decomposition of input data. Many of them are based on a
B-tree-like organization. We will consider several of them
with reference to our problems.

Two related data structures that have been proposed for
multi-attribute indexing are the k-d-B-tree [30] and the
hB-tree [22].

k-d-B-trees combine properties of balanced k-d-trees in a
B-tree-like organization. In the two-dimensional case (these
ideas generalize readily to higher dimensions), the k-d-B-
tree works by subdividing space into rectangular regions.
Such subdivisions are stored in the interior nodes of the
k-d-B-tree. If a subdivision has more points than can be
stored in a disk block, further subdivision occurs until each
region in the lowest level of the tree contains no more points
than can be stored in a disk block. Insertion and deletion
algorithms for the k-d-B-tree are also outlined in [ 30]. This
work does not offer any worst-case analysis for range
search. As mentioned before, the k-d-B-tree works by sub-
dividing space into rectangular regions. With a uniform grid
of points as input, we would read O( t/\/ﬁ) disk blocks to
report ¢ points on a straight line.

The hB-tree is based on the k-d-B-tree. Instead of
organizing space as rectangles, they organize space into rec-
tangles from which (possibly) other rectangles have been
removed. This helps bring down the cost of managing inser-
tions and deletions. This paper also does not provide a for-
mal analysis of the cost of range searching. Although range
searching in hB-trees is similar to range searching in B-trees,
the crucial difference is that with B-trees, it is possible to
totally order data. This is because B-trees index data along
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only one attribute. In fact, almost all implementations of
B-trees recognize this and keep data only in their leaves and
chain the leaves from left to right. (Such B-trees are called
B*-trees.) This makes range searching extremely simple
and efficient. In order to find elements in a range [a, b ], we
locate a in the B *-tree and follow pointers to the right until
the value b is crossed. Such a total ordering is not possible
for k-dimensional data. The problem that we had with
k-d-B-trees with respect to the question at hand remains.
Given a uniform grid, hB-trees still produce rectangles of size
0(\/5) X 0(\/5) and range searching is inefficient. That is,
we would read O(I/ﬁ) disk blocks to report ¢ points on a
straight line.

Several data structures have been proposed in the
literature to handle region data. These include the R-tree
[16], the R*-tree [2], the R "-tree [ 33], the cell tree [ 15],
and many others. These data structures are applicable to
point data and one-dimensional range data and, hence, are
relevant to our problems. All of them are based on the recur-
sive decomposition of space using heuristics and cannot offer
the worst-case guarantees in space and time that we seek.

An interesting idea based on the use of space-filling curves
is proposed in [27]. This paper identifies a space-filling
curve to order points in k-dimensional space. This curve has
the desirable property that points that are close by in the
input will, with high probability, be close by in the resulting
ordering. This helps in making range searching efficient,
because it is desirable to keep nearby points in the same disk
block. This paper also does not offer any worst-case analysis
for range searching. Specifically, this method will not have
optimal reporting time with our standard case, i.e., the
uniform grid of points.

Dynamic interval management has been examined exten-
sively in the literature (see [8]). As mentioned before, the
best in-core bounds have been achieved using the priority
search tree of [25], yielding O(n) space, dynamic query
time O(log, n + t) and update time O(log, n), which are all
optimal. Other data structures like the interval tree [ 11, 12]
and the segment tree [ 3] can also solve the interval manage-
ment problem optimally in-core, with respect to the query
time. Among these, the priority search tree does the best
because it solves the interval management problem in
optimal time and space and provides an optimal worst-case
update time as well.

There have been several pieces of work done by research-
ers to implement these data structures in secondary
memory. These works include [17, 5, 6]; [17] contains a
claimed optimal solution for implementing static priority
search trees in secondary memory. Unfortunately, the [17]
static solution has static query time O(log, n + t/B), instead
of O(logzn+1t/B) and the claimed optimal solution is
incorrect. None of the other approaches solve the problem
of interval management in secondary memory in the
optimal time of O(log n + t/B) either.
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1.5. Overview

To summarize, we present I/O-efficient data struc-
tures—with provably good worst-case bounds—that
provide indexing support for new data models. Section 2.1
explains the constraint data model in detail and shows that
indexing constraints can be reduced to dynamic interval
management in secondary storage, which in turn reduces to
answering diagonal corner queries. In Section 3, we propose
a new data structure, optimal for the static case, for this
problem. Section 2.2 discusses the problem of indexing
classes in more detail and presents a simple algorithm for
this problem with good worst-case bounds. We improve on
these bounds in Section 4 using the techniques developed
for indexing constraints. Section 5 has the conclusions and
open problems.

2. THE PROBLEMS AND INITIAL APPROACHES

2.1. Indexing Constraints

To illustrate indexing constraints in CQLs consider the
domain of rational numbers and a language whose syntax
consists of the theory of rational order with constants + the
relational calculus. (See [ 19] for details.)

In this context, a generalized k-tuple is a quantifier-free
conjunction of constraints on k variables, which range over
the domain (rational numbers). For example, in the rela-
tional database model R(3, 4) is a tuple of arity 2. It can be
thought of as a single point in two-dimensional space and
also as R(x, y) with x =3 and y =4, where x, y range over
some finite domain. In our framework, R(x,y) with
(x=y A x<2)is a generalized tuple of arity 2, where x, y
range over the rational numbers. Hence, a generalized tuple
of arity k is a finite representation of a possibly infinite set
of tuples of arity k.

A generalized relation of arity k is a finite set of
generalized k-tuples, with each k-tuple over the same
variables. It is a disjunction of conjunctions (i.e., in dis-
junctive normal form DNF) of constraints, which uses at
most k variables ranging over domain D. A generalized
database is a finite set of generalized relations. Each
generalized relation of arity k is a quantifier-free DNF for-
mula of the logical theory of constraints used. It contains at
most k distinct variables and describes a possibly infinite set
of arity k tuples (or points in k-dimensional space D).

The syntax of a CQL is the union of an existing database
query language and a decidable logical theory (theory of
rational order + the relational calculus here). The seman-
tics of the CQL is based on that of the decidable logical
theory, by interpreting database atoms as shorthand for for-
mulas of the theory. For each input generalized database,
the queries can be evaluated in closed form, bottom-up, and
efficiently in the input size. Let us motivate this theory with
an example.
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(az, dq) (c2,d2)
(a3, ds) (cs, ds)
(a1,dy) (c1,dn)
(as, bs) (3, b3)
(a2, bq) (c2,b9)
(aa,ds)  (ca,da)
(a1,b1) (e1,b1)
(a4,b4) |(c4,b4)

FIG. 2. Rectangle intersection.

ExampLE 2.1. The database consists of a set of tuples,
with each tuple representing a rectangle in the two-dimen-
sional plane. We want to compute all pairs of distinct inter-
secting rectangles. (See Fig. 2.)

This query is expressible in a relational data model that
has a < interpreted predicate. One possibility is to store the
data in a 5-ary relation named R. This relation will contain
tuples of the form (n, a, b, ¢, d) and such a tuple will mean
that n is the name of the rectangle with corners at (a, b),
(a,d), (c,b), and (¢, d). We can express the intersection
query as

{(ny,no) | () #n,)
A((Fa,,as,b,,b5,¢1,¢5,d,,d5)
(R(ny,a,,by,ci,d) A R(nsy, ay, by, ¢y, d,))
A((3x,yel{ay, ay, by, by, ¢y, 00, dy, ds})
(@, <x<ey Aby<y<d; A

A, <x< e Aby<y<dy))).

To see that this query express rectangle intersection note the
following: the two rectangles n; and n, share a point if and
only if they share a point whose coordinates belong to the
set {a,,a,,b,,b,, ¢, ¢y, d;,d,}. This can be shown by
exhaustively examining all possible intersecting configura-
tions. Thus, we can eliminate the (3dx, y) quantification
altogether and replace it by a boolean combination of <
atomic formulas, involving the various cases of intersecting
rectangles.

The above query program is particular to rectangles and
does not work for triangles or for interiors of rectangles.
Recall that, in the relational data model quantification is
over constants that appear in the database. By contrast, if
we use generalized relations the query can be expressed very
simply (without case analysis) and applies to more general
shapes.
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Let R'(z,x,y) be a ternary relation. We interpret
R'(z, x, y) to mean that (x, y) is a point in the rectangle
with name z. The rectangle that was stored above by
(n, a, b, ¢, d), would now be stored as the generalized tuple
(z=n) A (a<x<c) A (b<y<d). The set of all intersect-
ing rectangles can now be expressed as

{(nls nz) | ny 7&”2 A (Elxs y)(R,(nls X, y) A R’(”27 X, y)}

The simplicity of this program is due to the ability in CQL
to describe and name point-sets using constraints. The same
program can be used for intersecting triangles. This sim-
plicity of expression can be combined with efficient evalua-
tion techniques, even if quantification is over the infinite
domain of rationals. For more examples and details, please
see [19].

The CQL model for rational order + relational calculus
has low data complexity, because every fixed query is
evaluable in LOGSPACE. That alone is not enough to
make it a suitable model for implementation. This situation
is similar to that in the relational model, where the language
framework does have low data complexity, but does not
account for searches that are logarithmic or faster in the
sizes of input relations. Without the ability to perform such
searches relational databases would have been impractical.
Very efficient use of secondary storage is an additional
requirement, beyond low data complexity, whose satisfac-
tion greatly contributes to any database technology.

In the above example the domain of database attribute x
is infinite. How can we index on it? For CQLs we can define
indexing constraints as the problem of external dynamic
one-dimensional range searching on generalized database
attribute x using the following operations: (i) Find a
generalized database that represents all tuples of the input
generalized database such that their x attribute satisfies
a; < x<a,. (ii) Insert or delete a given generalized tuple.

If (a; < x<a,) is a constraint of our CQL then there is a
trivial, but inefficient, solution to the problem of one-dimen-
sional searching on generalized database attribute x. We
can add the constraint (a¢; <x<a,) to every generalized
tuple (i.e., conjunction of constraints) and naively insert or
delete generalized tuples in a table. This involves a linear
scan of the generalized relation and introduces a lot of
redundancy in the representation. In many cases, the pro-
jection of any generalized tuple on x is one interval
(a<x<d'). This is true for Example 2.1, for relational
calculus with linear inequalities over the reals, and in
general when a generalized tuple represents a convex set.
(We call such CQLs convex CQLs.) Under such natural
assumptions, there is a better solution for one-dimensional
searching on generalized database attribute x:

o A generalized one-dimensional index is a set of inter-
vals, where each interval is associated with a generalized
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tuple. Each interval (¢ < x<da’) in the index is the projec-
tion on x of its associated generalized tuple. The two
endpoint a, a' representation of an interval is a fixed length
generalized key.

o Finding a generalized database that represents all
tuples of the input generalized database, such that their x
attribute satisfies (a, < x < a,), can be performed by adding
constraint (a; <x<a,) to only those generalized tuples
whose generalized keys have a nonempty intersection with
it.

o Inserting or deleting a given generalized tuple is per-
formed by computing its projection and inserting or delet-
ing an interval from the set of intervals.

By the above discussion, the use of generalized one-
dimensional indexes reduces redundancy of representation
and transforms one-dimensional searching on generalized
database attribute x into the problem of external dynamic
interval management. In this paper we examine solutions
for this problem with good I/O performance. Remember
that a diagonal corner query is a two-sided range query
whose corner must lie on the line x =y and whose query
region is the quarter plane above and to the left of the cor-
ner, as shown in Fig. 1. We now can show the following
proposition.

ProPOSITION 2.2. Indexing constraints for convex CQLs
reduces to external dynamic interval management which
reduces to external dynamic two-dimensional range searching
with diagonal corner queries and updates.

Proof. As remarked before, indexing constraints means
solving the problem of interval intersection in secondary
memory. Given a set of input intervals, we would like to find
all intervals that intersect a query interval. Intervals that
intersect a query interval [ x,, x,] can be divided into four
categories as shown in Fig. 3. Types 1 and 2 can be reported
by sorting all the intervals on the basis of their first endpoint
and reporting those intervals whose first endpoint lies
between x, and x,. This can be done efficiently using a B*-
tree. Types 3 and 4 can be reported by performing what is
called a stabbing query at x,. (A stabbing query at x, on a
set of intervals returns those intervals that contain the point
x,. See Fig. 3.) It is also clear that no interval gets reported
twice by this process.

Therefore, we will be able to index constraints if we can
answer stabbing queries efficiently. An interval contains a
point ¢ if and only if its first endpoint y, is less than or equal
to ¢ and its second endpoint y, is greater than or equal to
g. Let us map an interval [ y,, y,] to the point (y,, y,) in
two-dimensional space. Clearly, the stabbing query now
translates into a 2-sided query. That is, an interval [ y,, y, ]
belongs to a stabbing query at ¢ if and only if the corre-
sponding point (y,, y,) is inside the box generated by the
lines x=0, x=¢, y=¢, and y=o0. Since the second
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FIG. 3. Reducing interval intersection to stabbing queries and stabbing queries to diagonal corner queries.

endpoint of an interval is always greater than or equal to the
first endpoint, all points that we generate are above the line
x =Y. One of the corners of any 2-sided query (correspond-
ing to a stabbing query) is anchored on this line as well. (See
Fig. 3.) The proposition follows. ||

2.2. Indexing Classes

To illustrate the problem of indexing classes, consider an
object-oriented database. The objects in the database are
classified in a forest class hierarchy. Each object is in exactly
one of the classes of this hierarchy. This partitions the set of
objects and the block of the partition corresponding to a
class Cis called C’s extent. The union of the extent of a class
C with all the extents of all its descendants in this hierarchy
is called the full extent of C. Let us illustrate these ideas with
an example.

ExampLE 2.3. Consider a database that contains infor-
mation about people such as names and incomes. Let the
people objects be organized in a class hierarchy which is a
tree with root Person, two children of Person called Pro-
fessor, Student, and a child of Professor called Assistant-
Professor. (See Fig. 5.) We can read this as follows: Assis-
tant-Professor isa Professor, Professor isa Person, Student
isa Person. People get partitioned in these classes. For
example, the full extent of Person is the set of all people,
whereas the extent of Person is the set of people who are not
in the Professor, Assistant-Professor, and Student extents.

procedure label-class ( node, [a,b) );
Associate [a,b) with node

Indexing classes means being to perform external dynamic
one-dimensional range searching on some attribute of the
objects, but for the full extent of each class in the hierarchy.

ExampLE 2.4. Consider the class hierarchy in Exam-
ple 2.3. Indexing classes for this hierarchy means being able
to find all people in (the full extent of) class Professor with
income between $50K and $60K, or to find all people in (the
full extent of) class Person with income between $100K and
$200K, or to insert a new person with income $10K in the
Student class.

Let ¢ be the number of classes, n the number of objects,
and B the page size. We use the term index a collection when
we build a B*-tree on a collection of objects. (This B *-tree
will be built over some attribute which will always be clear
from the context. In Example 2.4, the attribute was the
salary attribute.) One way of indexing classes is to create a
single B *-tree for all objects (i.e., index the collection of all
objects) and answer a query by looking at this B *-tree and
filtering out the objects in the class of interest. This solution
cannot compact a ¢-sized output into /B pages because the
algorithm has not control over how the objects of interest
are interspersed with other objects. Another way is to keep
a B*-tree per class (i.e., index the full extent of each class),
but this uses O((n/B)c) pages, has query I/O time
O(loggz n+ t/B) and update 1/O time O(c logy n).

The indexing classes problem has the following special
structure: (1) The class hierarchy is a forest and thus it can

Let a be the value of attribute “class” for every object in class node
Let S = (The number of children of node) +1

if node has no children, terminate
Divide [a, b) into S equal parts of size K

Recursively call label-class for each child with ranges [a + K, ¢ + 2K), [a + 2K, a + 3K), etc.

FIG. 4. The procedure label-class used in the proof of Proposition 2.5.
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be mapped in one dimension where subtrees correspond to
intervals. (2) The class hierarchy is static, unlike the objects
in it which are dynamic.

Based on this structure we show that indexing classes is a
special case of external dynamic two-dimensional range
searching on some attribute of the objects. We then use the
idea of the two-dimensional range tree (see [8]), with
classes as the primary dimension and the object attribute as
a secondary dimension, to devise an efficient storage and
query strategy. These ideas are formalized in the proposi-
tion and theorem to follow.

PROPOSITION 2.5. Indexing classes reduces to external
dynamic two-dimensional range searching with one dimension
being static.

Proof. We write a simple algorithm which attaches a
new attribute called “class” to every object. This attribute
has a value corresponding to the class to which the object
belongs. Further, we associate a range with each class such
that it includes all the class attribute values of each one of
its subclasses. (The class attribute and ranges are for the
purposes of this reduction only. In an actual implementa-
tion, these are computed once and stored separately.) We
start out by associating the half-open range [0, 1) with the
root of the class hierarchy. We then make a call to the proce-
dure label-class shown in Fig. 4 with the root and the range
as parameters. (If the hierarchy is a forest of k trees, we
simply divide the range [0, 1) into k equal parts, associate
every root with a distinct range, and call label-class once for
each root.)

At the end of the procedure, every class is associated with
a range and every object has a “class” value associated with
it. If we apply label-class to the class hierarchy in Exam-
ple 2.3, the root Person class is associated with the range
[0,1) and all the objects in its extent have their class
attribute set to 0. Similarly, the Student, Professor, and
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Asst. Prof. classes are associated with ranges [3, 3), [3, 1),
and [2, 1), respectively. The objects in the Student, Pro-
fessor, and Asst. Prof. classes have their class attributes set
to 1, 2, and 2, respectively.

It is easy to see how querying some class over some par-
ticular attribute corresponds to two-dimensional range
searching. The first dimension of this search is the class
attribute and the second dimension is the attribute over
which the search is specified. The range in the class dimen-
sion is the range that we associate with the query class in
our label-class algorithm. Since we assume that the class
hierarchy is static, the proposition follows. See Fig. 5 for an
example of the results of applying label-class to a class
hierarchy. |

THEOREM 2.6. Indexing classes can be solved in dynamic
query 1/0 time O(log, cloggzn+t/B) and update 1/O time
O(log, clogg n), using O((n/B) log, ¢) pages. Here, n is the
number of objects in the input database, c is the size of the
class hierarchy, t is the number of objects in the output of a
query, and B is the size of a disk block.

Proof. We know from the previous proposition that by
treating the class value as a dimension, we can reduce index-
ing classes to two-dimensional range searching with the
values in the class dimension being static. We use the idea of
the range tree in procedure index-classes shown in Fig. 6 to
create and index certain collections of objects. (Remember
that indexing a collection means building a B*-tree on the
query attribute.) Our initial set of collections is the set of the
individual extents of each class. Our final collection consists
of the full extent of the root class. We will assume here
without loss of generality that the class hierarchy is a tree.
If it is a forest, we simply have to run index-classes on each
tree in the forest. Our bounds will not change.

From the previous proposition, we know that every class
query can be represented as a two-dimensional range query.

A
Person [0,1) 1
Asst. Prof.
5
6
Professor
2
Student Professor 3 z 5
Student
s
3
Person
[%’ 1) Asst. Prof.
6 0 R
Salary

FIG. 5. Using label-class to reduce indexing classes to two-dimensional range search.
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procedure indez-classes
Let C1,C3, ..
for i from 1 to [logy ¢] + 1 do
Index each collection Ci,C3, ..
if ¢ = [log, c] + 1 terminate
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.,C1, the individual extents of the classes, be the initial set of collections.

. at current level

Merge Cj with Cj to get CiT, C§ with C§ to get Cit1, etc.

If there are odd number of collections,

the last collection at round 7 + 1.

Cri-{—l

let Clii, the last collection at round ¢ be AN

/* Number of collections goes down by two at each iteration */

/* li — c/2i—1 */
endfor

FIG. 6. The procedure index-classes used in the proof of Theorem 2.6..

What label-class essentially does is to build a binary search
tree on the class attribute values. It is easy to show that the
range corresponding to each class can be covered by no
more than 2[ log, ¢ nodes in this search tree. That is, one
can answer class indexing queries on any class by looking at
no more than O(log, ¢) collections (or B *-trees). This gives
us the query bound.

We establish the space and update bounds by noting that
the number of levels in the class binary search tree is no
more than [log, ¢7]. This automatically implies that no
object is replicated more than [log, ¢ times and the
storage bound follows. This also implies that in order to
insert/delete an object, we have to access no more than
[log, ¢7] B *-trees. The theorem follows. ||

Theorem 2.6 offers a practical solution to class indexing.
It does not have the disadvantages of indexing each class’
individual extent separately (high query overhead), nor that
of indexing each class’ full extent separately (high storage
overhead), nor that of maintaining only one index contain-
ing all the objects (loss of query efficiency). The query,
update, and storage overheads are all low (a factor of log, c¢)
and the algorithm outlined in the proof of Theorem 2.6 is
extremely simple. This makes this method an ideal choice
for implementation.

Noticing the absence of data structures to perform exter-
nal two-dimensional range searching with performance
comparable to that of B-trees, we might try to prove that the
problem is inherently harder than external one-dimensional
range search. Such bounds have been established for range
searching in main memory by [ 7, 13]. The following lemma
is a preliminary result that shows that B-tree-like perfor-
mance is probably not possible for two-dimensional range
search.

We consider a simple grid of points and try to see if it is
possible to place rectangles on this grid of points (ie.,
tessellate the points) so that all range queries can be
answered efficiently. The idea behind the lemma is that these
rectangles correspond to disk blocks. We make the simplify-
ing assumption that there is only one copy of each data

item, which means that the rectangles cannot intersect. We
are only concerned with reporting time in this lemma. Even
if it is possible to produce partitions to answer range queries
efficiently, it is far from clear that they can be located in
optimal time.

Lemma 2.7.  Consider a grid of p X p points on the plane.
1t is not possible to tessellate these points with rectangles of
size B (which do not intersect one another) such that range
queries are answered in optimal time. That is, it is not possible
to answer all range queries such that for a range query with
q points in the output, the points are covered by only kq/B rec-
tangles, where k is a constant independent of p, q, and B.

Proof. Figure 7 shows an example of the kinds of
tessellations considered by this proof. The grid is of size
8 x 8, and B=4.

This proof is by contradiction. Let us assume that an
optimal tessellation is possible for a particular constant k.
We assume without loss of generality that p is a multiple of
B. Let a grid of p x p points be tessellated with rectangles of
size B. There will be p?/B rectangles tessellating the grid. We
will use w; and /4, to indicate the width and height of the i th
rectangle.

FIG. 7. Showing that tessellating a grid optimally is hard.
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Consider range queries that retrieve p points along
horizontal straight lines. There are p such queries, one for
each row of the p x p grid. By our assumption, the number
of rectangles the j th such horizontal query intersects will be
k;p/B for some constant k; < k.

We observe that the height of each rectangle in our block-
ing is equal to the number of horizontal queries that inter-
sect it. Thus, if we sum up the heights of all the rectangles we
will get the same value that we get when we sum k;p/B over
all j. This gives us

PY/B P P
L h=2 kg
i= Jj=
P
p
< k =
25
P’
=k —. 1
K 1)

Symmetrically, we can consider vertical queries and get

/B
Y ow,<k

i=1

r’
= 2)

Recall that for each rectangle, #;w; = B. Thus the bounds
on the sums of the heights of the rectangles given in (1) can
be rewritten as

<k 7. (3)

Now, we use the fact that the harmonic mean of a set of
numbers is at most their arithmetic mean, which tells us that

p’/B
> 2B (1w, )

lef/l Wi
p’/B

If we substitute kp?/B? for the denominator of the left-hand
side, then, by (3) the value of the left-hand side will either
decrease or remain the same. Thus

p’/B Zf)—/l Wi
kpz/B“ p*/B

B<Zp/, w;

k= p*B
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Now, by (2), we can replace the numerator of the right-
hand side by kp?/B and it will either increase or remain the
same. Thus

5 _lp/8
k~ p*B
=k
and thus
B<K>.

This produces our contradiction, since we assuming that k
was a constant independent of B. ||

Two intriguing open questions are whether or not B-tree-
like performance is possible for arbitrary partitions of the
plane, not just rectangular tessellations and whether or not
performance can be improved by allowing a small constant
number of copies of each data item. There are data struc-
tures that attempt to obtain B-tree-like performance using
one or more of these ideas. For example, the R-tree [ 16],
the k-d-B-tree [ 30], and the grid file [ 26] use rectangular
tessellations and single copies; the R*-tree [33] uses a
small number of copies and rectangular tessellations; the
hB-tree [22], the cell tree [ 15], and the z-order [27] use
non-rectangular decompositions of space. Experimental
comparisons seem to indicate that none of these data struc-
tures is significantly better than the others for the different
cases of range querying.

From the previous lemma, we can infer that the problem
of indexing classes, despite its structure, is nontrivial. Con-
sider a class hierarchy with ¢ leaves all of which are children
of the root. We can map the class indexing problem to two-
dimensional range searching as before. Now, we can use the
previous lemma. Instead of having a grid of p x p points, we
have a grid of ¢ xp points. The following theorem then
follows easily.

THEOREM 2.8.  Consider the fully static problem of index-
ing classes, where the hierarchy has c¢ leaves which are
children of the root. We allow our disk blocks to cover only
rectangular regions and only one copy of each object on
secondary storage (i.e., no two disk blocks will contain the
same objects). For any fixed k (independent of q and B), there
will be class indexing queries whose q items of output cannot
be covered by only kq/B disk blocks.

3. AN ALGORITHM FOR EXTERNAL
SEMIDYNAMIC INTERVAL MANAGEMENT

As was shown by Proposition 2.2, an efficient data struc-
ture for external dynamic two-dimensional range searching
with diagonal corner queries can be used to efficiently solve
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FIG. 8. A metablock tree for B=3 and n=70. All data points lie
above the line y = x. Each region represents a metablock. The root is at the
top. Note that each nonleaf metablock contains B> =9 data points.

the external dynamic interval maintenance problem. In this
section we describe the metablock tree, an optimal data
structure for this problem.

Initially, we describe the metablock tree for the static
case, where all data is given and can be preprocessed before
any queries are processed. Once this is done we describe
methods whereby the data structure can be made semi-
dynamic.

3.1. An I/O Optimal Static Data Structure for Diagonal
Corner Queries

At the outermost level, a metablock tree, whether static
or dynamic, is a B-ary tree of metablocks, each of which
represents B? data points. The root represents the B> data
points with the B? largest y values. The remaining n — B>
data points are divided into B groups of (n — B?*)/B data
points each based on their x coordinates. The first group
contains the (n— B?)/B data points with the smallest x
values, the second contains those with the next (n — B*)/B
smallest x values, and so on. A recursive tree of the exact
same type is constructed for each such group of data points.
This process continues until a group has at most B data
points and can fit into a single metablock. This is illustrated
in Fig. 8.

Now let us consider how we can store a set of k < B> data
points belonging to a metablock in blocks of size B. One
very simple scheme is to put the data points into horizon-
tally oriented blocks by putting the B data points with the
largest y values into the first block, the B data points with
the next largest y values into the next block, and so on.
Similarly, we can put the data points into vertically oriented
blocks by discriminating on the x coordinates. These techni-
ques are illustrated in Fig. 9. Each metablock in our tree is
divided into both horizontally and vertically oriented
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FIG. 9. Vertically and horizontally oriented blockings of data points.
Each thin rectangle represents a block: (a) vertically oriented; (b) horizon-
tally oriented.

blocks. This means that each data point is represented more
than once, but the overall size of our data structure remains
O(n/B).

In addition to the horizontally and vertically oriented
blocks, each metablock contains pointers to each of its B
children, as well as a location of each child’s bounding box.
Finally, each metablock M contains pointers to B blocks
that represent, in horizontal orientation, the set 7.S(M).
TS(M) is the set obtained by examining the set of data
points stored in the left siblings of M and taking the B? such
points with the largest y values. This is illustrated in Fig. 10.
Note that each metablock already requires O(B) blocks of
storage space, so storing 7.S(M) for each metablock does
nothing to the asymptotic space usage of the metablock tree.

The final bit of organization left is used only for those
metablocks that can possibly contain the corner of a query.
These are the leaf metablocks, the root metablocks, and all
metablocks that lie along the path from the root to the
rightmost leaf. (See the metablocks on the diagonal in
Fig. 8.) These blocks will be organized as prescribed by the
following lemma.

LemMMA 3.1. A set S of k<B? data points can be
represented using O(k/B) blocks of size B so that a diagonal
corner query on S can be answered using at most 2t/B+4 1/0
operations, where t is the number of data points in S that lie
within the query region.

Proof. Initially, we divide S into a vertically oriented
blocking of k/B blocks. Let C be the set of points at which
right boundaries of the regions corresponding to the verti-
cally oriented blocks intersect the line y = x. Now we choose

‘-\

*e o o L M

FIG. 10. A metablock M and the set 7.S(M). Note that TS(M) spans
all of M’s left siblings in the metablock tree. Although it is not explicitly
shown here, T'S(M) will be represented as a set of B horizontally oriented
blocks.
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FIG. 11. The sets C and C* used in the proof of Lemma 3.1. The
marked points lying along the diagonal line y = x are the points in the set
C. Those that are small and dark are points in C\C*. The larger open
points are in the set C*. The dark lines represent the boundaries of queries
whose corners are at points ce C*. One such query is shaded to
demonstrate what they look like.

a subset C* = C of these points and use one or more blocks
to explicitly represent the answer to each query hat happens
to have a corner ce C*. This is illustrated in Fig. 11.

In order to decide which elements of C will become
elements of C*, we use an iterative process. The first element
of C* is chosen to be at the intersection of the left boundary
of the rightmost block in the vertically oriented blocking.
We will call this point c¢§. To decide which other elements of
C should be elements of C*, we proceed along the line y = x
from the upper right (large x and y) to the lower left (small
x and y), considering each element of C we encounter in
turn. Let ¢* be the element of C most recently added to C*;
initially this is ¢§. We now move down the line y = x, con-
sidering each c¢; € C until we find one to add to C*. In con-
sidering ¢, € C, we define the sets Q,, 4", 4,72, and 4" to
be subsets of S as shown in Fig. 12. Let 47 =A4;" v 4,2,

FIG. 12. Thesets Q;, 4;', 472, and 4, as constructed in the proof
of Lemma 3.1, ¢}* is the last point that was added to C* and ¢, is the point
being considered for inclusion. The sets consist of subsets of S falling within
the labeled regions.
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Let S}=Q,u4; " be the answer to a query whose is ¢}
This was the last set of points that was explicitly blocked.
Let S;=Q, U 4;" be the answer to a query whose corner is
¢;. We decide to add ¢, to C*, and thus explicitly store S,
if and only if

47 1+ 147 1> |S:].

Intuitively, we do not add ¢, to C* when we can efficiently
amortize the cost of a query cornered at ¢; over a number of
blocks that have already been constructed.

Having constructed C*, we now explicitly block the set
S%* answering a diagonal corner query for each element
c¢¥e C*. Clearly the space used for each such set is [ |S#|/B]
blocks. An obvious concern is that by explicitly blocking
these sets, we may already be using more space than the
lemma we are trying to prove allows. This, however, is not
the case. We can prove this by amortization. Each time we
add a ¢; to C*, we will charge |S;| credits to the set
47 vdf. The charge is divided equally among the
elements of the set being charged. Once we add ¢; to C*, no
element of 4, can ever be in another 4, for a larger value
of i as the iteration continues. The same holds for elements
of 4,5, which can never appear as elements of 4;" again for
larger i. Thus no element of .S can be a part of a set that is
charged for the insertion of a ¢; into C* more than twice.
Since the size of the set being charged is at least the size of
the set being inserted, the total cost charged to any point is
at most 2. Thus the total size of all the sets in C* is at most
2k, which we can clearly represent within O(k/B) blocks.
The only possible concern is that almost a full block can be
wasted for each set in C* due to roundoff. This is not a
problem, however, since |C*| < |C| = k/B, so the number of
blocks wasted is at most of the same order as the number
used.

Now that we have a bound on the space used by our data
structure, we have only to show that it can be used to
answer queries in 2¢/B+4 1/O’s. To answer a query whose
corner is at some c¥e C*, we simply read the blocks that
explicitly store the answer to the query. This takes
[t/B1<t/B+1 1/O’s, which is clearly within the required
bounds.

The more complicated case is when the query point c lies
between two consecutive elements ¢ and ¢, | in C*. Let T
be the subset of S that is the answer to the query whose cor-
ner is ¢. We find T in two stages. In the first stage, we read
blocks from S, |, which we assume is horizontally blocked,
starting at the top and continuing until we reach the bottom
of the query. This is illustrated in Fig. 13a. At most one
block is wasted in this process.

In the second stage, we return to our original vertical
blocking of S (into k/B blocks) and read blocks from left to
right, starting with the one directly to the right of ¢}, | and
continuing until we reach the block containing ¢. This is
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FIG. 13. The two phases of the algorithm to answer a query whose corner is ¢ as used in the proof of Lemma 3.1. ¢} and ¢}, | are consecutive elements
of the set C*, and thus answers to queries having them as corners are explicitly blocked: (a) The first phase of the algorithm to answer a query whose
corner is ¢. The shaded blocks correspond to blocks of the explicitly blocked set S}, | that are read in this phase. (b) The second phase of the algorithm

to answer a query. In this phase the shaded vertical blocks are examined.

illustrated in Fig. 13b. To show that we are still within the
I/O bounds we are trying to prove, we consider two cases.
In the first case, there is no ¢; € C between ¢ and ¢}, ;. This
is illustrated in Fig. 14a. In this case, we only have to read
one block from the vertical blocking, namely the one
immediately to the right of ¢/, |, and the proof'is done.

In the second case, there is at least one c¢; € C between ¢
and ¢}, ;. Let us consider the leftmost such c;. Since ¢} and
¢}, 1 are consecutive elements of C*, it must be the case that
¢; was not chosen in the iterative process that constructed
C*. This means that

l4; [+ 14,7 [ <ISq];

otherwise ¢; would have been added to C*. Subtracting
|4;" | from both sides, we get

since 4" and Q, are disjoint but their union is S,. Referring
to Fig. 14b, we see that , is a subset of 7, the answer to the
query whose corner is ¢. Thus

|47 1< 12,1 <IT|.

We also see that, except for the leftmost block, all the verti-
cal blocks examined in the second phase in Fig. 13b are fully
contained in 4, . This means that in the worst case we will
have to examine all of 4,7, plus one additional block. But
since |4, | <|T|, the number of blocks examined is at most

equal to the number of blocks needed to represent the out-
put of our query. Even if all these blocks are wasted because
the points they contain lie in the region below ¢, no more
than [ #/B7] blocks are wasted. If we add these to the blocks
used in the first stage, and the vertical block just to the right
of ¢, the total number of blocks used in no more than
2t/B+ 3.

The final step of the proof is to show how we can deter-
mine where to begin looking for a query given a query point
c. Since k < B2, the size of C is at most B. We can thus use
a single block to store an index with pointers to the
appropriate locations to begin the two stages of the search
for any query value falling between two consecutive
elements of C. This gives us our overall result of 2¢/B+ 4
I/Os.

The only cases we have not considered occur when ¢ does
not fall between two elements of C*, but rather completely
to either the left or right of them. These special cases can be
handled by minor variations of the arguments given
above. |

Now that we know how to structure the corner blocks of
a metablock tree so that the portion of a query that falls
within that metablock can be reported efficiently, we need
only show that the portions of the query residing in the rest
of the metablocks can also be reported efficiently. We do
this with the following theorem.

THEOREM 3.2. Ifaset of n data points (x, y) in the planar
region y = x and y > 0 is organized into a metablock tree with
blocks of size B, then a diagonal corner query with t data
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FIG. 14. Two cases of the second phase of the algorithm (Fig. 13b) used in the proof of Lemma 3.1: (a) In the first case ¢ is in the vertical block
immediately to the right of ¢/, ;. (b) In the second case there is at least one element of C between c and ¢}, ;; c; is the leftmost such element.

(1) procedure diagonal-query ( query g, node M);

(2) if M contains the corner of query g then

(3) use the corner structure for M to answer the query; return;
(4) else /* M does not contain the corner of query g */
(5)
(6)
(7)

(%3]

use M’s vertically oriented blocks to report points of M that lie inside ¢

let M, be the child of M containing the vertical side of the query

if M, has siblings to its left that fall inside the query, use the bottom boundary
of T'S(M,) to determine if T'S(M,) falls completely inside the query.

6
7

(8) If TS(M.) does not fall completely inside the query, report the points in T'.S(M,)
that lie inside the query.

(9) If TS(M,) falls completely inside the query, examine the siblings one by one
using their horizontally oriented blocks.

(10) If any sibling is completely contained inside the query, look at its children using

their (the children’s) horizontally oriented organizations and continue
downwards until the bottom boundary of the query is reached for every
metablock so examined.

(11) invoke diagonal-query(q, M,)

FIG. 15. Procedure diagonal-query to answer diagonal corner queries using a metablock tree.

Type 1 Type 11 Type III Type IV

FIG. 16. The four types of metablocks. The shaded rectangles represent metablock boundaries and the thick lines are the boundaries of queries. The
four types appear in processing diagonal corner queries as described in Section 3 and are used in the proof of Theorem 3.2.
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points in its query region can be performed in O(logzn+t/B)
1/0 operations. The size of the data structure is O(n/B) blocks
of size B each.

Proof. First we consider the space used by the tree. In
Lemma 3.1 we showed that the number of blocks used by
each metablock containing k points is O(k/B). All other
metablocks in the tree must be internal and, thus, contain
B? points. Each such metablock occupies O(B) blocks as
was shown in the discussion of their construction. This
includes the associated T'S data structures. In addition, we
will use a constant number of disk blocks per metablock to
store control information for that metablock. This will
include split values and pointers to its children, boundary
values and points to the horizontal organization, etc. This
control information uses O(n/B?) disk blocks since there are
only O(n/B?) metablocks. Thus a total of O(n/B) blocks are
used.

Queries are answered using the procedure diagonal-query

in Fig. 15 (by invoking diagonal-query (query q, root of

metablock tree)). We associate every metablock with the
minimum bounding rectangle of the points inside it. Call
this the metablock’s region. Also, a diagonal corner query ¢
is completely specified by the point at which it is anchored
on the line x =y. We will use phrases like “if metablock M
contains the corner of query ¢,” etc. with the understanding
that these are really short procedures that can be imple-
mented easily by considering intersections of the appro-
priate regions.

To prove the bound on the query time, we consider the
fact that once we know the query region, each block that
has a nonempty intersection with it falls into one of four
categories based on how it interacts with the boundary of
the query. These four types are illustrated in Fig. 16. To
complete the proof we simply look at the contributions of
each type of metablock to the total number of I/O’s
required:
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o There are at most O(loggz n)= O(logzn) Type 1
nodes, each of which can be queried, using its vertically
oriented blocks, so as to visit at most one block that is
not completely full. These potentially wasted blocks are
accounted for in the O(log, ) term.

¢ Only one Type II node can exist. Let 7, be the number
of data points stored in the metablock at this node that
are within the query region. By Lemma 3.1 the ¢, points
can be found using only O(¢./B) I/O operations. This gets
absorbed into the O(¢/B) term.

A Type Il metablock returns B* data points and uses
O(B) 1/O operations. These are accounted for in the O(z/B)
term.

o The set of all Type IV children of a Type III node can
be queried, using their horizontally oriented blocks, so as to
examine at most O(B) blocks that are not entirely full (one
per child). Since we used O(B) I/O operations for the output
from the Type I1I block, the extra Type IV I/O operations
can be absorbed into the Type III I/O and added to the
O(t/B) term.

o The last type of block that has to be considered is a
Type IV child of a Type I node. Up to B Type IV nodes can
be children of a single Type I node M. Let M, be the
rightmost Type IV child of M. We can determine whether or
not to examine the Type IV siblings of M, by first examining
TS(M,). If the bottom boundary of T'S(M,) is below the
bottom boundary of the query, we load the blocks that
make up 7'S(M,) one at a time from top to bottom until we
cross the bottom boundary of the query. If the bottom
boundary of T'S(M,) is above the bottom boundary of the
query, then we know that the siblings contain at least B?
points that are inside the query. Thus we can afford to
examine each of M,’s Type IV siblings individually. This
process may result in one block of overshoot for each such
sibling, but we will get at least B points overall, so we can

A

FIG. 17. Use of the TS structure to search Type IV metablocks as used in the proof of Theorem 3.2: (a) In this case the entire 7'S(M,) structure lies
above the bottom of the query region, implying that we can individually examine all Type IV left siblings of M,. (b) In this case the 7.S(M,) structure
intersects the bottom boundary of the query region; thus all points in the query that appear in Type IV siblings of M, will be located when 7'S(M,) is

examined.
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afford this. This case is illustrated in Fig. 17a. If we hit the
boundary of the query first, we can simply report all the
points we saw as part of the output and we have no need to
examine any of M,’s Type IV siblings at all. This case is
illustrated in Fig. 17b. In both cases, all the blocks examined
can be charged to the O(¢/B) term. |

Theorem 3.2 gives us an upper bound for handling
diagonal corner queries. The following proposition provides
a matching lower bound, which proves that the metablock
tree technique is optimal.

ProposITION 3.3.  Any method that performs diagonal
corner queries on sets of n data points (x, y) in the planar
region y = x and y >0 must use Q(loggzn—+t/B) I/O opera-
tions, where t is the number of items in the answer to the
query. Furthermore, the data structure it uses must occupy
Q(n/B) blocks.

Proof. Consider the set of points S={(x,x+1):
xeZ;} and the set of n queries whose corners are the
elements of the set Q= {(x+3, x+3):xeZ,}. Each of
these queries contains exactly one point in the set S. This is
illustrated in Fig. 18. Since there are n distinct subsets of S
that can be reported as answers to queries, we must have
some means of deciding which, if any, answer our question.
Each time we read a block, we can make a decision between
at most O(B) alternatives. This means that if we view our
algorithm as a decision tree with a block read at each node
it must have depth Q(logy 1) in order to have n leaves. This
gives us the first term of our lower bound.

The second term of the lower bound comes from the fact
that in general we must report the answer to any query of
size t<n and therefore at least ¢/B block reads will be
required.

The space utilization follows since every element of S may
appear in the answer to some query, and thus it must be
represented somewhere in the data structure. ||

FIG. 18. The set of points S and a query whose corner is an element of
the set of Q as described in the lower bound proof of Theorem 3.3.
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3.2. Dynamization of Insertions

The data structure described in Section 3.1 can be made
semi-dynamic in the sense that it will support the efficient
insertion of points. Because of the complexity of the internal
organization of a metablock, it will not be possible for us to
reorganize the data structure immediately after the insertion
of a point. Our strategy will be to defer reorganization until
sufficient inserts have occurred for us to be able to pay for
the reorganizations that we perform. Thus, the bounds we
get are amortized.

The general strategy will be to collect inserts that go into
a metablock in an update block that is associated with that
metablock. When that update block fills up, we will perform
certain reorganizations on the associated metablock. In
order to keep the size of a metablock itself under limits, we
will perform certain other reorganizations when the size of
a metablock reaches 2B? from the initial size of B2 This will
eventually cause the branching factors of the nodes in the
metablock tree to go up. We will let branching factors
increase from the initial value of B to 2B after which we will
perform certain other reorganizations that will restore the
branching factor back to B. The precise details are below.

To start with, we first enumerate the different positions at
which a point can be stored in a metablock tree:

a. in the vertically oriented organization of a
metablock,

b. in the horizontally oriented organization of a
metablock,

c. in the corner structure of a metablock (if the
metablock intersects the diagonal line), and,

d. in the TS structures of the right siblings of the
metablock.

It is relatively easy to handle the reorganization of the (a),
(b), and (c) (where it exists) components of a metablock
when insertions are allowed. Note, however, that immediate
reorganization after the insertion of a point is still not
possible because it takes O(B) 1/O’s to reorganize com-
ponents (a), (b), and (c) of a metablock. Our strategy will
be to associate an additional update block in the control
information of a metablock. When this update block fills up,
we have had B inserts into the metablock. At this point, we
reorganize the vertically and horizontally oriented com-
ponents of the metablock and rebuild the corner structure
(if it exists for the metablock) optimally as described in
Lemma 3.1. This costs O(B) I/O’s. This implies that we
spend only O(1) 1/O’s amortized per point for this
reorganization. Let us call this reorganization of a
metablock M a level I reorganization of M. Note that we
will perform a level I reorganization once in every B inserts
into that particular metablock. When the size of a
metablock reaches 2B°, we will perform other reorganiza-
tions that are outlined below.
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Updating the T'S structures of the siblings of a metablock
when points are inserted into it is much more difficult
because a point, potentially, can belong in the 7'S structures
of B—1 siblings. Since rebuilding these 7'S structures (of
total size O(B?) blocks) takes O(B?) I/O’s, we cannot afford
to rebuild the 7S structures even once in B inserts.

In order to circumvent this problem, we use the following
crucial observation: Consider an internal (nonleaf’)
metablock M. Take the points that are inserted into its
children and build a corner structure for these points as
prescribed by Lemma 3.1. A diagonal corner query on the
whole metablock tree is also a diagonal corner query on this
new corner structure and can be answered optimally as long
as the number of points in it is less than O(B*)! We call this
corner structure the TD corner structure for M.

As in the case of a metablock, this 7D corner structure
will have an update block and will be rebuilt once in B inser-
tions into it. When the size of the 7D structure of a
metablock M becomes B> points, we discard the TD corner
structure and rebuild the TS structures of all the children of
M (taking into account the points that were in the 7D cor-
ner structure). Call this reorganization a TS reorganization
of the children of M.

We cannot let the size of a metablock increase
indefinitely. Our bounds hold only when the number of
points in a metablock is O(B?). Therefore, when the number
of points in a metablock reaches 2B, we perform the follow-
ing actions (if the metablock is a nonleaf metablock):

1. select the top B> points (with the largest y values) of
the metablock and build the vertical horizontal, and corner
(if necessary) organizations of the metablock (this takes
O(B) 1/O’s),

2. insert the bottom B2 points of the metablock into the
appropriate children depending on the x values of the
points,

3. perform a TS reorganization of M and its siblings
(this takes O(B?) I/O’s).

We call such a reorganization a level II reorganization of
a metablock. Obviously, this scheme will not work if the
metablock M is a leaf because there are no children to insert
into. In that case, we perform the following actions:

1. split the metablock into two children containing B>
points each and update the control information of the
metablock’s parents, and

2. perform a TS reorganization of the two new
metablocks and its siblings.

We call this reorganization a level I reorganization of a leaf.

The final detail has to do with the branching factor of the
parent of a leaf that just split. We will let this grow from
the initial value of B to 2B. Once it reaches 2B, we split the
parent itself into two by reorganizing the entire metablock
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tree rooted at the parent. One subtree will contain the
leftmost B leaves, and the other will contains the rightmost
B leaves. We insert the two new roots of these subtrees
above in place of the parent. This procedure has to be con-
tinued up recursively as necessary. We show that this will
not take too much time by showing that such reorganiza-
tions cannot happen too often.

Figure 19 is an algorithm for performing updates in an
augmented metablock tree that presents concisely the steps
that we have discussed so far.

LEMMA 3.4. The space used by an augmented metablock
tree containing n points is O(n/B) blocks of size B.

Proof. The additional structures that we have added to
the metablock tree are as follows:

¢ the update block for every metablock, and

o the T'D corner structure and its update block for every
nonleaf node.

Every metablock contains O(B?) points and having one
update block per metablock obviously does not add to the
asymptotic complexity of the storage used. A TD corner
structure for a nonleaf block contains at most B points and
therefore occupies no more than O(B) blocks as per
Lemma 3.1. Since every metablock contains at least O(B?)
points, we can charge the cost of the 7D corner structure to
it. This implies that the total storage used by the augmented
metablock tree is O(n/B) disk blocks. ||

LEMMmA 3.5. An augmented metablock tree containing
n points can answer diagonal corner queries in optimal
O(logzn+t/B) 1/O operations.

Proof. The search procedure for an augmented
metablock tree is very similar to that of a normal metablock
tree. The differences are as follows:

o Every time a horizontal organization, or a vertical
organization, or a corner structure of a metablock is to be
examined, we will examine the update block of the meta-
block as well. This obviously will not add to the asymptotic
complexity of the querying because examining any of these
organizations imposes an overhead of at least one disk I/O,
and the update block increases it by at most one.

o Every time a 7S structure of a metablock needs to be
examined, we will examine the 7D corner structure of the
parent. This does not change the asymptotic complexity of
the query because the 7D corner structure imposes only a
constant overhead for a search (outside of the reporting,
which pays for itself), and this overhead is imposed by the
TS structure anyway.

Modulo these changes, the query procedure remains
exactly the same. The lemma follows from the previous
proof for Theorem 3.2. ||
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(1) procedure insert-point ( p )
(2) M := the metablock p falls in
(3) P := M's parent
(4) Add p to M’s update block
(5) Add p to P’s TD update block
(6) If M’s update block is full then
perform a level I restructuring of M
(7 If P’s TD update block is full then
rebuild the T'D corner structure
(8) If the size of P’s T D corner structure is B2 then

discard the points in the structure and perform a T'S reorganization of
the children of P
9) If M is a non-leaf metablock and contains 2B? points then
perform a level II reorganization of M
(10) If M is a leaf and contains 2B? points then
perform a level II reorganization of the leaf and call propagate-branching-factor(P)

(11) procedure propagate-branching-factor ( M)

(12) P := Ms parent

(13) If the branching factor of M is 2B then
reorganize M into two equal subtrees rooted at metablocks
My, and Mp and insert these into P in place of M. Perform a T'S reorganization
of My, MR and their siblings. Recursively call propagate-branching-factor(P)

(14) If (13) cannot be done because M is the root, create a new root with two children

M;, and Mg

FIG. 19. An algorithm for inserting a point into an augmented metablock tree, insert-point( ) is the main procedure for inserting a point. It inserts
a point and propagates insertions down the tree as needed. Propagate-branching-factor( ) is a subroutine which splits metablocks and propagates changes

up the tree.

LEMMA 3.6. Insertions into an augmented metablock tree
containing n points can be performed in O(loggn+
(log 3 n)*/B) amortized I/O operations.

Proof. Finding and inserting a point into the appro-
priate metablock involves O(log g n) disk 1/O’s.

Let us consider the different reorganizations that the
insertion of a point into a metablock M can lead to and list
the amortized costs of each of these reorganizations:

1. The insertion of a point can cause a level I
reorganization of the metablock M into which it is inserted.
Since this happens only once per B inserts, the amortized
cost for this is O(1).

2. The insertion of a point can cause a reorganization of
the T'D corner structure of M’s parent metablock. Since this
happens only once per B inserts, the amortized cost for this
is O(1).

3. The insertion of a point can cause a 7.S reorganiza-
tion of M and its siblings. This happens once in O(B?)
inserts and costs O(B?) 1/O’s. The amortized cost is O(1).

4. The insertion of a point can cause a level II
reorganization of the metablock into which it is inserted.

The amortized cost of this is also O(1) because this happens
once in B? insertions and costs O(B?) disk 1/O’s. Note that
we do not count the cost of inserting the points further
down in the tree nor the cost of keeping the branching factor
within 2B here. They are discussed separately below.

At the end of a level II reorganization (which must even-
tually happen as points are continuously being inserted into
M), the inserted point has been either inserted into a child
of M or has forced some other point to be inserted here. This
is because after M reaches a size of 2B2, the bottom B>
points are inserted into M’s children. This means that an
inserted point can cause these reorganizations all the way
down to the leaf. This gives us a total amortized cost of
O(log ; n) for these reorganizations.

At the end of the situation described above, the inserted
points have trickled down to the bottom of the metablock
tree or have caused other points to get trickled down. The
final cost for the insertion comes from the fact that we have
to reorganize subtrees once the branching factor of a node
reaches 2B. The following statements are easily proved by
induction:
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o Ifa subtree rooted at M has k points to start with and
no branching factor in the subtree exceeds B, we have to
insert at least & points into it before the branching factor of
M becomes 2B.

o It costs O((k/B) logg k) disk I/O’s to build a perfectly
balanced metablock tree with k points. The amortized cost
per point for this building is ((logg k)/B).

An inserted point contributes to the cost of these rebuilds
from the leaf level all the way up to the root. The amortized
cost per point is

x=loggn

Y x/B=0((logzn)*/B).

x=1

The lemma follows when we add up the costs for the
trickling down and the rebuilding. |

We put everything together in the following theorem.

THEOREM 3.7. A set of n data points (x, y) in the planar
region y = x and y >0 can be organized into an augmented
metablock tree with blocks of size B, such that a diagonal
corner query with t data points in its query region can be per-
formed in O(logzn+ t/B) I/O operations and points can be
inserted into this data structure at an amortized cost of
O(log z n + (log z n)?/B) disk I/ O’s. The size of the data struc-
ture is O(n/B) blocks of size B each.

4. A CLASS INDEXING ALGORITHM USING
HIERARCHY DECOMPOSITION

In Section 2 we showed how to solve the class indexing
problem such that the worst-case query time is
O(log, clogzn+1t/B), the worst-case update time is
O(log, cloggz n), and the storage used is O((n/B)(log, ¢))
disk blocks. Here c is the size of the class hierarchy, n is the
size of the problem, and B is the disk block size.

In this section, we have a preliminary lemma concerning
our ability to answer 3-sided queries. We then consider two
extremes of the class indexing problem and show that they
both have efficient solutions. We call a class hierarchy
degenerate when it consists of a tree where every node has
only one child. We give efficient solutions to the class index-
ing problem when the hierarchy has constant depth and
when the hierarchy is degenerate. Combining these techni-
ques, we give an efficient solution to the whole problem.

Lemma 4.1 [17]. There exists a data structure that can
answer any 3-sided query on a set of n points on the plane in
O(log, n+t/B) disk 1/O’s. This data structure occupies
O(n/B) disk blocks and can be built in O((n/B) loggn) disk
1/0's.

A data structure to achieve these bounds was presented in
[ 17]. The data structure is essentially a priority search tree
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where each node contains B points. A simple recursive algo-
rithm can build this tree in O((n/B) logy n) disk 1/O’s.

LemMA 4.2.  Consider an instance of the class indexing
problem, where k is the maximum depth of the class hierarchy
and n is the size of the problem instance. We can index the
class hierarchy so that the worst-case query time is
O(loggzn+t/B), the worst-case update time is O(k loggn),
and the scheme uses O((n/B) k) storage. This is optimal when
k is constant.

Proof. We simply keep the full extent of a class in a
collection associated with that class and build an index for
this collection. This might entail copying an item at most k
times, since k is the maximum depth of the hierarchy. The
bounds for the query and update times, and the storage
space follow. And clearly, this is optimal when k is a
constant. ||

It should be pointed out that this lemma does not con-
tradict Theorem 2.8 which applies when we have only one
copy of the objects in the database. Lemma 4.2 uses k copies
to index efficiently.

Lemma 4.3.  When the hierarchy is degenerate, the class
indexing problem reduces to answering 3-sided queries in
secondary memory and can be solved using a variant of the
metablock tree such that the worst-case query time is
O(logzn+log, B+1t/B).

Proof. In Section 2, we reduced the class indexing
problem to two-dimensional range searching in secondary
memory. To see why this reduces to answering 3-sided
queries if the hierarchy is degenerate, consider the behavior
of procedure label-class in Fig. 4 on a degenerate hierarchy.
The root of this hierarchy will be associated with the range
[0, 1), its child with [ 4, 1), the grandchild with [ 3, 1) and so
on. Each successive range is completely contained in its pre-
vious range. From this, we can infer that a query on the full
extent of a class is precisely a 3-sided query.

We will try to modify the metablock tree to solve this
problem. The metablock tree solves 2-sided range queries in
secondary memory where the corner always lies on the
diagonal. Three-sided queries are different for the following
reasons: (1) the corners need not lie on the diagonal of a
metablock; (2) both corners may lie on the same metablock
for this problem, forcing us to answer a 3-sided query on a
metablock; (3) both the vertical sides of a 3-sided query may
pass through the same metablock (remember that a 2-sided
query has only one vertical side); (4) the two vertical sides
of the query may lie on metablocks which are children of the
same metablock (this makes the TS structures useless for
this case because they contain points from a/l the siblings to
the left; we now are interested in only a subset of them); and
(5) in the construction of the TS structures in the metablock
tree, we build them, assuming that the query will always
contain the left siblings, never the right siblings. With
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Case 1 Case 2

Case 3

Case 4 Case 5

FIG. 20. Problems with using the metablock tree for 3-sided queries.

3-sided queries, this assumption is no longer true. See
Fig. 20 illustrating these cases.

We deal with these problems one by one. To handle (1)
and (2), we build, for the points in each metablock, a data
structure to answer 3-sided queries as prescribed in
Lemma 4.1. Since that data structure uses optimal storage,
our asymptotic storage does not change. Also, since 3-sided
queries are generalizations of diagonal queries, we dispense
with the corner structures we used for the metablock
tree. Case (3) requires no special handling because we can

determine the points of a metablock that lie in between two
vertical lines by looking at the vertical organization for the
metablock. We handle (5) by building two TS structures for
every metablock. One will contain points from left siblings
and the other from right siblings.

The most difficult problem is that of case (4). In order
to handle cases like this, where the two vertical sides of
the query lie on metablocks that are siblings, we perform
the following action for every interior (nonleaf) metablock
M; we combine the points of the children of M (to get a total

(1) procedure 3sided-query ( query ¢, node M);

(2) if query ¢ is 3-sided then

(3) if M contains both the corners of ¢

4 use the 3-sided structure for M to answer the query; return;

(5) else if both the vertical sides of query ¢ fall inside one child of M

(6) let this child be M,

(7) use M'’s vertically oriented blocks to report points that lie in between the vertical
sides of the query ¢

(8) invoke 3sided-query (g, M.);

(9) else /* the two vertical sides fall on different children */

(10) use M’s vertically oriented blocks to report points that lie
in between the vertical lines of ¢

(11) let M; and M, be the children of M containing the left and right sides of ¢ resp.

(12) let My, M,, ..., My be the children of M in between M; and M,

(13) use the 3-sided structure for M’s children to determine points of My, My, ..., M}
that fall inside the query

(14) if any of My, My, ..., My fall completely inside the query, examine its children
using the horizontally oriented blocks and continue downwards until the
boundary of the query is reached for every metablock so examined.

(15) invoke 3sided-query(left side of ¢, M)

(16) invoke $sided-query(right side of ¢, M,.)

(17) else /* query ¢ is 2-sided */

(18) if M contains the corner of query ¢

(19) use the 3-sided structure for M to answer the query; return;

(19) else /* corner of ¢ does not fall inside M */

(20) use M'’s vertically oriented blocks to report points of M that lie inside g

(21) let M be the child of M containing the vertical side of ¢

(22) let My, My, ..., My be the other children of M intersecting ¢

(23) use the appropriate T'S structure of M; to determine the points of My, My, ..., M}
and their descendants that fall inside the query (as above)

(24) invoke 3sided-query(q, M;)

FIG. 21.

Procedure to answer 3-sided queries.
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(1) procedure label-edges ( root );
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(2) S := { children of root };

(3) Maz := element of S with the maximum number of descendants;
/* Break ties arbitrarily */

(4) Label edge between Maz and root as thick;

(5) Label edges between other children and root as thin;

(6) Apply procedure label-edges recursively to each child of root;

/*order irrevelant*/

FIG. 22. An algorithm for labeling a tree with thick and thin edges as used in Lemma 4.5.

of O(B?) points) and build a data structure to answer 3-
sided queries as prescribed in Lemma 4.1. The understand-
ing is that this structure will be used whenever case (4)
occurs. This 3-sided structure will be called the 3-sided
structure for the children of M. Figure 21 gives a modified
version of procedure diagonal-query to handle 3-sided
queries.

The time bound analysis is very similar to the one in
Theorem 3.2. While answering a 3-sided query, no more
than three 3-sided structures have to be accessed: one each
for the two corners of the query and one for the case where
the vertical sides of the query fall on sibling metablocks (i.c.,
case (4)). All these 3-sided structures have B* or less points
in them and by the bounds of Lemma 4.1 can be used to
answer 3-sided queries in O(log, B + t/B) disk 1/O’s. Com-
bining this with the bounds of Theorem 3.2, we get this
lemma. ||

LEmMMA 4.4. There exists a data structure that can
answer any 3-sided query on a set of n points in O(logzn +
log, B+ t/B) disk I/O’s. Points can be inserted in this data
structure at an amortized cost of O(loggn + (logs n)/B) per
operation, and the storage space required is O(n/B).

1) procedure rake-and-contract ( root );
2) repeat
3

[

6
7
8

endfor

Proof. The proof of this lemma parallels that of
Lemma 3.6. The corner structures that we build for that
proof become 3-sided structures. In particular, the 7D cor-
ner structure for an internal node M becomes a 3-sided
structure also. This will have an update block as the 7D
corner structure did before and will be rebuilt once in B
insertions. When its size reaches B2, the 3-sided structure for
the children of M will be rebuilt, as will the TS structures for
the children of M.

As before, a level I reorganization of a metablock involves
the rebuilding of the vertical, horizontal, and 3-sided
organizations of a metablock. A level II reorganization
(remember that a level II reorganization is done when the
number of points in a metablock reaches 2B?) of a nonleaf
metablock M involves: (1) the rebuilding of the vertical,
horizontal, and 3-sided organizations for the top B? points
in it; (2) the insertion of the bottom B? points into the
children of M; (3) a T'S reorganization of M and its siblings,
and (4) a rebuilding of the 3-sided structure built for M and
its siblings.

Similarly, a level II reorganization of a leaf metablock M
involves: (1) the splitting of the leaf into two; (2) a TS
reorganization of the siblings of M; and (3) a rebuilding of

(

(

(3) for each leaf L connected by means of a thin edge to the tree do
4) index collection associated with L;

(5) copy items in L’s collection to its parent’s collection;

(6) delete L from the tree and mark L as indexed;

()

(8)

for each path in the hierarchy tree composed entirely of thick edges whose sole connection

to the rest of the tree is by means of a thin edge (or ends in the root) do
9) build a 3-sided structure for the path (as described in Lemma 4.3);

copy all the collections associated with the nodes of the path into the collection

of the parent of the topmost node in the path;

(11) mark all the nodes in the path as indexed;

(12) delete all the nodes in the path from the hierarchy tree;
(13) endfor

(14) until hierarchy tree is made up of one node only;

FIG. 23. The rake and contract algorithm for reducing an arbitrary hierarchy tree.
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the 3-sided structures for the siblings of M. Procedure
insert-point in Fig. 19, with minor modifications that take
into account the 3-sided structures, can be used to perform
inserts.

To get the bounds for the number of 1/O’s for an insert,
we note that a 3-sided structure with B? (respectively B?)
points can be rebuilt in O(B) (O(B?)) disk 1/O’s as per
Lemma 4.1. The analysis for Lemma 3.6 applies here and
gives us the required bounds. |

We now show how to combine the two lemmas above so
that we can deal with any class hierarchy. We restrict our
attention to hierarchies that are trees. The procedure tri-
vially extends to forest hierarchies. Before that, we need an
algorithm that enables us to decide which of the two lemmas
to apply on which part of the hierarchy. The idea for the
hierarchy tree labeling algorithm is from a dynamic tree
algorithm of [ 34]. The following lemma is easily proven by
induction.

LeEmMMmA 4.5. Let the procedure label-edges shown in
Fig. 22 be applied to an arbitrary hierarchy tree of size c. The
number of thin edges from a leaf of this hierarchy tree to the
root is no more than log, c.

We are now ready to prove the key lemma. The procedure
rake-and-contract shown in Fig. 23 takes as input a
hierarchy processed by label-edges and applies procedures
outlined in the proofs of Lemmas 4.2 and 4.3 appropriately
to parts of the hierarchy. Initially, we associate a unique
collection with each class. This collection will contain the
extent (not the full extent) of the class.

LEMMA 4.6. Let an instance of the class indexing
problem have class hierarchy size c, problem size n. Let us
index the collections as per the procedure rake-and-contract.
Then we have:

1. No extent of any class is duplicated more than log, ¢
times;

2. Every class in the input class hierarchy gets indexed in
the sense that either an explicit index is built for its full extent
(which means that a query on this class is simply a one-dimen-
sional query on a B* -tree) or a 3-sided structure is built for
it as per Lemma 4.3 (which means that a query on this class
can be answered by performing a 3-sided query on the 3-sided
structure).

Proof. Consider the first part of the lemma. In proce-
dure rake-and-contract, we copy the extent of a class as
many times as there are thin edges from it to the root of the
hierarchy. We know from Lemma 4.5 that there are no more
than log, ¢ thin edges from any leaf to the root. Part 1 of the
lemma follows.

It is easy to see that one of the two for loops in procedure
rake-and-contract runs at least once unless the hierarchy has
size one. This is a simple proof: (1) In the beginning, there
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FIG. 24. An example class hierarchy decomposition.

are leaves attached by means of thin edges to their parents;
(2) if the nodes attached by means of thin edges are
removed, there are path(s) composed entirely of thick edges
(these paths exist because every interior node has at least
one thick edge coming out of it), whose sole connection to
the rest of the tree is a thin edge. Once the nodes in a thick
path are deleted, case (2) has to apply again for the same
reason. This implies that every iteration of the repeat loop
reduces the size of the hierarchy, which implies that the
algorithm will terminate.

To prove part 2, we first claim that if a node is deleted
from the hierarchy in the first for loop in procedure
rake-and-contract, its collection must have contained the
full extent of the class that the node corresponds to. This tri-
vially follows because only leaves get deleted in the first for
loop (because every interior node has a thick path coming
out of it and, therefore, it will be deleted only in the second
for loop). We now claim that if a node is deleted from the
hierarchy in the second for loop in procedure rake-and-con-
tract, its collection contains the extents of all the classes in
its descendants except for the ones attached to it by means
of a thick path. This is easily proved by noting that when-
ever we delete nodes, we copy their collections to the parent
upwards in the tree.

It is easy to show Part 2 of the lemma now. If a node is
deleted in the first for loop, a class indexing query on the
corresponding class is simply a one-dimensional query on
the index built for it, since this index contains the complete
extent of the class. If a node is deleted in the second for loop,
it must have been part of a path consisting entirely of thick
edges. Further, we know from our previous claim that every
node in this path contains its complete extent except for the
nodes in the thick path below it. In other words, the class
corresponding to the node can be thought of as belonging to
a degenerate hierarchy. Lemma 4.3 applies here and, there-
fore, an indexing query on the class can be answered by
looking at the 3-sided query structure built in rake-and-con-
tract. The lemma follows. See Fig. 24 for an example of how
a hierarchy is processed. |

We put everything together in the following theorem.
Note that the bounds for insertion come from the fact that
an object can be represented no more than log, ¢ times in
the indexes built by procedure rake-and-contract.

THEOREM 4.7. An instance of the class indexing problem,
where c is the size of the input class hierarchy, n is the size of
the problem, and B is the disk block size, can be solved such
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that the worst-case query time is O(logzn+t/B+log, B),
the amortized insertion time is O((log,c)(loggzn+
(log% n)/B)) per operation, and the storage space required is
O((n/B) log, ¢).

5. CONCLUSIONS AND OPEN PROBLEMS

We have examined I/O-efficient data structures which
provide indexing support for data models with constraint
programming and object-oriented programming features.
Our algorithms for indexing constraints have optimal
storage and query time and log-suboptimal insert perfor-
mance. Our algorithms for indexing constraints have
improved space and query performance and polylog-subop-
timal insert performance (modulo amortization).

The data structures in Sections 3 and 4 should be viewed
as existence proofs that, for these practical cases of two-
dimensional range searching, close to optimal I/O perfor-
mance is achievable. Our new data structures have provably
good performance but are somewhat complex. One direc-
tion to focus on is whether simpler data structures can
achieve the same bounds. For example, we believe that the
class indexing algorithm in Section 2 is practical, even if it is
suboptimal.

We believe that it should be possible, using standard data
structure techniques, to transform our insertion bounds
from amortized to worst-case (although we have not done
so here). Whether they can asymptotically improved is an
open question.

The performance for the case of deletions is open. We
should note that, using the techniques in this paper to
dynamize the static structure of [17], it is possible to
achieve the following dynamic bounds: (1) indexing con-
straints in O(n/B) pages, dynamic query I/O time
O(log, n+t/B) and amortized update time O(log,n+
(log5n)/B), and (2) indexing classes in O((log, ¢)(n/B))
pages, dynamic query I/O time O(log, n + t/B), and amor-
tized update time O((log, ¢)(log, n + (log3 n)/B)).

Progress has been made in many different directions after
this paper. In the case where our goal is to handle a very
large number of queries in a batch, [ 14] proves that two-
dimensional queries can be answered in O((n/B+ k/B)
(log s s(n/B)) + t/B) 1/O’s, where k is the number of queries
being processed and M is the amount of main memory
available.

A new technique called path caching was presented in
[29] to convert many main-memory data structures like
the priority search tree, segment tree, etc. into efficient
secondary storage structures. For example, it is shown in
[29] that it is possible to implement priority search trees in
secondary memory so that 2-sided queries can be answered
in optimal O(log,n + t/B) disk 1/O’s while using a storage
of O((n/B)log,log, B). Both inserts and deletes can be
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made to this data structure. The amortized cost of an update
is O(logg n).

Recently, a much stronger version of the lower bound in
Lemma 2.7 was proved in [36]. They show that any
secondary storage data structure that can answer two-
dimensional range queries in O(loghn+t¢/B) 1/O’s in
the worst-case (where k is a constant) has to occupy
Q((n/B) log (n/B)/(loglogyzn)) disk blocks. This offers
conclusive proof that two-dimensional range searching in
secondary storage is much harder than one-dimensional
searching. This paper also contains a data structure that
comes within a small term of achieving the optimal query
time using optimal space.

We close with the most elegant open question: can
dynamic interval management on secondary storage be
achieved optimally in O(n/B) pages, query I/O time
O(loggzn+ t/B), and update time O(logz n)?
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