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THE MAXIMUM SIZE OF DYNAMIC DATA STRUCTURES*

CLAIRE M. KENYON-MATHIEU’ AND JEFFREY SCOTT VITTER$

Abstract. This paper develops two probabilistic methods that allow the analysis of the maximum data
structure size encountered during a sequence of insertions and deletions in data structures such as priority
queues, dictionaries, linear lists, and symbol tables, and in sweepline structures for geometry and Very-Large-
Scale-Integration (VLSI) applications. The notion of the "maximum" is basic to issues of resource prealloca-
tion. The methods here are applied to combinatorial models of file histories and probabilistic models, as

well as to a non-Markovian process (algorithm) for processing sweepline information in an efficient way,
called "hashing with lazy deletion" (HwLD). Expressions are derived for the expected maximum data
structure size that are asymptotically exact, that is, correct up to lower-order terms; in several cases of
interest the expected value of the maximum size is asymptotically equal to the maximum expected size. This
solves several open problems, including longstanding questions in queueing theory. Both of these approaches
are robust and rely upon novel applications of techniques from the analysis of algorithms. At a high level,
the first method isolates the primary contribution to the maximum and bounds the lesser effects. In the
second technique the continuous-time probabilistic model is related to its discrete analog--the maximum

slot occupancy in hashing.
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1. Introduction. The size attained by data structures is fundamental to issues of
resource allocation, yet, until recently little was known about analyzing the maximum
size attained over a period of time, which is important for preallocating resources. A
possible explanation of this deficiency is that classical methods of analysis with
generating functions and recurrences cannot be applied readily for the maximum
function. In this paper we develop two asymptotic methods to study the distribution
of the maximum size of data structures. The methods are robust in that they apply to
several different combinatorial and probabilistic models. We also study a non-
Markovian process called hashing with lazy deletion (HwLD), which corresponds to
an efficient way of processing sweepline information in computational geometry and
Very-Large-Scale-Integration (VLSI) layout applications [14].

One of the motivations for our study is the need to develop and analyze practical
space-efficient plane-sweep algorithms. Some work in this area has been done by Van
Wyk and Vitter [14]; Morrison, Shepp, and Van Wyk [11]; Mathieu and Vitter [9];
and Ottmann and Wood [12], but as the latter point out: "Surprisingly there has been
little theoretical investigation of space-economical plane-sweep algorithms even though
such algorithms have significant practical applications." Ottmann and Wood [12] do
not investigate the maximum data structure size (that is, the maximum number of items
cut by the sweepline); they express the running times of their algorithms in terms of
the maximum size. Our approach in this paper is to examine the distribution of the
maximum data structure size, based upon several popular input models, and in addition
to show that the HwLD algorithm introduced is optimum simultaneously for both
average running time and preallocated space.
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Data structures process a sequence of items over time; at time the data structure
stores the items that are "living" at time t. Let us think of the ith item as being an
interval [si, ti] in the unit interval, containing a unique key k of supplementary
information. The ith item is "born" at time si, "dies" at time t, and is "living" when

[si, ti]. The data structure also handles dynamic queries over time. Let us denote
the data structure size at time by Size(t). If we think of the items as horizontal
intervals, then Size(t) is just the number of intervals "cut" by the vertical line at
position t. In a typical planesweep application, having to do with VLSI artwork analysis,
we might have 106 intervals in the time range [0, 1], with E(Size)= 103; that is, only
square roots of the total number of items tend to be present at any given time [13].
Thus, for space efficiency, it is important to use a dynamic data structure whose size
follows the growth rate of Size(t).

In HwLD, items are stored in a hash table of H buckets, based upon the hash
value of the key. The distinguishing feature of HwLD is that an item is not deleted as
soon as it dies; the "lazy deletion" strategy deletes a dead item only when a later
insertion accesses the same bucket. The number H of buckets is chosen so that the
expected number of items per bucket is small. HwLD is thus more time-efficient than
dOing "vigilant-deletion," at a cost of storing some dead items.

To model insertions, deletions, and queries, we consider two classes of models:
combinatorial models and probabilistic models. The combinatorial models are the
discrete-time models of file histories introduced in [4], [5] to model the evolution of
several classical types of dynamic data structures, such as priority queues, dictionaries,
stacks, and linear lists. The second class of models consists of probabilisitic continuous-
time models in equilibrium, in which the birthtimes of items are independent and form
a Poisson process with birth rate A. Various models of lifetime are considered. Not
only does our approach work for these models, but it can also be adapted to handle
models in which lifetimes are not independent, such as the M/M/1 probabilistic
model and the non-Markovian models corresponding to HwLD.

We denote by Use(t) the number of items stored at time in the HwLD data
structure. The lazy deletion strategy means that Use(t)>-Size(t). Let t* be any time
that maximizes E(Size(t)). (For the probabilistic models, E(Size(t)) is the same for
all t.) Van Wyk and Vitter [14] compute E(Size(t*)) and show, via generating function
and approximation techniques, that E(Use(t*))---E(Size(t*))+H for the com-
binatorial model of priority queues and for the M/M/ probabilistic model. Big-oh
bounds on E(maxtO.l{Size(t)}) and E(maxtO.ll{Use(t)}) were only recently
obtained by Mathieu and Vitter [9] under certain assumptions for the M/G/o
probabilistic model. Exact formulas were also developed for several combinatorial
and probabilistic models that could be used to compute the distribution of
max,O.l {Size(t)} numerically, but they do not seem to give any asymptotic informa-
tion. However, the fact that the relevant transform in each case was expressed simply
as the ratio of consecutive classical orthogonal polynomials gave informal evidence
that some common asymptotic method(s) might exist to analyze the different models.

In this paper we develop general asymptotic methods using techniques from
analysis of algorithms to settle the open problems posed in [14], [11], and [9].
We derive asymptotically exact expressions for E(maxt[o,1] {Size(t)}) and
E (maxt[o,1] { Use(t)}) for several combinatorial and probabilistic models. In particular
we show that HwLD is asymptotically optimal in terms ofpreallocated storage. The gist
of our first method is to concentrate on the primary contribution to the maximum and
to show via probabilistic techniques that the rest of the contribution is negligible. The
hard part is coping with the inherent lack of independence of the size as a function
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of time. We show exactly when the expected maximum size is asymptotically more
than the maximum expected size and when they are equal. The second method we
use, for the continuous-time probabilistic models, is a discrete counterpart having to
do with the maximum slot occupancy in hashing. This approach offers another illustra-
tion of the strong connections between discrete and continuous models in the analysis
of algorithms.

2. Analysis of combinatorial models. File histories, as introduced in [4], [5] model
the evolution of several classical types of dynamic data structures, including priority
queues (PQ), dictionaries (D), symbol tables (ST), stacks (S), and linear lists (LL).
The data structures are treated as combinatorial objects; their performance character-
istics are determined by the relative order of the elements they contain, not by the
actual values of the elements. Thus, we say that there are k+ 1 ways of inserting a
new element into a dictionary of size k, since there are k+ 1 "gaps" where the new
element can fit in, relative to the k elements already present. The evolution of the data
structure is represented as a path in Z2, where the x-coordinate counts the number of
operations, whether they be insertions, deletions, or queries, and the y-coordinate
counts the size. Each step is of the type (a, b)- (a + 1, b + 1) (insertion or deletion)
or (a, b)- (a + 1, b) (positive or negative query). To each step we associate a certain
choice among the possibilities. For example, in priority queues, deletions can be
performed only for the minimum element, so the number of possibilities for a deletion
is one. The probability model is that all possibilities are equally likely, with the
constraint that the data structure is empty initially and at the end. The following table
summarizes the number of possibilities for each type of data structure and operation,
in terms of the current data structure size k:

PQ D LL ST S

Insertions k + k + k + k +
Deletions k k
Positive queries 0 k 0 k 0
Negative queries 0 k + 0 0 0

As an introduction to our first method, let us consider the combinatorial model
of file histories corresponding to the size of priority queues (PQ). An equivalent
formulation, as considered in [14], is to generate the 2n birthtimes and deathtimes of
the n items as independent uniform random variates in the unit interval [0, 1]. The
ith item is born at time min {si, ti} and dies at time max {si, t}. The average priority
queue size E(Size(t))= 2nt(1-t) varies parabolically in the unit interval and attains
its maximum n/2 when t- 1/2, as shown in Fig. 1.

This "peak" in the value of E(Size(t)) suggests that the value max,[o,1] {Size(t)}
should be achieved in a neighborhood of 1/2 and thus should be ---n/2. This was
conjectured in [14]. In this section we introduce our first method and use it to prove
the conjecture. The method will be developed further in the next section for the
probabilistic models, where the expected values in question are fiat and have no peaks
like the ones considered in this section.

THEOREM 2.1. For priority queue and dictionary file histories of length 2n, we have

E(max {Size(t)})--- max {E(Size(t))}
t[0,1] ""
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FIG. 1. Graph of E(Size(t)), as a function of t, for the combinatorial model ofpriority queues considered
in 2. The quantity Size(t) has a geometric interpretation as the number of items (horizontal intervals) "cut"
by the vertical line (sweepline) at position t. (The graph is bell-shaped, and this makes the analysis of
E(maxtEo,1] {Size(t)}) easier; however, this is not the case for the "fiat" distributions of the probabilistic
models in 3.)

THEOREM 2.2. For priority queue and dictionary file histories of length 2n, if
H o(n) we have

E(max {Use(t)}) n

t[0,1] ""Proof of Theorem 2.1. First we prove Theorem 2.1 for priority queues. Since we
have E(maxttO,ll {Size(t)}) >- E(Size(1/2)) n/2, our main problem is to show the other
direction, namely, that E(maxttO,ll {Size(t)}) < E(Size(1/2)).

We consider the neighborhood V= (1/2-e, 1/2+ e) of 1/2, where e n -1/6, as pic-
tured in Fig. 1. We shall prove that with high probability the maximum M of Size(t)
is reached for . Let v denote the number of births and deaths in interval . If the
maximum is reached inside , then its value is at most Size(1/2)+ v; thus we have

(2.1) E(M) <- E(Size(1/2))+ E(v)+ n. Pr {M reached outside 7/’}.

The first two terms are clearly equal to n/2 +4he---n/2. All that remains is to prove
that Pr {M reached outside } o(1). By symmetry, this probability can be bounded
by

(2.2) 2. Pr {:it [0, 1/2- e], Size(t) > Size(1/2)}.

The problem is that the values of Size(t) at two different are clearly not independent.
In order to get around this problem, we divide [0, 1/2-e] into n(1/2-e) equal-sized

1We adopt the notation f(n)< g(n) (as n-) if there is a function h(n) such that h(n)---g(n) (as
n-oo) andf(n)h(n) for all n_->l.
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intervals [ti, ti+l], with endpoints ti=i/n, for O<-i<-l. Let a=n/2-n26/5 and a’=
n/2-2n26/. We have

Pr ::It_-<-- e, Size(t) > Size
2

_-<Pr Size < a + Pr ::lt <__-- e, Size( t) > a
2

(2.3)
<=Pr {Size() <a} + 2o<=i<=l Pr {Size(ti)> a’}

+ Y Pr{xi>a-a’},
o<_i<=l

where X is the number ofbirths in interval ti, ti+]. Since Pr {Size(ti) > a’} is maximized
at ti -e, and since x, x2," are identically distributed, we get

Pr =i _-<-- e, Size(t) > Size
2

(2.4) -<_Pr Size <a +-.Pr Size -e >a’
2

n
+-. Pr {Xo> a a’}.
2

We analyze each term separately. For fixed t, the distribution of Size(t) is well
known. It is binomially distributed with parameter t(1- t)"

Pr {Size( t) k} ( nk) (2t(1-- t))k(1--2t(1-- t))n-k;

E(Size(t)) 2nt(1 t);

Var (Size(t))= 2nt(1 t)(1-2t(1 t)).

Thus Chebyshev’s inequality yields

{ (__) n } 1 --2/50Pr Size < 2n26/50 < n o (1).
2 4

As for the next term, we have

g
M 2,/26/50}

k

2)Pr {Size( ) -- ---]>rl/22g126/50 ()(- 2e2) (+2e "-.
The terms of the sum form a decreasing sequence, and the ratio between two successive
terms is at most

n/2+2n/s 1--2e +2n
-4/ --2n

] <.

The sum can thus be replaced by a geometric sum, and after computing its asymptotics
using Stirling’s formula, we find that

=o(.Pr Size e > a’ < n5/ e-anal3
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The third term is also computed easily, since

Pr {Xo k} (2kn) () " (1 )2n-’.
Using Chebyshev’s inequality, we find again that

_n Pr {Xo > n26/50} o 1 ).
2

Thus the theorem is proved for priority queues.
The proof for dictionaries goes along the same lines. Let Hk,l,n be the number of

histories going from level k to level in n steps. If we consider the size after m steps
of a dictionary history going from level 0 to 0 in n steps, its distribution is given by

Pr {Size(m)= i} H’i’mHi’’n-m
Ho,o,n

We know from [4] that

E Hk,’,, ukv’ Zn-
k,l,n n!

We deduce that

The expected value is

1-z(l+u)(l+v)-uv"

Pr {Size m i}
(7)(".m)

E(Size(m)) n-- 1-

Thus the graph of E(Size(m)), when m goes from 0 to n, describes a parabola, just
as for priority queues. Since we know the distribution of Size(m), we can from then
on work out a proof exactly similar to the priority queue case (further details are

omitted).
Proof of Theorem 2.2. For Theorem 2.2, as in Theorem 2.1, the lower bound n/2

applies. To get an upper bound, we use the bound

where Sizel(t) is the number of living items present in the first bucket of the HwLD
table at time t. The inequality in (2.5) follows from the uniformity of the hash function
in HwLD, and the subsequent equality follows from the fact that the priority queue
is initially empty and thus Use(t) and Size(t) attain the same maxima. Let nl be the
number of living items that hash to bucket 1 in HwLD. We have

(2.6) Pr {n k} ()(-)
k

(1 ----) n-k

We can now use the result of the previous theorem:

(2.7)

E ( max {Size(t)}) < E
t[0,1] k>n/2H

+.Pr
2H
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from which we find, after some elementary calculations, that

(2.8) E max {Size(t)} <.
t[0,1] 2H

By summing on the H buckets, we get E(maxO,l(Use(t)})<n/2. The proof for
dictionaries is similar.

These techniques can also be applied to the combinatorial models for other types
of file histories, namely, linear lists and symbol tables, to get similar results. (Note
that the techniques cannot be used for stacks, because the random variable "maximum
size" is not concentrated enough around its expected value in that case.)

3. Analysis of the probabilistic models. In this section we consider continuous-time
probabilistic models in equilibrium. The birthtimes of items are independent and form
a Poisson process with intensity A; the probability of a birth during a time interval of
length At is ---AAt, as At-0. In the first model we consider, the lifetimes of the items
are independently distributed according to an arbitrary distribution with mean 1/
An important special case is when the lifetimes satisfy the memoryless exponential
distribution. This model and its special case are well known and are referred to as the
stationary MG/ and MM/c models.

The maximum is more difficult to analyze for the probabilistic models, since the
expected value of Size(t) is no longer "peaked" around a certain value of t. An easy
analysis (see Feller [1], for example) shows that for each the distribution of Size(t)
is Poisson with mean A//z. But the maximum value of Size(t) in each case is sufficiently
concentrated about its mean so that our method is applicable.

THEOREM 3.1. In the stationary M/M/ model with birth rate A and average
lifetime 1 //z, we have, assuming either that/z - 0 or that/z 12(1) and A -

A

E(max {Size(t)})--- d a--
t[o,] /z

lnf(a, )

irf(a, ) -, o;

irf(a,/z) - oo,

where f A, /z (In A)/(A//Z) and the constant d >= 1 is defined implicitlyfrom the constant
c by d In d d c- 1. In the more generalMG case, in which the lifetime distribution
can be arbitrary, the asymptotic upper bounds hold; in the first case In A o(A//z), the
corresponding lower bound is trivial, so we get asymptotic equality.

THEOREM 3.2. In the stationary M/G/o model, if In A o(A//z), we have

E(max {Use(t)}) h

t[0,1]

The condition In A o(A//z) is typically met in practice in geometry applications,
as in [13]. Similar results for E(maxto,{Use(t)}) hold as for Cases 2 and 3 of
Theorem 3.1, except that the conditions are more intricate.

Proof of Theorem 3.1. If/z-> O, then h =o(h//z), and

Size(O) <- max {Size(t)} <-_Size(O)+ #[0, 1],
t[0,1]
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where #[0, 1] denotes the number of births in [0, 1]. Taking expectations we get

--=<E max {Size(t)} <---+ A,
].L t[0,1]

and hence E(maxtto,l {Size(t)})--- h/tx.
From now on, we assume that A--> and that/x-> a for some positive constant

a. First we derive the upper bounds for E (maxttO,ll {Size(t)}). We use the basic identity

(3.1) E(maxto,l {Size(t)})=kl Pr{ to,max11 {Size(t)}>-k}"
The probabilites in the sum form a decreasing sequence. We are going to show that
maxto,l {Size(t)} has a distribution concentrated near some value V (to be specified
later). We trivially have

(3.2) E(max {Size(t)})<-_V(l+2e)+ Pr { max {Size( t)} >- k}.t[O,1] k> V(l+2e) t[O,1]

The desired upper bound E(maxtto,11{Size(t)})< V follows if we show, for an
adequate choice of e -->0, that Yk> v(1+2 Pr {maxtto,11 {Size(t)}>= k}= o(1).

In order to evaluate the probabilities, we have to deal with the lack of independence
of the successive values of Size(t), as goes from 0 to 1. We partition [0, 1] into N
intervals of equal size, Io to, t), I1 q, t2),. , / tj, tj+l), . The number of
intervals N will be defined to be A in Case 1 and (A/eV)+ in Cases 2 and 3. The
key point is that maxo,l {Size(t)}> k, where k> V(1 +2e), only if there is an interval
endpoint ti where Size(6)>=(k+ V)/2 or if one of the intervals has at least (k- V)/2
births:

(3.3)

Pr { max,o,, {Size(t)}>-k}<--Pr{]j’Size(t)>=k+

+Pr =lj, #/>=2

where #/ denotes the number of births during time interval/. By (3.2) we get

(3.4)
E(maxt[o,1] {Size(t)})<- V(1 +2e)+2N . Pr{Size(O)>=k}

k> V(l+e)

+2 2 Pr{:lJ,*/=>k}
k>eV

For the MM/c process, the random variables Size(O) and #/ are Poisson distributed
with means Z//x and A/N, respectively. The rest of the proof consists of technical
computations and approximations, with adequate choices for the parameters V, N,
and e.

First we compute

(3.5) S=2 Y Pr{::lj,#I>-k}<-2N Y Pr{#Io->_k}.
k>eV k>eV

The inequality holds because the random variables #/ are identically distributed. The
Poisson probability function of # Io is

(3.6) Pr {, Io k}= e-x/u
(h/N)k

kl
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The ratio between consecutive probabilities is less than A/(NeV)= o(1), for suitable
choices of N, e, and V. By (3.6) we get

Pr{#Io k+l} X h
< o(1),

Pr {#Io= k} N(k+ 1) NeV

for a suitable choice of N and V. Thus we have

Pr {# Io ->_ k} Y Pr {# Io=j}_-<
j>-k

and by (3.5),

2N 2N
S <=l-A/(NeV) k>V" Pr{#I=k}<=

Substituting (3.6), we get for large A

S<__3Ne-/N(A/N)v
(v)!

1-A/(NeV)

(1 -A/(NeV))

Pr {#Io k},

Pr {# Io CV}.

If we pick V so that V>_-(h//x)- , we can choose e 0 so that eV. We now
apply Stirling’s approximation formula to get

(3.7) S < e=xf N

Our choices of N and V for the three cases of Theorem 3.1 are as follows:
Case 1. Assuming that In Z o(Z//z), we fix N=A and V= (Z//x). We find, if

e - 0 slowly enough, that S o(1).
Case 2. Assuming that In A c(A//z), where c is a positive constant, we fix

N and V d--A (1 + /),

where d is the solution of d In d- d c-1. For e0 slowly enough we find that
S= o(1).

Case 3. Assuming that f(A,/x) (ln A)/(A//x)- oo, we fix

N= and V-lnfx.
The analysis works as in Case 2 to show that S o(1).

We now turn our attention to bounding the other sum in (3.4), namely,

(3.8) P N Pr {Size(O) >- k}.
k> V(l+e)

We want to show that P o(1). The random variable Size(O) has the Poisson dis-
tribution:

(3.9) Pr {Size(O)= k} e-/
k!

The ratio between two successive terms is at most (A/tx)/(V(1 + e)) when k> V(1 + e).
Thus we can write

/( }/(3.10) P<=N 1- (V(I+ e)) Pr{Size(O)= Y(l+ e)}.
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By using (3.9), the fact that V => (A/) in all cases, and Stirling’s formula, we get for
large V,

N -h/ (h/)V(l+e) N e-A// ( e,/_E
V(l+e)

<_P<=-e (V(l+e))! e 2 \V(l+e)]

We can now evaluate this expression for all three cases of the theorem, and we find
that, if e goes to 0 slowly enough, we have in all cases P o(1), which concludes the
proof of the upper bound of the theorem.

For the lower bound, let us for clarity restrict ourselves to Case 3 of the theorem,
and assume that A =/x (the proof in Case 2 is similar). The above proof yields
E(maxt[O,l {Size(t)}) <- ((ln h)/ln In h)(1 + e), for some positive e o(1). We shall
now show that the reverse also holds, namely, that E(maxt[o,l{Size(t)})>=
((In A)/ln In A)(1- e), for some positive e o(1). We shall prove this by starting with
(3.1) and showing that

{ } lnh
(3.11) Vr max {Size( t)} >- k 1 fork<(1-s).

t[o, In In

We once again partition [0, 1] into l= h- equal-sized intervals, with endpoints
t ih-, for 0 < < I. We have

Pr max {Size(t)} < k’ Y Pr {Vi, Size(t,)
t[0, 1] J Jl ,’",Jl <k

(3.12)
1] Pr {Size t, j, Size(t,_) j,_l }.

j,...,jl<k lil

The motivation for our choice of interval size is to have enough births and deaths in
each interval so that the values of Size(t) at the endpoints are "sufficiently independent."
Let P,(t) denote Pr{Size(t)=nlSize(O)=j_l}. We define the generating function
P(s, t)= P(t)s", which is equal to

(3.13) P(s, t) e-(1-s)(1-e’)(1 -(1 s) e-It)ji-1

(cf. Feller [1]). The conditional probability term in (3.12) is Pi(1/hl-)
(sJi)P(s, 1/AI-). By extracting the coefficient of sj’ in (3.13) and using asymptotic
approximations, we find that there is "sufficient independence""

(3.14) Pr { maxt[O,l] {Size( t)} < k} ’’(Pr{size(O)<k})x’-’(1)’

for k<=((lnA)/lnlnA)(1-e). By letting e-0 at an appropriate rate, we prove our
goal (3.11), which completes the proof.

Proof of Theorem 3.2. The lower bound here is easy:

E max {Use(t)} >-E(Use(O))=--+H.
te[0,1] ].L

We prove the upper bound when In A o(A/). First, we consider the M/M/ case.
From [13], the stationary distribution of Use(t) is

(3.15) Pr { Use(t)= k}= e-/
(A/I)k-H
(k-H)!"
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We partition the interval [0, 1] into h intervals of equal size, /=[tj, tj+l). Let V=
(h//z) + H. If k > V(1 + 2e), we have, with the same techniques used for the previous
theorem,

Pr max{Use(t)}>-_k _-<1.Pr Use(O)>-
t[o,3 2

(3.6)
+Pr 3j, #/_-->

2

And the same approximations as above show that when In h--o(h/i) we have

E max Use(t) <--+H.
te[0,1]

In order for the proof to work in the MG/oe model, we need only show that
the stationary distribution of Use(t) is the same as in the M/M/oe model. We shall
compute the probability

(3.17) Pm,,( t) Pr {Size(t) m, Use(t) rn + n lSize(O Use(O) 0}

and let oe to get the stationary distribution. We assume for simplicity that H 1.

(3.18) pm,(t) A e-’- Pr {Size(x) m + n 1 and n deaths in (x, t)} dx.

We assume that x > x/7; the lower part of the integral is negligible. We have

(3.19) Pr {Size(x) m + n 1}--- e-"/"
(re+n-I)!"

Let B(x) be the distribution of the service time. The probability that there are n deaths
in (x, t) can be split into two terms, depending on whether the element born at time
x dies before time or not. The probability that a given element, alive at time x, dies
before time is equal to

(l/x) I (B(t-u)-B(x-u)) du
(3.20) p(x)=

1-(l/x) B(x-u) du

Thus we find that Pm,.(t) is asymptotically equal to

A e-- e-/"
(m + n 1)!

((1 B(t x))(m+n-1) p(x)n(1 --p(x))m-
n

n-- 1
p(x)n-(1 -p(x)) dx.

With standard asymptotics, we get

Pr {Use(t)= s}= Y Pm,n(t) e-;t’-x e-;t/"
(A/)s-

m+n=s (S-- 1)!
dx

(3.21)
"e

(s- 1)t

The case for general H is similar. Thus the stationary distribution of Use(t) is the
same for M/G/oo and M/M/oo processes, and Theorem 3.2 is proved.
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It is worthwhile noting that Theorem 3.1 derives results in queueing theory, using
non-queueing theory techniques from the analysis of algorithms. By a simple change
of scale, we can extend the range over which we take the maximum from the unit
interval [0, 1] to [0, T]. The last subcase of Theorem 3.1 says that, if A and /x are
constant, then E(maxto.rl{Size(t)})-ln T/ln In T, which was a longstanding open
problem. Our method also applies to the M/M/1 model: For constants A and/z with
A//x c < 1, we have E(max,t0.rl {Size(t)})--.-ln T/In c, which previously had been
proved only by Brownian motion techniques [2].

THEOREM 3.3. In the stationary M/M/1 model, with birth rate A and average
lifetime 1/tx, we have

1 if/ 0(/./,2/3);

E(max {Size(t)})--- ln_____a if A/ /z -+ c < l
t[0.1] -In c

Proof of Theorem 3.3. Let us restrict ourselves to Case 2 (the more difficult case).
The stationary distribution of the size of an M/M/1 process is well known (see [1]).

(/,)
Pr {Size(t)= k}

1-(/)"

For the upper bound, we divide [0 1] into A intervals Ii=[titi+), with ti=i/A, and
use the same technique as before:

Pr max {Size( t)} >_- k -<A.Pr Size(O)>-
t[0,1l 2

k- ko}+A.Pr 4Io_->
2

Fixing k0 In A/(-ln c), we find after some calculations that

max {Size(t)} < In A
(1 + 0(1)).

t[O,1] ] -ln c

The lower bound proof follows the proof in the M/M/oo case.

4. Time hashing: The discrete analog. In this section we analyze maxo_<_t<__ {Size(t)}
by relating the problem to its discrete version--the maximum slot occupancy in hashing.
The tricky part is handling the lack of independence of slot occupancies.

THEOREM 4.1. In the stationary M/G/oo model, with birth rate A and average
lifetime 1/tx, we have, assuming either that tx-+ 0 or that tx f(1) and A-+ oo,

E(maxt[o.1] {Size(t)})<<. d--

2f(A,/x) a
lnf(A,/x) /z

iff(a,/x)-+ O;

iff(a,/x) c;

iff(a,/x) oo,

wheref(A, /x) (In A)/(A//x) and the constant d >= 1 is defined implicitlyfrom the constant
c by d In d d 2c 1. When f(A, tx) --> O, we have asymptotic equality.
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It is interesting to note the close correspondence between the above formulas and
the formulas for the maximum bucket occupancy in hashing, given in Kolchin,
Sevast’yanov, and Chistyakov [8] (cf. 4). The formulas for cases 2 and 3 of Theorem
4.1 are slightly weaker than the corresponding bounds in Theorem 3.1.

THEOREM 4.2. In the stationary M/G/oo model, with birth rate A and average
lifetime 1/tx, we have, assuming that --> 0 or A o(H) or that tx f(1) and A-+ oo,

--+H iff(a, )- 0;

E(max { Use( t)}) < d
A
--+H iff(A,/x) - c;

t[O,1]

2f(a,/z) A
--+H iff(a,/x) -+ oo,

lnf(a, ,) ,
wheref(a, Ix) (In a)/(a/,) and the constant d >= 1 is defined implicitlyfrom the constant
c by d In d d 2c 1. When f(A, x) - O, we have asymptotic equality.

THEOREM 4.3. In the stationary M/G/oo model, with birth rate a and average
lifetime 1 / tx, assuming that In a o(H),/x f(1), and a - oo, we have

E(maX,to.,l
{Use(t)}- t[0,1]max {Size(t)})--.H.

Results similar to those in cases 2 and 3 of Theorems 4.1 and 4.2 also hold for
E(max,to,11 {Use(t)}-max,to,1 {Size(t)}), except that the conditions are more
complicated.

An approach called "time hashing" was introduced in [9] to give optimum bounds
to within a constant factor for E(max,to.{Size(t)}) when f(a,/z)0 and
E(maxtto, { Use( t)}- max,to,1 {Size(t)}) when H >_- (In A) 1+, for constant e > 0. The
approach we use here to show that the constant factors are in fact 1 is the "inverse"
of the approach used in [9], so a brief explanation of the former technique is called for.

For example, in the analysis of E(maxo__<,<__ {Size(t)}) when In a o(a//x) in [9],
all the items that are alive for at least some time in [0, 1] are considered. There are
stages k 0, 1, 2, , K, and each stage has an associated hash table. For 0_<- k <- K,
all items (intervals) born in (-(1//x)2k, 1] with lifespan in the range ((1//z)2k-l,
(1//x)2k] are put into stage k; in addition, all such items with lifespan <-(1/2/x) are
put into stage 0. Each stage consists of a hash table of/x2-k + 1 slots. The jth slot, for
0<=j -</z2-k, represents the interval of time ((1//x)(j- 1)2k, (1//x)j2k]. An item in stage
k is placed into the slot corresponding to its birthtime. A special stage K + 1 is
constructed to store all the items that do not fit into one of the earlier stages. The
parameter K is chosen large enough so that the number of items in stage K + 1 is
O(A//x). The important link between this discrete version of the problem and the
original continuous one is the following relation:

max {Size(t)}_-<2 Y max_ {Nk(j)},
0t--<l 0_<k___K+l

where Nk(j) denotes the number of items in the jth slot of stage k. The bound
maxo<_,<__{Size(t)}=O(a/l) was proved by showing that maxo<_a<_,,z-k{Nk(j)}
O(a/(2kl,)), under the assumption that In A= O(a//,).

Proof of Theorem 4.1. We shall prove Theorem 4.1 simultaneously for all three
cases, f(a,/,)-+ 0, -+c, and .oo, by showing that E(maxo<__,<__l {Size( t)}) < dA/t,, where
d d(A,/,) is the solution of the equation d In d d 2f- 1. In case 1, for example,
we have d---1, and in case 3 we have d---2f/lnf
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Note that for case 1 this upper bound will prove the asymptotic result claimed in
Theorem 4.1, namely, E(maxo_<_,l {Size(t)}).--(A//x), since E(maxo=t<__l {Size(t)}) >-
Size(O) A/ /x.

If/x- 0, then the result follows immediately, as noted in 3. So we assume that- oe and/x 12(1). We "invert" the process used in [9] to prove the big-oh bound,
as shown in Fig. 2. Instead of letting the stages of time hashing grow coarser and
coarser, we consider the limiting case in which the slots represent smaller and smaller
units of time relative to the item sizes. We use only one stage, but the number of slots
varies with and/x. We use m g/x slots, for any g- oe. (Without loss of generality
we choose g so that g/x is an integer.) The jth slot, for 1 _-<j <-g/x, represents the time
interval ((j-1)/(g/x), j/(g/x)]. For each item we place an entry into each slot whose
associated time interval intersects the item’s lifetime. If we define N(j) to be the slot
occupancy of slot j, it is easy to see that the following upper bound holds.

LEMMA 4.1. We have

max {Size(t)}<- max {N(j)}.
Otl l=j=gp

To prove Theorem 4.1 it suffices to show that E(maxl__<j=g, {N(j)})<dA//X
LEMMA 4.2. The slot occupancies N(j) are Poisson-distributed with mean n/m,

where n A (g + 1) is the average number of items inserted into the hash table of m f/x
slots.

slot 0 slot slot
__1 time

=o Z =1
FIG. 2. Typical items that contribute an entry to slot j in the time hashing table.

Proof The slot occupancy N(j) of the jth slot is equal to the sum of two
independent quantities: the number of items living at time (j- 1)/(g/x) plus the number
of items born during the time interval ((j- 1)/(g/x),j/(g/x)]. These two quantities are
Poisson-distributed with means A//X and A/(g/x), respectively. Hence, N(j) is Poisson-
distributed with mean (A//x)(1 +(l/g))= n/m. D

The following lemma is useful for studying the maximum slot occupancy in time
hashing, because the random variables X are not required to be independent.

LEMMA 4.3 [9]. For random variables X1," , X,,, if we have Pr {X > b}_-<
1 / (nm), for all 1 <=j <- m, where n E(Y X), then

( ) 1 (E max {X} _-<b+-. E max {X}
jtn n ljrn

max {X} > b).ljrn
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Proof We condition the expectation based upon if maxlj__<., {Xj} is -<_b or >b"

E(l<__j__<mmaX {X})-< b Pr{ l<=J<-mmax {X}-< b}
+ E,( max {Xj}

ljm
max {X} > b)

Pr{ lJ<=mmax {X}> b}.
The first probability term is bounded trivially by 1, and the second is bounded by

Pr{l<=j <=mmax {X} > b} <=Pr {X> b}+ Pr {X2> b}+. .+ Pr {X,,> b}<-m
1 1

To apply Lemma 4.3 to prove Theorem 4.1, we use X=N(j), b=
d(A/tx)(l+(1/g)), n=A(g+l), and m=gtz, where g- slowly. (In particular, we
require that g<--(d-1)A/lx.) We have

(n/m) k

nm Pr {N(j) > b} nm e-n/’’

n2 e-n/m(n/m) b

b!(b+l-n/m)

(4.1)
g2

x/27r(A//x)d (1 + 1/g)(d 1)(A//x)(1 + (l/g))

,,2 e(d-1)(A/lx)(l+l/g)
dd(A/ tx)( + l/ g)

A 2 e(d-1)(,x/tz)(+/g)
dd(A/lx)(l+l/g)

for large A, by Stirling’s formula. Taking logarithms of (4.1) and using the definition
of d, we get

(4.2)

In (nm. Pr {N(j)> b})_-<2 In h---
A

1+ (dlnd-d+l)

21nA
-<0.

This implies that the left-hand side of (4.1) is less than or equal to 1 for large A, and
hence the conditions for Lemma 4.3 are satisfied.

Lemma 4.3 gives us

(4.3)

max {N(j)}<=d A- 1+
j fl ]J

1 (+-E max {N(j)}
n ljgtz

max {N(j)}> dh 1+
j gl ].Z



822 C:. M. KENYON-MATHIEU AND’J. S. VITTER

The random variables N(j) are not independent, but the conditional expectation on
the right-hand side of (4.3) can be bounded by

E max {N(j)}.N(1)>d 1+
<=j gl.x

(4.4)
<_-+ (,(>aa + =o(.

Plugging (4.4) back into (4.3) gives us N(max, {N(j)})d(I/), which proves
Theorem 4.1.

Proofof eorem 4.2. Theorem 4.2 can be proved in an identical way to Theorem
4.1. For each t, Use(t)- H is Poisson-distributed with mean I/ [9]. The techniques
in the proof can then be applied to Use(t)- H instead of to Size(t).

For example, let us define the time hashing as in the proof of Theorem 4.1, except
that we account for lazy deletion. For each item, we place an entry into each slot
whose associated time interval intersects the item’s presence in the HwLD data structure.
We define N(j) to be the slot occupancy of slot j. We have the corresponding versions
of Lemmas 4.1 and 4.2 in Lemma 4.4.

LEMMA 4.4. We have

max {Use(t)}N max {N(j)}.
0Ntl ljNg

To prove Theorem 4.2 it suces to show that (max, {N(j)}) dl/ + H.
LEMMA 4.5. e slot occupancies N(j)- H are Poisson-distributed with mean n/ m,

where n (g + 1) is the average number of items inserted into the hash table of m f
slots.

The rest of the proof proceeds analogously as for Theorem 4.1.
The proof of Theorem 4.3 is more complicated and is omitted for brevity. It uses

the techniques developed in [9]. We bound (maxo,{Use(t)-Size(t)}) using
Lemma 4.3 and an application of ChernoWs bound, which in turn gives us a bound
for (max,o, { Use(t)}-maxo, {Size(t)}), as desired.. Celsis. We have developed two probabilistic methods that are useful for
the analysis of the distribution of the maximum size of data structures. We get the
asymptotic value of the expected maximum of Size(t) and Use(t) for several different
combinatorial and probabilistic models of inseion and deletion. This solves the open
problems from 14], 11 ], and [9] as well as a longstanding open problem from queueing
theory.

In our first method we isolate the primary contribution to the maximum and
bound the lesser effects. Our second technique, which we use for a continuous model,
takes advantage of the close connections between the model and its discrete analog,
namely, the maximum slot occupancy in hashing. These methods can be used to get
estimates of second-order terms and higher moments of the expected maximum, as
well as estimates of the shape of the distribution of the maximum. The techniques also
appear directly applicable to the study of the maximum size of other dynamic data
structures, such as quad trees, k-d trees, and radix-exchange tries.
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