have developed strategies for estimating selectivity
based on suffix trees by drawing on our intuition of
the close relationship between prediction and data
compression [Kri]. We have shown how to efficiently
build a small structure that fits in the metadata in
the runstats phase, and how to match query patterns
against such a structure. Experimental evidence based
on data from the TPC-D benchmark suggests that
our techniques hold great promise for effective use
Experiments against real
customer data were subsequently done validating the
conclusions of this paper [Wan]; more work is ongoing
and preliminary results are encouraging [Wan]. Tt will
be interesting to see if better strategies for matching

in real database systems.

against our reduced tree structure can be developed.

An important conclusion is that selectivity estimation
for text is possible by applying the principles of data
compression. If this observation holds true for audio,
video, and image databases, it would benefit database
management systems immensely.
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Pattern Il I{ Iz Ié 13 Ié CE1 CE2 CE3 DE1 DE2 RS
positive single | 64 | 65 | 28 | 28 | 57 | b7 | 49 100 82 85 75 34
positive double | 60 | 63 0 01]41 |41 34 0 53 22 11 0
negative 46 | 39 | 21 01]21 |14 90 31 42 31 16 100

Table 1: Table of grades for the different algorithms. A grade of # means that the algorithm did “well” (as defined
in Section 7.4) for % of the queries. The right-most column presents results for the random sampling strategy from
Section 8. Total data structure memory usage in all cases is 389 bytes.

lenient with negative patterns, since we expect them to
occur less frequently. We are also less critical about
under-estimating as opposed to over-estimating.

Table 1 presents the grades of the different algorithms
for positive single patterns, positive double patterns,
and negative patterns, where a negative pattern is
obtained by introducing two errors into a single positive
pattern. We conclude from Table 1 and our discussion
from Sections 7.1-7.3 that strategies I, Ij, CFE1y,
CFE3, and DFE; hold promise for good estimation of
alphanumeric selectivity.

8 A “Strawman” Random Sampling

Scheme (RS)

It is instructive to compare the results presented in
Section 7 against a simple random sampling strategy
motivated by work in learning theory [Vap]. The
comparisons are especially interesting given that we
know of no prior work in estimating alphanumeric
selectivity.  Sampling is also used for estimating
numerical selectivity [HaSa, HaSbh, IoP, LNS, LiN].

In sampling, we take a random sample of the strings
in the column of the database and store as many as
possible in the metadata, limited by the size of the
metadata allowed for the statistics. When a query
pattern is presented, the pattern is matched against the
strings stored in the metadata, and the selectivity is
estimated in the obvious way: If there are ¢ strings in
the metadata and ¢ of them match the query pattern,
the selectivity is estimated to be ¢/f. This approach
will always correctly estimate the selectivity to be 0 for
negative patterns.

In the right-most column of Table 1, we present the
grades for the random sampling scheme. (12 strings
were stored using the 389 bytes of memory available
in the metadata.) We observe that our recommended
matching strategies from Section 7.4 outperform the
random sampling strategy for positive single patterns
and especially for positive double patterns. Strategy
CFy does almost as well as the random sampling
strategy for negative patterns, and does better for both
positive single and positive double patterns.

The random sampling strategy presented above is in
a basic or “strawman” form. Modifications to this basic

strategy, such as a hybrid strategy incorporating the
approaches in Section 4, are currently being investigated
and will be reported in a future paper [Wan)].

9 Extensions

In this section we describe certain extensions to our
method for estimating selectivity. For brevity, we omit
details from this abstract.

Non-Unit Patterns. Given a general pattern that
begins with a wildcard (e.g., “¢a*3%”), we can break
it up into sub-patterns that are each unit patterns
(e.g., “kax” and “x#3+”), separately estimate selectivity
for each of the sub-patterns, and put them together
using ideas similar to the ones presented in Section 4.
For patterns that do not begin with a “+”  the
situation is somewhat different; we can, however, keep
another count called count’ with each node of the
tree (or an approximate count, or an approximation of
count’ [ count), which specifies the number of rows of the
column that will match a query that does not start with
a wildcard.

Optimization With Extra Knowledge. It is im-
portant to note that the methods we have presented for
creating the reduced tree, the strategies for matching,
and our experimental results do not assume any knowl-
edge of the distribution or type of data in the column
of the database, and do not use specifics of how entries
are constructed in the emerging TPC-D benchmark. In
practice, extra information, if available, can be used.
For example, if we know that a character z (e.g., the
blank character) is very likely to occur in the rows of
the database, we could presumably prune out the whole
subtree below character « while generating the reduced
tree 7 without losing much information. (The estima-
tion method would be adjusted accordingly.) Average
size of match patterns can also be used to tune the in-
formation in the metadata. Further, if statistics are
gathered when data is re-organized, there may be addi-
tional opportunity for better estimation of selectivity.

10 Conclusions

In this paper, we have performed the first known
study of estimating alphanumeric selectivity.  We
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Figure 8: Graph of the best performing strategies for
positive double patterns. The graphs are cropped at
z = T750. The number of different query patterns is
92 x 91 = 8372.

itive single patterns. The selectivity of the double pat-
terns are very small (approximately 0.0005). A larger
relative error in this case corresponds to a much smaller
absolute error.

We observe from Figure 8 that the relative perfor-
mance of the strategies for positive double patterns is
I > CE3 > I3 > CE{ > DEq, where “>” implies “is
better than.” The strategies that perform well for the
positive single patterns, namely, strategies I; and CFE3,
also perform well for positive double patterns. In addi-
tion, the trends shown by the strategies for the positive
single patterns also hold for positive double patterns.
The notable exception is strategy CFE5; all the double
patterns have a relative error greater than 2000% with
strategy CEs. This is not surprising since strategy CF»
does not use the parsing of the pattern effectively. Inter-
estingly, strategies I3 and C'F; perform reasonably well
and strategy I} performs slightly better than strategy Iy
for positive double patterns.

7.3 Negative Patterns

In this section, we present our results for negative
patterns, where each negative pattern was obtained
by introducing two errors into each positive single
pattern.
are qualitatively similar to the situation when one or
three errors are introduced in the single patterns; the

The relative performance of the strategies

selectivity is closer to zero (i.e., better) when the pattern
is formed by introducing more errors.

In the case of negative patterns, we want the the
curve to lie as close to the y-axis as possible. (See
Figure 9.) We plot curves for the three strategies that
perform well for single and double positive patterns,
i.e., strategies Iy, CFE3, and DE;. We observe that
these strategies perform well for negative patterns also,
with strategy I; doing better than strategies C'FE3 and
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Figure 9: Graph of the best performing strategies for
negative patterns obtained by introducing two errors.

DE . For negative patterns, strategy I performs a little
better than strategy I1. We also plot the curve for one
other strategy, C'E, that performs particularly well for
negative patterns.

7.4 Comparing the Strategies Globally

We have observed that some strategies perform partic-
ularly well for specific types of patterns (e.g., strat-
egy CFE, for negative patterns, and strategy CFE. for
positive single patterns). However, we want strategies
that are consistently good over all types of patterns:
positive single patterns, positive double patterns, and
negative patterns. We have observed three strategies
that consistently perform well for all types of patterns,
namely strategies I (or I7), CFEs, and DE;. In this
section, we develop a quantitative measure to evaluate
the strategies.

Our goal is to assign a grade to each strategy based
on certain intuitive notions we have of how much error
is acceptable. Given a measure of acceptable error,
we define the grade of the strategy as the percentage
of patterns that fall within the acceptable error range.
The acceptable error range would depend on the type
of pattern. Other measures that take into account the
entire distribution (i.e., more continuous measures that
study degrees of acceptance) can also be considered.

For our study, we define a relative error between
—75% and +150% as acceptable for positive single
patterns, a relative error between —75% and 500%
as acceptable for positive double patterns, and an
absolute error, where the estimated selectivity is less
than 0.025, as acceptable for negative patterns. The
logic behind these definitions is based on what we expect
will be the action of the query optimizer with respect
to the estimations, and is based on the real value of
selectivity. For example, we allow a higher relative
error as acceptable for positive double patterns, since
this corresponds to a small absolute error. We are more
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Figure 6: Performance of the strategies for positive single patterns. The number of different query patterns is 92.

prune probability sufficiently larger than the expected
selectivity of the base patterns. We therefore report our
results in this section for when the reduced tree holds
100 nodes. We would like to emphasize that for the
complexity of the problem, having a larger metadata, if
possible, would help significantly.

Evaluation Metric. We first present our results for
matching positive single patterns in Section 7.1 and
our results for matching positive double patterns in
Section 7.2. For a positive pattern ¢ we measure the
relative error, i.e., (est(oc) — sel(o))/sel(c). Notice that
the relative error can never be less than —100%. We
plot the cumulative number of patterns along the y axis
against the relative error on the z axis; a point (z,y)
on the graph implies that y positive single patterns
have relative error < z%. To find out if a strategy is
acceptable, we can draw vertical lines at the maximum
and minimum acceptable error; the difference of the
y values of a curve where these lines intersect it will
give us the number of patterns with acceptable error.
In particular, a “good” strategy has a steeper slope (not
a larger value, necessarily) around x = 0.

We then look at the case of negative patterns in
Section 7.3. 1In this case sel(c) = 0. We therefore
measure the absolute error; i.e., est(c), which is
proportional to the number of rows of the column R
that match the pattern. In this case, a “good” strategy
has a large y value close to x = 0. In Section 7.4, we put
together all our observations to evaluate the estimation
strategies by defining a new comparison metric.

7.1 Positive Single Patterns

Figure 6a shows the performance of the independence-
based strategies. There is little difference in perfor-
mance between the “primed” (e.g., I1) and the corre-
sponding “non-primed” (e.g., I;) strategies; we there-
fore omit the lines for the “primed” strategies from the
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Figure 7: Graph of the best performing strategies for
positive single patterns. The number of different query
patterns is 92.

graph. We observe that amongst the independence-
based strategies, I; (and I7) perform best. Strategies Iy
and I3 tend to over-estimate selectivity, with strategy I3
being a little more accurate than strategy 7». From
Figure 6b, we observe that the child estimation-based
strategies perform well; strategy C'Fs has a particularly
sharp slope around & = 0. From Figure 6¢, we observe
that strategies DE, and DE» perform well, with strat-
egy DFE4 having a slightly larger slope around « = 0.

Figure 7 plots the best strategies identified above.
Strategy CFEo stands out as being particularly good;
strategies CFs and DF; are slightly better than
strategy I;. (Strategies I3, I{ and CF; are not much
away from [I; in performance; their curves are not
plotted in Figure 7.)

7.2 Positive Double Patterns

Figure 8 plots for positive double patterns the perfor-
mance of strategies that were identified as best for pos-
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Figure 4: Various statistics related to the runstats phase
as a function of the number of nodes in the reduced tree.

way the column is built, each positive single pattern is
expected to have a selectivity of 5/92 = 5.4%, and each
positive double pattern is expected to have a selectivity
of 0.048%. (That is, a positive single pattern appears
in roughly 200K x 5/92 = 10869 rows.)

In Section 7, we present the results of using our
matching strategies from Section 4 for matching positive
and negative patterns against our reduced tree. It
is important to keep in mind the distinction between
positive and negative patterns: positive patterns are
present in the column and have a positive selectivity,
while negative patterns are not present in the column,
and have a selectivity of zero.

6 Results for the Runstats Phase

In stage 1 of the runstats phase, we took each of the
200K patterns in the P_.NAME column of the database
and inserted them into a suffix tree 7. In stage 2, we
pruned the tree T to get the reduced tree 7. In this
section, by “top nodes” we mean nodes with the highest
value of count.

Size of the Tree in Stage 1. We varied the maximum
number of nodes M retained in the tree in stage 1 from
between 300K to 450K. (See Section 3.1.1.) There was
little difference in the final reduced trees for these values
of M ; the value of count at a few nodes differed by 1.

Statistics Dealing With Tree Reduction. (See
Figure 4.) The solid line shows that most of the strings
associated with the top nodes are of length 1. This
verifies our intuition from Section 3.2.1 that nodes with
high count have strings of small length associated with
them. The dotted line in Figure 4 shows that a large
percentage of the nodes in the reduced tree are leaves.
(Recall that we do not need to store a child pointer
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Figure 5: Variation of prune count with the number of
nodes retained in the reduced tree.

with leaf nodes.) The dashed line shows the percentage
of nodes that will be present as “strands.” Interestingly,
the dotted and dashed curves seem to be mirror images
of each other.

With M = 450K in stage 1 of the runstats phase, the
maximum depth of the tree is just 15. This implies
a small table for the depth vs. count distribution if
strategy DFE, from Section 4.3 were to be used.

Reduced Tree Size. We calculated that we could
store the top 100 nodes of the reduced tree using 389
bytes, and the top 200 nodes using 1000 bytes. For
brevity, we omit details of the breakup of storage use.

Size of the Reduced Tree versus Prune Count.
As we have seen in Section 4, the error of our matching
strategies in the query optimization phase is closely
related to the prune count. From Figure 5, we can see
the steep jump in the prune count as the number of
nodes decreases.

7 Results for the Query Optimization
Phase

From Section 6, we observe that if we are allowed
between 0.5-1 Kbytes to store our reduced tree, we
can store from between 100-200 nodes. From Figure 5
and the observation at the end of Section 5 on how
many rows a positive single pattern appears in, it is
obvious that the errors will be minimal when we use
a reduced tree with 200 nodes.
a 200 node reduced tree, for positive single patterns,
a strategy that returns the prune probability when a
pattern does not match will estimate the selectivity
to be 16K/200K = 0.08, while the true selectivity is
approximately 0.05; the error is therefore small.

To really test our estimation strategies, and for us

In particular, with

to be confident about their validity in environments
outside the evolving TPC-D benchmark, it is important
that we test them against a reduced tree with a



of a node versus av_count(d), the average value of count
at depth d while reducing tree T to get 7.

For our running example, the depth vs. count distri-
bution for the tree 7" from which the reduced tree 7 in
Figure 3 was derived is {(depth d, av_count(d)}:

{(0,1000), (1,500), (2,275), (3, 250)} (3)

We denote the depth of node z by depth(z).

Strategies DE,, DE5: The depth estimation strate-

gies try to estimate the depth of pattern ¢ in T
as a weighted average of the depth(z(o(7)))’s, with
the weights decreasing with increasing i. Intuitively,
we want the ith weight to capture the ratio of the
quantity depth of pattern ¢(0)o(1)---o(¢) in T mi-
nus the depth of pattern ¢(0)o(1)---c(i — 1) in T
to depth(z(o(7))).
Strategy DFE; weights the depth of the ith sub-
pattern, depth(z(o(d))), by 1/(i + 1), and strat-
egy DEo weights depth(z(o(4))) by 1/(2¢+ 1). For
our example, the depth of each of ¢(0), o(1), and
o(2) in the reduced tree is 1. Strategy DFE; esti-
mates the depth of pattern ¢ as 1 -1+ 1/2 -1+
1/3-1=1.83. Using (3), it estimates the selectivity
of pattern o as (av_count(1) + 0.83 - (av_count(2) —
av_count(1)))/|R| = 0.313.

5 Methodology for the Experiments

We experimentally evaluated our strategies from Sec-
tions 3 and 4 for the runstats and query optimiza-
tion phases. There is an emerging industry stan-
dard Transaction Processing Council (TPC) decision
support benchmark, known as the TPC-D benchmark
[TPC], that involves predicates such as the like predi-
cate. We studied our techniques in the context of this
benchmark®.

In particular, we used the dbgen program, which is
part of the evolving TPC-D benchmark, with a scale
factor of one to generate a database. (A scale factor of
one corresponds to a database of size 1 Gbyte.) From
amongst the columns that the benchmark suggests for
use with queries involving the like predicate, we chose
the P_.NAME column of the PARTS table to test our
techniques. The P_.NAME column is “harder” in that it
is expected to have a large number of distinct entries; we
expect this column to be “typical” in that the strings in
this column are not random alphanumeric strings. For
a scale factor of one, the P_.NAME column is expected
to have 200K rows.

The benchmark specifies that the P_.NAME column is
populated as follows [TPC]: Each row of the P.NAME
column is obtained by choosing five distinct base color

6 Experiments against real customer data were subsequently
done validating the conclusions of this paper [Wan].
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patterns at random from a set of 92 patterns (“green”
is a base pattern, for example), and concatenating these
five patterns separating any two patterns with a blank
character. It is important to note that we have not used
specific information about how the column is populated
to optimize our techniques; we discuss more about this
in Section 9.

As mentioned in Section 1, the space available
in the metadata descriptors for any one column of
the database is limited. For numeric or measured
values, this is determined by known methods (e.g.,
histograms). A method for alphanumeric selectivity
requiring comparable space is desirable. In a database
of a million rows, typically each of 100 bytes or more,
0.5-1K would be acceptable, given the large size of the
tables. As an initial design point, our work is targeted
to these estimates.

In Section 6, we present our experimental observa-
tions and validations of our techniques from Section 3
used in the runstats phase.

In the query optimization phase, we need to match
query patterns against our reduced tree. The bench-
mark [TPC] does not provide strict guidelines on how
to generate query patterns; it suggests that unit pat-
terns formed from the base patterns be used. We do a
more extensive study. We first matched each of the 92
base patterns against our reduced tree and determined
the error distribution. (Matching a base pattern o is
equivalent to a like predicate with the query pattern
“xcx”.) We call this the positive single pattern study,
since each pattern exists in the column and the pattern
is a base, or single, pattern. We also considered the
92 x 91 = 8372 double patterns obtained by concatenat-
ing each of the unit patterns with another, separating
these two patterns by a blank. These patterns also exist
in the column, and we call this the positive double pat-
tern study. Most patterns used with the like predicate
are positive patterns, i.e., patterns that are present in
the database [TPC]; hence, the above two studies are
most important.

Although negative patterns, i.e., patterns not found
in the database, are often not seen in query pat-
terns [TPC], it is important to understand the effect
of our matching strategies via-a-vis negative patterns,
especially given the issue of unclean data [HeS]. We gen-
erated three sets of negative patterns by taking the 92
base patterns and introducing one, two, and three errors
in each basic pattern, respectively. These are particu-
larly harsh negative patterns since they differ very little
from a corresponding positive pattern. The intuition
behind generating these negative patterns is that, even
if a user 1s not malicious, people sometimes make typing
mistakes, and there may be no records matching on the
like predicate.

By simple calculations, we observe that from the



wise, est(o(%)) is defined to be 0 for strategy I;, and
is defined to be the prune probability for strategy I7.
The estimated selectivity of pattern o is est(o)
M est(o(7)). The advantage of this approach is that
the approximation is likely to be large for queries
with large output, but will almost always be small
when the actual query output is small. For our run-
ning example, strategy I; estimates the selectivity
of pattern o to be est(o(0)) - est(c(1)) - est(o(2))
(500/1000) - (750/1000) - (500/1000) = 3/16 = 0.188.

Strategies I, I3, I}, I5: This set of approaches is based
on the observation that the selectivity of pattern o 1s
at most the selectivity of suffix oy, for all . Strate-
gies I» and I3 use strategy I; as a subroutine to
determine est(I1, 0;). They estimate the selectivity
of pattern ¢ as a weighted average of the estimated
selectivities est(Iy, 0;). Intuitively, we would like to
weight the estimations of the longer patterns more
than the estimations of the shorter patterns. Strat-
egy Is uses weights varying linearly with the length
of the pattern, weighting est(I1, o;) by |o;| = |o| — ¢,
while strategy I3 uses weights falling exponentially
with the length of the patterns, weighting est(I1, ;)
by 21717, Strategies I, and I} are similar to I
and I3, except that they use strategy Ij as a sub-
routine, instead of using [; as a subroutine.

4.2 Child Estimation-based Strategies CFE,

The logic behind the child estimation-based strategies
is to estimate the number of children that were pruned
at a node while building the reduced tree 7 from 7T

For a node z, let sum_child _counts(z) be the sum of
the counts of the children of z that are in the reduced
tree. We denote by unaccounted_count(z) an estimate
of the sum of the values of count of the pruned chil-
dren of z. We set unaccounted_count(z) = count(z) —
sum _child _counts(z)) if count(z) > sum_child _counts(z),
and equal to p otherwise.

Let us denote by num_pruned_children(z) the esti-
mated number of children of node z that were pruned
in stage 2 of the runstats phase. Since each pruned
child of z had a value of count at most the prune
count p, we estimate num_pruned_children(z) to be
max(1, [unaccounted _count(z)/p]). (The estimate for
num_pruned_children assumes that the values of count
for the pruned children were approximately equal.)

The CE, strategies use the num_pruned_children(z)
values to estimate the selectivity of pattern o. Intu-
itively, we expect that the selectivity of pattern o(é)f,
where @ is some character where pattern ()0 does not
match in the reduced tree 7, is closely related to

unaccounted _count(z(o(i)))

num_pruned _children(z(o(i))) - |R|

S(z(a(1)))
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Strategy CFi: Along the lines of strategy I, this
strategy is based on the premise that the substrings
o(i)’s might be independent, and uses an approxi-
mation of Bayes rule. We explain this strategy via
our running example.

Strategy CFE; estimates the selectivity of o(0)
“gre” to be count(xy)/|R| = 0.5. Tt estimates the
selectivity of o(0)o(1) “gree” to be S(z1)
250/(1 - 1000) = 0.25. Strategy CF; expects that
of the rows of R that have the substring “gre”,
an “e” follows “gre” in 0.25/0.5 or half the rows.
Similarly, from node x4 it estimates that “e” has a
selectivity of 0.75, and that “en” has a selectivity
of S(x4) = 750/(3 - 1000) = 0.25. Hence it expects
that of the rows that have the substring “e”, an “n”
follows an “e” 0.25/0.75 or 1/3rd of the time. By an
approximate adaptation of Bayes rule, strategy CFEy
estimates the selectivity of ¢ to be 0.5 x (0.25/0.5) x
(0.25/0.75) = 0.0833.

Strategy CFEs: Like strategies I», I3, this strategy is
based on the observation that the selectivity of
pattern o 1s at most the selectivity of suffix o;.
For our running example, strategy CE» estimates
that “gre” followed by any string of characters not
starting with a “y” has a selectivity of S(x1) =
0.25. For oy “reen” it estimates that “re”
followed by any string of characters has a selectivity
of 0.25 (using node #3). By continuing thus (for
strings o3, o3, and 04) it estimates the selectivity
of ¢ as min;{S(x;)}, where i = 1,3,4,5, giving
est(CEy,0) = 0.25.

Strategy CF3: Strategy CFE3 is a mix of strategies
CEy and CF,. Instead of multiplying the es-
timated selectivities of the different sub-patterns
(like strategy CFE; does), strategy CFEg tries to
“look down” the (pruned portions of) tree 7, and
multiplies the number of estimated children of the
different sub-patterns. For our running example,
since z(o(0)) xy, strategy CFEs thinks that
the unaccounted_count at node x; would have got-
ten successively divided if we had gone down the
tree T. Since z(o(1)) = x4, strategy CFE3 expects
that the unaccounted_count at node x; would have
gotten divided amongst num _pruned_children(zy) x
num_pruned_children(z,) = 1 x 3 children. Tt es-
timates the selectivity of pattern ¢ as S(z1)/3 =
250/3000 = 0.083.

4.3 Depth Estimation-based Strategies, DF,

The depth estimation strategies combine the intuition of
the suffix tree with the histogram-based strategies [IoP]
for estimating numeric selectivity. The idea is to
approximately capture the distribution of the depth d



bilities include hashing of the strings associated with a
node.

To pack the maximum number of nodes into the
metadata, we can list the nodes in order of decreasing
count, and perform a simple calculation to determine
the “break point,” i.e., the last node that can be
squeezed into the metadata. (More details are given

in [Kri].)

4 The Query Optimization Phase

In the query optimization phase, a query using the like
predicate is presented, and we consult the metadata
(actually, the reduced tree 7 stored in the metadata)
to estimate the selectivity of the like predicate. Let
the query with the like predicate involve the unit
pattern “xox”. We call the string o the “string in the
unit pattern” or simply the pattern; the selectivity of
the like predicate is the selectivity of pattern o.

We use the term prune probability to denote the value
of prune count (defined in Section 3.2) divided by |R|.
In this section, we will denote the pattern by o, and
the suffix of the pattern o starting at position i by oy;
in particular ¢ = op. We denote the selectivity of
pattern o by sel(c), and the estimated selectivity of
pattern o using strategy X by est(X,c). When X
is obvious from context, we use est(o) to denote the
estimated selectivity of pattern o.

In the query optimization phase we match pattern o
against the reduced tree 7 to get an estimate est(o)
which is as close to sel(c) as possible. As described in
Section 3, determining whether the pattern ¢ is in the
reduced tree 7 1s simple. We have a successful maich
of the pattern if we find z, the node of the match, and
an unsuccessful match otherwise. Clearly, if we have a
successful match, est(o) should be equal to count(z)/|R]
for any reasonable estimation strategy, since est(o) will
then be equal to sel(o), barring the minimal effects of
regular pruning in stage 1 of the runstats phase.

It 1s quite likely that a pattern that would have
successfully matched in the tree T' (obtained in stage 1
of the runstats phase) will not match in the reduced
tree 7. Since we know that the selectivity in the case of
an unsuccessful match is at most the prune probability,
setting est(o) equal to the prune probability might be
reasonable, especially if the prune probability is small.
However, the stringent limits on the size of the metadata
(and hence on the size of 7) do not guarantee that
the prune probability will always be small. We now
concentrate on strategies to get a better approximation
for the selectivity for the difficult and more likely case
when the pattern does not match in the reduced tree 7.

We have three main families of methods for dealing
with unsuccessful matches: independence-based, child
estimation-based, and depth estimation-based methods.
In each of these methods, we deal with partial matches
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Figure 3: The reduced tree 7 obtained by inserting
a column R of a hypothetical database having |R| =
1000 strings, with 250 of these strings being “green!”,
250 being “grey!”, 250 being “brown!”, and 250
being “blue!”, and retaining nodes with the maximum
10 counts in the reduced tree. The prune count is 250,

and the prune probability is 250/1000 = 0.25.

of the pattern in the reduced tree 7. The idea behind
partial matches is that if a pattern does not match
in the reduced tree 7, we can divide the pattern into
sub-patterns that match in 7, determine the selectivity
of each of these sub-patterns, and put these values
of selectivity together in some logical way to get the
selectivity of the full pattern.® We explain the main
idea of our strategies via a running example using the
reduced tree 7 from Figure 3, and the pattern ¢ =
“green”.

All our strategies rely on a greedy parsing of the
pattern o. Formally, we say that ¢(0), o(1),..., o(m)
is a greedy parsing of ¢ if |o(¢)] > 0 for all i,
ag(0)o(1)---o(m) equals pattern o, and (i) is either
the maximal match of ¢; in the reduced tree 7, where
J = o) 4+ -+ |o(i = 1)|, or the single character
at position j of pattern ¢ if no non-null prefix of o;
successfully matches in the reduced tree 7. For our
running example, a greedy parsing of ¢ = “green” gives
us the sub-patterns o(0) “e”  and

“gre”, o(l) = “¢&”,
o(2) = “n”. We denote the node of the match for (%)
by z(o(i)).

4.1 Independence-based Strategies, I,

The independence-based strategies essentially assume
that the o(¢)’s (i.e., the substrings obtained by greedy
parsing) are independent of each other.

Strategies Iy, I1: If o(¢) matches in the reduced tree,
we define est(o(é)) = count(z(o(é)))/|R|. Other-

5 Although not explicitly stated in the description of the strate-
gies, our algorithms ensure that the estimate of an unmatched
pattern is always less than the prune probability.
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Figure 2: The suffix tree T" obtained in stage 1 of the
runstats phase by inserting 200 strings into the tree,
with 100 of these strings being “greener!” and the
remaining 100 being “grey!”. Assume that we can store
seven nodes in the metadata. The portion of the tree
below the dotted line is pruned away in stage 2 to get
the reduced tree 7. The 11-way tie for the seventh node
amongst nodes with count = 100 is broken arbitrarily.
The prune count is 100.

(See Figure 2.) To get tree T, we insert each string o
in column R of the database into a suffix tree* T'; this
involves adding each suffix of string ¢ to the tree. We
also keep a count called count(z) with each node z of
the tree of how many strings in column R have as a
substring the string corresponding to z. This can be
done during the tree creation process by incrementing
by 1 the counts of all nodes of T that are touched while
inserting o into 7.

3.1.1 Memory Restrictions while Building 7’

Although we can expect to have a large amount of
memory and processing capacity in the runstats phase,
the column of a typical database is usually very large,
and the tree could grow substantially. Memory is never
unlimited in practice; there are various schemes we can
use to effectively implement the runstats phase.

A simple method (and the strategy we chose for
our tests) is to limit the maximum size of the tree.
While the tree is being built we regularly prune out
nodes of small count when the number of nodes in
the tree threatens to exceed the maximum M. The
logic behind pruning out nodes with small count is
that the strings corresponding to these nodes seldom
occur in the database, and intuitively, we do not lose
much information by removing these nodes. Other
possibilities include least recently used-based pruning

4Tree T is a generalization of the suffix tree from Section 2 in
that it is a suffix tree for a set of strings.
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strategies [BuB] (but these do not care about the counts
at the nodes), or avoiding pruning by assigning nodes
to pages intelligently and paging in the nodes as done
for prefetching in [CKV]. If “suffix pointers” are used,
we need to be careful while pruning nodes [Kri].

3.2 Stage 2: Suffix Tree Reduction to Get 7

At the end of Stage 1 of the runstats phase, we have a
(reasonably large) suffix tree 7. But for the occasional
pruning we do while building the tree, we can exactly
match any unit pattern in the tree to get the selectivity
of the unit pattern predicate.

The main intuition for deriving the reduced tree 7
is related to the intuition for pruning regularly while
building the tree T: We are interested in knowing as
accurately as possible how much the selectivity is when
the value of selectivity is large. We get the reduced
tree 7 of size m from tree T by pruning out all nodes of
the tree except the n nodes (that can be stored using m
bytes) with the largest value of count. (See Figure 2.)
Section 3.2.1 discusses how to determine n. We call
the maximum count of any node that was pruned from
tree 1" while building the reduced tree 7 as the prune
count.

Another observation useful in reducing the time for
query optimization in short online transactions is to
store strings associated with a node in the metadata
itself (rather than as pointers into the database).

3.2.1 Compressing Information in a Tree Node

Space in the metadata and time available during query
optimization phase are both limited. To pack as many
nodes as possible in the metadata while keeping retrieval
time small, we use some simple encoding tricks. (The
number of rows in column R is denoted by |R|.)

We store the nodes of our reduced tree in a (con-
tiguous) array. The children of a node are stored con-
tiguously in the array. With each node we store the
following information: the string associated with the
node using a simple encoding scheme described below;
the value of count at the node using log | R| bits; a bit to
specify whether the node is a leaf, and if not, a pointer
into the array to the first child of the node using logm
bits; and a bit to specify whether the node is the last
child in the list of children of its parent.

We store the strings associated with the node explic-
itly using the following intuition: Because of the higher
branching we expect to see closer to the root, the strings
associated with these nodes will have smaller length. We
use a small number of bits b to identify the string length;
e.g., with & = 2, we can differentiate between strings
with 1, 2, 3, or > 3 characters. Strings with the most
common 2° — 1 string lengths are stored without the
trailing null character, and the other strings are stored
with an explicit trailing null character. Other possi-
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Figure 1: Suffix tree and its creation.

scription, see [McC].

Example 1 (See Figure 1.) A suffix tree T for string o
is a trie data structure where nodes of the trie are
labeled by substrings of o, no node (except possibly
the root) has exactly one child, no two labels for the
children of a node have a common prefix, and o; is a
suffix of ¢ if and only if concatenating the labels on the
path from the root to a leaf? gives o;. A suffix tree for
string o 1s obtained by inserting the string ¢ into the
tree; this involves adding all suffixes of the string ¢ into
the tree.

Figure la shows the suffix tree for string “greener!”,
where the character “!” is our unique end-of-string
symbol.  The tree is obtained by inserting string
“greener!” into the tree; this is equivalent to adding
the string “greener!” and all its proper suffixes
“reener!”, “eener!”, “ener!”, “ner!”, “er!”, “r!”,
and “!” to the tree. The substring labeling a node
is called its associated string; e.g., “ner!” is the string
associated with node y. The root node has the null

21t is convenient to assume that the last character of the input
string o is a special end-of-string symbol (that does not appear
anywhere else in the string).
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string associated with it. The string corresponding to a
node is the concatenation of the strings associated with
the nodes on the path from the root to the node; e.g.,
the string corresponding to node y is “ener!”.3

The strategy for creating the tree is illustrated in Fig-
ure 1b by showing how the tree changes when “ener!”
is added to the tree after “greener!”, “reener!”, and
“eener!” have been added to the tree. While adding
substring o; (e.g., “ener!”) to the tree, the main prob-
lem is to find the node z closest to the root such that z
cannot be an ancestor of the node corresponding to o;.
After finding z, intuitively, we “split” z to accommo-
date o; in the tree. A simple method to determine z
1s to start at the root of the tree and iteratively move
down the tree and ahead in the string o; by compar-
ing the unmatched suffix of the string o; against the
strings associated with the children of the current node.
A formal description is given in [Kri]. O

Various optimizations with respect to time and space
to the basic suffix tree construction algorithm we have
just described have been studied [FiG, McC]. For
example, the substring o; associated with a node can
be represented as two pointers into the original string o.
The process of determining the node z while adding a
substring to the tree can be done efficiently using extra
“suffix pointers” in the tree [McC].

3 The Runstats Phase

The suffix tree as described in Section 2 is a natural
structure to match unit patterns in a string. For
example, given the suffix tree for string “greener!”
(Figure la), in order to find out whether the string
“een” is a substring of “greener!”, we match the
string in the suffix tree. (The pattern to be matched
is not terminated by the end-of-string character.) The
matching process is similar to our trying to add
a =“een” into the suffix tree; we have a success in the
matching process if we find a node z such that « is a
prefix of the string corresponding to node z. We call
node z as the node of the match. Finding out if « is
a substring of ¢ is equivalent to the following query:
Does “ka*” match string o, where “*” is the wildcard
character? The suffix tree is therefore 1deally suited for
matching unit patterns.

Our goal in the runstats phase is to build a small
structure 7 to be stored in the metadata that helps
us match unit patterns. We do this in two stages as
described below in Sections 3.1 and 3.2.

3.1 Stage 1: Construction of Suffix Tree T

We first build a (possibly large) suffix tree 7', which
we then use in stage 2 to get the smaller structure 7.

3The difference between the string associated with a node and
the string corresponding to a node is important; these terms are
used throughout this paper in the sense presented here.



Algorithms to estimate selectivity can typically pre-
process the database during off-hours (e.g., during the
weekend), to store statistical information useful for cost
estimation during query optimization as part of the
metadate (catalog, in commercial relational DBMS).
This pass is referred to as the statistics generation phase
or the runstats phase. During the query optimization
phase, the metadata is consulted to estimate selectivity;
the processing in the query optimization phase must be
minimal. Further, the space available in the metadata
descriptors for any one column of the database is lim-
ited.

Models already exist in current day relational DBMS
to estimate selectivity for numeric fields [ASW, HaSa,
IoP, LNS, SAC, WVT]. Typically, in the runstats
phase, a few numbers that “capture” the distribution
of data are accumulated and stored in the metadata, as
histograms, for example.

The problem of estimating alphanumeric selectivity
is a natural extension to the problem of estimating nu-
meric selectivity: the like predicate, and the wildcards
in the patterns are natural extensions of ranges in nu-
meric queries. To the best of our knowledge, the prob-
lem of estimating alphanumeric selectivity in the pres-
ence of wildcards has not previously been studied in a
methodical way, although 1t is turning out to be a press-
ing concern.! This concern is corroborated by observa-
tions by practitioners in data warehousing that one half
of the records have “unclean” data (through mistyping,
for example) [HeS]; the unclean data also leads to large
use of wildcards in queries. In practice, for alphanu-
meric fields, the like predicate along with strings with
wildcards are the rule rather than the exception. The
techniques used for estimating numeric selectivity are
not suited for estimating alphanumeric selectivity, since
the techniques for estimating numeric selectivity inti-
mately use the fact that they are dealing with ordered
measures.

1.1 Owur Approach

Our strategy is based on the following interesting
intuition: The model built by a data compressor on
an input text encapsulates information about common
substrings in the text. Intuitively, text data compressors
(as in [ZiLa, ZiLb]) remove repetition in the input to
encapsulate information better. The data structure
or model built by the data compressor stores this
encapsulated information. We could use a strategy
similar to a data compressor’s to build a structure
that captures the information about substrings in a
column. It is important to note that not every data
compressor’s data structure is good enough for the
selectivity estimation problem, since we ultimately have

1Programmers looking for a file whose exact name they have
forgotten may empathize.
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to match patterns that have wildcards. We present a
version of the suffix tree [McC] as an appropriate data
structure for the alphanumeric selectivity problem, since
it allows searches of arbitrary substrings of the strings
in the database column.

There 1s an emerging industry standard Transaction
Processing Council (TPC) benchmark, known as the
TPC-D benchmark [TPC], that involves predicates such
as the like predicate. We study our techniques in the
context of this benchmark, taking care to not take
advantage of the particular structure of the benchmark.
An important result of our work 1s that selectivity
estimation for text is possible by using intuition from
data compression.

In this paper, we first concentrate on trying to
estimate selectivity for wunit patterns, i.e., patterns
where a string is sandwiched between two wildcards
(e.g., the pattern “sxgreens” in the like predicate
from (2)). Unit patterns are observed in practice to
be the most common type of patterns used with the like
predicate [TPC]. We describe strategies to deal with
general patterns in Section 9.

Wang et al. [WCM] have used an interesting suffix-
tree based technique to discover similar regular expres-
sion patterns in a database. Although the problem
studied in [WCM] and the corresponding system con-
straints are quite different from our alphanumeric selec-
tivity problem, it is interesting to note that the gener-
alized suffix tree structure in [WCM] and our suffix-tree
based data structure described in Section 3.1 are simi-
lar. This is not surprising since pattern matching is the
common link between the two problems, and the suffix
tree structure is natural for pattern matching.

The rest of the paper 1s organized as follows. In Sec-
tion 2, we present the suffix tree data structure, which
lies at the heart of our estimation strategy. In Sec-
tion 3, we describe our strategy in the runstats phase.
We present our strategies for estimating selectivity in
the query optimization phase in Section 4. We present
the methodology for evaluating our strategies in Sec-
tion b, and describe the results of our experiments in
Sections 6 and 7. To put our results in perspective, in
Section 8 we compare our method against a simple ran-
dom sampling technique (where the information in the
metadata 1s obtained by randomly choosing from the
column as many strings as possible, limited by the size
of the metadata). We present extensions to our strate-
gies in Section 9. Other related issues are discussed in
Section 10.

2 The Suffix Tree

A suffix tree [McC] is a trie-based data structure [Knu,
Mor] used for data compression [FiG], pattern match-
ing [Wei], and other applications. In this section we
explain suffix trees with an example; for a formal de-
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Abstract

Success of commercial query optimizers and database man-
agement systems (object-oriented or relational) depend on
accurate cost estimation of various query reorderings [BGI].
Estimating predicate selectivity, or the fraction of rows in
a database that satisfy a selection predicate, is key to de-
termining the optimal join order. Previous work has con-
centrated on estimating selectivity for numeric fields [ASW,
HaSa, ToP, LNS, SAC, WVT]. With the popularity of tex-
tual data being stored in databases, it has become important
to estimate selectivity accurately for alphanumeric fields.
A particularly problematic predicate used against alphanu-
meric fields is the SQL like predicate [Dat]. Techniques used
for estimating numeric selectivity are not suited for estimat-
ing alphanumeric selectivity.

In this paper, we study for the first time the problem of
estimating alphanumeric selectivity in the presence of wild-
cards. Based on the intuition that the model built by a data
compressor on an input text encapsulates information about
common substrings in the text, we develop a technique based
on the suffix tree data structure to estimate alphanumeric
selectivity. In a statistics generation pass over the database,
we construct a compact suffix tree-based structure from the
columns of the database. We then look at three families
of methods that utilize this structure to estimate selectivity
during query plan costing, when a query with predicates on
alphanumeric attributes contains wildcards in the predicate.

We evaluate our methods empirically in the context of the
TPC-D benchmark. We study our methods experimentally
against a variety of query patterns and identify five tech-
niques that hold promise.
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1 Introduction

Commercial query optimizers, critical for high perfor-
mance databases, are being challenged by an onslaught
of SQL queries driven by advanced visualization tools
typically running on personal computers. Query opti-
mization is an integral part of databases [Dat, SAC].
For example, consider the selection predicate

salary between 30K and 60K (1)

of a payroll database, which requests records of all
employees whose salary lies between 30K and 60K. It
is critical to be able to estimate selectivity, i.e., the
fraction of rows in the database that satisfy the selection
predicate. The estimation would be used by the query
optimizer to determine whether to use a file scan to
access all rows of the table, evaluate the predicate
against each row, and return qualifying rows to the user,
or to use an index on the salary field (if present) to
access only those rows that qualify.

With the popularity of textual data being stored
in database management systems (DBMS), it has be-
come 1mportant to estimate selectivity accurately for
alphanumeric fields. A particularly problematic pred-
icate used against alphanumeric fields is the SQL like
predicate [Dat]. For example, consider the inventory of
a department store that has a parts table, one of whose
columns, part.color, is the color of the part. We would
like to select all parts where

part.color like “xgreenx”

(2)

where the “x” represents a wildcard that matches
any sequence of symbols. In other words, we want
to select all parts whose color entry has the subse-
quence “green” contained in it. The colors “light
green”, “dark green”, “greenish blue”, would all
satisfy predicate (2). We refer to selectivity of the like
predicate as alphanumeric selectivity in the presence of
wildecards, or simply, alphanumeric selectivity. The cor-
rect costing of the like predicate is critical because it is
a prelude to many more approximate matching pred-
icates; “sounds like” being an example, approximate
matching on multiple dimensions being another.



