
For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 1

Efficient Maximal Repeat Finding Using the
Burrows-Wheeler Transform and Wavelet Tree

M. Oǧuzhan Külekci, Jeffrey Scott Vitter, Fellow, IEEE, and Bojian Xu�, Member, IEEE

Abstract—Finding repetitive structures in genomes and proteins is important to understand their biological functions. Many data

compressors for modern genomic sequences rely heavily on finding repeats in the sequences. Small-scale and local repetitive

structures are better understood than large and complex interspersed ones. The notion of maximal repeats captures all the

repeats in the data in a space-efficient way. Prior work on maximal repeat finding used either a suffix tree or a suffix array along

with other auxiliary data structures. Their space usage is 19–50 times the text size with the best engineering efforts, prohibiting

their usability on massive data such as the whole human genome. We focus on finding all the maximal repeats from massive

texts in a time- and space-efficient manner. Our technique uses the Burrows-Wheeler Transform and wavelet trees. For data sets

consisting of natural language texts and protein data, the space usage of our method is no more than three times the text size.

For genomic sequences stored using one byte per base, the space usage of our method is less than double the sequence size.

Our space-efficient method keeps the timing performance fast. In fact, our method is orders of magnitude faster than the prior

methods for processing massive texts such as the whole human genome, since the prior methods must use external memory.

For the first time, our method enables a desktop computer with 8GB internal memory (actual internal memory usage is less than

6GB) to find all the maximal repeats in the whole human genome in less than 17 hours. We have implemented our method as

general-purpose open-source software for public use.

Index Terms—repeats, maximal repeats, Burrows-Wheeler Transform, wavelet trees.

3

1 INTRODUCTION

FINDING repetitive structures in genomes and proteins
is important in understanding their biological func-

tions [12]. One of the well-known features of DNA is its
repetitive structures, especially in the genomes of eukary-
otes. Examples are that overall about one-third of the whole
human genome consists of repeated subsequences [29];
about 10–25% of all known proteins have some form
of repetitive structures [24]. In addition, a number of
significant problems in molecular sequence analysis can be
reduced to repeat finding [28]. It is of great interests for
biologists to find such repeats in order to understand their
biological functions and solve other problems. Another
motivation for finding repeats is to compress the DNA
sequences, which is known as one of the most challenging
tasks in the data compression field. DNA sequences consist
only of symbols from {ACGT} and therefore can be repre-
sented by two bits per character. Standard compressors such
as gzip and bzip usually use more than two bits per char-
acter and therefore cannot reach good compression. Many
modern genomic sequence data compression techniques
highly rely on the repeat finding in the sequences [27],

• M. O. Külekci is with the National Research Institute of Electronics
and Cryptology, 41470, Gebze, Kocaeli, Turkey.
E-mail: kulekci@uekae.tubitak.gov.tr

• J. S. Vitter and B. Xu are with the Department of Electrical Engineering
& Computer Science of the University of Kansas, KS 66045, USA.
E-mail: {jsv, bojianxu}@ku.edu

• �Corresponding author
• A preliminary version [17] of this work appeared in the proceedings

of IEEE International Conference on Bioinformatics & Biomedicine
(BIBM), December 18-21, Hong Kong, China. Part of this work was
done while all the authors were with Texas A&M University.

[2]. For all these purposes, repeat finding is the first step
which is critical and needs to be conducted efficiently.
There can be many repeats of various lengths in a

text consuming much space for their storage. We need a
notion that captures all the repeats in a space-efficient way,
which is served by maximal repeats [12]. Maximal repeats
are repeats whose extensions occur fewer times than the
maximal repeats in the text. However, current techniques for
finding maximal repeats are either based on suffix trees [12]
or suffix arrays [1], both requiring enormous space usage
caused by the large space cost of the suffix trees or suffix
arrays and their auxiliary data structures. In fact, their space
usage is 19–50 times the text size with the best engineering
efforts. Such enormous space requirements limit the usage
of the current techniques, making them only useful for
texts of no more than hundreds of millions characters and
prohibiting their usage in the setting of billions of char-
acters such as the whole human genome, unless expensive
supercomputers with large internal memory are used.
The field of compressed data structures and compressed

full-text indexing [31] involves the design of indexes that
support fast full-text pattern matching using limited amount
of space. In particular, the goal is to have an index whose
size is roughly equal to the size of the text in the com-
pressed format, with search performance comparable to the
one achieved by uncompressed methods such as suffix trees
and suffix arrays. Many of the compressed indexing tech-
niques such as the compressed suffix array [11], [10] and
FM-index [8], [7] developed in the last decade make use
of wavelet trees [10] and the text’s Ψ decomposition [11]
or the the Burrows-Wheeler transform (BWT) [4].
Since the suffix array-based method for maximal repeat

Page 1 of 22 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 2

finding [1] also uses other large auxiliary data structures
(inverse suffix array, longest common prefix (LCP) array,
and an non-decreasing permutation of the LCP array),
we cannot directly get a smaller-space solution by simply
replacing the suffix array with a compressed suffix array.
Compressed suffix tree (CST) is also not a practical

indexing technique for maximal repeat finding in massive
data like the whole human genome if we only use normal
desktop computers. The main problem of using CST is the
expensive space and time cost of the CST construction. For
the whole human genome which has about three billion
bases, “the construction takes about four days, the final
index (CST) occupies about 8.5GB and the peak memory
usage is 24GB” [39]. It is worth noting that this 4-day con-
struction time happens with a 32GB-memory machine [39].
The construction will take even much longer if only 8GB
memory (as in our setting) is available. Note that we have
not counted the time cost for the maximal repeat finding
process yet.
Our method uses the Burrow-Wheeler Transform

(BWT) [4] and wavelet trees [10] with provable time and
space efficiency and good usability in practice. Overall, for
data sets consisting of natural language text and protein
data, our method uses space no more than three times the
text size. For genomic sequences stored using one byte per
base, the space usage of our method is less than double
the sequence size. Our space-efficient method also keeps
the timing performance fast. In fact, our method is orders
of magnitude faster than the prior methods for processing
massive texts such as the whole human genome when
the internal memory capacity is limited, because the prior
methods have to use the external memory [40]. To the
best of our knowledge, this is the first work that enables
a desktop computer with 8GB internal memory (actual
internal memory usage is less than 6GB) to find all the
maximal repeats of the whole human genome in less than
17 hours.

1.1 Problem

Let T = T [1...n] = t1t2 . . . tn be a text of size n, where
each character ti, 1 ≤ i ≤ n − 1, is drawn from a finite
ordered alphabet Σ of size σ, while tn = $ is a special
character that does not appear in Σ and is lexicographically
smaller than any character in Σ. Character tn is used only to
ease the text processing. Our goal is to find all the maximal
repeats of T .
Definition 1 (Maximal Repeat, Section 7.12 of [12]):

A maximal repeat of text T is a subtext of T that occurs
in T at least twice such that any extension of the subtext
occurs in T fewer times.
Example 1: The maximal repeats of T =

mississippi$ are {i(4), p(2), s(4), issi(2)}.
In the parenthesis are the numbers of occurrences of
the corresponding repeats in T . {$(1), m(1)} are not
maximal repeats because each of them occurs only once in
T . {is(2), si(2), ss(2), ssi(2)} are not maximal
repeats because their extension issi also occurs twice in

T . Note that maximal repeats can be nested (s and issi)
and overlapped (i and issi).
Reporting all the repeats of a text requires enormous

space to store the output. Maximal repeats efficiently cap-
ture all the repeats of a text. The number of maximal repeats
of a given text is bounded by the text size.
Fact 1 ([12]): There can be at most n maximal repeats

in any text of size n.

1.2 Our Contribution

The main contribution of this work is that we provide an
option for people to use normal computers with limited
internal memory to find maximal repeats in massive text
data such as the whole human genome within an acceptable
amount of time. We designed, analyzed, and implemented
an algorithm to serve this purpose without any assumption
on the alphabet size. Our algorithm not only has provable
time and space efficiency but also has been empirically
shown to work very well in practice as we find that, for the
first time, it enables a normal computer with 8GB internal
memory (the actual internal memory usage is less than
6GB) to find all the maximal repeats in the whole human
genome, which consists of about three billion bases, in less
than 17 hours. The best prior work, which is suffix array
based, needs workspace at least 19 times the text size and
becomes orders of magnitude slower than our method when
it cannot fit into the internal memory. We fully implemented
our algorithm as a general-purpose open-source software
for public use.

1.3 Comparison with Related Work

In this section, we survey the suffix tree- and the suffix
array-based methods for the maximal repeat finding, as well
as other methods and systems that deal with text repeat
finding.
The state-of-the-art method for maximal repeat finding

uses suffix array[1]. It first finds the candidate maximal
repeats with the aid of the longest common prefix (LCP)
array, and then verifies whether each candidate maximal
repeat can be extended to the right and/or to the left. Those
inextensible candidates are actual maximal repeats. The
algorithm also uses the inverse suffix array, the LCP array
and a permutation of the non-decreasing LCP array, each
of which is of the suffix array size. If we use fixed 32-bit
data type to store integers from [1, n], which is necessary
and being used in the method of [1] for processing large
data sets like the human genome sequences, the total space
cost becomes at least 16n bytes—16 times the text size, not
yet including the storage space for the text itself and other
auxiliary data structures. Our experimental study shows that
the actual space cost of their algorithm is more than 19
times the text size.
The suffix tree-based method (Section7.12.1, [12]) uses

even more space than the suffix array-based method does—
the suffix tree alone consumes space at least 20 times in the
worst case and 10.1 times on the average the text size with
the best engineering efforts [18]. The REPuter tool [20],

Page 2 of 22Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 3

[19] is an example system using the suffix tree, where the
input size is limited to the RAM size divided by 45 in the
worst case.

Other methods for repeat finding include [22], which
however only finds fixed k-mers. The toolkits by [33] only
searches for n-grams, while we find all the maximal repeats.
Similarly, the method for frequent pattern mining in [9] can
output all the repeats of a string by an appropriate setting
for parameter and input, but it is not known how their
method can be customized to output maximal repeats. We
refer readers to the recent survey by [36], [37] for methods
that are based on heuristics [21] and search for specific
biological identifications [3], [5].

Paper organization. In Section 2, we introduce the no-
tations used in the entire paper and prepare the build-
ing blocks for our maximal repeat finding algorithm. We
provide an overview of our algorithm in Section 3 and
describe its details in Section 4. Implementation details and
experimental results are given in Section 5. The paper is
concluded with future work in Section 6 .

2 NOTATIONS AND BUILDING BLOCKS

Recall T = t1t2 . . . tn, where ti ∈ Σ for 1 ≤ i ≤ n − 1
and tn = $. Without loss of generality, we assume
Σ[1] < Σ[2] < · · · < Σ[σ]. Let T [i . . . j] denote the
subtext titi+1 . . . tj . For each i ∈ [1, n], T [1 . . . i] is
T ’s prefix of size i, and T [i . . . n] is T ’s suffix of size
n − i + 1 locating at text position i. For any i �= j,
T [i . . . n] is lexicographically smaller than T [j . . . n], iff:
(1) T [i] < T [j] or (2) T [i] = T [j] and T [i + 1 . . . n]
is lexicographically smaller than T [j + 1 . . . n]. Because
of the special character $, all the suffixes of T can be
unambiguously sorted in a lexicographic order. The suffix
array SA[1 . . . n] of T is a permutation of [1, n], such that
T [SA[1] . . . n], . . . , T [SA[n] . . . n] are in lexicographically
ascending order. For any SA[i] = j, we call i the suffix
array index and j the suffix array pointer of the suffix
T [j . . . n]. The inverse suffix array SA

−1[1 . . . n] of T is a
permutation of [1, n], such that SA

−1[i] = j iff SA[j] = i.
For ease of presentation, we assume SA[i] − 1 = n if
SA[i] = 1 and SA[j] + 1 = 1 if SA[j] = n.

Definition 2 ([7]): LF (i) = SA
−1

�
SA[i]−1

�
, i ∈ [1, n].

Definition 3 ([11]): Φ(i) = SA
−1

�
SA[i]+1

�
, i ∈ [1, n].

LF (i) (resp. Φ(i)) returns the suffix array index of the
suffix that locates right before (resp. after) T

�
SA[i] . . . n

�

in the text T .

Definition 4: C[i] =
�
�
�
c ∈ T | c ≤ Σ[i]

��
�, 1 ≤ i ≤ σ.

Let {1/�, 2/�, . . . , �n/� = n} be �n sampled text po-
sitions, where 0 < � < 1. For ease of presentation, we
assume �n is an integer and i/� for all i ∈ [1, �n] are
also integers; otherwise ceiling or flooring can be used to
round the numbers into integers. The bit array B marks T ’s
suffixes whose text locations are sampled.

Definition 5: B = B[1 . . . n]: B[i] = 1 iff there exists
some j ∈ {1/�, 2/�, . . . , n}, such that SA[i] = j; other-
wise, B[i] = 0.

The integer array I stores the sampled text positions in
the sorted order of the suffixes that locate at those sampled
text positions.
Definition 6: I = I[1 . . . �n], such that I[i] = j iff

there exists some k ∈ [1, n] such that B[k] = 1 and
Rank1(B, k) = i and SA[k] = j.

2.1 Succinct Bit Array Indexing

Succinct bit array is often a key component in designing
compressed data structures. It is also used in our method
for maximal repeat finding.
Lemma 1 ([34]): Any arbitrary bit array B[1 . . . n] can

be represented in nH0(B) + o(n) bits, where H0(B) is
the 0-order empirical entropy of B, so that for any i and
b, 1 ≤ i ≤ n, b ∈ {0, 1}, the following queries can be
answered in constant time.

• Member(B, i): B[i].
• Rank b(B, i): the number of bit b in B[1 . . . i].
• Selectb(B, i): the smallest j ∈ [1, n] such that

Rank b(B, j) = i, if j exists; otherwise, return null.

The succinct representation of B can be constructed in
O(n) time using O(n) bits of space.

2.2 Wavelet Trees

Wavelet tree [10] is an elegant data structure for coding
sequences of characters from a multicharacter alphabet. It
extends the support for member, rank and select queries
from bit arrays to general multicharacter texts.
Lemma 2 ([10]): The wavelet tree of a text of size n

drawn from an alphabet Σ of size σ uses nH0(T) +
O(n log log n/ logσ n) bits of space, where H0(T) is the
0-order empirical entropy of T . For any i ∈ [1, n] and
c ∈ Σ, the wavelet tree can answer the following queries
in O(log σ) time:

• Member(T, i): T [i].
• Rank c(T, i): the number of character c in T [1 . . . i].
• Selectc(T, i): the smallest j ∈ [1, n], such that

Rank c(T, j) = i, if j exists; otherwise, return null.

The wavelet tree can be constructed in O(n log σ) time
using O(n log σ) bits of space.

2.3 Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) [4] of a text T ,
denoted as Tbwt, is a permutation of T , such that Tbwt[i] =
T

�
SA[i] − 1

�
. Recall that we denote SA[i] − 1 = n, if

SA[i] = 1. Tbwt can be viewed as the array of characters,
each of which precedes each of the sorted suffixes of T .
Space-efficient BWT construction directly from the text
already exist [15], [23], [13], [14], [30], [32].

2.4 Succinct Computation of LF (·), Φ(·), and SA[·]

Lemma 3 ([11], [7]): (1) Given C, Σ, and the wavelet
tree of Tbwt, the succinct representation of B can be con-
structed using O(n log σ) time and O

�
nH0(T) + σ log n

�

bits of space; (2) Given C, Σ, and the wavelet tree of

Page 3 of 22 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 4

Algorithm 1: Find Maximal Repeats–a High-level View
Input: T , Tbwt, LCP of T , SA of T

Output: The text and locations of T ’s maximal repeats, each of which has
length at least ml and occurs at least mo times.

1 for m ← ml . . . σ� do /* σ� is #distinct values in LCP */
2 Compute Rm /* Definition 7 */
3 for j ← m1 . . . mkm do
4 if rj − lj + 1 < mo then Continue
5 if Tbwt[lj . . . rj] are NOT identical then
6 Output T

ˆ
SA[lj] . . . SA[lj] + m

˜
/* Repeat */

7 for k ← lj . . . rj do /* Text locations */
8 Output SA[k]
9 end

10 end
11 end
12 end

Tbwt, and the succinct representation of B, the integer
array I can be constructed using O(n log σ) time and
O

�
nH0(T)+(σ+�n) log n

�
bits of space; (3) Given C, Σ,

and the wavelet tree of Tbwt, for any i ∈ [1, n], we can com-
pute LF (i) and Φ(i) using space of O

�
σ log n+nH0(T)

�

bits and O(log σ) time; (4) Given C, Σ, the wavelet tree
of Tbwt, I, and the succinct representation of B, for any
i ∈ [1, n], we can compute SA[i] in O

�
(1/�) log σ

�
time

using O
�
nH0(T) + (σ + �n) log n

�
bits of space.

2.5 Succinct Longest Common Prefix Array

The longest common prefix (LCP) array of text T , denoted
as LCP [1 . . . n], stores the lengths of the longest common
prefix of every two neighboring suffixes that are in the
lexicographical order: LCP [i] = max

�
t ≥ 0 | ∀j ∈

[0, t], T
�
SA[i − 1] + j

�
= T

�
SA[i] + j

��
, if i > 1; we

define LCP [1] = 0. The LCP array can be succinctly stored
in a 2n-bit array [35], which we call succinct LCP array
(SLCP).
Lemma 4: Given T , C, Σ, the wavelet tree of Tbwt,

SA
−1[1], B, and I, algorithm 3 constructs the 2n-bit

SLCP using O
�
n log σ + (σ + �n) log n

�
bits of space and

O
�
(1/�)n log σ

�
time.

Lemma 5: Given C, Σ, the wavelet tree of Tbwt, B, I,
and the succinct representation of the 2n-bit SLCP bit array,
for any i ∈ [1, n], we can retrieve LCP [i] using O

�
n log σ+

(σ + �n) log n
�
bits of space and O

�
(1/�) log σ

�
time.

We refer the reader to Appendix A for our space-efficient
method for the SLCP array construction and the proofs for
Lemma 4 and 5.

3 A HIGH-LEVEL VIEW OF OUR METHOD

By the definition of maximal repeat in Section 1.1, we know
the length of maximal repeats ranges from 1 to n − 1.
Our strategy is to find all the maximal repeats in the order
of their lengths from the shortest to the longest. For a
particular maximal repeat length, we first find a set of
candidate maximal repeats of that particular length, and
then find the actual maximal repeats from the candidate
set.
In particular, for a given repeat length, we first find a set

of largest suffix array intervals such that, for each suffix
array interval, the length of the longest common prefix

of the suffixes in that suffix array interval is equal to the
given length. Those longest common prefixes are candidate
maximal repeats, which only need to be verified whether
they can be extended to the left. The verification for the left
extension of one particular candidate maximal repeats can
be done by checking whether the characters preceding the
multiple copies of that particular candidate maximal repeat
are identical.

Definition 7: For a given integer m, 1 ≤ m ≤ n − 1,
the suffix array intervals of candidate maximal repeats
of size m is a sequence of non-overlapped suffix array
intervals Rm =

�
[lm1

, rm1
], [lm2

, rm2
], . . . , [lmkm

, rmkm
]
�
,

for some integer km, such that for all i ∈ [1, km]:

– lmi = min{j ∈ [rmi−1 + 1, n − 1] | LCP [j + 1] ≥ m}
(rm0 ≡ 0)

– rmi = max{j ∈ [lmi +1, n] | LCP [α] ≥ m, ∀α ∈ [lmi +1, j]}

– min
˘
LCP [j] | j ∈ [lmi + 1, rmi]

¯
= m

– if rmkm
< n, then for all j ∈ [rmkm

+ 1, n],LCP [j] < m

Intuitively, Rm is the set of largest suffix array intervals,
such that for each suffix array interval in Rm, the length
of the longest common prefix of the suffixes belonging to
that suffix array interval is exactly m. Note that Rm can
be empty.

For any m ∈ [1, n−1], if Rm �= ∅, let Pmi
, 1 ≤ i ≤ km,

denote the longest common prefix of the suffixes in the
suffix array interval [lmi

, rmi
] ∈ Rm. By the definition of

Rm, we know that for each i ∈ [1, km], Pmi
is a candidate

maximal repeat and |Pmi
| = m. For a particular m, the

number of candidate maximal repeats is no more than n,
because mkm

≤ n. The next lemma shows that Pmi
is a

maximal repeat if its left extension occurs fewer times than
Pmi

does.

Lemma 6: For any m ∈ [1, n−1] such that Rm �= ∅ and
any i ∈ [1, km], if the symbols in Tbwt[lmi

. . . rmi
] are not

the same, then Pmi
is a maximal repeat of size m in T .

(Proof in Appendix B.)

Lemma 7: Any maximal repeat must occur as Pmi
for

some m ∈ [1, n − 1] and some i ∈ [1, km]. (Proof in
Appendix B.)

Therefore, we can find the maximal repeats of T by
finding the Pmi

for all m ∈ [1, n − 1] and all i ∈ [1, km]
where Rm �= ∅. Then for each Pmi

, we can verify whether
its one-character left extension occurs fewer times in T
than Pmi

using Tbwt. This idea serves as the basis of our
algorithm for maximal repeat finding. Algorithm 1 gives a
high-level description of our algorithm.

It is necessary to note that the high-level idea of our
method is similar to the one in [1], but our algorithm uses
the notion of suffix array interval which helps avoid the
checking of the right extension of the candidate maximal re-
peats, and therefore simplifies the algorithm. Our algorithm
also uses the BWT of the text to verify the left extension
of the candidate maximal repeat instead of the complicated
judging condition in [1], making our algorithm easier to
understand.

Page 4 of 22Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 5

Algorithm 2: Find Maximal Repeats–Final Algorithm
Input: Wlcp, Blcp, Bbwt, W , T , B, I, ml, mo

/* Wlcp, Blcp and Bbwt are defined in Section 4.
W is wavelet tree of Tbwt. */

Output: Maximal repeats of T and their text locations. Each returned
maximal repeat has length at least ml and occurs at least mo times
in T .

1 for i ← 1 . . . σ� do /* σ� is #distinct values in LCP */
2 for j ← 1 . . . vi do /* vi is #occurrences of i in LCP

*/
3 posi,j ← Selecti(LCP, j) /* Wlcp’s Select() query

*/
4 if i < ml then {Blcp[posi,j] ← 1; continue}
5 l ← max{k | k < posi,j and Blcp[k] = 1}
6 r ← min{k | k > posi,j and Blcp[k] = 1} − 1
7 Blcp[posi,j] ← 1
8 if r − l + 1 < mo then continue
9 if l > 0 and Member(LCP, l) = i then continue

/* [l, r]:SA interval of a candidate max repeat

*/
10 if

`
Rank1(Bbwt, r)− Rank1(Bbwt, l) > 0

´
then

/* Use Lemma 3 to compute SA[·] */
11 Output T

ˆ
SA[l] . . . SA[l] + i

˜
/* Repeat */

12 for k ← l . . . r do Output SA[k] /* Text
locations */

13 end
14 end
15 end

C/Java Proteins English dblp xml Ch. 1

MAXlcp 71, 651 25, 822 109, 394 1, 005 67, 631

AV Glcp 168 166 2, 221 42 38

H0(LCP) 6.34 5.05 7.73 6.71 3.94

TABLE 1
The maximum value, average value and the 0-order

empirical entropy of the LCP array of some example texts.

Ch. 1 is the first human chromosome with all the masked ‘N’

characters removed and is obtained from

ftp://ftp.ncbi.nlm.nih.gov. Other texts are obtained from the

Pizza&Chili Corpus and each has 50MB characters.

4 FINAL ALGORITHM

Now we reduce the space cost in the high-level idea in
order to enable normal computers to find maximal repeats
in massive data such as the whole human genome, while
still maintain a good search performance. In particular,
we can use any existing space-efficient Burrows-Wheeler
Transform construction algorithms [15], [23], [13], [14],
[30], [32] to construct the BWT of the text. Then we
create and use the wavelet tree of the BWT as the input
for Algorithm 3 (in the Appendix) to compute the 2n-bit
SLCP. We then create and use another wavelet tree built
over the LCP array to retrieve the repeat lengths from the
shortest one to the longest one and find the corresponding
candidate maximal repeats. The space cost for the wavelet
tree of the LCP array is only the entropy size of the LCP
array, which is usually very small due to the skewness in
the LCP array values (see the statistics of some example
texts in Table 1). Candidate maximal repeats can be further
verified by checking if the BWT entries that precede the
multiple copies of a candidate repeat are identical. This can
be efficiently done via succinct bit array rank queries. Our
method is so space-efficient that it can find the maximal
repeats of the whole human genome using less than 6GB

memory in less than one day. Before we proceed to our
final algorithm, we prepare the following data structures.

1) Wlcp is the wavelet tree of the LCP array. Using
the SLCP bit array, Wlcp can be constructed in
O

�
(1/�)n log σ + n log σ�

�
time, where σ� ≤ n − 1

is the number of distinct values in the LCP ar-
ray. Retrieving all the LCP values from SLCP over
the course of the wavelet tree construction takes
O((1/�)n log σ) time (Lemma 5). The construction
of Wlcp takes another O(n log σ�) time (Lemma 2),
so the total time cost is O

�
(1/�)n log σ + n log σ�

�
.

The space cost of constructing Wlcp is O(n log σ�)
(Lemma 2).

2) Blcp[0 . . . n + 1] is a bit array of size n + 2. Blcp

is initialized as all 0 except Blcp[0] and Blcp[n+ 1].
Those positions with 0-bits will be turned on one by
one by our algorithm for a purpose that will be clar-
ified later. By using a 2n-bit binary bit tree structure
designed in [1], which can be constructed in O(n)
time, given an integer i ∈ [1, n] such that Blcp[i] = 0,
we can get max{k | k < i and Blcp[k] = 1} and
min{k | k > i and Blcp[k] = 1} and turn on Blcp[i]
in O(log n) time.

3) Bbwt[1 . . . n] is a bit array of size n. Bbwt[i] = 1
iff i = 1 or Tbwt[i] �= Tbwt[i − 1], so that for any
1 ≤ j < k ≤ n, all the characters in Tbwt[j . . . k] are
the same iff Bbwt[j + 1 . . . k] are all 0-bits. Clearly,
Bbwt can be constructed in O(n) time.

Algorithm 2 shows the pseudocode of our maximal re-
peat finding algorithm. We traverse the lengths of the maxi-
mal repeat from the shortest to the longest by traversing all
the LCP values from the smallest to the largest using the
space-saving data structureWlcp. For each particular repeat
length, we find the corresponding suffix array intervals of
candidate maximal repeats. Note that each wavelet tree
node represents a distinct character in the alphabet (a
distinct value in the LCP array here). So the ith leftmost
leaf node of Wlcp represents the LCP value i. Let vi

denote the number of occurrences of i in the LCP array.
For j = 1 . . . vi, let posi,j denote the position of the jth
leftmost occurrence of the LCP value i in the LCP array.
Each LCP [posi,j] can be retrieved via Select operation
on Wlcp using O(log σ�) time—steps 1–3. We ignore all
the LCP array values that are smaller than the user input
minimum repeat length threshold—step 4. Otherwise, we
find a suffix array interval [l, r] at steps 5–6 using the
bit array Blcp. Because we traverse all the LCP values
from the smallest to the largest and all of LCP [l+ 1 . . . r]
have not been traversed yet, we know LCP [k] ≥ i for all
k ∈ [l+1, r] and min{LCP [k] | l+1 ≤ k ≤ r} = i. Since
the number of occurrences of the longest common prefix
of the suffixes in the suffix interval [l, r] is r − l + 1, we
ignore the suffix array interval [l, r] if r − l + 1 is smaller
than the user input minimum threshold of the number of
the occurrences of the repeats—step 8. If LCP [l] = i
(step 9), meaning that the longest common prefix of the
suffixes belonging to [l − 1, r] is also i, then [l, r] is not

Page 5 of 22 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 6

a suffix array interval of a candidate maximal repeat of
size i. Any suffix array interval [l, r] of candidate maximal
repeats of size i will be detected by the algorithm when
posi,j = min

�
k ∈ [l + 1, r] | LCP [k] = i

�
is traversed.

Steps 10–13 verifies whether the candidate maximal repeat
can be extended to the left by using the Bbwt bit array and
report the maximal repeats.
Theorem 1: Given a text T of size n drawn from an

alphabet of size σ, Algorithm 2 finds the maximal repeats
of T that have size of at least ml characters and occur at
least mo times, using O

�
n log σ+(σ+�n) log n+n log σ�

�

bits of space and O
�
n log n+(1/�)n log σ

�
time. Reporting

the text of a particular maximal repeat P of size p takes
additional time of O

�
(1/�) log σ + p

�
. Reporting the text

locations of P takes additional time of O
�
occ ·(1/�) log σ

�
,

where occ is the number of occurrences of P in T . (Proof
in Appendix B.)
Comments: It’s worth noting that the space cost in the

above theorem is the peak space usage over the course
of the construction of the relevant data structures, not
the size of the resulting data structures. Recall that �
(defined in Section 2.4) is a user-input parameter which
determines the percentage of the sampled text positions. By
reasonably setting � = 1/32 which is often smaller than
or comparable to 1/ log n even for large texts, the space
usage in Theorem 1 becomes O

�
n log(σσ�)

�
, where σ� is

the number of distinct values in the LCP array and is often
a small number. The resulting data structures used for the
maximal repeat finding uses space of O

�
n(log σ + H �

0)
�

bits, where H �
0, the 0-order empirical entropy of the LCP

array, is often much smaller than log σ� due to the skewness
in the LCP array values (Table 1). The time complexity
of our method O

�
n log n + (1/�)n log σ

�
= O(n log n)

matches the time complexity of the state-of-the-art SA-
based method [1].

5 IMPLEMENTATION AND EXPERIMENTS

We fully implemented our algorithm in C++1. We imple-
mented all the parts of the algorithm except the BWT
construction. We use Kärkkäinen’s C++ code [15] and
Lippert et al.’s C code [23] to build BWTs for non-genomic
and genomic texts, respectively. Our implementation is full
and generic in that it supports maximal repeat finding in
texts of any alphabet size and is ready for public use.

Experimental set-up and environment. We used
g++ 4.4.1 to build the executables of all the source code in
our experiments. The experiments were conducted on a Dell
Vostro 430 with a 2.8GHz four-core Intel@CoreTM i7-860
chip with 8MB L3 Cache, but no parallelism was used.
The machine runs 64-bit Ubuntu 9.10 operating system
and has 8GB internal memory, 24GB swap space, and one
1TB Serial ATA Hard Drive (7200RPM) with DataBurst
CacheTM. We used the following real-world biological and
nonbiological data to test the efficiency and usability of our
method:

1. Source code can be downloaded at:
http://www.ittc.ku.edu/∼bojianxu/publications/findmaxrep.zip

Text Size SU1 SU1 / TS SU2 SU2 / TS

Ch. 1 215.47 4, 100 19.03 360 1.67
Ch. 1–2 442.64 8, 618 19.47 683 1.54
Ch. 1–3 628.41 12, 232 19.46 986 1.57
Ch. 1–4 808.31 15, 732 19.46 1, 271 1.57
Ch. 1–5 977.77 19, 030 19.46 1, 524 1.56
Ch. 1–8 1, 448.48 ≈ 28, 245 ≈ 19.50 2, 232 1.54
W.H.G. 2, 759.57 ≈ 53, 811 ≈ 19.50 5, 494 1.99
Prot. 1 100 1, 906 19.06 280 2.80
Prot. 2 200 3, 806 19.03 549 2.75
Prot. 3 400 7, 789 19.47 1, 180 2.77
Prot. 4 600 11, 680 19.47 1, 674 2.79
Prot. 5 650 12, 652 19.46 1, 807 2.78
Prot. 6 800 ≈ 15, 600 ≈ 19.50 2, 235 2.79
Prot. 7 1, 000 ≈ 19, 500 ≈ 19.50 2, 768 2.77
Eng. 1 100 1, 952 19.52 290 2.90
Eng. 2 200 3, 898 19.49 568 2.84
Eng. 3 400 7, 788 19.47 1, 124 2.81
Eng. 4 600 11, 680 19.47 1, 682 2.80
Eng. 5 800 15, 571 19.46 2, 238 2.80
Eng. 6 1, 500 ≈ 29, 250 ≈ 19.50 4, 198 2.80
Eng. 7 2, 000 ≈ 39, 000 ≈ 19.50 5, 594 2.80

TABLE 2
Space usage comparison between the SA-based method [1]

and our method. Space size is measured in megabytes.

Genomic data are stored using one byte per base. SU1 =

space usage of the SA-based method; SU2 = space usage

of our method; TS = text size. For the Chromosome 1–8, the

whole human genome, Protein 6 and 7, and English 6 and

7, the SA-base method did not terminate in ten days and the

space usages are estimates.

1. The human genome sequences from NCBI2. We removed
all the masked ’N’ symbols, so the sequences only contain
symbols from {ACGT}.

2. Protein data from the Pizza&Chili Corpus3.

3. English texts from the Wikipedia dump. English 1–5 are
from the dump on 2006–03–03 4; English 6–7 are from the
dump on 2010–07–30 5.

We set the user input parameter ml, the minimum
threshold for repeat size, to be the nearest whole number
of log2 n. This is a reasonable setting, because repeats of
smaller sizes are usually meaningless as they can even
occur in a randomly generated text as long as the text size
is of the order of the power of the repeat size. We set
the user input parameter mo = 2, the minimum threshold
for frequencies of repeats. Thus, all the maximal repeats
whose sizes are larger than or equal to ml will be reported.
We set the parameter � = 1/32 for our algorithm. All
experiments output the maximal repeats onto local hard disk
files, including the text of the repeats and their frequencies
and text locations. We used the system time to measure
the programs’ time cost. We used the VmPeak entry in
the /proc/<pid>/status file created by the OS to
measure the space cost, which is the peak of the total
amount of virtual memory used by the program, including

2. ftp://ftp.ncbi.nlm.nih.gov/genomes/H sapiens/Assembled chromosomes

3. http://pizzachili.dcc.uchile.cl/texts.html
4. http://cs.fit.edu/∼mmahoney/compression/enwik9.zip
5. The original data file was from: http://download.wikimedia.org/enwiki/20100730/

enwiki-20100730-pages-articles.xml.bz2, which is now temporary unavailable due to
the hardware problem at Wikipedia. We put a copy of the data at our own machine
at: http://faculty.cse.tamu.edu/bojianxu/enwiki-20100730-pages-articles.xml.gz

Page 6 of 22Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 7

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 500 1000 1500 2000 2500 3000

P
ro

c
e
s
s
in

g
 T

im
e
(s

e
c
o
n
d
s
)

Text Size(MB)

Our Method
SA-based Method

(a) Human genome

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 200 400 600 800 1000

Text Size(MB)

Our Method
SA-based Method

(b) Protein

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 400 800 1200 1600 2000

Text Size(MB)

Our Method
SA-based Method

(c) English

Text size Construction SA-based SA construction Our method’s
(MB) time for SA total time time percentage total time

Ch. 1 215.47 250 329 76.00% 2, 784
Ch. 1–2 442.64 624 1, 543 40.44% 6, 486
Ch. 1–3 628.41 1, 162 23, 370 4.97% 10, 119
Ch. 1–4 808.31 1, 657 81, 345 2.04% 15, 258
Ch. 1–5 977.77 18, 446 490, 016 3.76% 17, 069
Ch. 1–8 1, 448.48 n/a > 864, 000 n/a 28, 945
W.H.G. 2, 759.57 n/a > 864, 000 n/a 60, 344
Prot. 1 100 97 135 71.82% 1, 545
Prot. 2 200 211 309 68.17% 3, 582
Prot. 3 400 489 767 63.75% 10, 284
Prot. 4 600 825 37, 491 2.20% 16, 080
Prot. 5 650 900 133, 247 0.68% 18, 924
Prot. 6 800 n/a > 864, 000 n/a 23, 591
Prot. 7 1, 000 n/a > 864, 000 n/a 28, 685
Eng. 1 100 81 100 80.43% 1, 242
Eng. 2 200 185 226 81.76% 2, 783
Eng. 3 400 423 521 81.16% 6, 362
Eng. 4 600 713 18, 903 3.77% 12, 041
Eng. 5 800 1,027 108, 746 0.94% 16, 270
Eng. 6 1, 500 n/a > 864, 000 n/a 33, 104
Eng. 7 2, 000 n/a > 864, 000 n/a 46, 009

Fig. 1. Timing performance comparison between
the SA-based method and our method. Time is mea-
sured in seconds. Genomic data are stored using
one byte per base. The SA-based method becomes
unacceptably slow when the input size becomes
larger than 600MB, since the program’s workspace
becomes larger than 11GB (Table 2), exceeding the
8GB internal memory capacity. The timing of the
SA-based method for Chromosome 1-5 is too large
and is not shown on the curve in order to get clear
plots of other points on the curve (please see the
data in the table). Data for the SA-based method
regarding other larger data sets are not available
as the program did not terminate in ten days. The
SA construction time percentage shows that when
its workspace exceeds the internal memory capacity,
the performance bottleneck of the SA-based method
is the maximal repeat finding process after the SA is
constructed.

code, data, and shared libraries plus the pages that have
been swapped out.

Main observations. We compared the performance of our
algorithm with the performance of the state-of-the-art suffix
array-based algorithm [1]. The experimental study led to the
following main observations:

1. The SA-based method consistently consumes more than
19 times the text size for all types of texts, while our method
uses space less than three times the text size for the English
texts and protein data, and no more than double the text size
for the human genomic sequences stored using one byte per
base. Our method can therefore fit into a normal computer
with 6GB internal memory to find the maximal repeats of
the whole human genome (Table 2).

2. When its input size exceeds 600MB and thus its
workspace becomes larger than 11GB (Table 2), exceeding
the 8GB internal memory limit, the SA-based method
becomes unacceptably slow because of the page faults and
swapping (Figure 1). The SA-based method spent so long
in processing Chromosome 1–5 (490, 016 seconds ≈ 5.7
days) that data are not shown in Figure 1(a) in order to get
clear plots for other points on the curves. The SA-based
method even did not terminate in ten days in the processing
of Chromosome 1–8, the whole human genome, protein 6–
7, and English 6–7.

3. When its workspace exceeds the internal memory capac-
ity, the SA-based method’s performance bottleneck is not

the SA construction but the maximal repeat finding process
after the SA construction (the table in Figure 1). For ex-
ample, for the Chromosome 1–3, the SA construction takes
1,162 seconds, which is about 4.97% of the total 23, 370
seconds. Similar results regarding other data sets can be
found in the table of Figure 1. The SA construction time is
negligible when the input size is large, meaning that using
external memory-efficient SA construction algorithm [6]
cannot significantly improve the performance of the SA-
based method.

4. Our method can find maximal repeats in massive texts
using a normal computer with a time cost orders of mag-
nitude less than the time cost of the SA-based method.
In particular, our method can find all the maximal repeats
of the whole human genome, which is about three billion
bases (ACGT), using a normal computer with 8GB internal
memory (actual internal memory used is less than 6GB,
Table 2) in less than 17 hours (Figure 1).

6 CONCLUSION AND FUTURE WORK

This paper allows finding maximal repeats from massive
text data using normal computers. To the best of our
knowledge, this is the first work that enables a normal
desktop with 8GB internal memory (actual memory usage
is only 6GB) to quickly find the maximal repeats from the
whole human genome. We fully implemented our algorithm
as a generic tool for public use.

Page 7 of 22 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 8

Our method trades processing time for space savings.
The LCP array computation is one of the performance bot-
tlenecks. Finding a faster LCP array construction algorithm
using the BWT and wavelet trees can significantly improve
the timing performance of our method. Also, our method
(as well as the suffix tree and suffix array-based methods)
does not support online queries—the algorithm returns all
the maximal repeats that satisfy the user-given parameters
in one run and then quits. It would be more useful in
practice if the algorithm can run as a service. That is, the
algorithm runs continuously and can receive and answer
queries for maximal repeats of interest online. Another
interesting improvement is to parallelize our method to take
the full advantages of multicore processors.

APPENDIX A
SLCP ARRAY CONSTRUCTION

Recently there have been a few space-efficient LCP array
construction algorithms using normal data structures such
as the suffix array [26] or compressed data structures such
as the compressed suffix array [38]. Our space-efficient
SLCP construction uses the BWT and wavelet tree. We
start from the following fact from [16].
Fact 2 ([16]): If LCP

�
SA

−1[i]
�

= h > 0, then
LCP

�
SA

−1[i+ 1]
�
≥ h− 1, for any i ∈ [1, n− 1].

Linear-time LCP construction. Based on Fact 2, an
elegant linear-time algorithm for constructing the LCP array
in the order of text positions was proposed by [16]. Their
algorithm takes O(n) time in the worst case but requires
space of (3n log n+n log σ) bits for storing the LCP array,
the suffix array, the inverse suffix array, and the text. The
space cost was later improved by [25] and further reduced
by [26] to be (2n log n+n log σ) bits by reusing the inverse
suffix array to store the LCP array.

Succinct representation of LCP. From Fact 2, it
is observed in [35] that LCP

�
SA

−1[1]
�

+ 2 · 1 <
LCP

�
SA

−1[2]
�
+2·2 < . . . < LCP

�
SA

−1[n]
�
+2·n = 2n,

and therefore the LCP array can be succinctly represented
by a bit array of 2n bits, called SLCP (succinct LCP):
SLCP[j] ← 1 if and only if LCP

�
SA

−1[i]
�

+ 2i = j
for some i ∈ [1, n]. Upon receiving a query for LCP[k],
1 ≤ k ≤ n, we return LCP[k] = Select1

�
SLCP ,SA[k]

�
−

2SA[k].

Our space-efficient SLCP construction. We compute the
SLCP bit array using the wavelet tree of Tbwt for space
efficiency (Algorithm 3). The algorithm uses a similar high-
level structure as the one in [16], computing the LCP array
values in the order of text positions, but does not use the
suffix array, inverse suffix array and the LCP array, and
therefore achieves space efficiency. We also use Fact 3 to
further speed up our algorithm (steps 6–7, Algorithm 3).
Fact 3 ([26]): If Tbwt[i] = Tbwt[i − 1], then LCP[i] =

LCP
�
LF (i)

�
− 1.

Proof for Lemma 4.
Proof: The space cost is derived from the fol-

lowing space usages: n log σ bits for T , nH0(T) +

Algorithm 3: SLCP construction using the BWT and
wavelet trees
Input: T , W, Σ, C, SA

−1[1],B, I /* W:wavelet tree of Tbwt

*/
Output: SLCP/* 2n-bit succinct representation of LCP */

1 SLCP [2n] ← 1 /* LCP[1] ← 0 */
2 i ← SA

−1[1] /* suffix index of text pos being
processed. */

3 j ← 1 /* j = SA[i] */
4 h ← 0

5 while i > 1 do /* SA
−1[n] = 1;T [n] =� $�,smallest suffix.

*/
6 if Tbwt[i] = Tbwt[i − 1] then /* Tbwt[]:W’s member query

*/
7 h ← h − 1
8 else
9 k ← SA[i − 1] /* Use Lemma 3 to compute SA[·] */

10 while T [j + h] = T [k + h] do h ← h + 1
11 end
12 SLCP [h + 2j] ← 1
13 i ← Φ(i) /* Use Lemma 3 to compute Φ(·) */
14 j ← j + 1
15 if h > 0 then h ← h − 1
16 end

O(n log log n/ logσ n) ≤ n log σ bits for W (Lemma 2),
σ log σ bits for Σ, σ log n bits for array C, nH0(B) +
o(n) < n+ o(n) bits for B (Lemma 3), �n log n bits for I
(Lemma 3), and 2n bits for SLCP. The total space cost is
O

�
n log σ + (σ + �n) log n

�
bits. Regarding the time cost,

let us look at one iteration of the while loop (step 5): it
takes O

�
(1/�) log σ

�
time for computing the SA[i − 1] at

step 9 (Lemma 3); it takes O(log σ) time for computing
Φ(i) at step 13 (Lemma 3); the amortized time cost for
step 10 is O(1); All other steps take constant time. The
while loop (step 5) has n− 1 iterations, so the total time
cost is O

�
(1/�)n log σ

�
.

Proof for Lemma 5.
Proof: Recall that we retrieve LCP[i] =

Select1

�
SLCP,SA[i]

�
− 2SA[i]. Using C, Σ, the

wavelet tree of Tbwt, B, and I, we can retrieve SA[i]
in O

�
(1/�) log σ

�
time (Lemma 3). Then by using SA[i]

and the succinct representation of SLCP, we can finish
the Select operation in constant time (Lemma 1). Thus,
the total time cost for retrieving LCP[i] is O

�
(1/�) log σ

�
.

The space cost is the same as that for constructing SLCP
(Lemma 4) plus an additional o(n) bits for the succinct
representation of SLCP and minus the space cost for T .

APPENDIX B

Proof for Lemma 6.
Proof: By definition, we know Pmi

occurs rmi
−lmi

+
1 ≥ 2 times in the text T as the m-character prefix of the
suffixes that belong to the suffix array interval [lmi

, rmi
].

All the one-character right extensions of Pmi
(if they

exist) appear as the (m+1)-character prefixes of the suffixes
in the suffix array interval [lmi

, rmi
]. Since the length of

the longest common prefix of the suffixes in the suffix array
interval [lmi

, rmi
] is m, any one-character right extension

of Pmi
occurs less than rmi

− lmi
+ 1 times in the text T .

All the one-character left extensions of Pmi
(if they exist)

are the rmi
− lmi

+ 1 subtexts of (m+ 1) characters in T ,

Page 8 of 22Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 9

which are the m-character longest common prefix of the
suffixes in the suffix array interval [lmi

, rmi
] prepended by

each of the characters in Tbwt[lmi
, rmi

]. If the characters
in Tbwt[lmi

, rmi
] are not the same, any one-character left

extension of Pmi
appears less than rmi

− lmi
+ 1 times in

T . Since any one-character left or right extension of Pmi

occurs less than rmi
− lmi

+1 times, any extension of Pmi

in T occurs less than rmi
− lmi

+ 1 times, which finishes
the proof.

The next lemma shows that searching Pmi
’s is sufficient

for finding maximal repeats.

Proof for Lemma 7.

Proof: Let P be a maximal repeat and occur occ times
in the text. Let |P | = p. Since P is a repeat, it must occur
as a common prefix of suffixes of a suffix array interval,
say [l, r], then r − l + 1 = occ. Because P is a maximal
repeat, any right extension of P occurs less than occ times,
meaning that any other longer prefixes (if they exist) of the
suffixes in the suffix array interval [l, r] occur less than occ
times in the text. So, min{LCP[i] | l + 1 ≤ i ≤ r} = m.
Because P is not a prefix of the suffixes that are out of
the suffix array interval [l, r], we have LCP[l] < m and
LCP[r + 1] < m if r < n, which implies that [l, r] is one
of suffix array intervals of candidate maximal repeats of
size p. So P must occur as Pmi

for m = p and some
i ∈ [1, kp].

Proof for Theorem 1.

Proof: By Lemma 6 and 7, we know that in order to
find all the maximal repeats, it suffices to first find all Pmj

for all m ∈ [1, n− 1] and j ∈ [1, km] where Rm �= ∅, then
those Pmj

whose all occurrences in the text do not have a
unique preceding character are the maximal repeats of size
m. For any particular m ∈ [1, n−1] and j ∈ [1, km] where
Rm �= ∅, the suffix array interval [lmj

, rmj
] is checked

by the algorithm when pos = min
�
k ∈ [lmj

+ 1, rmj
] |

LCP[k] = m
�
is traversed by step 3, because 1) steps 1– 2

guarantee pos will be traversed at some point; 2) steps 5–6
return the suffix array interval [l, r]; and 3) the condition
checking at step 9 guarantee [lmj

, rmj
] cannot be extended.

Note that LCP[r + 1] is always smaller than i, because
we traverse the LCP array values from the smallest to
the largest, and for a particular LCP value, we traverse
its different occurrences from the left to the right. Pmj

corresponding to the suffix array [l, r] is further verified by
step 10 whether it can be left extended. Step 4 filters out all
the suffix array intervals of maximal repeats of size smaller
than ml. Step 8 filters out all the suffix array intervals of
maximal repeats whose occ is less than mo.

The time and space complexity bounds are derived from
the cost for constructing the building blocks and the body
of Algorithm 2. The proof is simply adding them up.
Suppose we use the method in [14]. Table 3 shows the
construction cost of the building blocks. The time cost for
steps 1–10 of Algorithm 2 (finding the maximal repeats
without reporting them) takes time O(n log n), because we
have total n − 1 LCP array values to traverse at steps 1–
2, and steps 5–6 take O(log n) time dominating other

Time Cost Space Cost (bits) Input Notes

T 0 n log σ ∅ T is given
Tbwt O(n log log σ) O(n log σ) T [14]
Bbwt O(n) O(n log σ) Tbwt Section 4

Bulletin 3
W O(n log σ) O(n log σ) Tbwt Lemma 2
B O(n log σ) O

`
nH0(T)+ C, Σ,W Lemma 3
σ log n

´
Bulletin 3

I O(n log σ) O
`
nH0(T)+ C, Σ,W , B Lemma 3

(σ + �n) log n
´

Bulletin 4
Blcp O(n) 2n ∅ Section 4

Bulletin 2
SLCP O

`
(1/�)n log σ

´
O

`
n log σ+ T , C, Σ,W, Lemma 4

(σ + �n) log n
´

SA
−1[1], B, I

Wlcp O
`
(1/�)n log σ O

`
(σ + �n) log n C, Σ,W , Section 4

+ n log σ�
´

+ n log σ�
´

B, I, SLCP Bulletin 1

TABLE 3
Construction time and space cost of the building blocks. W

is the wavelet tree of Tbwt

steps in the loop from steps 3–10. So finding the maximal
repeats takes O(n log n + (1/�)n log σ) of time and use
O

�
n log σ+(σ+ �n) log n+n log σ�

�
bits of space, where

σ� is the number of distinct values in the LCP array.
Reporting the text of a maximal repeat P of size

p at step 11 takes O
�
(1/�) log σ

�
for computing SA[l]

(Lemma 3) and additional O(p) of time to list the char-
acters of P . Reporting the text locations of P takes
O

�
occ · (1/�) log σ

�
time because each SA[k] computation

at step 12 takes O
�
(1/�) log σ

�
time, where occ is the

number of occurrences of P in T .

ACKNOWLEDGMENTS

We are grateful to the authors of [1], [23], and [15]
for providing their source code. We thank the reviewers
especially one of them for the helpful comments to improve
our presentation. This research was supported in part by the
U.S. National Science Foundation grant CCF–0621457.

REFERENCES

[1] V. Becher, A. Deymonnaz, and P. A. Heiber. Efficient computa-
tion of all perfect repeats in genomic sequences of up to half a
gigabyte, with a case study on the human genome. Bioinformatics,
25(14):1746–1753, 2009.

[2] B. Behzadi and F. L. Fessant. Dna compression challenge revisited:
A dynamic programming approach. In Annual Symposium on
Combinatorial Pattern Matching, 2005.

[3] G. Benson. Tandem repeats finder: a program to analyze dna
sequences. Nucleic Acids Research, 27(2):573–580, 1999.

[4] M. Burrows and D.J. Wheeler. A block sorting data compression
algorithm. Technical report, Digital Systems Research Center, 1994.

[5] A. T. Castelo, W. Martins, and G. R. Gao. Troll–tandem repeat
occurrence locator. Bioinformatics, 18(4):634–636, 2002.

[6] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better
external memory suffix array construction. Journal of Experimental
Algorithmics, 12:1–24, 2008.

[7] P. Ferragina and G. Manzini. Indexing compressed text. Journal of
ACM, 52(4):552–581, 2005.

[8] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-
friendly FM-index. In International Symposium on String Processing
and Information Retrieval(SPIRE), pages 150–160, 2004.

[9] J. Fischer, V. Mäkinen, and N. Välimäki. Space efficient string
mining under frequency constraints. In Proceedings of IEEE In-
ternational Conference on Data Mining, pages 193–202, 2008.

[10] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed
text indexes. In ACM-SIAM Symposium on Discrete Algorithms,
pages 841–850, 2003.

Page 9 of 22 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 10

[11] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM Journal
on Computing, 35(32):378–407, 2005.

[12] D. Gusfield. Algorithms on strings, trees and sequences: computer
science and computational biology. Cambridge University Press,
1997.

[13] W.-K. Hon, T.-W. Lam, K. Sadakane, W.-K. Sung, and S.-M. Yiu.
A space and time efficient algorithm for constructing compressed
suffix arrays. Algorithmica, 48(1):23–36, 2007.

[14] W.-K. Hon, K. Sadakane, and W.-K. Sung. Breaking a time-and-
space barrier in constructing full-text indices. SIAM Journal on
Computing, 38(6):2162–2178, 2009.

[15] J. Kärkkäinen. Fast bwt in small space by blockwise suffix sorting.
Theoretical Computer Science, 387(3):249–257, 2007.

[16] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-
time longest-common-prefix computation in suffix arrays and its
applications. In Symposium on Combinatorial Pattern Matching,
pages 181–192, 2001.

[17] M. O. Külekci, J. S. Vitter, and B. Xu. Time- and space-efficient
maximal repeat finding using the Burrows-Wheeler transform and
wavelet trees. In the Proceedings of IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 622–625, 2010.

[18] S. Kurtz. Reducing the space requirements of suffix trees. Softw.
Pract. Exp., 29(13):1149–1171, 1999.

[19] S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye,
and R. Giegerich. Reputer: the manifold applications of repeat
analysis on a genomic scale. Nucleic Acids Research, 29(22):4633–
4642, 2001.

[20] S. Kurtz and C. Schleiermacher. Reputer: fast computation of
maximal repeats in complete genomes. Bioinformatics, 15(5):426–
427, 1999.

[21] A. Lefebvre, T. Lecroq, H. Dauchel, and J. Alexandre. FORRe-
peats: detects repeats on entire chromosomes and between genomes.
Bioinformatics, 19(3):319–326, 2003.

[22] R. Lippert. Space-efficient whole genome comparisons with
Burrows-Wheeler transforms. Journal of Computational Biology,
12(4):407–415, 2005.

[23] R. A. Lippert, C. M. Mobarry, and B. Walenz. A space-efficient
construction of the Burrows-Wheeler transform for genomic data. J.
of Comp. Bio., 12(7):943–951, 2005.

[24] X. Liu and L. Wang. Finding the region of pseudo-periodic tandem
repeats in biological sequences. Algorithms for Molecular Biology,
1(1):2, 2006.

[25] V. Mäkinen. Compact suffix array: a space-efficient full-text index.
Fundamenta Informaticae, 56:191–210, October 2002.

[26] G. Manzini. Two space saving tricks for linear time lcp array
computation. In Scandinavian Workshop on Algorithm Theory, pages
372–383, 2004.

[27] G. Manzini and M. Rastero. A simple and fast dna compressor.
Software – Practice and Experience, 34:1397–1411, 2004.

[28] H. M. Martinez. An efficient method for finding repeats in molecular
sequences. Nucleic Acids Res., 11(13):4629–4634, 1983.

[29] E. H. McConkey. Human Genetics: The Molecular Revolution. Jones
and Bartlett, Boston, MA, 1993.

[30] J. C. Na and K. Park. Alphabet-independent linear-time construction
of compressed suffix arrays using o(nlogn)-bit working space. Theor.
Comp. Sci., 385(1-3):127–136, 2007.

[31] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes.
ACM Computing Surveys, 39(1):article 2, 2007.

[32] D. Okanohara and K. Sadakane. A linear-time Burrows-Wheeler
transform using induced sorting. In String Processing and Informa-
tion Retrieval Symposium, pages 90–101, 2009.

[33] A. Poddar, N. Chandra, M. Ganapathiraju, K. Sekar, J. Klein-
Seetharaman, R. Judith, R. Reddy, and N. Balakrishnan. Evolu-
tionary insights from suffix array-based genome sequence analysis.
Journal of Biosciences, 32(5):871–881, 2007.

[34] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets.
ACM Trans. on Algorithms, 3(4):43, 2007.

[35] K. Sadakane. Succinct representations of lcp information and
improvements in the compressed suffix arrays. In Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 225–232, 2002.

[36] S. Saha, S. Bridges, Z. V. Magbanua, and D. G. Peterson. Com-
putational approaches and tools used in identification of dispersed
repetitive dna sequences. Tropical Plant Biology, 1(1):85–96, 2008.

[37] S. Saha, S. Bridges, Z. V. Magbanua, and D. G. Peterson. Empirical
comparison of ab initio repeat finding programs. Nucleic Acids
Research, 36(7):2284–2294, 2008.

[38] J. Sirén. Sampled longest common prefix array. In Proceedings of
the Annual Symposium on Combinatorial Pattern Matching (CPM),
pages 227–237, 2010.

[39] N. Välimäki, V. Mäkinen, W. Gerlach, and K. Dixit. Engineering
a compressed suffix tree implementation. Journal of Experimental
Algorithmics (JEA), 14:2:4.2–2:4.23, 2010.

[40] J. S. Vitter. Algorithms and Data Structures for External Memory.
Foundations and Trends in Theoretical Computer Science. Now
Publishers, Hanover, MA, 2008.

Page 10 of 22Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For P
eer R

eview
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, XX 20XX 11

M. Oǧuzhan Külekci received his B.Sc. in
Computer Engineering from Bogazici Univer-
sity in 1998 and Ph.D. in Computer Science
and Engineering from Sabancı University in
2006. Since 1999, he has been with the
Turkey National Research Institute of Elec-
tronics and Cryptology (TÜBİTAK-UEKAE),
where he currently is a chief researcher. In
Fall 2009 and Spring 2010, he was with
the Department of Computer Science and
Engineering of Texas A&M University as an

Assistant Research Professor. His main research area is algorithms
and computation, especially focusing on text algorithmics, both from
theoretical and practical perspectives.

Jeffrey Scott Vitter received the B.S. degree
in mathematics with highest honors from the
University of Notre Dame in 1977, the Ph.D.
degree in computer science from Stanford
University in 1980, and the MBA degree from
Duke University in 2002. He is the provost
and executive vice chancellor and the Roy
A. Roberts Distinguished Professor at the
University of Kansas. His academic home is
the Department of Electrical Engineering and
Computer Science, and he is a member of

the Information and Telecommunication Technology Center. From
2008 to 2010, he was on the faculty at Texas A&M University,
where he served from 2008 to 2009 as provost and executive vice
president for academics. From 2002 to 2008, he was the Frederick
L. Hovde Dean of the College of Science and Professor of Computer
Science at Purdue University. From 1993 to 2002, he was the Gilbert,
Louis, and Edward Lehrman Professor of Computer Science at Duke
University. He served from 1993 to 2001 as chair of the Department
of Computer Science and from 1997 to 2002 as co-director of Duke’s
Center for Geometric and Biological Computing. From 1980 to 1992,
he advanced through the faculty ranks at Brown University.

Dr. Vitter is a Guggenheim fellow, ACM fellow, IEEE fellow, AAAS
fellow, NSF Presidential Young Investigator, and Fulbright Scholar.
He has received the IBM Faculty Development award, ACM Recog-
nition of Service award (twice), and 2009 ACM SIGMOD Test of
Time award. He sits on the board of advisors of the School of
Science and Engineering at Tulane University. From 2000 to 2009,
he served on the board of directors of the Computing Research
Association (CRA), where he continues to co-chair the Government
Affairs Committee. He has served as chair, vice-chair, and member-
at-large of ACM SIGACT and has served on the EATCS executive
committee.

Dr. Vitter is author of the book Algorithms and Data Structures
for External Memory, coauthor of the books Design and Analysis of
Coalesced Hashing and Efficient Algorithms for MPEG Video Com-
pression, coeditor of the collections External Memory Algorithms
and Algorithm Engineering, and coholder of patents in the areas
of external sorting, prediction, and approximate data structures. His
research interests span the design and analysis of algorithms, exter-
nal memory algorithms, data compression, databases, compressed
data structures, parallel algorithms, machine learning, random vari-
ate generation, and sampling. He serves or has served on the
editorial boards of Algorithmica, Communications of the ACM, IEEE
Transactions on Computers, Theory of Computing Systems, and
SIAM Journal on Computing, and has edited several special issues.
He proposed the concept and participated in the design of what
has become the Purdue University Research Expertise database
(PURE) and the Indiana Database for University Research Expertise
(INDURE), www.indure.org.

Bojian Xu received his B.E. in Computer
Science and Engineering from Zhejiang Uni-
versity, Hangzhou, China in 2000. He worked
as an engineer in the telecommunication in-
dustry from 2000 to 2004. He received his
Ph.D. in Computer Engineering from Iowa
State University in 2009 before he joined
the Department of Computer Science and
Engineering of Texas A&M University as an
Assistant Research Professor. He is cur-
rently an Assistant Research Professor at the

Information and Telecommunication Technology Center (ITTC) of
the University of Kansas. His research interests are in designing
algorithms and building systems for managing large data sets.

Page 11 of 22 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

