
Complexity Results on Learning by Neural Nets�

Jyh-Han Lin and Je�rey Scott Vitter

Department of Computer Science

Brown University

Providence, R. I. 02912{1910

Abstract

We consider the computational complexity of learning by neural nets. We are inter-

ested in how hard it is to design appropriate neural net architectures and to train

neural nets for general and specialized learning tasks. Our main result shows that

the training problem for 2-cascade neural nets (which have only two non-input nodes,

one of which is hidden) is NP-complete, which implies that �nding an optimal net

(in terms of the number of non-input units) that is consistent with a set of exam-

ples is also NP-complete. This result also demonstrates a surprising gap between the

computational complexities of one-node (perceptron) and two-node neural net training

problems, since the perceptron training problem can be solved in polynomial time by

linear programming techniques. We conjecture that training a k-cascade neural net,

which is a classical threshold network training problem, is also NP-complete, for each

�xed k � 2. We also show that the problem of �nding an optimal perceptron (in

terms of the number of non-zero weights) consistent with a set of training examples is

NP-hard.

Our neural net learning model encapsulates the idea of modular neural nets, which

is a popular approach to overcoming the scaling problem in training neural nets. We

investigate how much easier the training problem becomes if the class of concepts to

be learned is known a priori and the net architecture is allowed to be su�ciently

non-optimal. Finally, we classify several neural net optimization problems within the

polynomial-time hierarchy.

1 Introduction

Neural nets are often used to learn functions, in either a supervised or unsupervised mode.
They are enticing because in some instances they are self-programming, in that they can

�Support was provided in part by an NSF Presidential Young Investigator Award CCR{8906419 with

matching funds from IBM, by NSF research grant DCR{8403613, and by ONR grant N00014{83{K{0146,

ARPA Order No. 6320, Amendment 1. An earlier and shortened version of this research appeared in

Proceedings of the 2nd Annual ACM Workshop on Computational Learning Theory, Santa Cruz, CA, July{

August 1989, published by Morgan Kaufman Publishers, San Mateo, CA. The authors can be reached by

electronic mail at jhl@cs.brown.edu and jsv@cs.brown.edu, respectively. Correspondence can be addressed

to the second author.

1

2 THE NEURAL NET LEARNING MODEL 2

adjust their parameters by using general procedures based solely on examples of input-

output pairs. In this paper we consider the computational complexity of learning by neural

nets, building upon the work of Judd [1987, 1988], Blum and Rivest [1988], and Baum

and Haussler [1989]. We are interested in how hard it is to design appropriate neural net

architectures and to train neural nets for general and specialized learning tasks.

In the next section we introduce our neural net model and related de�nitions. Our main

result in Section 3 extends the work of Judd [1987, 1988] and Blum and Rivest [1988] and

further demonstrates the intractability of training nonmodular neural nets, as the problem

dimension or size gets large. We refer to this phenomenon as the scaling problem. For

Sections 4 and 5, we de�ne a modular (or hierarchical) neural net model that encapsulates

the idea of incremental design of large nets based on smaller subcomponent nets. Each

subcomponent is trained separately and then �xed while higher-level subcomponents are

trained (see, for example, [Weibel 1989], [Weibel and Hampshire 1989], and [Hinton 1989]).

This modular approach can help alleviate the scaling problem. One of our goals in this paper
is to determine to what extent the scaling problem is lessened.

We de�ne the size of a neural net or net architecture to be the number of non-input
nodes. Perceptrons, for example, have size 1. Most of our results are independent of this

particular de�nition of size. However, when relevant we also consider other size measures for
neural nets, such as the height, the number of edges, the number of nonzero weights, and
the number of bits in the representation.

In Section 3 we present our main result that the training problem for a simple two-node
completely unspeci�ed net architecture with only one hidden unit, called a 2-cascade neural

net, is NP-complete. Since the perceptron (one-node neural net) training problem can be
solved in polynomial time by linear programming techniques, this result demonstrates a
surprising gap between the computational complexities of one-node and two-node neural
net training problems. We conjecture that the training of k-cascade neural nets, which is a
well-known threshold network training problem (see, for example, [Dertouzos 1965]), is also

NP-complete, for each �xed k � 2. We also show that the problem of �nding an optimal
perceptron (in terms of the number of non-zero weights) consistent with a set of training
examples is NP-hard.

In Section 4 we investigate how hard it is to train a modular neural net for a set of exam-
ples when the neural net is constrained to be in some architecture for learning a particular

concept class. For the case of learning isothetic (that is, axis-parallel) rectangles, we show
that it is easier to train a neural net that is su�ciently non-optimal in size, so that there is

some \play" in setting its parameters. In the proces we introduce a general framework of
Occam nets. In Section 5 we state several modular neural net optimization problems. In the

appendix we show these problems to be NP-complete or NP-hard, and we classify them
more precisely within the polynomial-time hierarchy.

2 The Neural Net Learning Model

In this paper, we restrict ourselves to feedforward neural nets of linear threshold elements.

In particular, we are mainly concerned with neural nets for classi�cation tasks. The inputs
to the feedforward net will be from Xn, where X is either f0; 1g or <. The nets produce one

binary output.

2 THE NEURAL NET LEARNING MODEL 3

De�nition 1 A linear threshold unit fv = [~w; �] with input ~x is characterized by a weight

vector ~w and a threshold �:

fv(~x) =

(
1 if ~w � ~x � �;

0 otherwise.

For convenience, we identify the positive region de�ned by fv as fv and the negative region

as fv.

One of the main issues in neural net design is the problem of scaling: Is it feasible, within

limited resources and time, to build and train ever larger neural nets? By \train" we refer

to determining the weights of the linear threshold elements. The results of Judd [1987] and

Blum and Rivest [1988] and our results in Section 3 show for completely unspeci�ed neural

nets that scaling is intractable as the dimension and size gets large.

To overcome this problem of scaling, in the particular application of speech recognition,

Weibel and Hampshire [1989] adopt the approach of modular and incremental design of large
nets based on smaller subcomponent nets. The idea is to exploit the knowledge developed by
smaller, independently trained nets by �xing and incorporating these smaller net modules
into larger superstructures. It is hoped that this modular approach could not only reduce

training time but also lead to a more incremental and distributed approach to the construc-
tion of large-scale neural nets. Modular neural nets are gaining popularity in a variety of
applications; more information appears in [Weibel 1989], [Weibel and Hampshire 1989], and
[Hinton 1989]. We encapsulate these ideas in the following modular (or hierarchical) neural
net learning model, which we use in Sections 4 and 5:

De�nition 2 A modular (feedforward) neural net architecture F is a directed acyclic graph
G with n ordered designated input nodes and one output node. Nodes of G that are not
input nor output nodes are called hidden units. Each non-input node v in G has indegree(v)
inputs and is either associated with a linear threshold function fv with indegree(v) inputs

or is left unde�ned (denoted by ?). A neural net f is a neural net architecture with no
unde�ned nodes. We identify f with the function it represents and Comp(F) with the set
of functions computable by neural nets where each unde�ned node v in F is replaced by
some linear threshold function fv. The complexities or sizes of f and F , which we denote
jf j and jF j, are the numbers of non-input nodes in f and F , respectively.

De�nition 3 Training a net architecture with a set of training examples consists of deter-

mining the weights of the undetermined linear threshold elements such that the function it
computes is consistent with the training examples.

The classical perceptron is a neural net of size 1; it has no hidden units. Our de�ni-
tion allows us to \hardwire" parts of the net architecture, which we use to investigate the
computational complexities of modular neural net design and training problems. (Note that

we elect not to allow partially de�ned nodes.) In this paper we shall focus mainly on the

de�nition of size speci�ed above. Other possible size measures include height, number of
edges, number of nonzero weights, and number of bits in the representation. Except where

noted, our results are independent of the particular size measure used.

Let Dn = 2X
n

, we de�ne a concept class Cn � Dn to be a nonempty set of concepts.
Each individual concept c 2 Cn is a subset of domain Xn. For each c 2 Cn, we let size(c)

denote the length of the encoding of c in some �xed encoding. We de�ne Cn;s to be the

3 CASCADE NEURAL NETS AND OPTIMAL PERCEPTRONS 4

concept class of all concepts in Cn that have size at most s; hence, Cn =
S
s�1 Cn;s. A labeled

example for a concept c is a pair (x; label), where x 2 Xn and label is \+" if x 2 c and \�"

if x 62 c; we call (x;+) a positive example and (x;�) a negative example.

De�nition 4 We call a neural net architecture F optimal if for all F 0 such that Comp(F) �

Comp(F 0), we have jF j � jF 0j:We also call a neural net architecture F optimal for a concept

class Cn;s if Cn;s � Comp(F) and for all F 0 such that Cn;s � Comp(F 0) we have jF j � jF 0j.

3 Cascade Neural Nets and Optimal Perceptrons

In this section we present our main result, concerning the di�culty of training k-cascade

neural nets. We also investigate the computational complexity of optimizing the number of

non-zero weights in a one-node neural net (that is, the well known perceptron) so that it is

consistent with a set of training examples.

Judd [1987, 1988] shows that determining whether a neural net architecture can be
trained for a set of training examples is NP-complete. This is extended in [Blum and Rivest
1988] to a simple two-layer three-node architecture with two hidden units. In this section we
extend their result further to only two nodes by showing that the training problem is also
NP-complete for a 2-cascade neural net (with only one hidden unit). The node functions

are initially completely unspeci�ed.
First we consider the training problem where the net architecture is allowed to be fully

connected, and we want to minimize the number of non-input nodes. The following problem
formalizes the problem at hand:

OPTIMAL CONSISTENT NET
Instance: A set S of training examples and a positive integer K.
Question: Is there a neural net f consistent with S such that jf j � K?

This problem is clearly in NP. We show that this problem is NP-complete by showing
NP-completeness for the particular case K = 2 (2-CASCADE NEURAL NET TRAINING),

which we consider below.

A k-cascade neural net (see Figure 1), where k � 2, has k � 1 hidden units N1, N2,
: : : , Nk�1 and one output node Nk. All n inputs are boolean and are connected to nodes
N1, : : : , Nk. In addition, each Ni is connected to Ni+1; we designate the weight of this edge

by gi. Each node has n + 1 inputs except for N1, which has only n inputs. We adopt the

convention that gi is the last weight to Ni+1. Cascade neural nets are more powerful and
economical in terms of their size (the number of non-input nodes) than the class of layered

neural nets considered in [Blum and Rivest 1988] (see [Dertouzos [1965]).
Let us consider the following problem, for any �xed k � 2:

k-CASCADE NEURAL NET TRAINING
Instance: A set S = S+ [S� of training examples of n boolean inputs, where S+ is the set

of positive examples and S� is the set of negative examples.

Question: Is there a k-cascade neural net f consistent with all training examples?

We shall show that this problem is NP-complete for k = 2 by reducing the QUAD-

RANT problem to it. The QUADRANT problem asks if the positive examples S+ can be

3 CASCADE NEURAL NETS AND OPTIMAL PERCEPTRONS 5

Figure 1: Cascade neural net.

con�ned to a single quadrant, de�ned by the intersection of two halfspaces, with the negative
examples S� con�ned to the other three quadrants.

QUADRANT
Instance: A set S = S+ [S� of training examples of n boolean inputs, where S+ is the set

of positive examples and S� is the set of negative examples.

Question: Are there two halfspaces N1 and N2 such that S+ � N1 \N2 and S� � N1 [N2?

Theorem 1 [Blum and Rivest 1988] QUADRANT is NP-complete.

We use this to prove our main result:

Theorem 2 2-CASCADE NEURAL NET TRAINING is NP-complete.

Proof : Training a 2-cascade neural net is clearly in NP. To prove NP-hardness, we reduce

QUADRANT to it. Given a set of training examples S = S+ [S� for QUADRANT, we

add two new dimensions and create the following set of augmented examples T = T+ [T�

for training a 2-cascade neural net:

T+ = f~x00 j ~x 2 S+g [f~x11 j ~x 2 Sg;

T� = f~x00 j ~x 2 S�g [f~x01; ~x10 j ~x 2 Sg:

This is illustrated pictorially in Figure 2. The points ~x00 in the n-dimensional hypercube
on the �rst n dimensions retain their former sign.

The positive region induced by a 2-cascade net is bordered by a \zig-zag" of hyperplanes,
in which the two outer (semi-in�nite) hyperplanes are parallel. The basic idea of the proof is

that the extra two dimensions of the examples in T force one of the semi-in�nite hyperplanes

to \miss" the n-dimensional hypercube, so that there is a 2-cascade neural net f consistent
with T if and only if there is a quadrant solution to S.

3 CASCADE NEURAL NETS AND OPTIMAL PERCEPTRONS 6

Figure 2: Examples used to show that 2-CASCADE NEURAL NET TRAINING is NP-
complete.

(=)) Suppose the quadrant solution to S is

[~a; �1] ^ [~b; �2]:

We construct a 2-cascade neural net f consistent with T as follows:

N1 = [~a;�A� j�1j;�A� j�1j; �1];

N2 = [~b; 2B; 2B; 3B � �2; 3B];

where A >
Pn

i=1 jaij and B >
Pn

i=1 jbij. It is interesting to note that there is also a quadrant
solution to T :

[~a; 2A+ 2j�1j;�A� j�1j; �1] ^ [~b;�B � j�2j; 2B + 2j�2j; �2]:

This is surprising on �rst glance, given the second-half of the proof, immediately below.

((=) Suppose the 2-cascade neural net f consistent with T is as follows:

N1 = [~a;A1; A2; �1];

N2 = [~b;B1; B2; g1; �2]:

In the following, let

N2
N1=0 = [~b;B1; B2; �2];

N2
N1=1 = [~b;B1; B2; �2 � g1]:

3 CASCADE NEURAL NETS AND OPTIMAL PERCEPTRONS 7

Case 1. Suppose g1 � 0. This implies that all examples in N2
N1=0 are positive examples

and all examples not in N2
N1=1 are negative examples. Also note that all positive examples

belong either to N2
N1=0 or to N1 \ N2

N1=1. If for all ~x 2 S+ we have ~x00 2 N2
N1=0, then

clearly S is linearly separable and has a trivial quadrant solution:

[~b; �2] ^ [~b; �2]:

Otherwise, we claim for all ~x 2 S+ that

~x00 2 N1 \N2
N1=1:

Suppose there exists some ~y 2 S+ such that ~y00 2 N2
N1=0. There exists at least one example

~x 2 S+ such that ~x00 2 N1 \ N2
N1=1 but ~x00 62 N2

N1=0. Since ~y00 2 N2
N1=0 and since ~y01

and ~y10 are negative examples, we must have B1; B2 < 0 and ~y11 62 N2
N1=0. But ~y11 is a

positive example, and so ~y11 2 N1 \N2
N1=1. From B1; B2 < 0, we have ~y01; ~y10 2 N2

N1=1.
Since ~y01 and ~y10 are negative examples, it follows that ~y01; ~y10 62 N1 and A1; A2 > 0.

From the fact that ~x00 62 N2
N1=0 and B1; B2 < 0, we have ~x11 62 N2

N1=0. Since ~x11
is a positive example, we must have ~x11 2 N1 \ N2

N1=1. From B1; B2 < 0, we know that
~x01; ~x10 2 N2

N1=1. Since ~x00 2 N1 \ N2
N1=1 and A1; A2 > 0, it follows that ~x01; ~x10 2 N1.

Thus, we have to conclude that ~x01; ~x10 2 N1 \ N2
N1=1. But this implies that ~x01 and ~x10

are positive examples, a contradiction to our supposition that there exists some ~y 2 S+ such
that ~y00 2 N2

N1=0! This proves our claim and shows that the quadrant solution to S is

[~a; �1] ^ [~b; �2 � g1]:

Case 2. The case when g1 < 0 can be proved similarly, except the trivial quadrant
solution is

[~b; �2 � g1] ^ [~b; �2 � g1]:

Otherwise we claim for all ~x 2 S+ that

~x00 2 N1 \N2
N1=0:

This shows that the quadrant solution to S is

[�~a;��1 + �] ^ [~b; �2];

where 0 < � � min~x2S+f�1 � ~a~xg. 2

Corollary 1 The OPTIMAL CONSISTENT NET problem is NP-complete, even if the

inputs are boolean.

Proof : This result holds, even for the special case of K = 2, as a consequence of Theo-

rem 2. 2

Blum and Rivest [1988] have shown that the problem of whether S+ can be isolated

by two parallel planes is also NP-complete. Since our proof can be modi�ed to cover this
restricted case, we have also proved the following theorem:

3 CASCADE NEURAL NETS AND OPTIMAL PERCEPTRONS 8

Theorem 3 It is NP-complete to decide whether there is a restricted 2-cascade neural net f ,

in which the weight vector ~b of N2 is the negative of the weight vector ~a of N1, that is

consistent with a set of training examples.

Proof : The key modi�cation needed is as follows: Suppose the quadrant solution to S is

[~a; �1] ^ [�~a; �2]:

Since the inputs are binary vectors, we may assume without loss of generality that j�1j; j�2j �Pn
i=1 jaij. It is easy to see that the following restricted 2-cascade neural net is consistent

with T :

N1 = [~a;�2A;�2A; �1];

N2 = [�~a; 2A; 2A; 3A� �2; 3A];

where A >
Pn

i=1 jaij. 2

We are hopeful that our reduction for 2-cascade neural nets can be extended to handle

k-cascade neural nets, for each �xed k � 3, by adding new dimensions and creating an
augmented training set in a similar manner. We make the following conjecture:

Conjecture 1 Training a k-cascade neural net is NP-complete for each �xed k � 2.

Theorem 2 shows that the OPTIMUM CONSISTENT NET problem is NP-complete,
where the size of a net is de�ned to be the number of non-input nodes. We can show that
it remains NP-complete for the case of perceptrons when the size measure is the number of

non-zero weights:

OPTIMAL CONSISTENT PERCEPTRON
Instance: A set S of boolean training examples.
Problem: Construct a perceptron f = [~w; �] such that f is consistent with S and the number

of non-zero components in ~w is minimized.

Theorem 4 The OPTIMAL CONSISTENT PERCEPTRON problem is NP-hard.

Proof : Haussler [1988] has shown the problem of �nding the optimal monotone monomial
consistent with a set of training examples is NP-complete, which by duality implies that

the problem of �nding the optimal monotone pure disjunction is also NP-complete. We
shall abbreviate this latter problem as the OPTIMAL MONOTONE PURE DISJUNCTION
problem and reduce it to the OPTIMAL CONSISTENT PERCEPTRON problem via a

Turing reduction.

Let fv1; v2; : : : ; vng be the set of n boolean variables and let S be the training set. We
want to know if there exists a monotone pure disjunction with at most K unnegated vari-

ables that is consistent with S. First we check if there is any monotone pure disjunction
consistent with S, regardless of its size. This can be easily done in polynomial time with

the standard consistency algorithm (see, for example, [Vitter and Lin 1988]). If the answer

is \No," we return \No." Otherwise, let OptP be the searching algorithm for the OPTI-
MAL CONSISTENT PERCEPTRON problem, which takes a set S0 of training examples

as input and outputs an optimal perceptron f consistent with S0. We run the following
iterative decision algorithm OptMPD, which calls OptP as subroutine, to determine whether

(S;K) 2 OPTIMAL MONOTONE PURE DISJUNCTION:

3 CASCADE NEURAL NETS AND OPTIMAL PERCEPTRONS 9

Algorithm OptMPD

Input: A set S of training examples and a positive integer K.

Output: \Yes" or \No."

begin

S� S [f(~0;�); (~0k1;:::;kp;�)g;

S0 S�;

[~w; �] OptP (S0);

while ~w contains any negative component do

begin

S0 MarkO� (S0; ~w);

[~w; �] OptP(S0)

end;

if NonZero(~w) � K

then return \Yes";
else return \No"

end.

In the above algorithm ~0k1 ;:::;kp denotes the example all of whose components are 0, except
those at indices k1; : : : ; kp, which are 1. SubroutineMarkO� takes a set of examples S0 and a
weight vector ~w as input and returns a new set of examples by zeroing out the components of
each example corresponding to negative components in ~w. Given weight vector ~w, subroutine
NonZero counts the number of non-zero weights in ~w. We de�ne I = fk1; : : : ; kpg to be the

maximal set of indices such that for each kq 2 I there exists a negative example ~y with
~ykq = 1. We call a perceptron positive if all its weights and threshold are nonnegative.
Algorithm OptMPD forces OptP to output an optimal positive perceptron by

1. Including ~0 as a negative example to force � > 0. This can be done since the concept
class to be learned is monotone pure disjunctions.

2. Including the binary n-vector ~0k1 ;:::;kp, as a negative example. This can be done since
any monotone pure disjunction consistent with S has to classify ~0k1;:::;kp as a negative

example. The reason for this inclusion will be clear below.

3. Iteratively zeroing out the components of examples corresponding to negative weight

components. This procedure preserves consistency, in that at the end of each iter-

ation the monotone pure disjunctions consistent with S remain consistent with the

set of new examples, and vice versa. This follows because those example components

corresponding to negative weight components are useful only for the identi�cation of
negative examples and cannot be included in any monotone pure disjunctions that are
consistent with S.

We claim that OptMPD return \Yes" if and only if there exists a monotone pure dis-

junction consistent with S� (and, therefore, consistent with S) with at most K unnegated

variables. To see that this is true, we need the following lemma:

Lemma 1 Let f = [~w; �] be any optimal positive perceptron consistent with S�. By optimal

we mean that the number of nonzero components in ~w is minimum. Then for each ~wj > 0,

we have j 62 I.

4 NEURAL NETS AND THE VC DIMENSION 10

Proof : (By contradiction.) Let J be the set of indices of non-zero weight components.

Since we include ~0k1;:::;kp as a negative example, for each positive example ~x there must exist

j 2 J�I such that ~xj = 1. Thus, we may construct another perceptron f 0 = [~z; �] consistent

with S� as follows: Let W =
P

i2I ~wi. For all i 2 J�I, let ~zi = ~wi+W ; all other components

of ~z are 0s. Therefore, f is not optimal. Contradiction. 2

Continuation of the Proof of Theorem 4. Suppose that vi1 + : : : + vi` is a monotone pure

disjunction consistent with S, where ` � K. Then [~0i1;:::;i`; 1] is a consistent positive per-

ceptron. For the other direction, suppose that f = [~w; �] is an optimal positive perceptron

consistent with S with exactly k � K non-zero weights, and let the set of indices of non-zero

weights be J = fj1; : : : ; jkg. It is clear that g = vj1 + : : : + vjk is an optimal monotone

pure disjunction consistent with S: First, g has to include all positive examples since � > 0.

Secondly, g also excludes all negative examples by Lemma 1. Finally, g has to be optimal;

otherwise, f is not optimal, either. This proves our claim.
Finally, note that OptMPD runs in polynomial time if OptP is a polynomial-time search-

ing algorithm. Therefore, this is a polynomial-time reduction and the OPTIMAL CONSIS-
TENT PERCEPTRON problem is NP-hard. 2

The results in this section show that the training problem is inherently di�cult even
for simple 2-node neural nets. Furthermore, the training problem for perceptrons is also
computationally infeasible if the number of non-zero weights is to be minimized. In the
next section we investigate in a theoretical way possible restrictions for making the training

problem tractable.

4 Neural Nets and the VC Dimension

In typical real-world neural net design problems, we start with a set of training examples,
choose (or guess) an appropriate net architecture, and then use some procedure (such as
back propagation) to train the neural net (that is, to set the parameters of the net so that

we can correctly classify as many examples as possible). It is shown in [Baum and Haussler
1989] that if a large enough fraction of enough random examples (drawn independently from

an unknown distribution) can be loaded onto the neural net, then the net will \generalize"

in Valiant's sense [Valiant 1984] and probably answer future queries with low error. (By
\loaded," we mean that the example is correctly classi�ed by the fully speci�ed neural net.)

This learning framework is known as the probably approximately correct (or PAC) learning
model. In the following we adopt the PAC-learning model of Valiant [1984] and Blumer et

al [1989] and investigate how the complexity of modular training is a�ected by restricting
the problem's domain to learning a speci�c concept class.

A central concept of PAC-learning framework is the Vapnik-Chervonenkis dimension (VC
dimension) of concept classes. Intuitively, the VC dimension is a combinatorial measure of

the expressive power (or richness) of a concept class.

De�nition 5 Let Cn;s � Dn be a concept class. Given a set of nonlabeled examplesS � Xn,

we denote by �Cn;s(S) the set of all subsets P � S such that there is some concept c 2 Cn;s

for which P � c and (S � P) � c. If �Cn;s(S) = 2S , we say that S is shattered by Cn;s.

The Vapnik-Chervonenkis dimension (VC dimension) of Cn;s is the cardinality of the largest

4 NEURAL NETS AND THE VC DIMENSION 11

�nite set of examples that is shattered by Cn;s; it is in�nite if arbitrarily large sets can be

shattered.

We use log to denote the logarithm base 2 and ln to denote the natural logarithm.

The following corollary from [Baum and Haussler 1989] bounds the VC dimension of a net

architecture:

Corollary 2 Let F be a net architecture with s � 2 non-input nodes and E edges, then

VCdim(F) � 2(E + s) log(es);

where e is the base of natural logarithm.

Let Fs be a net architecture with s non-input nodes and with all possible edges; that is,

the s non-input nodes are numbered from 1 to s, and each noninput node has inputs from

the n input nodes and from all previous noninput nodes. Clearly, Comp(Fs) =
S
jf j�sffg.

The following lemma bounds the VC dimension of Fs.

Lemma 2 The VC dimension of Fs can be bounded as follows:

1. VCdim(F0) � log n,

2. VCdim(F1) = n+ 1,

3. VCdim(Fs) � s(2n+ s+ 1) log(es), for all s � 2.

Proof : Bounds 1 and 2 are straightforward. For bound 3, note that the number of edges
in Fs is ns + s(s� 1)=2. The proof then follows directly from Corollary 2. 2

The next lemma gives a general lower bound on the size of a net architecture that contains

some concept class:

Lemma 3 Let Cn;s be a concept class, where VCdim(Cn;s) � 2n, and let F be a net archi-

tecture such that Cn;s � Comp(F). We have

jF j =

0
@
vuutVCdim(Cn;s)

n

,
log

�
VCdim(Cn;s)

n

�1A :
Proof : The proof follows simply from Lemma 2 and the fact that VCdim(FjF j) �
VCdim(F) � VCdim(Cn;s). 2

It is not surprising that training is hard without any domain knowledge. In the following

we investigate how much easier the training problem becomes when the net architecture

is constrained for learning a particular concept class. In the problem statements of this
section, Cn;s is an implicitly known concept class (such as the union of s isothetic (that is,

axis-parallel) rectangles or symmetric boolean functions) and is not a part of the input.

NET ARCHITECTURE TRAINING

Instance: A set S of training examples for a concept from Cn;s and a modular neural net

architecture F for Cn;s (that is, Cn;s � Comp(F)).

4 NEURAL NETS AND THE VC DIMENSION 12

Figure 3: Net architecture for the unions of s isothetic rectangles.

Question: Is there some f 2 Comp(F) such that f is consistent with S?

One of the concept classes with wide application in both arti�cial intelligence and
database is the class of the unions of isothetic rectangles (see, for example, [Haussler 1988]).
We show the following:

Theorem 5 The NET ARCHITECTURE TRAINING problem is NP-complete if the con-

cept class Cn;s = Rs is the set of unions of s isothetic rectangles.

Proof : It is well known that it is NP-hard to decide if the minimum number of isothetic
rectangles needed to cover all positive training examples in the plane is less than or equal
to s (see [Masek 1978]). To solve this problem, we construct a modular three-layer net
architecture F as shown in Figure 3. The output node is hardwired to be the OR of the s
second-layer hidden units, which are all ANDs. Each AND has inputs from 4 hidden units
under it. Among these four hidden units, two have single inputs from x and the other two

have single inputs from y. There exists a neural net f 2 Comp(F) consistent with all training

examples if and only if the minimum number of isothetic rectangles needed is less than or
equal to s. 2

This theorem also gives a result similar to that in [Judd 1987] for our modular model

of net architecture. The reason why this problem is di�cult is that some net architectures

are harder to train than others. In practice, neural net researchers often design their nets
and net architectures to be slightly nonoptimal so as to allow some \play" in constructing
the weights during the training. In some cases, this approach makes the training problem

tractable. This approach motivates the following notion of Occam nets:

De�nition 6 Let F opt be an optimal net architecture for Cn;s. An (�; j; k)-Occam net

�nder A for Cn;s, where 0 � � < 1 and j; k � 0, is a polynomial-time algorithm that
maps each set of training examples S to some consistent Occam net f 2 Comp(Hn;s;jSj),

where Hn;s;jSj is a net architecture, such that VCdim(Hn;s;jSj) � jSj
�
njjF optjk.

4 NEURAL NETS AND THE VC DIMENSION 13

By modifying the analysis of [Blumer et al 1989] we obtain the following theorem:

Theorem 6 If there is an (�; j; k)-Occam net �nder A for Cn;s, where 0 � � < 1 and

j; k � 0, and if the number S of random examples satis�es

jSj � max

(
4

�
log

2

�
;

�
8njjF optjk

�
log

13

�

�1=(1��))
;

where F opt is an optimal net architecture for Cn;s, then A is a PAC-learning algorithm and

the neural net f is its output hypothesis. That is, with probability at least 1 � �, the neural

net f will predict correctly at least a fraction 1 � � of future random examples drawn from

the same distribution.

Proof : The proof is a simple application of Theorem 3.2.1 in [Blumer et al 89]. 2

The following lemma allows us to bound the VC dimension of an Occam net architecture

in terms of the size measure of a concept class Cn;s instead of the size of the optimal net

architecture containing Cn;s:

Lemma 4 If jF optj =
(s�) for some � > 0, then the upper bound on VCdim(Hn;s;jSj) in

De�nition 6 can be replaced by jSj
�
njsk, and jF optjk in Theorem 6 can be replaced by sk.

The next theorem shows an example of Occam net �nders:

Theorem 7 There is an (�; j; k)-Occam net �nder for the the concept class Cn;s = Rs of

the set of unions of s isothetic rectangles.

Proof : There is a well-known simple greedy algorithm for Rs, which is optimal within a
relative factor of ln jSj + 1 (see, for example, [Blumer et al 89]). The output of the greedy
algorithm can be easily transformed into a neural net f 2 Comp(Hs;jSj), where Hs;jSj is a

net architecture of size O(s log jSj) and with O(s log jSj) edges. From Corollary 2 we have

VCdim(Hs;jSj) = O((s log jSj)(log s+ log log jSj)):

Clearly, VCdim(Rs) =
(s). From Lemma 3, we have jF optj =
(
q
s= log s): Thus, from

Lemma 4 there is an (�; j; k)-Occam net �nder for Rs. 2

By Theorem 3.2.4 in [Blumer et al 1989], we may generalize Theorem 7 and prove the

following:

Theorem 8 Let C be a concept class with �nite VC dimension d, let Cs = f
Ss
i=1 ci j ci 2 C;

1 � i � sg. If there exists a polynomial-time net �nder for C, then there also exists an

(�; j; k)-Occam net �nder for Cs.

Proof : Since the VC dimension of C is �nite, we may assume that the size of neural nets
returned by the polynomial-time net �nder is also �nite. The union operation can be im-

plemented with a single threshold element. The rest of the proof follows immediately from
Theorem 3.2.4 in [Blumer et al 1989]. 2

The results in this section suggest that it is sometimes easier to train non-optimal neu-
ral nets than optimal ones. This observation agrees with experimental results reported in

[Rumelhart et al 1986] that the training time can usually be reduced by increasing the num-

ber of hidden units. (In [Rumelhart et al 1986] hidden units compute di�erentiable functions;

in this paper we consider threshold functions.)

5 NEURAL NET OPTIMIZATION PROBLEMS 14

5 Neural Net Optimization Problems

We show in this section the infeasibility of comparing the power of di�erent modular neural

net architectures or even just answering whether the function performed by one neural net

can be realized by another modular neural net architecture. These results are interesting for

the following reasons:

1. Learning is impossible unless the function to be learned is realizable by the net archi-

tecture. This imposes a lower bound on the size of a net architecture.

2. But as the size of the net architecture gets larger, the training problem gets more

complex. The resulting computational constraints put an upper bound on architecture

size.

We formalize the related problems as follows. The �rst problem ask if the given neural
net outputs anything other than 0.

NON-ZERO NET
Instance: A neural net f .
Question: Is f 6= 0?

The next problem asks if two given nets di�er on some input?

NET INEQUIVALENCE
Instance: Neural nets f1 and f2.
Question: Is f1 6= f2?

OPTIMAL EQUIVALENT NET
Instance: Neural net f and positive integer K.
Question: Is there a neural net f 0 such that f 0 = f and jf 0j � K?

The next problem deals with determining if a neural net is optimal.

NET MEMBERSHIP
Instance: Neural net f and neural net architecture F .
Question: Is f 2 Comp(F).

The next problem asks if a given net architecture realizes some function that the other

does not?

NET ARCHITECTURE NONCONTAINMENT
Instance: Neural net architectures F1 and F2.
Question: Is Comp(F1) 6� Comp(F2)?

The next problem asks if two given net architectures are not equivalent.

NET ARCHITECTURE INEQUIVALENCE
Instance: Neural net architectures F1 and F2.

Question: Is Comp(F1) 6= Comp(F2)?

The next problem deals with determining if a given net architecture is optimal.

6 CONCLUSIONS 15

OPTIMAL NET ARCHITECTURE

Instance: Neural net architecture F and positive integer K.

Question: Is there a neural net architecture F 0 such that Comp(F 0) � Comp(F) and

jF 0j � K?

In the appendix we show that the above problems are all NP-complete or NP-hard,

and we classify their computational complexities more precisely within the polynomial-time

hierarchy.

6 Conclusions

Neural nets o�er the potential of learning a wide variety of concepts in a simple, uniform way.

To fully evaluate their potential, we must determine how di�cult it is to construct a neural

net that learns a particular class of concepts as a function of the concept complexity, the size

of the net architecture, and so on. Our results indicate that, without any domain-speci�c
knowledge, the training problem is in general infeasible, even for concepts representable by a
very simple 2-node neural net with only one hidden unit. On the other hand, if the concept
class to be learned is known a priori and the net architecture is appropriately sized and
properly interconnected, sometimes the training problem can be much easier (perhaps by a
specialized learning algorithm).

Back propagation [Rumelhart et al 1986] [Hinton 1989] is a method for self-programming
neural nets with di�erentiable node functions. Experiments by Rumelhart et al [1986] show
that back propagation works better given non-optimal rather than optimal net architectures.
It would be interesting to extend our model and show this property theoretically.

Acknowledgments. We thank the referees for several helpful comments and suggestions.

6 CONCLUSIONS 16

Appendix

The problems de�ned in Section 5 are all NP-hard. An interesting theoretical goal is to

classify these NP-hard problems in the polynomial-time hierarchy [Stockmeyer 1977] [Garey

and Johnson 1979]:

�p
0 = �p

0 = �p
0 = P;

and for k � 0,

�p
k+1 = NP(�p

k);

�
p
k+1 = co-NP(�

p
k);

�p
k+1 = P(�p

k):

The class P (A) consists of all problems that can be solved in P with an oracle for A.

Problems at each level of the hierarchy are at least as hard as (and are generally believed to

be harder than) those at the preceding level. A natural complete set for �p
k is the set Bk of

true boolean formulas with k alternating quanti�ers.
The computational complexities of the problems in Section 5 are summarized in the

following theorem:

Theorem 9 The problems de�ned in Section 5 can be classi�ed as follows:

1. The NON-ZERO NET problem is NP-complete.

2. The NET INEQUIVALENCE problem is NP-complete.

3. The OPTIMAL EQUIVALENT NET problem is in �p
2 and is NP-hard.

4. The NET MEMBERSHIP problem is �p
2-complete.

5. NET ARCHITECTURE NONCONTAINMENT is in �p
3 and is �p

2-hard.

6. The NET ARCHITECTURE INEQUIVALENCE problem is in �p
3 and is �p

2-hard.

7. The OPTIMAL NET ARCHITECTURE problem is in �p
3 and is NP-hard.

We shall use the following theorem from [Stockmeyer and Meyer 1973] and [Wrathall 1977]
to establish the upper bounds for the Theorem 9:

Theorem 10 Let L � �� be a language. For any k � 1, L 2 �p
k if and only if there exist

polynomials p1; : : : ; pk and a polynomial time recognizable relation R of dimension k + 1

over �� such that for all x 2 �� we have x 2 L if and only if

(9y1)(8y2) : : : (Qyk) [hx; y1; : : : ; yki 2 R] ;

where jyij � pi(jxj) and Q is \ 9" if k is odd and \ 8" if k is even. Dually, for any k � 1,
L 2 �p

k if and only if we have x 2 L if and only if

(8y1)(9y2) : : : (Qyk) [hx; y1; : : : ; yki 2 R] ;

where jyij � pi(jxj) and Q is \ 8" if k is odd and \ 9" if k is even.

6 CONCLUSIONS 17

Figure 4: Net architecture for the NET MEMBERSHIP problem.

Proof of Theorem 9:

1. The NON-ZERO NET problem is clearly in NP. To prove completeness, we reduce
SATISFIABILITY to this problem. Given a boolean formula �, we construct a neural
net f� simulating �. Clearly, � is satis�able if and only if f� is a non-zero net.

2. The NET INEQUIVALENCE problem is NP-complete since it contains the NON-
ZERO NET problem as a special case.

3. The upper bound for the OPTIMAL EQUIVALENT NET problem follows from the

fact that (f;K) 2 OPTIMAL EQUIVALENT NET if and only if

(9f 0)(8~x) [jf 0j � K and f 0(~x) = f(~x)] :

The NP-hardness is obtained by reducing NON-ZERO NET to this problem. Give

an instance f of NON-ZERO NET, we construct a neural net z _ f , where z is a new

variable. Now f 6= 0 if and only if

(z _ f; 0) 62 OPTIMAL EQUIVALENT NET:

4. The upper bound for the NET MEMBERSHIP problem follows from the fact that

f 2 Comp(F) if and only if

(9f 0 2 Comp(F))(8~x) [f 0(~x) = f(~x)] :

6 CONCLUSIONS 18

Figure 5: Neural net architecture for F1 [F2. Note that the constant 1 can be implemented
as x+ x.

To establish the lower bound, we reduce B2 QBF SATISFIABILITY to this problem.
Given an instance of B2 formula (9~x)(8~y)B(~x; ~y), we construct a net architecture FB

as shown in Figure 4. Now the given B2 QBF formula is satis�able if and only if
1 2 Comp(FB). This result does not depend on the particular size measure used.

5. The upper bound for the NET ARCHITECTURE NONCONTAINMENT problem
follows from the fact that Comp(F1) 6� Comp(F2) if and only if

(9f1 2 Comp(F1))(8f2 2 Comp(F2))(9~x) [f1(~x) 6= f2(~x)] :

We reduce the NET MEMBERSHIP problem, which is �
p
2-complete, to this problem.

This is easy to see since f 2 F if and only if it is not the case that f 6� F .

6. The upper bound for the NET ARCHITECTURE INEQUIVALENCE problem follows

from the fact that Comp(F1) 6= Comp(F2) if and only if

Comp(F1) 6� Comp(F2) or Comp(F2) 6� Comp(F1):

We reduce the NET ARCHITECTURE NONCONTAINMENT problem, which is �p
2-

hard, to this problem. We can construct a net architecture that computes exactly
Comp(F1) [Comp(F2) by the construction illustrated in Figure 5. The proof follows

from the fact that Comp(F1) 6� Comp(F2) if and only if Comp(F1) [Comp(F2) 6=

Comp(F2).

7. The upper bound for the OPTIMAL NET ARCHITECTURE problem is established

by the fact that (F;K) 2 OPTIMAL NET ARCHITECTURE if and only if

(8f 2 Comp(F))(9f 0 2 Comp(FK))(8~x) [f(~x) = f 0(~x)] ;

6 CONCLUSIONS 19

where FK is de�ned as in Section 4. This problem is NP-hard since it contains the

OPTIMAL EQUIVALENT NET problem, which is NP-hard as shown above, as a

special case. This result is also independent of the particular size measure used.

2

References

E. Baum and D. Haussler [1989]. \What Size Net Gives Valid Generalization?", Neural Computa-
tion, 1(2) (1989), 151{160.

A. Blum and R. L. Rivest [1988]. \Training a 3-Node Neural Network isNP-Complete," Proceedings
of the First ACM Workshop on the Computational Learning Theory, Cambridge, MA (August
1988), 9{18.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth [1989]. \Learnability and the Vapnik-
Chervonenkis Dimension," Journal of the Association for Computing Machinery, 36(4) (October
1989), 929{965.

M. L. Dertouzos [1965].Threshold Logic: A Synthesis Approach,MIT Press, Cambridge, MA (1965).

M. R. Garey and D. S. Johnson [1979]. Computers and intractability: A Guide to the Theory of

NP-completeness, W. H. Freeman and Co., San Francisco, CA (1979).

D. Haussler [1988]. \Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning
Framework," Arti�cial Intelligence, 36 (1988), 177{221.

G. E. Hinton [1989]. \Connectionist Learning Procedures," Arti�cial Intelligence, 40 (1989), 185{
234.

J. S. Judd [1987]. \Complexity of Connectionist Learning with Various Node Functions," COINS
Technical Report No. 87{60, University of Massachusetts (July 1987).

J. S. Judd [1988]. \On the Complexity of Loading Shallow Neural Networks," Journal of Complexity,
4 (1988), 177{192.

W. J. Masek [1978]. \Some NP-Complete Set Cover Problems," MIT Laboratory for Computer
Science, unpublished manuscript.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams [1986]. \Learning Internal Representations by
Error Propagation," Parallel Distributed Processing, edited by D. E. Rumelhart and J. E. McClel-
land, MIT Press, Cambridge, MA (1986), 318{362.

L. J. Stockmeyer [1977]. \The Polynomial-Time Hierarchy," Theoretical Computer Science, 3
(1977), 1{22.

L. J. Stockmeyer and A. R. Meyer [1973]. \Word Problems Requiring Exponential Time: Prelim-
inary Report," Proceedings of the Fifth Annual Symposium on the Theory of Computing (1973),
1{9.

L. G. Valiant [1984]. \A Theory of the Learnable," Communications of the ACM, 27(11) (November
1984), 1134{1142.

A. Weibel [1989]. \Modular Construction of Time-Delay Neural Networks for Speech Recognition,"
Neural Computation, 1 (1989), 39{46.

A. Weibel and J. Hampshire [1989]. \Building Blocks for Speech," Byte, August 1989, 235{242.

C. Wrathall [1977]. \Complete Sets and the Polynomial-Time Hierarchy," Theoretical Computer

Science, 3 (1977), 23{33.

