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Abstract

We present new vector quantization algorithms based on the theory devel-

oped in [LiV]. The new approach is to formulate a vector quantization problem

as a 0-1 integer linear program. We �rst solve its relaxed linear program by

linear programming techniques. Then we transform the linear program solu-

tion into a provably good solution for the vector quantization problem. These

methods lead to the �rst known polynomial-time full-search vector quanti-

zation codebook design algorithm and tree pruning algorithm with provable

worst-case performance guarantees. We also introduce the notion of pseudo-

random pruned tree-structured vector quantizers. Initial experimental results

on image compression are very encouraging.

1 Introduction

A full-search vector quantizer partitions a signal space into regions each of which

is represented by a representative vector [Ger, GeG, Gra]. In full-search vector

quantization, the distortion between an input vector and each representative vector
(codeword) in an unstructured codebook is computed. The input vector is then
represented by the index of the codeword with minimum distortion. On the other

hand, a tree-structured vector quantizer partitions a signal space into a hierarchy of

regions. An input vector is quantized by traversing a root-to-leaf path in the tree.
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The goal of vector quantization is good data compression. The design of the

codebook is a central issue in vector quantizer performance. The methods for code-

book design usually involve the use of a training sequence. The training sequence is a

collection of sample signal from the source to be coded. The most popular algorithm

for full-search codebook design is the generalized Lloyd algorithm [GKL, LBG], an

iterative clustering descent algorithm that produces a locally optimal codebook with

respect to a training sequence. For tree-structured codebook, Chou, Lookabaugh,

and Gray [CLG] propose a tree pruning heuristic based on the BFOS algorithm [BFO]

in which a given initial tree is pruned back according to certain optimization crite-

rion. Their heuristic traces the lower convex hull of the distortion-rate function and

the �nal pruned subtrees are optimal for their rates. However, if there is no point

(pruned subtree) on the lower convex hull at a desired rate, it requires time-sharing

between two neighboring points (pruned subtrees). Lin, Storer, and Cohn [LSC]

show that the tree pruning problem is NP-hard in general.1

In this paper, we propose a new approach for codebook design based on linear
programming. We demonstrate our methods by presenting the �rst known approxi-
mation algorithms with worst-case performance guarantees for a full-search codebook
design problem and the tree pruning problem. An algorithm that may not lead to

the optimal result is called an approximation algorithm. We are interested in approx-
imation algorithms with guaranteed performance, in which we can prove that the
solution they produce is not too far from the optimal solution. We remark that in
practice, approximation algorithms may perform much better than their performance
guarantees suggest.

Many NP-hard optimization problems can be formulated as integer linear pro-
grams. One of the most important strategies for obtaining provably good approxi-
mation algorithms to an integer program is to drop the integrality constraints, solve
the resulting linear programming problem,2 and then round the solution to an inte-

gral solution. Much work along this line has been done, for example [Chv, Lov, Rag,
RaT]. In [LiV], we build on previous work and propose new transformation methods
for obtaining provably good solutions from linear program relaxation of a type of 0-1
optimization problems. These methods can be applied to codebook design problems.

In Section 2, we present a greedy full-search codebook formation algorithm. We
discuss possible extensions of our algorithm for dealing with rates of codebooks and
for designing k-nearest-neighbor vector quantization codebooks. Section 3 deals with

the tree pruning problem and introduces the notion of pseudo-random pruned tree-

structured vector quantizers. Initial experimental results on image compression are

reported in Section 4. Section 5 concludes with further discussions.

1On the other hand, Lin, Storer, and Cohn also show that the tree pruning problem can be solved

in polynomial time if the trees are binary and the cost constraint is the number of leaves. Our

approximate tree pruning algorithm works for general trees and applies to other cost constraints,

such as the average path length and the leaf entropy.
2The linear programming problem can be solved in polynomial time by the ellipsoid algo-

rithm [Kha] or by the interior point method [Kar]. In practice, the simplex method [Dan] has

been proven to be very e�cient, although its worst case performance is not polynomial.
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2 Full-Search Vector Quantization

In this section, we present an approximation algorithm for the (discrete) full-

search (vector quantization) codebook design problem. We denote the signal space

by (X; dX ), where dX is a metric on X. Let S = ft1; . . . ; tng be a set of training

signal data (training vectors) and let s be a given bound on the size of codebooks.

The goal is to select a subset U 2 S of s training vectors as codewords such that

the mean squared error 1
n

Pn
i=1mintj2U d

2
X(ti; tj) is minimized. We remark that our

algorithm also works for other distortion measures. The full-search codebook design

problem can be formulated as an integer program of minimizing

1

n

nX
i=1

nX
j=1

d2X(ti; tj)xij (1)

subject to
nX

j=1

xij = 1; i = 1; . . . ; n; (2)

nX
j=1

yj � s; (3)

xij � yj; i; j = 1; . . . ; n; (4)

xij; yj 2 f0; 1g; i; j = 1; . . . ; n; (5)

where yj = 1 if and only if tj is chosen as a codeword, and xij = 1 if and only if
yj = 1 and ti is quantized as codeword tj.

The linear program relaxation of the above program is to allow yj and xij to
take rational values between 0 and 1. Clearly, the optimal fractional solution (linear
program solution) is a lower bound on the solutions of the full-search codebook
design problem.

The NP-hardness result in [Pap] can be easily modi�ed to show that the full-

search codebook design problem is NP-hard.

2.1 A Greedy Codebook Formation Algorithm

The following is the greedy codebook formation algorithm:

1. Solve the linear program relaxation of the full-search codebook design problem

by linear programming techniques; denote the fractional solution by by; bx.
2. For each i, compute cDi =

Pn
j=1 d

2
X(ti; tj)bxij. Given � > 0, for each j such that

byj > 0, construct a set Sj. A vector ti is in Sj if and only if d
2
X(ti; tj) � (1+�)cDi.

3. Apply the greedy set covering algorithm [Chv, Joh, Lov]: Choose the set which

covers the most uncovered vectors. Repeat this process until all vectors are
covered. Let U be the set of indices of sets chosen by the greedy heuristic.

Output U = ftjgj2U as the codebook.3

3The codebook can be further improved by the generalized Lloyd algorithm.
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By the results in [LiV], we have the following application:

Corollary 1 Given any � > 0, the greedy codebook formation algorithm outputs a

codebook U of size at most (1 + 1=�)s(lnn+ 1) such that 1
n

Pn
i=1mintj2U d

2
X(ti; tj) �

(1+ �)cD � (1+ �)D, where cD is the mean squared error of the optimal fractional so-

lution for the full-search codebook design problem and D is the optimal mean squared

error of codebooks of size at most s.

2.2 Extensions

2.2.1 Dealing with Rates

If the bound is on the rate of the codebook rather than on the codebook size, we may

apply entropy-coding methods to the codebook produced by the greedy codebook

formation algorithm. Alternatively, given a bound R on the rate of codebooks, we

may formulate the codebook formation problem as a nonlinear program of minimizing

1

n

nX
i=1

nX
j=1

d2X(ti; tj)xij (6)

subject to

nX
j=1

xij = 1; i = 1; . . . ; n; (7)

1

n

nX
i=1

xij = pj ; j = 1; . . . ; n; (8)

nX
j=1

pj log
1

pj
� R; (9)

xij � yj; i; j = 1; . . . ; n; (10)

xij; yj 2 f0; 1g; i; j = 1; . . . ; n; (11)

where yj = 1 if and only if tj is chosen as a codeword, xij = 1 if and only if

yj = 1 and ti is quantized as codeword tj, and pj is the relative frequency of training

vectors quantized as tj. In this case, heuristics may be needed to solve the nonlinear
program.

2.2.2 k-Nearest-Neighbor Vector Quantization

In traditional vector quantization, an input vector is quantized as its nearest code-

word in the codebook. In the k-nearest-neighbor vector quantization, an input vector

is quantized as the weighted average of its k-nearest codewords in the codebook. In
the context of image compression, this mapping may have the e�ect of smoothing

images and preventing distracting blockiness.

Given a sequence of training vectors t1; t2; . . . ; tn and a bound s on the codebook

size, the k-nearest-neighbor (vector quantization) codebook design problem is to select

4



a subset U of s training vectors as codewords such that the mean squared error

minimized. Our greedy codebook formation algorithm can be adapted for solving the

k-nearest-neighbor codebook design problem with similar performance guarantees.

3 Tree-Structured Vector Quantization

The computational advantage of tree-structured vector quantizers (TSVQ) over full-

search quantizers is that the mapping from a vector to a quantization bin can be done

quickly by tree traversal. Tree-structured vector quantizers also have a distinguished

\successive approximation" and \graceful degradation" character.

In this section we present an approximate tree pruning algorithm. Besides pruned

tree-structured vector quantization (PTSVQ), the tree pruning problem has many

other applications such as regression trees, decision trees, and computer graph-

ics [BFO, CLG]. Our notations in this section follow that of [CLG].
A tree T is a �nite set of nodes, t0; t1; . . . ; tn, with a unique root node t0. The

set of leaves of a tree T is denoted by eT . A subtree S of tree T is a tree rooted at
some node root(S) 2 T and the following condition holds: For each internal node t
of T , if any of the children of t is in S, then all of children of t must be in S as well.

The leaves eS of a subtree S are not necessarily a subset of eT ; the leaves of S may be
the internal nodes of T . If eS � eT , then S is called a branch of T and is denoted by
Troot(S). For t 6= t0, we denote the parent node of t as parent(t). For t 2 T � eT , let
children(t) be the set of children for node t. We de�ne path(t) as the set of nodes,
including t, from t0 leading to t. We call a subtree S of T a pruned subtree and write

S � T if the root of S is t0.

De�nition 1 Let u(t) � 0 be an arbitrary function on the nodes of T . A linear tree

functional u on subtrees is:

u(S) =
X
et2eS

u(et):

Let �u(S) = u(S)� u(root(S)). A tree functional u is monotonic nondecreasing if
and only if for any subtree S of T , we have �u(S) � 0. Similarly, u is monotonic

nonincreasing if and only if �u(S) � 0 for any subtree S of T .

Let C be a monotonic nondecreasing tree functional and D be a monotonic

nonincreasing tree functional. We call C the cost functional and D the distortion

functional. For example, in vector quantization, we have the following setting:

Let P be a probability function such that P (t0) = 1 and for all t 2 T � eT , we
have P (t) =

P
t02children(t) P (t

0). Let d be a distortion function on nodes satisfying

P (t)d(t) �
P

t02children(t) P (t
0)d(t0). Usually we let D(S) be the average distortion

of subtrees. Possible de�nitions for C(S) include the average path length, the leaf
entropy, or the number of leaves.

Given a tree T and a bound C on the cost, the tree pruning problem is to �nd

a pruned subtree S of T such that C(S) � C and D(S) is minimized. We may

formulate the tree pruning problem as an integer linear program as follows: For each
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node t 2 T , let xt be a decision variable such that xt = 1 if and only if node t is

a leaf in the �nal pruned subtree, xt = 0 otherwise. The integer linear program for

the optimal tree pruning problem is to minimize the cost
X
t2T

xtD(t) (12)

subject to
X

t2path(et)
xt = 1; et 2 eT; (13)

X
t2T

xtC(t) � C; (14)

xt 2 f0; 1g; t 2 T: (15)

Lin, Storer, and Cohn [LSC] show that, in general, the tree pruning problem is

NP-hard. Therefore, we have to use heuristics in practice [BFO, CLG].

3.1 Approximate Tree Pruning

The following is an outline of the approximate tree pruning algorithm:

1. Solve the linear program relaxation of the tree pruning problem by linear pro-
gramming techniques; denote the fractional solution by bx.

2. Given � > 0, in a top-down and breadth-�rst fashion, we prune the tree at any
node t where

P
t02path(t) bxt0 � 1=(1 + �).

The results in [LiV] imply the following:

Corollary 2 Given any � > 0, the approximate tree pruning algorithm outputs a

pruned subtree S satisfying C(S) � (1 + 1=�)C and D(S) � (1 + �)cD � (1 + �)D,

where cD is the distortion of the optimal fractional solution for the tree pruning

problem and D is the optimal distortion of pruned subtrees with cost at most C.

3.2 Pseudo-Random PTSVQ

In this section we introduce a new kind of vector quantizers called pseudo-random

pruned tree-structured vector quantizers (pseudo-random PTSVQ). We �rst de�ne
a more general notion of probability search trees. Probability search trees are an
interesting interpretation of the fractional solution of the integer linear program for

the tree pruning problem.

De�nition 2 A probability search tree bT = (T; q) is a tree T with augmented proba-

bility function q on tree nodes, which satis�es
P

t2path(et) q(t) = 1, for all et 2 eT . Let us
de�ne Q(t) = 1�

P
t02path(t) q(t

0). A search along a path through node t will continue

at node t, assuming the search reaches node t, with probability Q(t)=Q(parent(t)).

We may see Q(t) as the probability that the search passes through node t and q(t)

as the probability that the search stops at node t.
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We can extend tree functionals to probability search trees in the following way:

De�nition 3 Let bT = (T; q) be a probability search tree. Given a linear tree func-

tional u, we de�ne the probability tree functional u� on subtrees as

u�(S) =
X

t2S�eS
q(t)u(t) +

X
et2eS

Q(parent(et))u(et);

and we de�ne �u�(S) = u�(S) � u�(root(S)). A probability tree functional u� is

monotonic nondecreasing if and only if for any subtree S of T , we have �u(S) � 0.

Similarly, u� is monotonic nonincreasing if and only if �u(S) � 0 for any subtree S

of T .

The results in [LiV] imply the following monotonic properties of probability tree

functionals:

Corollary 3 If a linear tree functional u is monotonic nondecreasing (nonincreas-

ing), then the probability tree functional u� is also monotonic nondecreasing (nonin-

creasing).

We can interpret an optimal fractional solution bx as an augmented probability

function q by setting q(t) = bxt. The resulting probability search tree can be used
as a pseudo-random PTSVQ, which statistically has the potential of outperforming
the optimal PTSVQ in terms of the average path length:

Corollary 4 Let bT = (T; q) be a probability search tree with q(t) = bxt, where bx is an

optimal fractional solution for the tree pruning problem, and let C(S) be the average
path length of subtrees. Then we have C�( bT ) � C and D�( bT ) = cD � D, where cD is

the distortion of the optimal fractional solution for the tree pruning problem and D

is the optimal distortion of pruned subtrees with cost at most C.

In pseudo-random PTSVQ, the encoder and decoder use the same pseudo-random
number generator for making stopping decisions. For encoding, the encoder selects
a random seed r for the pseudo-random number generator and then encodes each

input vector as a path according to the search procedure for probability search trees.

The random seed r is transmitted along with the binary sequence. For decoding,
the decoder uses the same random seed r and traverses the tree according to the
encoded binary sequence and the search procedure for probability search trees.

4 Experimental Results

4.1 Full-Search Vector Quantization

The solution of linear programs dominates the time and memory requirement of

the greedy codebook formation algorithm. The number of variables in the linear

program is O(n2) and the number of constraints is also O(n2). A straightforward
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implementation of the simplex method for linear programming requires O(n4) space.

By the decomposition technique in [GNR], the space requirement can be reduced

to O(n2). Unfortunately, for image compression, the number of training vectors can

be in the order of 106. Therefore, it may require gigabytes of memory to solve the

linear program. Currently we are studying ways for reducing the space requirement

and for speeding up the linear programming.

Initial experimental results with hundreds of training vectors show that the

greedy algorithm terminates with optimal solutions regularly. That is, with � = 1,

often the codebook size is exactly s and the mean squared error is exactly cD.

4.2 Tree-Structured Vector Quantization

The number of variables in the linear program for the tree pruning problem is O(n)

and the number of constraints is also O(n). The space requirement is thereforeO(n2).

In fact, the number of nonzero entries in the constraint matrix is only O(n log n),

and the space requirement can be greatly reduced by sparse-matrix techniques.
We used the USC database for our experiments. The test image was the well-

known Lenna image. The code vectors were 4 � 4 pixel blocks. The average rate
is the average path length of trees. A complete TSVQ of length 12 was designed
using the training sequence. PTSVQs of average rate 0; 1; . . . ; 12 were obtained by

the approximate tree pruning algorithm. (We solved the linear programs by the
Stanford MINOS package.) We also constructed a series of pseudo-random PTSVQs
from the fractional solutions for the linear programs. The resulting peak signal-to-
noise ratio (PSNR), which is de�ned as

10 log10
(peak input amplitude)2

MSE
;

for each vector quantizer is plotted against its rate in Figure 1.
The results indicate that the performances of PTSVQs and pseudo-random

PTSVQs are very similar. Compared with similar experiments by Riskin in [Ris],
our approximate tree pruning algorithm performs at least as well as the general-

ized BFOS algorithm, although we use a di�erent initial tree. We also note that the

PSNRs can be further improved by predictive coding techniques as indicated in [Ris].

5 Conclusions

In this paper, we propose a new approach for vector quantization codebook design

problems. Our method is to formulate a codebook design problem as a 0-1 integer
linear program. We �rst solve its linear program relaxation and then transform the

fractional solution to a provably good 0-1 solution. The codebook design problems we
look into include a full-search codebook formation problem and the tree-structured

vector quantizer pruning problem.

Initial experimental results indicate that our approximation algorithms perform
much better in practice than their (worst-case) performance guarantees suggest. The
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Figure 1: PSNR vs. Average Rate: USC database. The PTSVQs are obtained by the
approximate tree pruning algorithm. The pseudo-random PTSVQs are constructed

from the fractional solutions for the linear programs.

approximation algorithm for forming full-search codebook may not be practical at
this moment due to the huge size of linear programs. On the other hand, the linear
programs used by the approximate tree pruning algorithm are of moderate size and

can be solved e�ciently.

It is of interest to apply our approach to other problems related to vector quan-
tization and data compression in general.
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