
Text Compression via Alphabet Re-Representation

(extended abstract)

Philip M. Long� Apostol I. Natsevy Je�rey Scott Vittery

Abstract

We consider re-representing the alphabet so that a representation of a character

reects its properties as a predictor of future text. This enables us to use an estimator
from a restricted class to map contexts to predictions of upcoming characters. We

describe an algorithm that uses this idea in conjunction with neural networks. The

performance of this implementation is compared to other compression methods, such
as UNIX compress, gzip, PPMC, and an alternative neural network approach.

1 Introduction

In this paper, we describe a new avenue for improving the compressibility of text. The main
idea is that changing the representation of the alphabet may prove bene�cial for various
text processing tasks, including compression.

The current state-of-the-art methods for compression such as PPM [1, 3] generally work
in two stages: �rst they try to estimate the probability distribution of the next character
in the given context, and then they entropy-code it using the predicted probabilities. Since
the second step (e.g., a statistical arithmetic coding) is provably optimal with respect to
the guessed distribution, we focus our attention on the �rst step.

Current methods do not consider geometric information for prediction purposes. For
instance, both letters p and s tend to predict the letter h (there are many words containing
the sequences ph and sh). The letter q, however, tends to precede the letter u rather
than h, and yet in the English alphabet (and in the ASCII code tables) p is closer to q than
it is to s. Intuitively, any given character is endowed with the number of \features" that
a�ect what might be coming next. Examples of features include whether the character is
alphabetic and whether it is a consonant. This leads us to build a (multidimensional) re-
representation of the ASCII characters. One property that is intuitively desirable of such a
re-representation is that characters that tend to precede the same characters are close under
the new representation. That property would ensure that small changes in the contexts lead
to small changes in the probability distributions, and we can restrict ourselves to considering
only the class of such smooth transitions. Since neural networks are known to be good at
learning and generalization of smooth data, they may be able to make predictions with
higher con�dence than the traditional methods.

For a given context length, PPM does not impose any a priori (i.e., before encoding
starts) constraint, implicit or explicit, on the function from previous characters to the

�Department of Information Systems and Computer Science, National University of Singapore, Singapore
119260, Republic of Singapore, plong@iscs.nus.sg. Supported by National University of Singapore Academic
Research Fund Grant RP960625. Some of the work reported in this paper was done while this author was
at Duke University supported by ONR grant N00014{94{1{0938 and AFOSR grant F49620{92{J0515.

yComputer Science Department, Duke University, Durham, NC 27708, fnatsev, jsvg@cs.duke.edu. Sup-
port was provided in part by Air Force O�ce of Scienti�c Research, Air Force Material Command, USAF,
under grants F49620{92{J{0515 and F49620{94{1{0217, and by an associate membership of the third author
in CESDIS.

probability distribution on the current character. A neural network biases itself toward
smooth functions; thus convergence of statistics is faster if this bias turns out to be justi�ed.
Our re-representation is aimed at making this true.

2 Algorithm PSM

The proposed algorithm, which we have named PSM (Prediction by Smooth Mapping), is
summarized below:

1. Compute an alphabet re-representation (a pre-processing step done o�-line). This step
doesn't have a match in PPM-like methods, and the purpose of its introduction here
is to facilitate Step 2.

2. Model the probability distribution of the next character given a certain context. This
step is similar to the probability modeling step of PPM methods, the only di�erence
being that it is done by a neural network in an attempt to e�ciently capture the
smoothness promised by the previous step.

3. Use a statistical (arithmetic) coder to get the �nal output stream. This step is exactly
the same as in PPM. Special care is taken when the neural network's prediction is very
poor and the probability of the next character is practically zero. If that happens, a
special escape symbol is transmitted and the next character is encoded with a uniform
distribution.

We propose to construct the re-representation while taking into account its e�ect on
the resulting compression algorithm. We achieve this by viewing the re-representation as
a neural network layer (closest to the inputs) from contexts to probability distributions.
By specifying the right error-criteria to the neural network we can make sure that we have
optimized everything with respect to our primary goal|minimizing the number of output
bits required to encode a �le. In Section 4, we derive a training update rule that performs
gradient ascent on the log-likelihood.

The �rst two steps are therefore combined into a single feed-forward multi-layer back-
propagation neural network of a particular architecture (see Section 3 for the speci�cs).
The �rst layer of weights corresponds to the re-representation, while the rest of the net-
work corresponds to the probability modeling. The network is trained o�-line over a large
set of training data, and then the weights that correspond to the new re-representation
are �xed. After training, we operate on the assumption that a good re-representation is
already computed and we thus have a smooth mapping from the context domain to the
probability distribution domain. In this sense, we can treat the �rst layer of the network
as a re-representation layer that pre-processes the input (essentially via a table look-up)
before it passes it on to the rest of the network. Since Step 1 is done only once|during
training|we need to perform only Steps 2 and 3 when we actually process a �le on-line.

3 Algorithm Implementation

Our network takes as an input the current context, and outputs a number between 0 and 1
for each letter in the alphabet. These numbers are normalized so that they add up to 1,
and so the result is the probability distribution of the next character given the particular
context. Then, a statistical coder, such as arithmetic coding, uses all the probabilities to
encode the actual character that appears next, and the error of the network is propagated
back to the lower levels (the output corresponding to the actual encoded character gets 1
as a target value to be propagated, and all other outputs receive a target of 0). Since

0

d
h

0

0

255

C 1

255

0

C 2

0

d

255

0

C n

h

0

0

d
h

0

1 P 1

0 P0

255 255P

Figure 1: Architecture of the neural network demonstrating weight partitioning/blending.
Parameters include: context size n, feature space dimensionality d, hidden chunk factor h.

the decoder has access to the same information the encoder uses for encoding (the context
has already been decoded), it can decode the next character successfully, and update the
weights of its equivalent neural net. Therefore, the network need not be transmitted.

Figure 1 illustrates the particular architecture of our neural network. The input layer
consists of n groups of 256 input nodes each (the alphabet size can actually vary), where
n is the context size. Each group of 256 nodes encodes exactly one character|the one
that appears some k places back from the current point in the input string. For example,
suppose we have the string testing as input, and we have just read the second t. If the
context size of our model is three, the context will be est, and each of the characters e, s,
and t will be encoded by a separate group of 256 input nodes. In the case of the letter e
for example, all but the 101st node will be zero, the 101st node being 1 because the ASCII
code of the character e is 101. The input consists of 256n nodes, all but n of which are 0.

Similarly to the input layer, the �rst hidden layer consists of n groups as well but each
one has d nodes, where the parameter d denotes the dimensionality of the feature space. The
weights between the �rst two layers correspond to the re-representation that we mentioned
in previous sections. Note that only a single node will be non-zero in each group of 256
input nodes (namely the one corresponding to the ASCII code of the character encoded by
that group). Therefore, the activation values in the kth group of nodes in the �rst hidden
layer actually corresponds to the d-dimensional embedding of the character that appears

k places in the text before the character that we are trying to predict. Every character in
the context is thus mapped to a d-dimensional vector, where each coe�cient reects the
extent to which that character has a certain hidden feature. Note also that the characters
have di�erent representations according to how far away they are from the character to be
predicted. Thus, this architecture allows us to capture the di�erent statistical properties
of characters as predictors of characters di�erent distances further in the �le. After the
network is trained, all weights (i.e., character embeddings) between the �rst two layers are
�xed so that retrieving a character's re-representation is essentially done via a look-up table.

The rest of the network is similar to traditional 3-layer networks. The presence of
an additional hidden layer is warranted by the necessity to be able to learn non-linearly-
separable functions, and the lack of further layers is motivated by our desire to restrict the
network size so that it can generalize better. The second hidden layer, then, consists again
of n groups, each containing h nodes and corresponding to a letter in the context. This
time, however, the separate groups are not mutually independent but are rather combined
in a blending fashion so that the ith group is fully interconnected with all but the �rst i�1
groups in the previous layer. This architecture is motivated by the ability to separate
the predictions that are generated by a higher order context model from those generated
by a lower order context model. This way, the nodes in the ith group of nodes in the
second hidden layer have the full information of an order-i model that uses contexts of
size up to i. The �nal probabilities are combined in the output layer so as to allow the
network to weigh the di�erent models in a di�erent way. The parameter h simply reects
the complexity required to capture the important characteristics of an order-k model. This
architecture resembles other statistical approaches such as PPM with blending, where the
di�erent models give separate estimates, which are then combined for the �nal prediction
in a weighted blending fashion. Finally, the output layer, as we mentioned before, consists
of 256 nodes, each corresponding to the probability that its character will be the next one
in the string. The size of the output layer is �xed to 256 nodes.

4 Neural Network Update

In this section we consider the design of our network and the derivation of the neural network
update for our application. We use a 4-layer feed-forward backpropagation neural network
with a sigmoidal activation function for all hidden nodes, and a normalized exponential
activation function for the outputs. The cost function is selected to maximize the log-
likelihood of the data given the network, and we argue that our speci�c choice of a cost
function is optimal for compression purposes.

4.1 Background on design issues

In this section we address some issues related to the design of neural networks (cf. [2]). Let
D = h~xi;~tii denote the observed data where ~xi is the ith input vector (i.e., the context),
and ~ti is the target vector (i.e., the character which appeared next). Let N be the neural
network that is designed to learn D. The usual Bayesian motivation leads us to maximize

lnP (D j N) = ln

 Y
i

P (h~xi;~tii j N)

!
=
X
i

lnP (~ti j ~xi ^N) +
X
i

lnP (~xi): (1)

Each P (~xi) does not depend on the network choice and can therefore be disregarded for
our purposes. At this point, in order to get an expression for an optimal cost function we
need to make some assumption about the type of the probability distribution P (~ti j ~xi^N).

In [2] Rumelhart, Durbin, Golden, and Chauvin consider the general family of distributions

P (~t j ~x ^N) = exp

 X
i

(ti� �B(�)) + C(~t�)

A(�)

!
; (2)

where � is related to the mean of the distribution, � is the overall variance, and the functions
A(), B(), and C() are speci�ed individually for each member of the family of distributions.
As it turns out, for any such distribution, we can derive a cost function E that maximizes the
log-likelihood term given by equation (1) so that its gradient with respect to the net input

at output node j is given by @E
@netj

/
tj�aj
var(aj)

: We can further choose an activation function

for the output nodes that cancels the variance term in the above expression so that the
gradient is always proportional only to the di�erence between the target values and the
actual output values of the network. The multinomial distribution is a special case of the
above family. The corresponding energy function is given by Emultinomial =

P
i

P
j tij lnaij ;

where index i ranges over the observations, and index j ranges over the output nodes. The
most appropriate activation function for the multinomial case is the normalized exponential
function. In [2], the authors argued that the multinomial case is most suitable when the
network is supposed to make 1-out-of-n classi�cation. In that case the output is treated as
a probability distribution, and the ith output node corresponds to the probability that the
pattern goes to the ith class. Since this is exactly the case in data compression applications
(we are trying to predict one letter from an alphabet of �xed size), for our purposes we use
the energy function given above along with the normalized exponential activation function
for the output nodes: aj = enetj=

P
k e

netk .
If we interpret the desired and the actual outputs as probability distributions over the

�xed alphabet, then the multinomial energy term is exactly the opposite of the number
of bits we would spend to encode the input string. In other words, if character �j has a
probability tij of occurring at the ith position in the text, and the neural network's estimate
of that true probability is aij, then the expected number of bits that need to be transmitted
to uniquely encode the ith character is equal to

P
j tij log

1
aij

= �
P

j tij log aij . When we

sum over the position i in the text, we obtain the total number of bits needed to encode the
input string. As we can see, the expression for the energy function we selected describes
exactly that quantity, up to a constant factor of � 1

ln 2
. Therefore, by maximizing the chosen

energy function, we are not only maximizing the log-likelihood of the data given the network
but we are also directly minimizing the total number of bits required to encode the data.

4.2 Derivation

Having chosen the architecture, the cost function, and the activation functions we move
on to derive the particular formulas used for updating the weights of the network during
training. While the general backpropagation model can be found in standard references such
as [4], we are not aware of references that derive it in the context of normalized exponential
outputs and entropy-like cost functions. Therefore, we include the full derivation here,
di�ering from the standard one mainly in equations (6){(8). We use gradient descent,
setting

wnew
ij = wij + �

@E

@wij

= wij + �
@E

@netj

@netj
@wij

= wij + �ai�j ; (3)

where wij is the weight between nodes i and j, � is the learning rate, netj =
P

k akwkj + bj
is the net input and bj is the bias at the jth node (the index k ranges over all the nodes in
the previous layer), and �j denotes the gradient with respect to the net input at node j.

If the jth node is a hidden unit, we express �j as follows:

�j =
@E

@netj
=

@E

@aj

@aj

@netj
=

@aj

@netj

X
k

@E

@netk

@netk
@aj

= S
0

j(netj)
X
k

�kwjk; (4)

where S
0

j(netj) denotes the derivative of the sigmoid activation function of the jth node
evaluated at the net input to the node, and the index k ranges over the nodes in the next
layer. This expression of �j for hidden nodes in terms of the precomputed �k values of the
nodes in the next layer forces us to work backwards. We �rst calculate the gradients at
the output nodes, and then backpropagate the error to the hidden nodes. Now, for the
derivative of the sigmoid function, we obtain the following expression:

S
0

j(netj) =

�
1

1 + e�netj

�0

=
1

1 + e�netj
�

�
1

1 + e�netj

�2

= aj � aj
2 = aj(1� aj); (5)

leading to the following �nal form for a hidden node's gradient: �j = aj(1� aj)
P

k �kwjk:
As we know from [2] our particular choice of an output activation function for our cost

function results in �j = tj � aj as the gradient at the jth output node. For complete-
ness purposes, however, we shall include the full derivation of that fact. The formula for
Emultinomial) tells us that the cost function is a summation of independent cost terms for
each observation. Theoretically, then, to obtain the true gradient we would need to con-
sider the cost over all observations, and then move in the optimal direction. However, for
convenience, at each iteration we shall consider the cost of that iteration only in order to
obtain the gradient. This modi�cation does not introduce a large error provided that we
use a su�ciently small learning rate, and take small steps in the direction of the gradient
after each observation. The cost function would then be E =

P
l tl lnal, where l ranges over

the output nodes; tl and al are the target and the actual activation values, respectively,
of node l. Note that for our purposes all tl terms will be 0 with a single exception, which
will be equal to 1. We can therefore notice that the cost function will actually be equal
to lnach, where ch is the index of the next character in the text. Again, it can be seen
that the cost function is the inverse of the number of bits one would spend to encode the
character ch (that number would be equal to � log ach = � E

ln 2
). We could take advantage

of that special form of our cost function to simplify things a little but we prefer to give the
derivation in the case of a general probability distribution target vector because it will work
in other applications as well. Thus, for output nodes we have �j = @E

@netj
=
P

k
@E
@ak

@ak
@netj

:

Furthermore,

@E

@ak
=

@ (
P

l tl lnal)

@ak
=

@ (tk lnak)

@ak
=

tk

ak
; (6)

@ak

@netj
=

@

�
enetkP
l
enetl

�
@netj

=

@enetk
@netj

P
l e

netl � enetk
@(
P

l
enetl)

@net
netj

(
P

l e
netl)2

=
[j = k]enetk

P
l e

netl � enetkenetj

(
P

l e
netl)2

=
enetkP
l e

netl

[j = k]
P

l e
netl � enetjP

l e
netl

= ak ([j = k]� aj) ; (7)

where the Boolean expression [j = k] evaluates to 1 if j is equal to k, and to 0 otherwise.
Now, plugging formulas (6) and (7) into the gradient term for output nodes we get

�j =
X
k

tk

ak
ak ([j = k]� aj) =

X
k

tk[k = j] �
X
k

tkaj = tj � aj
X
k

tk = tj � aj: (8)

The last equality follows from the fact that the tk terms make up a probability distribution
and therefore add up to 1. We have thus derived the formulas for the gradient with respect
to the net input of both output nodes and hidden nodes. After computing all the delta-
terms, we use equation (3) to update all the weights. This concludes the derivation of the
neural network model.

5 Setting Parameters

First of all, the learning rate used in the gradient descent weight-update is crucial during the
training phase. Furthermore, since in data compression applications the amount of training
data for the network is relatively large, our main factor in determining the learning rate
was not the optimal rate of convergence. This decision is motivated by the fact that, even
with a small learning rate, the network will eventually learn its function provided that it is
trained su�ciently long. Our main concern then was to make sure that the learning rate is
not too big so as to result in oscillation on the gradient curve after extensive training. We
have therefore used a decaying learning rate which was inversely proportional to the square
root of the iteration number. This is a somewhat standard practice that semi-automates
the process of learning rate adjustment, and we have adopted it for our application as well.

The other crucial parameters that a�ect the performance of the network are the ones
that control its size, namely, the context length n, the feature space dimensionality d, and
the \hidden chunk factor" h. For the context size we have used the values 5 and 10 because
studies have shown that contexts of size between those numbers are the ones most heavily
used for prediction purposes. The other two parameters d and h were estimated adaptively
by monitoring the performance of the network on the training set and increasing the values
of the two parameters whenever it appeared that the network converged to some local
minimum (i.e., the improvement over the past several iterations was not signi�cant). On
the one hand, values that are too small will result with a network that is not big enough
to learn the function we are modeling. On the other hand, values that are too large will
prompt too many degrees of freedom which will probably improve the learning step during
training but will certainly harm the generalization capabilities of the network (i.e., there will
be over�tting). Therefore, estimating the right network size is of paramount importance for
such applications. The neural net community has proposed several strategies for dealing
with the over�tting problem, and they are mainly of two types:

� learn conservatively, and expand the size only if you have to.

� expand freely until you get the best �t on the training data, and then prune the
network to improve generalization.

We have adopted the �rst approach for dealing with over�tting: �rst, by imposing a

priori structure on the network through blending and partitioning; and second, by doing
adaptive size adjustments through manipulating the d and h parameters during training.

6 Results and Discussion

We have run two sets of experiments to test our approach. The �rst set is identical to the
experiments reported in [5], where the authors propose a similar neural network approach

that consists of the same input/output structure but uses only one hidden layer. As reported
in [5], the number of hidden nodes used in their single hidden layer is 440, the context
size is 5, and the alphabet size is 80. The matching con�guration that we used had an
alphabet size of 256 so that it can handle even binary �les but all characters that were
predicted with essentially a zero probability were combined together and treated as a single
escape character. This way, the enlarged alphabet size does not hurt prediction but allows
generality at the cost of a somewhat higher complexity. We used the same context size of
�ve symbols, and the other parameters were eventually set to d = 50, and h = 30 (they were
estimated adaptively during the course of training). Thus, the parameter choice resulted
in a network with 1280 input nodes, 250 nodes in the �rst hidden layer, 150 nodes in the
second, and �nally 256 output nodes. However, since the weights between the �rst two layers
correspond to the re-representation and are �xed during on-line �le processing (i.e., they
are retrieved as a table look up), the network used for actual compression was essentially
a three-layer network with 250 input nodes, 150 hidden nodes, and 256 output nodes. The
training time for PSM was very slow, though the complexity of the network is lower than that
of the alternative neural network approach [5]. The learning rate used in the experiments
reported in [5] was �xed to 0.2 but for our approach we used a decaying learning rate which
started o� at 0.2. The training set consisted of 40 articles from the German newspaper
Munchner Merkur. Test set 1 consisted of additional 20 articles from the same newspaper,
and test set 2 consisted of 10 articles from a di�erent newspaper, Frankenpost, on which
the networks were not trained in advance. All of the �les in both the training and the test
sets were smaller than 20 kilobytes. The results of the experiment are shown in Table 1. As
can be seen from the results, our approach outperforms all other competitors, including the
state-of-the-art PPMC text compression algorithm. The compression improvement ranges
anywhere from about 15% (for PPMC and the other neural network approach) to more
than 50% (for pack and compress). Compress and gzip use Ziv-Lempel algorithms [7, 8, 6],
and are often used in practice due in part to their computational e�ciency.

Method's Average Compression Ratio (Variance)
Name Munchner Merkur Frankenpost Jack London

UNIX pack 1.74 (0.0002) 1.67 (0.0003) 1.78 (0.0001)
UNIX compress 1.99 (0.0014) 1.71 (0.0036) 2.45 (0.0060)
UNIX gzip -9 2.30 (0.0033) 2.05 (0.0097) 2.64 (0.0049)
PPMC method 2.70 (0.0069) 2.27 (0.0131) 3.54 (0.0984)
NN method in [5] 2.72 (0.0234) 2.20 (0.0112) |
PSM method 3.09 (0.0142) 2.61 (0.0047) 3.56 (0.0083)

Table 1: Compression performance of various methods on three test sets consisting of
newspaper articles from Munchner Merkur and Frankenpost, and of books by Jack London.

Since all the �les in the previous experiment were relatively short (i.e., < 20 kilobytes),
we designed a second experiment which uses longer �les. While the purpose of the �rst
experiment was to compare our approach with the alternative neural net approach proposed
in [5], in the second experiment we wanted to primarily test our method against PPMC,
which was at a disadvantage with the small �les used in experiment 1. As we expected,
PPMC performed competitively on the longer �les, yielding compression ratios of over 3.5.
The training set consisted of three books by Jack London totaling a little over 1 megabyte
(Sea Wolf, White Fang, and Call Of The Wild), and the test set consisted of three other
books (Son Of The Wolf, Iron Heel, and People Of The Abyss) by the same same author of
approximately the same size. Our experiments with a context size 5 failed to outperform
PPMC on these particular data sets, yielding compression ratios short of 3.5. However,

when we used a context length 10 and allowed the network to grow quite large (the size was
adaptively adjusted to the �nal parameter estimates of d = 45 and h = 40), the performance
of the network after 100 training iterations (with an initial learning rate of 0.3) actually
surpassed that of PPMC. The results from the second experiment are also given in Table 1.

In order to interpret the results in terms of the alphabet re-representation, we have
provided some plots of a particular re-representation obtained from training on the Jack
London book set. We have used the weights in between the �rst two layers that correspond
to the re-representation as described in Section 3, and we have shown only the 52 lower
case and upper case characters from the English alphabet. The original dimensionality
was 25 (that is, each character was mapped to a vector with 25 features). For visualization
purposes, however, we have shown only a 2-dimensional embedding which preserves the
original \distances" between pairs of characters as closely as possible. The algorithm used
to compute the embeddings, given a distance matrix, operates in the following way: it
positions an imaginary spring between each pair of characters so that the natural length
of the spring is proportional to the desired distance between the two objects. Thus, if the
objects are closer than desired, the spring will push them apart, and if they are too far
apart, the spring will pull them together. After all springs are in place, the system is let to
relax to an equilibrium state. This way, the algorithm preserves the similarity properties
of the objects regardless of the new dimensionality of the feature space. Figure 2(a) shows
the two-dimensional embedding of an order-1 re-representation (that is, only one character
is used as a context for predicting the next character). One can clearly see the separation
between lower-case and upper-case letters, as well as between vowels and consonants. We
would also like to point out again that the original re-representation has 25 features, rather
than 2, and is therefore much more expressive than can be visualized. Other features that
may not be so intuitive should also be present but are harder to identify and explain.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FE
A

T
U

R
E

 2

FEATURE 1

A

B

C
D

E

F

G

H

I

JK

L

M

N

O

P

Q

R

S

T

U

VW

X

Y

Z

a

b

c

d
e

f
g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w
x

y

z

(a) Two-dimensional embedding of an order-1
representation. Original dimensionality is 25.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

ABCDEFGHIGKLMNOPQRSTUVWXYZa b c d e f gh i gk lmnopq r s t uvwxy z

PR
O

B
A

B
IL

IT
Y

CHARACTER

D
L

(b) Probability distribution of the next character
given the contexts D and L.

Another way to measure the success of the computed re-representation is to compare
the probability distributions of the next character under two contexts that are mapped
very close to each other by the new re-representation. To illustrate, we computed the
distances between all pairs of characters under the new re-representation, and for each
character we considered only its closest character. In other words, we picked the closest
pairs of characters, and looked at the top few such pairs that corresponded to the smallest
distances. Figure 2(b) superimposes the two distributions of the next character given an
order-1 context of the letters D and L (the Euclidean distance between the 25-dimensional

embeddings of the two characters is 0.8512). From that graph we can easily see that the two
distributions are similar in that they share the same peaks, as well as similar probabilities
at those peaks. This means that the two contexts tend to isolate and predict the same
few characters with high probabilities, and so we have a good reason to believe that the
re-representation has been quite successful in accomplishing its task. This, by itself, is an
achievement that can be used in other applications for purposes other than text compression.

7 Conclusion and Future Work

The main contribution of this project is the introduction of a new re-representation approach
to the probability modeling step in data compression systems. The proposed technique is
an initial attempt to gather semantic information about the geometric structure of text and
to use it intelligently through the locality principle and neural networks.

The idea of imposing structure through re-representation proves advantageous in two im-
portant counts: it reduces time and space algorithm complexity (compared to the traditional
neural network approaches), and at the same time it facilitates learning and generalization,
thus providing better compression performance at a smaller cost.

Neural network algorithms are well known to be sensitive to parameters governing the
learning process. We have not gone to great lengths to optimize our neural network training
algorithm. The results obtained from our original attempts, together with the qualitative
information represented in Figures 2(a) and 2(b), are encouraging. Future work may include
a more thorough examination of some alternatives for the network's architecture, as well as
a further study of other settings of the parameters (including longer than order-10 contexts).

In addition, the proposed approach of alphabet re-representation may prove useful for
a variety of other problems. For instance, training the network on certain (known) types
of text and using it to test the compressibility of other texts of unknown origin may give
some insights about the texts' sources.

References

[1] Bell, T., Cleary, J.G., and Witten, I.H. Text Compression. Prentice Hall, 1990.

[2] Chauvin, Y., and Rumelhart, D. E. Backpropagation: Theory, Architectures, and

Applications. Lawrence Erlbaum Associates, Inc., 1995.

[3] Cleary, J.G., and Witten, I.H. Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communication 32 (1984), 396{402.

[4] Rumelhart, D., Hinton, D., and Williamson, R. Parallel Distributed Processing,

Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press, 1986.

[5] Schmidhuber, J., and Heil, S. Sequential neural text compression. IEEE Transac-

tions on Neural Networks 7, 1 (January 1996), 142{146.

[6] Welch, T.A. A technique for high performance data compression. Computer, (1984),
8{19.

[7] Ziv, J., and Lempel, A. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23 (1977), 337{343.

[8] Ziv, J., and Lempel, A. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24 (1978), 530{536.

