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This study explores an alternative way of storing text files to answer exact match
queries faster. We decompose the original file into two parts as filter and payload.
The filter part contains the most informative k bits of each byte, and the remaining
bits of the bytes are concatenated in order of appearance to generate the payload.
We refer to this structure as k-bit filtered format. When an input pattern is to
be searched on the k-bit filtered structure, the same decomposition is performed
on the pattern. The k bits from each byte of the pattern form the pattern filter
bit sequence, and the rest is the payload. The pattern filter is first scanned on
the filter part of the file. At each match position detected in the filter part, the
pattern payload is verified against the corresponding location in the payload part
of the text. Thus, instead of searching an m-byte pattern on an n-byte text, first
k ·m bits are scanned on k ·n bits, followed by a verification of (8−k) ·m bits on the
respective locations of the matching positions. Experiments conducted on natural
language texts, plain ASCII DNA sequences, and random byte sequences showed
that the search performance with the proposed scheme is on average two times
faster than the tested best exact pattern matching algorithms. The highest gain is
obtained on plain ASCII DNA sequences. We also developed an effective bitwise
pattern matching algorithm of possible independent interest within this study.
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1. INTRODUCTION

A file is a sequence of bytes stored in digital media, such
as hard disks, DVDs, or flash memories. Currently text
is stored on digital media as it would be written to an
ordinary paper notebook. The main motivation of this
study is to explore an alternative way of storing text
files that will result in a boost in search performance,
with the restriction that the size of the converted file
does not exceed the original one.

Exact string matching, which is simply finding all the
occurrences of a given pattern on a text, is one of the
deeply studied problems in computer science. The topic
may be investigated in two classes as on-line and off-
line pattern matching [1].

In off-line pattern matching, the input pattern is
preprocessed, but the text on which the pattern will
be searched has no such prior processing. There exist
many algorithms [2] devoted to improving efficiency
for particular cases regarding the size of the alphabet
and the type of the text (natural language, biological
sequences, random files) along with the lengths of the
queried patterns.

In on-line pattern matching, the text is preprocessed

in such a way that a received query will be answered
in a time cost proportional to the pattern’s length and
the number of its occurrences in the text. Although the
pattern length is also a factor of search performance
in off-line matching, here the point is that the time
complexity in on-line matching is independent from
the content of the input pattern, which indicates
theoretically that the answer gets ready as soon as
the reading of the pattern is finished. This is mainly
achieved by creating an indexing structure, which is
based on mainly subword graphs, suffix trees, and suffix
arrays [3], over the content of the text. The cost of the
gain via indexing is the large space consumption [4] of
those structures in addition to the heavy procedure of
their constructions in practice.

This study attempts to enhance the off-line pattern
matching performance via storing files in a different
structure, named k-bit filtered file format, which
includes a built-in filter. The conversion of an ordinary
file into k-bit filtered format is a light operation
compared with the constructions of the on-line indexing
structures, and the resultant file is exactly of the same
size of the original one. Experiments showed that
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the search performance on these converted files is on
average twice faster than the tested best exact pattern
matching algorithms.

In off-line pattern matching, filtering approaches are
powerful tools. Following the long standing success
of the Wu and Manber’s algorithm [5] especially
on approximate single/multiple pattern matching on
natural language texts, recently Lecroq [6] proposed the
q-hash algorithm of this genre, which is shown to be
very effective especially on small alphabets.

Filtering algorithms compute the hash of the
input pattern and create other necessary structures
accordingly such as the shift table at the preprocessing
stage. While scanning the text, the hash of the
investigated window is computed, and a full verification
of the pattern is performed if that value coincides with
the previously calculated hash of the pattern. Filtering
is an elegant way of searching as calculating the hash
via an easy-to-compute function is much more speedy
than comparing the pattern with the text.

The main idea of this study is to move the most
informative bits of the bytes to the beginning of the
file and then use those bits as a filter. When a query
is received, the corresponding bit sequence of the bytes
of the input pattern is first scanned on that filter, and
matching positions are verified with the rest of the bits
accordingly.

The work presented in this paper is a bit-
oriented approach rather than the classical byte-
oriented approaches, so bit vector matching is in central
of the whole study. Matching on bit sequences instead
of byte sequences has been explored in previous studies.
Klein and Ben-Nissan [7] adapted the Boyer-Moore
algorithm [8] on bit vectors. Kim et al. [9] proposed
the FED algorithm especially for searching on 2-bit
encoded DNA sequences, but being applicable to any
bit sequence search also. Faro and Lecroq introduced
various algorithms named as BSKS [10], BHM [10],
and the most recent BFL [11] algorithm, which is an
adaptation of BNDM [12]. Although it is possible to
integrate any efficient algorithm of this genre into the
proposed filtering scheme, a variant of the Külekci’s
BLIM [13] algorithm is introduced and used within this
study to fulfill the requirements of the filtering scheme
in a fast and flexible manner.

The outline of this paper is as follows. Section 2
introduces the k-bit filtered file format. Section 3 covers
the search process on the new format including the
preprocessing steps, decomposition of the input pattern,
and how filtering and verification operations are
achieved. Experimental comparisons with alternative
algorithms are discussed in section 4 followed by the
conclusion.

2. K-BIT FILTERED FILE FORMAT

Let file F of size n bytes be denoted by F =
s1s2s3 . . . sn, where each byte si, 1 ≤ i ≤ n, is composed

of eight bits as si = bi1b
i
2 . . . b

i
8.

The input representing the number of bits that will
be extracted from each byte is denoted by k, and let
R contain the indices of the most informative k bits.
Selection process of those most informative bits will be
discussed below soon. The bits corresponding to the
indices given in R are extracted from each byte si and
are stored as a sequence of bits preserving the order of
appearance. This bit stream is placed at the beginning
of the new file, and the remaining bits of each si are
concatenated to this stream again preserving the order
of appearance in the original file. Figure 1 denotes the
conversion of a sample file into its k-bit filtered format,
assuming k = 2 and the indices of the most informative
k bits are R = {3, 5}.

The ith character si, 1 ≤ i ≤ n, in the original file has
its corresponding k-bit filter beginning at bit position
(i − 1) · k + 1 on the respective k-bit filtered file. Its
remaining bits begin at bit position [n · k+ (i− 1) · (8−
k) + 1], since there exist k bits of each of all n bytes at
the beginning, and (8 − k) bits of each of the previous
(i− 1) bytes preceding it.

The first step while converting a file into its k-bit
filtered format is to find out the indices of the most
informative k bits among the bytes of that file. It
is a known fact from the information theory [14]
that the information carried by a sequence is inversely
proportional to its compression ratio. In other words,
the amount of information on a stream can be measured
by compressing the stream and taking the inverse of
the compression ratio. With that in mind, let’s assume
eight sequences, each of which is composed of the bits
appearing at positions one to eight of each byte, e.g.,
the sequence corresponding to first bits of the bytes will
be Z = z1z2 . . . zn, such that zi = bi1 = 0.

When these eight sequences are individually com-
pressed and sorted according to their sizes in descending
order, this order also represents the amount of the in-
formation content contained in the corresponding bit
streams. For example, if the descending order of the
sizes of the eight compressed bit sequences is obtained
as {5, 3, 1, 6, 8, 7, 2, 4}, then the most informative bit in
each byte is the fifth, and the next most informative
one is the third. If k = 2 is given, then the third and
fifth bits of each byte are moved to the beginning of the
file according to the scheme shown in figure 1.

Note that it is also possible to select the indices of
the k bits via some other techniques, such as simply
counting the 0/1 ratio, or measuring the variances of
the bit sequences, or even choosing k random indices.
In fact, within the proposed methodology, each byte in
the file is down sampled to k bits, and if the selected
bits are not the most informative ones, the cost will
be a higher number of verification requests during the
search process. Thus, finding the most informative bits
is an important step, and using the compressed sizes as
an indicator makes the filter powerful, although it adds
an extra time and space complexity caused by the used
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b11 . . . b18 b21 . . . b28 . . . . . . bn1 . . . bn8

Original file.

Filter Part Payload Part

b13 b15 b23 b25 . . . bn3 bn5 b11 b12 b14 b16 b17 b18 . . . bn1 bn2 bn4 bn6 bn7 bn8

k · n bits (8− k) · n bits

k-bit filtered file.

FIGURE 1. Sample file F is converted to its k-bit filtered file format, assuming k = 2 and R = {3, 5}.

compression algorithm.
The time required for converting an ordinary file into

its k-bit filtered format is the total time cost for the
most informative k bits selection process and the actual
replacement process. Since the movement of the bits is
a linear-time operation, and if a linear-time compression
scheme is used for selecting the k bits, the whole process
requires two passes over the original file. In the first
pass the bit selection is done, and in the second phase
the actual bit movement is performed.

3. SEARCHING PATTERNS ON A K-BIT
FILTERED FILE

In practice, an input pattern P of length m can be
viewed as a sequence of bytes p1p1 . . . pm, where each
pi, 1 ≤ i ≤ m, is a sequence of eight bits, pi =
ti1t

i
2 . . . t

i
8. Given the pattern P and the set R of k

indices, the search process begins with decomposing the
pattern into two pieces as the pattern filter PF and the
pattern payload PL. PF is formed by extracting and
concatenating the bits at positions R[1] . . . R[k] from
each pi, for i = 1 to m. Similarly, the concatenation of
the remaining bits other than the filter ones forms the
PL. Figure 2 depicts this decomposition process on a
sample with the assumption that k = 2 and R = {3, 5}.

Following this segmentation, PF is searched on the
filter part of the k-bit filtered file, which occupies
the initial k · n bits. In case of possible matches
at some appropriate bit positions, the location of the
corresponding payload is computed and the PL is
verified against the value at that position.

If PF is found to begin at bit position f = k · h+ 1
on the k-bit filtered file, which means there may be
a possible match with the (h + 1)th character of the
original file, then PL should to be verified on the
corresponding bit position l = k · n + h · (8 − k) + 1.
The calculation of the l comes from the fact that the
payload part of the file begins after the (k · n)-bit filter
part, and to reach the payload of the (h + 1)th byte,
one needs to pass over the payloads of the previous h
characters, which makes a total of h · (8− k) bits.

3.1. Preprocessing for possible alignments of
pattern payload PL

The position of the byte containing the lth bit can
be simply computed with byteid = dl/8e. PL will
be verified on that byte beginning from bit position
8− (byteid · 8− l). As that bit position has a potential
to take any value from one to eight, prior to actual
scanning, all eight possible placements of the PL are
compiled into a table, which is similar to the one used
in the FED algorithm[9].

Let PLi denote the PL starting at bit position i,
1 ≤ i ≤ 8, on a byte. Each PLi is represented by
a four-tuple defined as [M i

f ,M
i
l , D

i, Ci]. The mask

for the first byte of verification sequence is M i
f that

includes 0s at bit positions smaller than i and 1s for the
others. For example, if i = 3, meaning PL begins at the
third leftmost bit, the corresponding M 3

f = 00111111.

Similarly, M i
l is the last byte mask. The bit position

where PL ends is x = 8−
(
(i+m−1) mod 8

)
. Thus, bits

coming after x should be 0, and the rest are to be 1, e.g.,
assuming i = 3 and m = 10, we have M 3

l = 11110000.
Di is an array of Ci bytes holding the actual values of
verification.

Figure 3 shows the PLi table computed for a sample
PL = 01100101101110. Note that the bold 0s depict
the padded bits, which do not have an effect on the
verification process, since they will be suppressed by
the masks M i

f and M i
l .

3.2. Matching on the filter part

In k-bit filtered file structure, appropriate bit positions,
on which the pattern filter PF should be matched,
depend on the value k. While scanning the (k · m)-
bit PF on the initial k · n bits of the file, PF can only
begin at a bit position f such that f = k ·h+1, for some
integer h, 0 ≤ h < n, since the k-bit filter corresponding
to the (h+1)th byte of the original file begins at position
f . As an example, if k = 2, PF must be searched at bit
positions 1, 3, 5, . . . , k · (n−1) + 1. Aiming to fulfill this
restriction in a fast and flexible way, a variant of the
Külekci’s BLIM algorithm [13] is adapted in this study.

The given pattern filter PF can begin at bit positions
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Original Pattern P (8m bits)

t11 t12 t13 t14 t15 t16 t17 t18 . . . . . . tm1 tm2 tm3 tm4 tm5 tm6 tm7 tm8

Pattern Filter PF Pattern Payload PL

(k ·m = 2 ·m bits)
(
(8− k) ·m = 6 ·m

)
bits

t13 t15 t23 t25 . . . . . . tm3 tm5 t11 t12 t14 t16 t17 t18 . . . . . . tm1 tm2 tm4 tm6 tm7 tm8

FIGURE 2. Decomposing an input pattern P into filter PF and payload PL, assuming k = 2 and R = {3, 5}.

i M i
f Di M i

l Ci
1 11111111 01100101 10111000 11111100 2
2 01111111 00110010 11011100 11111110 2
3 00111111 00011001 01101110 11111111 2
4 00011111 00001100 10110111 00000000 10000000 3
5 00001111 00000110 01011011 10000000 11000000 3
6 00000111 00000011 00101101 11000000 11100000 3
7 00000011 00000001 10010110 11100000 11110000 3
8 00000001 00000000 11001011 01110000 11111000 3

FIGURE 3. The PLi list of the sample PL = 01100101101110.

one to eight in a byte. Some of those beginnings are
not appropriate depending on the value of k. Let’s
investigate the case for k = 1, which makes every
position possible. Figure 4 shows all possible alignments
of the sample PF = 11100100001101, where X denotes
the don’t care bits that can take the value of both 1 and
0. The length of the window to be investigated for PF
is wl = 1 + d(m− 1)/8e = 3 bytes.

A mask matrix is computed according to the
alignments of PF . Each Mask[c][p] is composed of
eight bits, where ith bit represents whether PF starting
at bit position i is appropriate when byte c, 0 ≤ c ≤ 255,
is observed at byte position p, 1 ≤ p ≤ wl, in the current
window. For example, according to the sample given in
figure 4, the occurrence of bit sequence 01010111 on
the first byte of the investigation window fits with the
alignments beginning from bit positions 6, 7, and 8.
Thus, the corresponding mask is Mask[01010111][1] =
00000111.

Following the construction of the mask matrix, a
bitwise AND operation between the mask and a value
computed according to k is performed, since some of the
alignments are not appropriate according to the value
of k. This value is simply marking the possible places
of occurrence. As an example, each Mask[c][p] is ANDed
with 10101010, if k = 2, and with 10101010, if k = 4.

A shift table is also computed based on the Horspool’s
shift mechanism [15]. The last byte of the investigation
window determines how many bytes the window will
be slid to the right for the next attempt. Continuing
with the same example above, the shift amount is
1, 2, or 3, if one observes bit sequences 01000011,

11100100, and 00000000 respectively in the last byte
of the investigation window.

The main search operation on a k-bit filtered file
structure is sketched in algorithm 1. The inner repeat
loop performs a speedy shift mechanism. After the
detection of the shift amount, prior to beginning a whole
scan of the current window, it simply checks the mask
of the second byte, as this position includes less don’t
cares especially on long patterns. If the corresponding
mask is zero, then the algorithm simply continues with
shifting.

When a match is detected in the filter part, the bits
of the flag is investigated to find the exact bit position
of the hit. The verification routine is called next to
compare the pattern payload PL in the corresponding
position of the file’s payload part. If verification returns
true, then the occurrence of the queried pattern is
reported.

The worst case time complexity of searching k ·m bits
on k ·n bits is O(d(k ·n)/8e ·wl). This is the case where
on each attempt all the bytes involved in the wl-length
window is checked, followed by one-character right shift
all the time. In the best case, each alignment of the
investigation window accesses only one character, and
the shift amount is always maximal being equal to wl, so
the complexity is O(d(k · n)/8e/wl). The preprocessing
of mask creation is quadratic as it requires to traverse
a two-dimensional matrix, and shift table construction
is just linear of the alphabet size.

The total time needed by the whole search process is
simply the time required to search k ·m bits on k ·n bits
plus the number of verification requests multiplied by
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1 2 3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 X X X X X X X X X X

2 X 1 1 1 0 0 1 0 0 0 0 1 1 0 1 X X X X X X X X X

3 X X 1 1 1 0 0 1 0 0 0 0 1 1 0 1 X X X X X X X X

4 X X X 1 1 1 0 0 1 0 0 0 0 1 1 0 1 X X X X X X X

5 X X X X 1 1 1 0 0 1 0 0 0 0 1 1 0 1 X X X X X X

6 X X X X X 1 1 1 0 0 1 0 0 0 0 1 1 0 1 X X X X X

7 X X X X X X 1 1 1 0 0 1 0 0 0 0 1 1 0 1 X X X X

8 X X X X X X X 1 1 1 0 0 1 0 0 0 0 1 1 0 1 X X X

FIGURE 4. Possible alignments of sample PF = 11100100001101.

Algorithm 1 SearchOnKbitFilteredFile(P , m, T , n)

1: Decompose P into PF and PL;
2: Calculate Mask for PF ;
3: Calculate Shift for PF ;
4: filterend← d(k · n)/8e;
5: i← 1;
6: while (i < filterend) do
7: flag ←Mask

[
T [i]

][
1
]
;

8: for (j ← 2; flag and j < (wl + 1); j++) do
9: flag ← flag ANDMask

[
T [i+ j]

][
j
]
;

10: end for
11: if (flag) then
12: for (b← 1; b < 9; b++) do
13: if (bit b is set in the flag) then
14: pos← (i− 1) · 8 + b;
15: if (VerifyPL(pos) = true) then
16: pattern is detected!
17: end if
18: end if
19: end for
20: end if
21: repeat
22: i← i+ Shift

[
T [i+ wl − 1]

]
;

23: until (Mask
[
T [i+1][2]

]
!= 0) or (i > filter end)

24: end while

the verification time. When the length of the pattern
filter PF increases, the number of verification requests
decreases as it is less probable to observe a long binary
sequence. Thus, the time converges to the scanning
duration of the PF filter on the file filter part.

3.3. Verification on the payload part

The verification of the PL on the payload of the k-bit
filtered file is performed by using the PLi structures
computed in preprocessing. Assuming a match is
reported by the filter on the f th bit, the process is
depicted in algorithm 2. First the actual bit position l,
on which the PL is expected to begin is calculated. The
byte address of l, and the bit number on that byte are
compiled into a and i respectively. Note that i specifies
the PLi that fits to the current alignment of PL. As the

first and last bytes of Di most probably include some
don’t cares, first the bytes in between are compared. If
all matched, the first and last bytes are masked with
MFi and MLi, and are checked against the values in
Di[1] and Di[Ci] respectively. In case of a success at
the end of that operation, the existence of pattern P is
reported.

Algorithm 2 VerifyPL(f)

1: h← (f − 1)/k;
2: l ← k · n+ h · (8− k) + 1;
3: a← dl/8e;
4: i← 8− (a · 8− 1);
5: for (q ← 2; q < Ci and Di[q] = T [i+ q − 1]; q++)

do
6: if (q = Ci − 1) then
7: if

(
(T [i] ANDMFi) = Di[1]

)
then

8: if
(
(T [i+Ci−1] ANDMLi) = Di[Ci]

)
then

9: return true;
10: end if
11: end if
12: end if
13: end for
14: return false;

4. EXPERIMENTAL RESULTS

Tests were conducted on natural language texts, plain
ASCII DNA sequences, and random sequences with
uniform probability distribution. The enwik8 4 corpus
and Manzini’s DNA corpus5 are the sources of natural
language and DNA sequences used in the experiments.
Random files are generated via the standard rand()

library function of C with srand(time()) seeds.
During the experiments for a given text, the text file

is saved in proposed k-bit filtered format for k = 1, 2, 4.
Sample patterns of length 5 to 50 are randomly selected
from the ordinary file. Each pattern is scanned on the

4The enwik8.txt file is the subject of the Hutter Prize
compression competition and can be downloaded from
http://prize.hutter1.net.

5http://web.unipmn.it/manzini/danacorpus

The Computer Journal, Vol. ??, No. ??, ????

Page 5 of 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly
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Ordinary Files k-bit filtered files
Pattern Length q-hash BLIM BOM2 BSOM2 BM QS 1-bit 2-bit 4-bit

5 0.590 0.265 0.329 0.462 0.256 0.217 0.372 0.143 0.148
10 0.524 0.154 0.211 0.291 0.144 0.137 0.093 0.076 0.092
15 0.202 0.122 0.150 0.202 0.109 0.101 0.062 0.059 0.069
20 0.128 0.101 0.126 0.170 0.094 0.093 0.044 0.049 0.056
25 0.094 0.100 0.107 0.142 0.088 0.087 0.042 0.050 0.049
30 0.077 0.092 0.091 0.117 0.079 0.076 0.033 0.036 0.041
35 0.065 0.056 0.080 0.102 0.070 0.070 0.032 0.031 0.039
40 0.057 0.056 0.074 0.095 0.071 0.072 0.028 0.028 0.035
45 0.052 0.056 0.069 0.085 0.066 0.066 0.024 0.033 0.033
50 0.050 0.057 0.064 0.078 0.068 0.064 0.032 0.025 0.031

(a) Average user time on natural language texts of 20MB

5 0.866 0.689 0.947 1.346 0.973 0.940 0.576 0.210 0.360
10 0.753 0.404 0.497 0.712 0.674 0.753 0.139 0.109 0.198
15 0.289 0.331 0.369 0.512 0.558 0.662 0.085 0.085 0.193
20 0.183 0.253 0.286 0.405 0.536 0.647 0.063 0.070 0.144
25 0.136 0.250 0.240 0.335 0.461 0.589 0.059 0.070 0.146
30 0.110 0.241 0.204 0.280 0.449 0.537 0.048 0.052 0.113
35 0.093 0.177 0.187 0.257 0.524 0.809 0.046 0.045 0.142
40 0.082 0.172 0.169 0.224 0.454 0.618 0.038 0.041 0.109
45 0.076 0.167 0.153 0.206 0.441 0.651 0.035 0.049 0.121
50 0.071 0.166 0.143 0.190 0.432 0.690 0.043 0.036 0.107

(b) Average user time on plain ASCII DNA sequences of 30MB

5 0.883 0.213 0.249 0.392 0.289 0.239 0.524 0.209 0.207
10 0.782 0.125 0.140 0.215 0.156 0.138 0.143 0.113 0.134
15 0.301 0.096 0.106 0.155 0.111 0.101 0.088 0.087 0.099
20 0.190 0.077 0.087 0.124 0.090 0.082 0.067 0.071 0.079
25 0.141 0.074 0.079 0.107 0.080 0.074 0.061 0.072 0.068
30 0.113 0.070 0.072 0.095 0.072 0.069 0.050 0.052 0.058
35 0.096 0.064 0.069 0.088 0.069 0.067 0.049 0.046 0.054
40 0.085 0.064 0.066 0.081 0.067 0.067 0.040 0.042 0.049
45 0.078 0.065 0.064 0.078 0.066 0.065 0.036 0.048 0.046
50 0.074 0.065 0.063 0.074 0.065 0.064 0.046 0.037 0.042

(c) Average user time on random byte sequences of 30MB

FIGURE 5. Comparison of pattern matching performance between ordinary files and k-bit filtered files via average user
times measured in milliseconds during the experiments.

input file by the Boyer-Moore [8] (BM), Sunday’s quick
search[16] (QS), Lecroq’s q-hash [6] (q-hash), backward
oracle/suffix oracle matching [17] (BOM2/BSOM2),
and Külekci’s bit-parallel BLIM [13] algorithms.

Same patterns are scanned on the 1-bit, 2-bit, and
4-bit filtered files of the source files with the proposed
scheme. Each sample pattern is searched on files five
times, and for each length 20 random patterns are used.
The experiment is repeated several times on several
ordinary files of the same length. The user times are
measured via the getrusage system call.

Tests were conducted on a machine having a 64-
bit Intel Xeon processor with 3GB memory, and best
efforts were deployed for the implementation of the
algorithms. The compiler used was gcc 4.3.1 on Gentoo

Linux 2.6.25.9-101.

Figure 5 lists the average of the measurements. Best
performances are marked in bold.

Search speed is on average doubled on k-bit filtered
files for all lengths. It is observed that the gain is
more significant on DNA sequences, as on short patterns
up to length 20, matching via k-bit filtering is more
than three times faster when compared with the best
performing classical algorithms included in this study.

Note that as the filter bit length k increases, so does
the distinguishing power. On the other side, using more
bits enlarges the length of the file filter part (k ·n bits),
which in turn slows down the pattern filter matching.
In this trade-off, the results indicate that k = 4 is a bad
choice, and up to length 15, selection of k = 2 seems

The Computer Journal, Vol. ??, No. ??, ????

Page 6 of 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Fast Pattern Matching via k-bit Filtering Based Text Decomposition 7

better. Just one bit filter (k = 1) is in general more
speedy than the best resulting algorithm, except the
cases of very short patterns on natural language and
random texts.

5. CONCLUSION

This study focused on exploring an alternative way
of storing files other than the indexing structures for
faster off-line search and proposed k-bit filtering for
this aim. The most informative k bits of each byte
for a predefined k value are moved to the beginning of
the file, which generates a k · n bit sequence for an n-
byte file. The remaining bits, named as the payload of
the file during the study, are concatenated keeping the
order of appearance. Thus, the size of the sequence is
unchanged when stored as a k-bit filtered file.

When an input pattern of length m is to be scanned,
the corresponding k-bits from the characters of the
pattern are extracted and that (k · m)-bit vector is
searched on the initial (k · n)-bit filter part of the file.
In case of a match in the filter at some bit position, the
respective payload position on the file is computed and
verified with the payload of the pattern.

Experiments conducted on natural language texts,
plain ASCII DNA sequences, and random byte texts
indicated that exact matching performance is doubled
on average when files are stored in k-bit filtered format,
even for k = 1. Selecting k = 2 causes an improvement
on short patterns as expected since the distinguishing
power is incremented by more bits, but setting k = 4
worsens the performance. It is also observed that
the highest gain is obtained on 1-bit filtered DNA
sequences, especially on patterns shorter than 20 bases.
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