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Abstract

In this paper we present approximation algorithms for median problems in

metric spaces and �xed-dimensional Euclidean space. Our algorithms use a new

method for transforming an optimal solution of the linear program relaxation

of the s-median problem into a provably good integral solution. This transfor-

mation technique is fundamentally di�erent from the methods of randomized

and deterministic rounding [Rag, RaT] and the methods proposed in [LiV] in

the following way: Previous techniques never set variables with zero values in

the fractional solution to 1. This departure from previous methods is crucial

for the success of our algorithms.
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1 Introduction

Let us consider a complete (directed or undirected) graph G = (V;E) on n vertices,

with vertex set V = f1; . . . ; ng, edge set E � V � V , and nonnegative distance cij
associated with edges. We refer to (cij) as the distance matrix. Given a bound D > 0,

the goal of the (discrete) median problem is to choose vertices as medians so that the

sum of distances from each vertex to its nearest median is no more than D and the

number of medians chosen is minimized.1

In this paper, we present approximation algorithms for the median problem when

the vertices are embedded in metric spaces. That is, we have cii = 0, cij = cji, and

the triangle inequality cij � cij0 + cj0j. The main results are stated in the following

two theorems, which will be proven in Sections 2 and 3, respectively:

Theorem 1 There exists a deterministic approximation algorithm for the median

problem in metric spaces that, given any � > 0, outputs a median set U satisfying

X
j2V

min
i2U

cij � 2(1 + 1=�)D (1)

and

jU j < (1 + �)s; (2)

where s is the optimal size of median sets with a total distance at most D.

The greedy approximation algorithm in [LiV] gives a better cost bound using more

medians; the right-hand sides of 1 and 2 are replaced by (1+1=�)D and (1 + �)s(lnn+

1), respectively. Theorem 1 shows that we can trade o� a factor of 2 in the bound on

cumulative distance in order to the bound on the number of medians by a logarithmic

factor. Furthermore, tradeo�s are available for �xed-dimensional Euclidean spaces:

Theorem 2 Let d � 2 be �xed positive integer. There exists a deterministic ap-

proximation algorithm for the median problem in d-dimensional Euclidean space that,

given any � > 0 and any integer � � 1, outputs a median set U satisfying

X
j2V

min
i2U

cij � (1 + 1=�)(1 + 1=�)D

and

jU j < (2�� 1)d(1 + �)s;

where s is the optimal size of median sets with a total distance at most D.

1Note that the median problem is distinctly di�erent from the s-center problem of choosing s cen-
ters that minimize the worst-case distance from each vertex to its nearest center. For approximation
algorithms for the s-center problem, we refer the readers to [FeG, Gon, HoS]
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The transformation technique used for the proofs of Theorems 1 and 2 is funda-

mentally di�erent from those of randomized and deterministic rounding [Rag, RaT]

and the methods proposed in [LiV]. The previous techniques never set variables with

zero values in the fractional solution to 1. Our algorithms, on the other hand, may

set 0-valued variables to 1. This departure from previous methods is crucial for the

success of our algorithms.

We show in [LiV] that the number of medians cannot be approximated within

better than logarithmic factors without violating the bound on total distance, unless

the dominating set and set cover problems can be approximated within better than

logarithmic factors.

2 Metric Spaces

In this section we give the proof of Theorem 1. The median problem can be formulated

as a 0-1 integer linear program of minimizing

nX
j=1

yj (3)

subject to

nX
i=1

nX
j=1

cijxij � D (4)

nX
j=1

xij = 1; i = 1; . . . ; n; (5)

xij � yj; i; j = 1; . . . ; n; (6)

xij; yj 2 f0; 1g; i; j = 1; . . . ; n; (7)

where yj = 1 if and only if j is chosen as a median, xij = 1 if and only if yj = 1 and i

is assigned to j, and D > 0 is a given bound on the total distance.

Our merging algorithm for the median problem works as follows:

Algorithm M

1. Solve the linear program relaxation by linear programming techniques [Kar,

Kha]; denote the fractional solution by by; bx.
2. For each i, compute bCi =

P
j2V cij bxij.

3. Given � > 0, for each vertex i, the neighborhood Vi of vertex i consists of all ver-

tices j such that cij � (1+1=�) bCi. A vertex j is in the extended neighborhood Vi

of vertex i if and only if one of the following rules holds:

(R1) cij � (1 + 1=�) bCi, that is, vertex j is in the neighborbood Vi of vertex i.
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Figure 1: A vertex j is in the extended neighborhood Vi of vertex i if and only if

j 2 Vi or Vi \ Vj 6= ;:

(R2) There exists a vertex j 0 such that cij0 � (1+1=�) bCi and cjj0 � (1+1=�) bCj,

that is, Vi \ Vj 6= ;:

This construction is illustrated in Figure 1.

4. Sort the collection of sets fVigi2V by bCi in nondecreasing order.

5. Choose a set Vi with smallest bCi and delete any set Vj such that j 2 Vi. Repeat

this process until no sets remain.

6. Let the median set U consist of all vertices whose extended neighborhood Vj

are chosen in Step 5.

The proof of Theorem 1 follows from the following lemmas:

Lemma 1 (Symmetry) For each Vi, if j 2 Vi then i 2 Vj.
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Proof : By the de�nition of Vi, there are two cases.

Case 1: cij � (1 + 1=�) bCi. Since cjj = 0, by (R2) we have i 2 Vj.

Case 2: Otherwise, there exists a vertex j 0 such that cij0 � (1 + 1=�) bCi and cjj0 �

(1 + 1=�) bCj. We have i 2 Vj immediately by symmetry and (R2).

2

Lemma 2 Let Vi and Vj be two distinct sets selected by Algorithm M in Step 5. Then

we have Vi \ Vj = ;.

Proof : (By contradiction.) Suppose that there exists j 0 such that j 0 2 Vi\Vj . Without

loss of generality, we assume Vi is selected before Vj. Since cij0 � (1 + 1=�) bCi and

cjj0 � (1 + 1=�) bCj, by (R2) we must have j 2 Vi. Hence, Algorithm M will delete Vj

after the selection of Vi, which is a contradiction. 2

Lemma 3 Let U 0 be a set of medians. If for all j 0 such that byj0 > 0, we have j 0 2 Vi

for some i 2 U 0, then
S

i2U 0 Vi = V .

Proof : For each j, there exists at least one byj0 > 0 such that cjj0 � bCj. Since

cij0 � (1 + 1=�) bCi for some i 2 U 0, by the de�nition of Vi we have j 2 Vi. 2

Lemma 4 For each j, let V i(j) be the �rst set selected by Algorithm M such that

j 2 V i(j), then we have bCi(j) � bCj.

Proof : (By contradiction.) Suppose that bCj <
bCi(j). There are two cases, both of

which lead to contradiction.

Case 1: Vj is selected by Algorithm M before V i(j). By Lemma 1, we have i(j) 2

Vj. Hence, we conclude that V i(j) must have been deleted already, which is a

contradiction.

Case 2: Otherwise, since V i(j) is the �rst set containing j, then immediately before the

selection of V i(j), Vj has not yet been deleted by AlgorithmM . This implies V i(j)

cannot be the next set selected by AlgorithmM , which is again a contradiction.

2

Lemma 5 For each j, let V i(j) be the �rst set selected by Algorithm M such that

j 2 V i(j). Then we have cji(j) � 2(1 + 1=�) bCj.

Proof : There are three cases.

Case 1: If j = i(j) then cji(j) = 0.

Case 2: If ci(j)j � (1 + 1=�) bCi then cji(j) = ci(j)j � (1 + 1=�) bCj by symmetry and

Lemma 4.
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Case 3: Otherwise, we must have ci(j)j0 � (1 + 1=�) bCi(j) and cjj0 � (1 + 1=�) bCj for

some j 0 2 Vi(j). By symmetry and the triangle inequality, we have

cji(j) � cjj0 + cj0i(j) � (1 + 1=�) bCj + (1 + 1=�) bCi(j) � 2(1 + 1=�) bCj:

The last inequality follows from Lemma 4.

2

Lemma 6 For each i 2 V and � > 0, we have

X
j2Vi

byj � X
j2Vi

bxij > �

1 + �
;

where Vi is the neighborhood of vertex i.

Proof : Suppose
P

j2Vi
bxij � �=(1 + �). Then

bCi =
X
j2V

cij bxij
�

X
j 62Vi

cij bxij
> (1 + �) bC i

X
j 62Vi

bxij

� (1 + �) bC i

�
1�

�

1 + �

�

= bCi;

which is a contradiction. 2

We now prove Theorem 1. By Lemma 6, for each set Vi selected, the sum of

the fractional medians in Vi is greater than 1=(1 + �). Lemma 2 implies that each

fractional median is covered at most once by some Vi throughout the execution of

Algorithm M . Therefore, by Lemma 3 the number of sets (medians) selected is less

than
s

1=(1 + �)
= (1 + �)s:

By Lemma 5 we have

X
j2V

min
i2U

cij � 2(1 + 1=�)
X
j2V

bCj � 2(1 + 1=�)D:

3 Fixed-Dimensional Euclidean Spaces

In this section we give the proof of Theorem 2. Let vertex i be a median selected by

Algorithm M and let Vi;� � Vi be a subset of vertices such that a vertex j 2 Vi is in

Vi;� if and only if bCj � � bCi.
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Since Vi;� is bounded by a ball of diameter 2�(1+1=�) bCi in d-dimensional Euclidean

space, there exists a median set Ui of size at most (2�� 1)d such that for all j 2 Vi;�

we have

min
`2Ui

cj` � (1 + 1=�) bCi:

For each j 2 Vi � Vi;�, there exists j
0 2 Vi;� such that cjj0 � (1 + 1=�) bCj. Therefore,

we have

min
`2Ui

cj` � cjj0 +min
`2Ui

cj0` � (1 + 1=�) bCj + (1 + 1=�) bCi:

Since bCj > � bC i, we have

min
`2Ui

cj` < (1 + 1=�) bCj +
1

�
(1 + 1=�) bCj = (1 + 1=�)(1 + 1=�) bCj:

The rest of the proof follows by replacing each median i selected by AlgorithmM

by the median set Ui (packing).

4 Conclusions

One interesting long-standing open problem about the Euclidean median problem is

the worst-case ratio between the total distance of an optimal integral solution and

the total distance of an optimal fractional solution. The results of this paper is a step

toward that goal.
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