
On-Line Selectivity Estimation for XML Path

Expressions using Markov Histograms

Lipyeow Lim a,∗,1 Min Wang b Sriram Padmanabhan b,2

Jeffrey Scott Vitter a,3 Ronald Parr a

a Duke University, Dept. of Computer Science, Durham, NC 27708, USA.
b IBM Thomas J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY

10532, USA.

Abstract

The extensible mark-up language (XML) is gaining widespread use as a format
for data exchange and storage on the World Wide Web. Queries over XML data
require accurate selectivity estimation of path expressions in order to optimize query
execution plans. Selectivity estimation of XML path expression is usually done based
on summary statistics about the structure of the underlying XML repository. All
previous methods require an off-line scan of the XML repository to collect the
statistics. In this paper, we propose XPathLearner 4 , a method for estimating
selectivity of the most commonly used types of path expressions without looking
at the XML data. XPathLearner gathers and refines the required statistics using
query feedback in an on-line manner and is especially suited to queries in Internet
scale applications since the underlying XML repository is either inaccessible or too
large to be scanned in its entirety. Besides the on-line property, our method also
has two other novel features: (a) XPathLearner is workload aware in collecting
the statistics and thus can be more accurate than the more costly off-line method
under tight memory constraints, and (b) XPathLearner automatically adjusts the
statistics using query feedback when the underlying XML data change. We show
empirically the estimation accuracy of our method using the XMark synthetic data
set and several real data sets.

Key words: XML, Query Processing, Query Optimization

4 An earlier version of this work appeared in VLDB 2002.

Preprint submitted to Elsevier Science 15 March 2005

1 Introduction

The extensible mark-up language (XML) [3] is becoming ubiquitous as a data
exchange and storage format. Almost all commercial RDBMSs include some
support for XML data; other systems such as Xyleme [22], Niagara [15] and
Lore [9] are specially designed to store and query XML data on the web.

Consider an example query expressed in the XQuery language taken from the
XQuery specification [5]:

FOR $b IN document("*")//book

WHERE $b/publisher = "Morgan Kaufmann"

AND $b/year = "1998"

RETURN $b/title

This query finds the titles of all books published by Morgan Kaufmann in
the year 1998. For the example data shown in Figure 1, it returns the book
title “Cooking”. The XQuery function document("*") indicates that all XML
documents in the repository should be searched for the path //book [8].

Efficient query processing over XML data requires accurate estimation of the
selectivities of the path expressions contained in the query. For example, for
the query above, we need to know the selectivities of the path expressions
//book/publisher="Morgan Kaufmann", //book/year="1998" and
//book/title in optimizing the query execution plan. In RDBMSs that sup-
port XML data, these selectivities are used to evaluate the cost of different
join plans. In systems that use a tree-like data model (e.g., [9]), these selectiv-
ities are used to evaluate the cost of different search and traversal plans [14].
In both scenarios, estimating selectivities of path expressions is essential to
XML query optimization and the efficiency of the query processing is highly
dependent upon the accuracy of the estimation.

The most commonly used path expressions in XML queries can be classified
into three types. Path expressions consisting of tags only (e.g., //book/title)
are called simple path expressions. Path expressions ending in a data value

∗ Corresponding Author.
Email addresses: liplim@us.ibm.com (Lipyeow Lim), min@us.ibm.com (Min

Wang), srp@us.ibm.com (Sriram Padmanabhan), jsv@purdue.edu (Jeffrey Scott
Vitter), parr@cs.duke.edu (Ronald Parr).
1 Present address: IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532, USA. , Tel: 1-914-784-6156, Fax: 1-914-784-7455.
2 Present address: IBM Silicon Valley Laboratory, 555 Bailey Ave., San Jose, CA
95141, USA. .
3 Present address: Purdue University, 150 N. University Street, West Lafayette,
IN 47907 USA. .

2

year

author
title

book book

DBLP

article
title

author

year

title

author

author

year

publisher

publisher

Springer

1999

Tim

Art Cooking

Jim

Tim

1998

Morgan Kaufmann

2000

John

DBMS

Fig. 1. An example XML data tree. Tag names are in bold and data values are in
italics.

(e.g., //book/year="1998") are called single-value path expressions. The XML
specification also allows multiple tag-value bindings in a path (e.g.,
//chapter="2"/section="3"). We call such path expressions multi-value path
expressions.

Selectivity estimation of XML path expressions is usually done at query opti-
mization time using statistics about the structure of the XML data. The main
challenges in collecting and storing these statistics are as follows:

• How to obtain the structure of the XML data? All previous work scans
the entire XML repository in an off-line manner [1,14]. However, off-line
scans are often not possible or feasible in Internet-scale applications since
Internet-scale repositories are either inaccessible or too large to be scanned
entirely.
• How to capture the statistics for the selectivities of different types of XML

path expressions using a small amount of memory? State-of-the-art tech-
niques proposed in [1,6] are unsatisfactory either because they are limited
to the selectivity of simple path expressions only [1] or they are not space
efficient [6].
• How to use the limited storage space in the most effective way? Ideally,

more storage resource should be spent on storing the statistics that are
relevant to the most frequently queried portions of the XML repository. All
previous work are oblivious to workload distribution and consequently waste
precious storage space in storing statistics of infrequently queried portions
of the repository.
• How to incrementally update the statistics when the underlying XML data

change? The XML repositories in Internet scale applications are constantly
changing. To ensure accurate XML path selectivity estimation, the statistics
must keep up with the change. However, the off-line periodic scan used
by previous work to obtain new statistics is neither effective not efficient
because of the scanning cost associated with the size of the repositories.

In this paper, we present XPathLearner, a novel on-line learning method for
estimating the selectivity of XML path expressions. Our XPathLearner as-
sumes a Markov model [14,1] of path selectivities and learns this model from

3

Query
Plan

Enumerator Query Plan Execution
Engine

Result

Selectivity
Estimator

Histogram Histogram
Learner

Query
Feedback

OptimizerQuery

Fig. 2. Workflow of XPathLearner. The top path is for query processing and feedback
loop is for workload-driven selectivity estimation processing.

query feedback using error reduction strategies. Two such strategies are pre-
sented: the heavy-tail rule and the delta rule. Our XPathLearner overcomes
the limitations of previous work and has the following properties:

• Instead of scanning the XML data, XPathLearner collects the required
statistics in an on-line manner from query feedback information (see Fig-
ure 2).
• XPathLearner learns both tag distribution and value distribution from query

feedback. It is designed to estimate the selectivity of all three types of com-
mon path expressions. It can also estimate the selectivity of a path expres-
sion containing a simple wildcard.
• XPathLearner is workload-aware in collecting the required statistics. The

allocated storage space is used in the most effective way since more statistics
are collected for more frequently queried portions of the XML data.
• XPathLearner automatically adapts to changing XML data, because the

statistics are refined on-line according to the most current query feedback.
XPathLearner incurs a small overhead in updating the statistics using query
feedback, but this cost is offset by an increase in estimation accuracy.

Since query feedback provides only partial information about the path se-
lectivity distribution, we would expect that an on-line method using query
feedback to be less accurate than an off-line method. In our experiments we
show that not only does XPathLearner come close in accuracy to the off-line
method in general, but sometimes surpasses the off-line method because of its
workload-driven nature.

The rest of the paper is organized as follows. In the next section, we review
related work. Section 3 introduces the terms used in our description of the on-
line XML path selectivity estimation problem. Section 4 presents the XPath-
Learner: the Markov chain model for path expressions, the Markov histogram
for storing the model parameters, two approaches for dealing with single-value
path counts, and two learning strategies. We present our experimental evalu-
ation in Section 5 and draw conclusions in Section 6.

4

2 Related Work

To estimate the selectivities of XML path expressions, the Lore system stores
statistics of all distinct paths up to length m, where m is a tunable parame-
ter [14]. Selectivity of paths longer than m are estimated assuming the Markov
property (see Equation (5) of Section 4.1). The paths stored include both tags
and data values and no further summarization is performed. The space re-
quirement of the statistics used in the Lore system is therefore prohibitively
large, because the number of possible data values in a big XML repository
can be extremely large and the number of distinct paths with data values can
therefore be even larger. Our XPathLearner presents two different approaches
to address this problem: storing the counts of paths with data values in a
compressed histogram [20], or, alternatively, evicting stored entries based on
certain criteria (similar to a cache).

Aboulnaga et al. extended the idea used by the Lore system in their Markov
table method [1]. The Markov table method consists of a set of pruning and ag-
gregation techniques on the statistics used in the Lore system. One limitation
of the Markov table method is that paths with data values are not consid-
ered (i.e., it can only estimate the selectivity of simple path expressions). This
limitation is serious, because the selectivities of paths with data values are
crucial in optimizing XML queries that have large top-down search space and
highly selective data values. For such queries, a bottom-up search plan is more
cost-effective than a top-down search [14]. For the XML data in Figure 1, the
query “find the titles of all books authored by Jim” is an example. The path
expression //author="Jim" is more selective than //book. Our method aims
to overcome this limitation by storing statistics for paths with data values
while keeping the space requirement low.

Aboulnaga et al. also proposed a tree-based method known as the path tree
method [1] for estimating the selectivity of XML paths without data values.
A path tree is a summarized form of the XML data tree where sibling nodes
of the same tag are aggregated. Tree pruning and aggregation techniques are
proposed to reduce the space requirement of path trees. Their experiments,
however, have shown that the path tree method is inferior to the Markov table
method for real data sets.

Chen et al. proposed another off-line tree-based method for estimating XML
subtree selectivity [6]. A suffix tree based data structure is used to store the
statistics of the XML data obtained from scanning the repository. Pruning and
aggregation techniques are proposed to compress this data structure. However,
the space requirement of their summarized data structure is especially large
for XML data with long data values. Subtree selectivity estimation involves
estimating the selectivity of a query that matches a subtree in the XML data

5

tree as opposed to matching a single path. The problem of subtree selectivity
estimation is significantly more general than the path selectivity problem that
our method addresses, but even if the technique in [6] is modified for path ex-
pressions containing tags only, Aboulnaga et al. have shown that their Markov
table method is superior in accuracy [1].

Polyzotis et al. have recently proposed XSketch a more general model based
framework [16,17], however, the construction of an XSketch model requires
a greedy heuristic search that evaluates a candidate model against the XML
data (or a summarized form of it). XPathLearner is much more lightweight,
and builds and adapts itself using only query feedback information.

The XML path selectivity estimation methods proposed in [16,17,1,6,14] all
require information from scanning the repository. These off-line methods share
several limitations. The requirement of an off-line scan limits the use of these
methods on large (especially Internet-scale) repositories. They are not tuned
to the workload distribution: the workload may only query a small portion
of the XML data and hence a small portion of the statistics stored in the
allocated space. The repository needs to be rescanned whenever the data in the
repository change sufficiently. Our XPathLearner overcomes these limitations
by learning the statistics from query feedback in an on-line manner. Keeping
statistics gathered from query feedback ensures that the allocated space is used
to store statistics that are up-to-date and relevant to the query workload.

Selectivity estimation using statistics gathered from query has been proposed
in [2,4] for relational data. Tree-structured data such as XML present new
challenges. Whereas the self-tuning histograms of [2,4] capture continuous
distribution over numeric attributes, a corresponding self-tuning XML path
selectivity estimator needs to capture a discrete distribution over a set of
non-numeric path labels. In the continuous case, self-tuning histograms (such
as [2,4]) can start with a uniform distribution over a large interval and refine
this distribution by creating finer partitions of this interval. In contrast, a self-
tuning XML path selectivity estimator does not have an interval to start with
and needs to learn each and every path label in the data. Even if a Markov
model is imposed on the tree data to simplify the distribution entailed by the
tree data, it has been shown that learning a Markov model can be hard [11].

In the off-line XML path selectivity estimation domain, Aboulnaga et al. [1]
and McHugh et al. [14] use estimation techniques based on the Markov model.
An order m− 1 Markov model assumes that the selectivities of all the paths
whose lengths are less than or equal to m capture all the required statistics.
The experiments in [1] show that, in practice, first and second order Markov
models are sufficient to capture the path selectivity statistics with little loss in
information. Our method assumes the Markov model, but differs from previous
work in that our method (1) gathers statistics in an on-line manner without

6

A

B B

D

C

v3

v4

v1

<A>

 <C>
 v4
 <D>
 v3
 </D>
 </C>

 v1

Fig. 3. An XML document and its corresponding tree representation.

A

B

D

B

D

C

C

v2

v3

v4

v1

A

B B

D

C

C

DD

v6

v5

v3

B

D

B C

D

CC

v3

v8

v7

v4

A

B B

D

C

C

DD

v6

v5

v3

B

D

B C

D

CC

v3

v8

v7

v4

B

D

B

D

C

C

v2

v3

v4

v1

A

Fig. 4. The XML data tree (right) is constructed from a repository of three XML
documents (left). Alphabets in upper case denote tag names, ‘v’ followed by a num-
ber denotes a data value. The selectivity of the simple path expression //B/C/D
is 3, the selectivity of the single-value path expression //B/C/D=v3 is 2, the selec-
tivity of the multi-value path expression //B/C=v4/D=v3 is 1, and the selectivity
of //A/*/D is the sum of the selectivities of //A/B/D and //A/C/D, which yields 4.

scanning the repository, (2) handles the three types of common query path
expressions, and (3) is workload-aware.

3 Preliminaries

In this section, we introduce basic terms and notation used in describing the
XML path selectivity problem. In particular we introduce the different types
of path expressions and define their corresponding selectivities.

An XML document is structurally a tree (we ignore IDREFs) where each
node is associated with a tag or a value. In practice, values are almost always
associated with leaf nodes. An XML data tree is a huge tree constructed either
by merging the roots of all the XML documents if the tag associated with the
root of each document is the same or by introducing a super root as the
parent of the root node of each XML document. An XML data tree represents
a repository of XML documents (see Figure 4).

A simple path expression p of length n is a sequence of tags 〈t1, t2, . . . , tn〉,
ti ∈ Σ, where Σ is the set of all possible tag names. The tag sequence in a
path expression encodes a navigational path through the XML data tree where
each pair in the sequence (ti, ti+1) correspond to a (directed) edge with the
tags (ti, ti+1) in the XML data tree. Using XPath notation, such a navigational
sequence can also be written as //t1/t2/ . . . /tn (e.g., //book/title). We will

7

use as shorthand, where there is no confusion, the string t1t2 . . . tn to represent
//t1/t2/ . . . /tn.

A multi-value path expression is a simple path expression where values are
associated with one or more tags in the path expression 5 . A special case of
a multi-value path expression is a single-value path expression where only the
last tag in the path is associated with a value. The length of a single-value
path expression //t1/t2/ . . . /tn=vn is n + 1.

Consider the XML data tree shown in Figure 4. The path //B/C/D is a simple
path expression; the path //B/C=v4/D=v3 is a multi-value path expression,
and the path //B/C/D=v3 is a single-value path expression.

We denote the selectivity of a (simple, multi-value or single-value) path ex-
pression p as σ(p). The selectivity of a simple path expression p is defined to
be the number of paths in the XML data tree that match the tag sequence in
p. The selectivity of a single-value path expression is similar to that of simple
path expressions except that the navigational path ends in a value instead of a
tag in the XML data tree. The selectivity of a multi-value path expression p is
defined to be the number of subtrees that matches the tag and value sequence
in p.

The path expressions that we consider in this paper are allowed to contain
one wildcard. In this paper, we restrict each wildcard (‘*’) to match a single
tag. Moreover we do not consider path expressions beginning or ending with
a wildcard 6 . The selectivity of a path expression p with a single wildcard is
the sum of the selectivities of all the (non-wildcard) path expressions that are
possible matches to p. Example selectivities are given in Figure 4.

A query feedback is a tuple (p, σ(p)) consisting of a path expression and its
corresponding true selectivity. Our definition of query feedback assumes min-
imal information about the query execution engine. It is possible to obtain
more feedback information from the query execution engine. The amount of
information we can obtain depends upon the underlying data storage model
and the query plan used by the execution engine. For example, using the Lore
model and a top-down plan, the query execution engine can provide as feed-
back the selectivities of all prefixes of the given path. Since XML storage and
retrieval technology is still evolving, we assume minimal feedback information
in this paper.

5 A multi-value path expression is a special case of a twig [6].
6 We are investigating the extensions for more complicated wildcards in ongoing
work.

8

4 XPathLearner

In this paper, we propose XPathLearner, an on-line method for estimating the
selectivity of a given path expression (simple, single-value, multi-value), using
statistics that are obtained from query feedback only and reside in a given
amount of space (memory).

XPathLearner models the selectivity of path expressions as an order (m− 1)
Markov chain or network. The Markov model has been used by [14,1] to model
the selectivities of all possible paths in the XML data tree. XPathLearner
differs from [14,1] in that only the selectivities of paths that occur in the query
workload are modeled. Moreover, in contrast to previous work, XPathLearner
learns the parameters associated with the Markov model in an on-line manner
using query feedback information only. XPathLearner stores these parameters
using a Markov histogram and updates the Markov histogram using query
feedback.

In this section we describe in detail the Markov model for path expressions,
the associated Markov histogram, two approaches to dealing with single-value
path counts, the on-line update algorithm, and two update strategies.

4.1 Path Expression Model

A simple path expression query of length n can be modeled as a sequence of
random variables 〈X1X2 . . . Xn〉 (in XPath notation //X1/X2/ . . . /Xn), where
each Xi is instantiated with some tag name from Σ the set of all possible tags.
The selectivity of an instance of a simple path expression t1t2 . . . tn can be
computed from

σ(t1t2 . . . tn) = P (X1X2 . . . Xn)×N, (1)

where N is the total number of nodes in the XML data tree and P (X1X2 . . . Xn)
is a shorthand for P (〈X1X2 . . . Xn〉 = 〈t1t2 . . . tn〉), the probability that each
Xi = ti for i = 1, 2, . . . , n. An order (m−1) Markov model for the sequence of
random variables X1X2 . . . Xn assumes that each random variable Xi is only
dependent on its m− 1 predecessors in the sequence,

P (X1X2 . . . Xn) ≈
∏n−m

j=1 P (XjXj+1 . . . Xj+m−1)∏n−m
i=2 P (XiXi+1 . . . Xi+m−2)

. (2)

Moreover, the Markov model makes the stationary assumption,

P (〈XjXj+1 . . . Xj+m−1〉=〈tjtj+1 . . . tj+m−1〉)
= P (〈XiXi+1 . . . Xi+m−1〉=〈tjtj+1 . . . tj+m−1〉), (3)

9

for any integers i, j ≥ 1. Using the m−1 order Markov model, it is sufficient to
store P (X1X2 . . . Xl), for l = 1, 2, . . . m, in order to approximate the selectivity
of any simple path expression. In practice, each P (〈X1X2 . . . Xl〉 = 〈t1t2 . . . tl〉)
is stored in a table of frequency counts f(t1t2 . . . tl), where

P (X1X2 . . . Xl) = f(t1t2 . . . tl)/N. (4)

Each f(t1t2 . . . tl) counts the number of occurrences of the path t1t2 . . . tl in
the XML data tree. Combining Equations (1), (2), (3) and (4), the selectivity
of a simple path expression can be approximated by

σ̂(t1t2 . . . tn) =

∏n−m
j=1 f(tjtj+1 . . . tj+m−1)∏n−m
i=2 f(titi+1 . . . ti+m−2)

. (5)

In particular, when m = 2, the approximation formula becomes,

σ̂(t1t2 . . . tn) =
f(t1t2)f(t2t3) . . . f(tn−1tn)

f(t2)f(t3) . . . f(tn−1)
. (6)

Previous work [1,6,10] has shown that the Markov model works well for many
real XML data sets for m = 2 and m = 3.

The selectivity of single-value path expressions of the form p = //t1/t2/ . . . /tn=
vn can be approximated analogously by associating an additional random vari-
able Xn′ with the value vn and instantiating the Xn′ with the value vn,

σ̂(//t1/t2/ . . . /tn=vn) = σ̂(t1t2 . . . tn)
f(tn−m+2tn−m+3 . . . tnvn)

f(tn−m+2tn−m+3 . . . tn)
. (7)

Similarly, for multi-value path expressions,

σ̂(//t1=v1/t2=v2/ . . . /tn=vn) = σ̂(t1t2 . . . tn)
n∏

j=1

f(tj−m+2tj−m+3 . . . tjvj)

f(tj−m+2tj−m+3 . . . tj)
.

(8)

4.2 Markov Histograms

An order (m − 1) Markov model requires storing the counts of all length-l
simple or single-value paths, i.e., all f(t1t2 . . . tl) and f(t1t2 . . . tl−1vl−1), for
l = 1, 2, . . . m, in order to approximate the selectivity of any path expression.
In the offline case, storing just the counts of the length-m paths are sufficient,
because the count of a length-l path, where l < m, can be computed from the
counts of all length-(l + 1) paths,

f(t1t2 . . . tl) =
∑
τ∈Σ

f(τt1t2 . . . tl) (9)

10

6

7

7

1

1

3

D

v1

v2

v3

B

C 1

1

1

1

2

v6

v4

v5

v8

v7

6

3

4

1

6

AB

AC

BC

BD

CD

1

1

1

3

1

C=v4

C=v8

B=v1

D=v3

D=v2

1

1

1

1

D=v4

D=v5

D=v6

B=v7

Length 1 paths Length 2 paths

Fig. 5. The first order Markov histogram corresponding the XML data tree in Fig-
ure 4.

by assuming that the XML data is a tree and that the counts of all the length-
(l + 1) paths are known. In the on-line case, not all the length-(l + 1) path
counts have been learnt at a given time and for those that have been learnt,
the corresponding counts may not have converged to the true counts. Hence,
the counts of paths with length l < m, have to be stored for on-line selectivity
estimation using a Markov model.

An order (m− 1) Markov histogram is a table storing a set of distinct paths,
with length l < m, along with their associated occurrence counts or selec-
tivities. For simplicity of presentation we consider m = 2 for the rest of this
paper. An example of a first order Markov histogram is shown in Figure 5.
Markov histograms approximate the selectivity of simple, single-value, and
multi-value path expressions using the formulas in Equations (5), (7), and (8)
respectively. When the count of a length-(l) path (l < m) is needed and is not
stored in the Markov histogram, a default count of 1 is used.

Storing the counts of single-value path (of length l < m) efficiently presents
a unique challenge, because the number of distinct data values is typically
very large compared to the number of distinct tags in an XML data tree.
For example, the DBLP data set contains 91,878 unique values and only 29
unique tag names. For m = 2, this translates to 841 possible tag-tag pairs
and 2,664,462 possible tag-value pairs. Given a small amount of memory, it
is not possible to store the counts of all length (l < m) paths exactly. Two
approaches are possible. First, store the all simple path counts exactly and use
a form of compressed histogram [20] to store the counts of single value paths.
The second approach is not to differentiate between the Markov histogram
entries for simple and single-value path expressions, but to delete entries based
on some criteria when the Markov histogram runs short of memory (much like
in a cache).

4.3 Compressed Histogram Approach

The large number of XML data values prohibits storing the counts of single-
value path expressions with length (l < m) exactly. A similar problem is

11

addressed in [12]; however, we adopt a simpler approach. Motivated by the
fact that most of the probability mass (of counts) is concentrated in a very
small number of single-value paths in many real XML data sets, we use a
compressed histogram approach similar to [20].

(1) Store the k single-value paths with the largest counts exactly. The pa-
rameter k can be tuned. Each entry in the ‘top k’ data structure stores
the tuple 〈single-value path, count〉.

(2) Single-value paths with a count smaller than the minimum count among
the top k single-value paths are aggregated into buckets. A bucket is a
tuple 〈simplepath, feature, sum, num〉, where simple path is the tag-only
prefix of the single-value path, the field num is the number of single-
value paths it represents, the field sum is the sum of the counts of those
single-value paths assigned to that bucket, and the field feature is the
feature of the data value corresponding to that bucket. A single-value
path is assigned to a bucket based on some feature of the data value in
the single-value path.

For example, if a first-order Markov histogram is used and the first letter of the
data value in a single-value path is used as the bucket assignment feature, the
compressed histogram for the single-value path counts will consist of at most k
tuples of the form 〈single-value path, count〉 and at most 36 · |Σ| tuples (where
Σ is the set of tags) of the form 〈simple path, feature, sum, num〉, assuming
that values are not case sensitive and are alphanumeric strings. Ideally, the
feature should be chosen so that the counts in each bucket are as uniform as
possible, that is, the variance of the counts represented in a particular bucket
should be minimized. Choosing features dynamically and maintaining the data
structure for dynamic features are part of our future work.

Retrieval. Accessing the count of a given single-value path requires search-
ing through the top k entries first. If the required single-value path is not
found, the feature of the given single-value path is used to locate the corre-
sponding bucket and the count is computed as sum/num.

Update. Given a single-value path and an updated count, the top k entries
are searched first and if a matching single-value path is found, its count is
updated. Otherwise, we check if the updated count of the given single-value
path is larger than the minimum count in the top k entries. If it is larger,
the minimum entry in the top k is displaced into the bucket corresponding to
the displaced entry. If it is smaller, the count of the given single-value path
is added to the sum field of the corresponding bucket, and the num field of
the same bucket is incremented. Each bucket therefore encodes the average

12

selectivity of all the current instances of the single-value paths belonging to
that bucket.

Compress. When memory is scarce, the tag-feature histogram can be fur-
ther compressed by aggregating buckets with similar selectivities.

4.4 Cache-based Approach

A different and even simpler approach to keeping the Markov histogram small
is to remove or evict entries based on some criteria. Each entry in a Markov
histogram stores a simple or single-value path p and its associated count f(p).

The first criterion is to evict entries with counts smaller than a threshold
parameter. Recall that our Markov histogram assigns a default value of 1 to
entries that are not stored, so removing entries whose counts are close to 1
represents little loss of information.

The second criterion is to evict entries that are seldom used (similar to the
least frequently used policy in caching). To keep track of frequency of use, a
counter needs to be associated with each entry in the Markov histogram. To
minimize memory overhead, a single byte counter can be used, but all counters
in the Markov histogram will need to be reset every 256 units of use. Each
Markov histogram entry will be of the form 〈single-value path, count , counter〉

In our experiments, whenever memory is short, the small count criterion is
first applied, followed by the least frequently used criterion, until sufficient
memory has been freed up.

4.5 An Example

We illustrate how selectivity estimation can be done using our Markov his-
togram with the compressed histogram approach. Consider our earlier exam-
ple in Figure 5. The corresponding representation using our Markov histogram
with k = 1 is shown in Figure 6.

The selectivity of the simple path expression //B/C/D can be estimated by

σ̂(BCD) =
f(BC)

f(C)
· f(CD) =

4

7
· 6 = 3.43,

13

tag count

A 1
B 6
C 7
D 7

(a) tag counts

tag-tag count

AB 6
AC 3
BC 4
BD 1
CD 6

(b) tag-tag counts

tag=value count

D=v3 3

(c) top k tag-value
counts

tag feat. sum #pairs

B a 1 1
B b 1 1
D a 2 2
D b 2 2
C a 1 1
C b 1 1

(d) tag-feature histogram

Fig. 6. A first order Markov histogram using k = 1 and the first letter of the data
value as the bucketing feature. Further suppose that the data values {v1, v2, v3, v4}
all begin with the letter ‘a’ and {v5, v6, v7, v8} with the letter ‘b’.

which has an absolute error of 0.43. The selectivity of the single-value path
expression //B/C/D=v3 can be estimated by

σ̂(BCD = v3) =
f(BC)

f(C)
· f(CD)

f(D)
· f(D = v3) = 1.47,

which has an absolute error of 0.53, since the real selectivity is 2. The selec-
tivity of the multi-value path expression //B/C=v4/D=v3 can be estimated
by

σ̂(//B/C = v4/D = v3)

=
f(BC)

f(C)
· f(CD)

f(D)
· f(D = v3) · f(C = v4)∑

v f(C = v)
= 0.735,

which has an absolute error of 0.265. Note that the value v4 has feature “a”.
The selectivity of the simple path expression //A/*/D (with wildcard) can be
estimated by

σ̂(A ∗D) =
∑
α

σ̂(AαD) = 3.57,

which has an absolute error of 0.43, since σ(ABD) + σ(ACD) = 1 + 3 = 4.

14

4.6 On-line Update Algorithms

We describe the two update algorithms that our XPathLearner uses to learn
a Markov histogram from query feedback: the heavy-tail rule and the delta
rule.

Our two update algorithms follow the high-level steps outlined in Algorithm 1
and differ in the update equations used in line 10. The Markov Histogram is
assumed to be initially empty. The function compress-add entry adds any
unknown length-2 path to the Markov histogram: it learns the set of labels
of a discrete distribution. A physical entry is not necessarily added to the
histogram whenever compress-add entry is called. When memory is scarce,
compress-add entry can trigger pruning or aggregation techniques (such as
those in [1]) to compress the histogram. In contrast to learning the labels, the
update equation in the algorithm learns the frequency counts of the labels in
the discrete distribution.

Algorithm 1 Update (Mhistogram f , Feedback (p, σ(p)), Estimate σ̂(p))

1: if |p| ≤ 2 then
2: if not exists f(p) then
3: compress-add entry f(p) = σ(p)
4: else
5: f(p)← σ(p)
6: else
7: for all (ti, ti+1) ∈ p do
8: if not exists f(titi+1) then
9: compress-add entry f(titi+1) = 1

10: f(titi+1)← update {depends on update strategy}
11: for all ti ∈ p, i 6= 1 do
12: if not exists f(ti) then
13: compress-add entry f(ti)
14: f(ti)← max{f(ti),

∑
α f(αti)}

4.6.1 The Heavy-tail Rule

Given estimated selectivity σ̂(p) and query feedback (p, σ(p)), where p =
t1t2 . . . tn and σ(p) is the real selectivity, we first compute the observed er-
ror

ε = σ(p)− σ̂(p). (10)

Recall that the selectivity of path p is computed as

σ̂(t1t2 . . . tn) =

(
n−2∏
i=1

f(titi+1)

f(ti+1)

)
· f(tn−1tn). (11)

15

We need to refine all the f(titi+1) terms in this product based on the observed
error ε. The updates to the f(ti+1) terms are dependent on the f(titi+1) terms
through Equation (9) and will be described later. We may also want to at-
tribute more of the estimation error to the terms associated with the end of
the path p. There are two reasons for this: First, the terms closer to the end
of the path p are naturally more relevant to the selectivity of path p. Second,
attributing more of the estimation error to them also minimizes the effect on
other paths sharing the same prefix as p. We therefore assign weights to the
f(titi+1) terms that increase with i.

Let wi be the (unnormalized) weight associated with ti in path p. We update
the f(titi+1) terms as follows:

fk+1(titi+1)← fk(titi+1) + sign(ε) (γ|ε|)wi/
∑

j<n
wj , (12)

where
∑

j<n wj is the normalization factor, γ is the learning rate or discount
factor, ti is the ith tag in the query path p, and fk(·) and fk+1(·) are the counts
before and after the update, respectively. The weights we used are

wi = 2i, i = 1, 2, . . . (13)

If the last element tn in the query path is a data value, the weight for f(tn−1tn)
is defined to be the same as that for f(tn−2tn−1). The intuition for this is that
an instance of a tag cannot take more than one data value in an XML data
tree. Note that for query path p = t1 . . . tn, the updates to the relevant Markov
histogram entries have the following property:

n−1∏
i=1

(γ|ε|)wi/
∑

j
wj = γ|ε|. (14)

In general, the discount factor γ is set to be less than one and therefore it
makes the error correction smaller. This prevents XPathLearner from over
reacting to an estimation error and smoothens the error reduction process.
The f(ti) terms are updated as

fk+1(ti)← max{
∑
j

fk+1(tjti), fk(ti)}, (15)

since the sum of the counts for all length-2 paths ending in ti must be a lower
bound on the true f(ti) (by Equation (9)). The term fk(ti) could be greater
than

∑
j fk+1(tjti), if XPathLearner has encountered a query feedback with a

length-1 query path ti previously.

As an example, suppose that the Markov histogram maintained by XPath-
Learner is in the state as shown in Figure 6. Further suppose that the feed-
back for path ACD is (ACD, 6) and its estimated selectivity is σ̂(ACD) =

16

3 ·6÷7 ≈ 3. The observed error is ε = 6−3 = 3 and using γ = 1, the following
updates are made:

fk+1(AC)← round(3 + 31/3) = 4,

fk+1(CD)← round(6 + 32/3) = 8,

fk+1(C)← max{4 + 4, 7} = 8,

fk+1(D)← max{1 + 8, 7} = 9,

The estimated selectivity of the path ACD after the update is 4 · 8 ÷ 8 = 4.
The estimation error has been reduced.

4.6.2 The Delta Rule

A more principled way of updating the Markov histogram using query feedback
is to attribute the estimation error to the relevant edge counts using the delta
rule. The delta rule is an error reduction learning technique first proposed by
Rumelhart et al. [18].

The learning scenario is the same as that in the heavy-tail method. The his-
togram learner is given estimated selectivity σ̂(p) and query feedback (p, σ(p)),
where p = t1 . . . tn and σ(p) is the real selectivity. We compute the observed
error as before,

ε(p) = σ(p)− σ̂(()p). (16)

The delta rule minimizes an error function. We choose our error function to
be the squared error,

E = [ε(p)]2 = [σ(p)− σ̂(()p)]2 . (17)

We also adopt the following shorthand to make the equations more readable:

w
(k)
αβ = fk(α, β), (18)

W
(k)
β = fk(β) =

∑
α∈Σ

w
(k)
αβ = wαβ +

∑
x∈Σ
x 6=α

w
(k)
αβ (19)

The superscript (k) will be dropped if there is no confusion over the time of
the variable.

The delta rule states that for an error function E(wαβ) the update to term
wαβ should be proportional to the negative gradient of E(wαβ) with respect
to wαβ evaluated at time k,

w
(k+1)
αβ ← w

(k)
αβ − γ

∂E(w
(k)
αβ)

∂wαβ

, (20)

17

where γ is the proportionality constant or learning rate. Simplifying the deriva-
tive using Equation (17),

∂E(wαβ)

∂wαβ

= 2ε(p)
∂ε(p)

∂wαβ

= −2ε(p)
∂σ̂(()p)

∂wαβ

Using the Equation (5) for computing σ̂(()p), the term wαβ can occur multiple
times in the numerator and in the denominator. For example, in σ̂(()ABCBAB),
the term wAB would appear twice in the numerator, and twice in the denom-
inator, because WB appears twice in the denominator. Consider the general
case that wαβ appears u times in the numerator and v times in the denomi-
nator of the expression for σ̂(()p),

∂σ̂(()p)

∂wαβ

=
∂

∂wαβ

(
wu

αβ

W v
β

× r

)
, (21)

where r = σ̂(()p)×W v
β /wu

αβ contains the rest of the terms that do not contain
wαβ. Differentiating using the quotient rule and simplifying,

∂σ̂(()p)

∂wαβ

= σ̂(()p)

(
uWβ − vwαβ

wαβWβ

)
. (22)

Hence, our update equation for the Markov histogram term wαβ = f(α, β)
that occurs u in the numerator and v times in the denominator of the formula
for σ̂(()p) is

w
(k+1)
αβ ← w

(k)
αβ + 2γε(p)σ̂(()p)

uW
(k)
β − vw

(k)
αβ

w
(k)
αβ W

(k)
β

 . (23)

The learning rate parameter γ is usually chosen by experimentation. A learning
rate that is too small may result in slow convergence to the minimum error and
a learning rate that is too big may result in oscillations between non-optimal
error values.

As an example, suppose that the Markov histogram maintained by XPath-
Learner is in the state as shown in Figure 6. Assume again that the feedback for
path ACD is (ACD, 6) and its estimated selectivity is σ̂(()ACD) = 3·6÷7 ≈ 3.
The observed error is ε(ACD) = 6 − 3 = 3 and using γ = 0.5, the following
updates are made:

fk+1(AC)← round(3 + 2 · 0.5 · 3 · 3 · 7− 3

3 · 7
) = 5,

fk+1(CD)← round(6 + 2 · 0.5 · 3 · 3
6
) = 8,

fk+1(C)← max{5 + 4, 7} = 9,

fk+1(D)← max{1 + 8, 7} = 9,

18

The estimated selectivity for path ACD after the updates is 5 · 8÷ 9 ≈ 4. The
estimation error has been reduced.

4.7 Update Overhead

Let the time needed to access an entry in the Markov histogram be O(l), where
l is the size of the data structure used to implement the Markov histogram.
Let the query path in question be p = t1t2 . . . tn. The update equations for
the heavy-tail rule method (Equation (12)) and the delta rule method (Equa-
tion (23) both take O(l) time. There are O(n) iterations of the two loops
starting on line 7 and line 11 of the update algorithm (Algorithm 1). Each it-
eration of the loop starting on line 11 requires O(l) time, since the summation
in line 14 is over at most all the length-m paths in the order (m− 1) Markov
histogram that has size l. Therefore each update takes

O(nl) (24)

time, where n is the query path length and l is the size of the Markov his-
togram. Since n is bounded by the height of the XML data tree and l by the
small amount memory allocated to store the Markov histogram, l and n are
practically constants. Therefore the update overhead is a constant.

4.8 Batch Update Strategies

While the emphasis of this paper is on-line methods, we briefly outline two
batch processing strategies that can be used with XPathLearner. Batch up-
dates assume that a buffer is available to hold b query feedback tuples until
the batch update procedure is activated. Batch updates are useful for two
reasons.

(1) When it is not feasible or possible to update the Markov histograms after
each query, a batch of query feedback can be collected and used to update
the Markov histogram periodically.

(2) When a batch of query feedback is available during initialization, the
Markov histogram can be initialize using a batch update strategy instead
of being initialized to empty histograms. This may reduce the estimation
errors associated with a ‘cold start’.

4.8.1 Subpath Elimination

The subpath elimination strategy for batch updates is based on three assump-
tions:

19

(1) the set of query paths in the batch contains some paths that are subpaths
of other paths in the batch,

(2) the underlying data remained the same for the entire batch of query
paths, and

(3) the Markov assumption holds reasonably well for the path selectivities

The implication of these assumptions is that the feedback for the subpath can
give additional statistical information about the longer path. For example, if
the query paths ABCD and ABC both occur in the batch, then using their
true selectivities from query feedback, we know that f(CD)/f(C) should be
equal to σ(ABCD)/σ(ABC). We can now use the on-line delta rule method
to update f(CD) and f(C) using σ(ABCD)/σ(ABC) as the true value for
f(CD)/f(C). The subpath elimination strategy assumes the delta rule method
for updating the Markov histogram.

We sketch the algorithm for the subpath elimination batch update method in
Algorithm 2. The batch of query feedback is first sorted (line 1) according to

Algorithm 2 SubpathElimination(f , Qfb)

Input: Markov histogram f , Batch of Query Feedback Qfb
1: Sort Qfb in increasing path length and lexicographic order.
2: while stopping criterion 6= true do
3: for all query path p ∈ Qfb do
4: Search for longest query path z ∈ Qfb that is a subpath of p
5: if z does not exist then
6: Update(f, (p, σ(p)), σ̂(p)) using delta rule.
7: else
8: σ ← σ(p)/σ(z)
9: σ̂ ← σ̂(p)/σ̂(z)

10: for all wαβ in σ̂(p), but not in σ̂(z) do
11: Update wαβ using σ, σ̂, and delta rule Equation (23).
12: Update all affected Wβ using Equation (15).

increasing query path length and according to lexicographic order for paths
with the same length. Each iteration of the while-loop (line 2) then applies
the subpath elimination batch update method until some stopping criterion
is true. Exactly one scan through the batch of query feedback is made in
each iteration. The sorted batch of query feedback facilitates the search for
the longest query path that is a subpath of the current query path p that is
being processed (line 4). If no subpath is found, the on-line delta rule update
procedure is used to perform the update (line 6). If a subpath is found, the
true selectivity of the subpath is eliminated from the true selectivity of the
current query path p. The delta rule is then applied to the histogram entries
that are used in the computation of σ̂(p) and not used in the subpath (line 11).

20

The while-loop applies the subpath elimination batch update method until
some stopping criterion is true. The while-loop can terminate when

• the error has reached a given error threshold, or
• the decrease in error between consecutive iterations has fallen below a given

threshold, or
• the number of iterations has exceeded a given constant.

4.8.2 Batch Delta Rule

Let B be the set of b query paths whose query feedback has been buffered.
We can use delta rule to update the Markov histogram by defining a sum of
squared error function for the set of query paths B,

E(B) =
∑
p∈B

[ε(p)]2 =
∑
p∈B

[σ(p)− σ̂(p)]2 .

To update a particular histogram entry wαβ, we compute the derivative,

∂E(wαβ)

∂wαβ

=
∑
p∈B

∂[ε(p)]2

∂wαβ

=
∑
p∈B

2ε(p)
∂ε(p)

∂wαβ

Let B′ be the subset of B containing paths that require the histogram entry
wαβ in the computation of their selectivity estimates. The selectivity estimates
of all the paths in B −B′ do not depend on wαβ and their derivative is zero,

∂E(wαβ)

∂wαβ

=
∑
p∈B′

2ε(p)
∂ε(p)

∂wαβ

= −
∑
p∈B′

2ε(p)
∂σ̂(p)

∂wαβ

. (25)

Using Equation (21) and the delta rule, we can update a Markov histogram
entry wαβ = f(α, β) using the query feedback for a set of query paths B′ using,

w
(k+1)
αβ ← w

(k)
αβ +

2γ

w
(k)
αβ W

(k)
β

∑
p∈B′

{
ε(p)σ̂(p)

[
u(p)W

(k)
β − v(p)w

(k)
αβ

]}
, (26)

where γ is the learning rate parameter, and u(p) and v(p) are the number of
times that wαβ occurs in the numerator and denominator of the formula for
σ̂(p) respectively.

We sketch the algorithm for the delta rule batch update method in Algo-
rithm 3. The first for-loop (line 1) initializes all non-existent entries in the
histogram that are required for the batch of queries. The while-loop (line 4)
implements the delta rule batch update method as derived in Equation (26).
Our implementation is optimized using the assumption that the size of the
batch of query feedback is much larger than the total number of histogram
entries updated. Hence each iteration of the while-loop scans through the

21

Algorithm 3 BatchDeltaRuleUpdate(f , Qfb)

Input: Markov histogram f , Batch of Query Feedback Qfb
1: for all wαβ = f(αβ) used in Qfb do
2: Initialize wαβ = 1, if wαβ is not in histogram.
3: Update Wβ using Equation (15).
4: while stopping criterion 6= true do
5: Initialize array U to zeros.
6: for all query path p ∈ Qfb do
7: for all wαβ involved in σ̂(p) do

8: U [wαβ]← U [wαβ] + ε(p)σ̂(p)
{
u(p)W

(k)
β − v(p)w

(k)
αβ

}
9: for all wαβ = f(αβ) used in Qfb do

10: wαβ ← w
(k)
αβ + 2γ

w
(k)
αβ

W
(k)
β

U [wαβ]

11: Update all affected Wβ using Equation (26).

batch of query feedback only once. If this assumption is not true, the order of
the two for-loops (line 6 and 7) needs to be reversed.

The while-loop applies the delta rule until some stopping criterion is true.
Reasonable stopping criteria includes stopping when the error has reached
a given error threshold, or when the decrease in error between consecutive
iterations has fallen below a given threshold, or when the number of iterations
has exceeded a given constant.

5 Experiments

We implemented our XPathLearner in C/C++ using the XML Parser Toolkit
[7]. We investigate the following issues in our experiments:

(1) the accuracy of XPathLearner under varying memory constraints when it
is trained on one query workload and evaluated using a different workload,

(2) the convergence properties associated with XPathLearner,
(3) the adaptivity of XPathLearner when the workload changes from one

distribution to another,
(4) the on-line accuracy of XPathLearner, i.e., the estimation accuracy on

one workload, as XPathLearner updates itself after each query,
(5) the distribution of on-line errors according to the true selectivity of the

queries, and
(6) the occurrence frequency of on-line errors.

We describe briefly the data sets used, the query workloads, the performance
measures, and the methods used in the comparisons, before describing each
experiment in greater detail.

22

Performance Measures. We have used the average relative error and the
average absolute error to measure the accuracy of XPathLearner. The average
relative error (a.r.e.) and the average absolute error (a.a.e.) with respect to a
set of queries Q of size n are defined as

a.r.e. =
1

n

∑
q∈Q

|σ(q)− σ̂(q)|
σ(q)

, a.a.e. =
1

n

∑
q∈Q

|σ(q)− σ̂(q)|, (27)

where σ(()q) is the selectivity of query path q in the workload Q and σ̂(q) is
the corresponding estimated selectivity. The state of the selectivity estimation
method is assumed to remain unchanged for all the queries in workload Q.
In an on-line setting, we would also like to measure the on-line or dynamic
performance of an estimation method. The on-line a.a.e. and the on-line a.r.e.
are defined as in (27), except that the selectivity estimation method is allowed
to update itself in between queries.

Data Set. We performed our experiments on the XMark synthetic data
set [21,19] and on several real data sets: DBLP [13], Swiss protein 7 , and
Shakespeare 8 . For brevity, we present only the results from the DBLP data
set and the XMark data set in this paper. The characteristics of each data set
are summarized in Table 1.

Characteristic DBLP XMark

Size (MBytes) 10 116

No. of nodes 261,256 1,479,327

No. of distinct tags 29 74

No. of distinct values 91,878 415,262

Path tree depth 5 13

No. of path tree tag nodes 57 514

No. of path tree value nodes 109,741 675,844
Table 1
Characteristics of the DBLP data set and the XMark data set.

Query Workload. In the experiments we present in this section we used
workloads consisting of simple and single-value query path expressions with
positive selectivity. We did generate negative workloads (consisting of query
paths that do not appear in the data, i.e., query paths with zero selectivity) by

7 http://www.expasy.ch/sprot
8 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip

23

B6 C3

A1

D
3

v2

1

v3

1

v4

1

C4

v4

1 v8

1

D
3

v3

2

v5

1

D
1

v6

1

v1

1

v7

1

Fig. 7. The path tree corresponding to the XML data tree in Figure 4. Circle nodes
denote tag names and square nodes denote values.

generating random sequences of legal tags ending with a random legal value;
however, for all the negative workloads that we generate, our XPathLearner
consistently returns a selectivity of 1 for each negative path 9 . (The default
return value for paths that are not captured in our Markov histogram is 1.)
Hence, the average absolute error is 1. This result contrasts sharply with the
summarized Markov tables of [1], where the average absolute error for negative
workloads can be as high as 250.

Positive query workloads are generated from the path tree [1] of the given XML
data set. Recall that a path tree summarizes an XML data tree by aggregating
every sibling having the same tag into a single node annotated by a count of
the number of occurrences in the original XML data tree. Figure 7 shows
an example of a path tree corresponding the XML data tree in Figure 4. We
generate positive path queries as follows. All the root-to-leaf paths in the path
tree are first enumerated. A query path is generated by randomly choosing a
root-to-leaf path and then randomly choosing a starting level and a path
length that are within limits of the length of the chosen root-to-leaf path.
The random query path of the chosen length is then output starting from the
chosen level in the chosen root-to-leaf path.

These root-to-leaf paths are not chosen uniformly, but from a distribution
weighted according to their selectivities,

P [choosing root-to-leaf path p] =
σ(p)∑

r∈R σ(()r)
, (28)

where R is the set of all root-to-leaf path of the given path tree. The reason
for choosing the root-to-leaf path in this way is to prevent the query workload
from having too many query paths with very small selectivities.

Comparisons. We compare the performance of the off-line method and sev-
eral versions of XPathLearner. The labeling convention for the different ver-
sions are as follows: xpl-o1-dt-lb denotes a first order (“o1”) XPathLearner

9 A positive workload of 1000 query paths was used as the training workload for
that experiment.

24

using the delta rule (“dt”) and the compressed histogram approach for stor-
ing paths with leaf values (“lb” for leaf buckets); xpl-o1-ht-lb denotes a
first order XPathLearner using the heavy-tail rule (“ht”) and the compressed
histogram approach; xpl-o1-dt-ca denotes a first order XPathLearner using
the delta rule and the cache-based approach to storing paths with leaf values
(“ca”); xpl-o2-dt-ca denotes a second order (“o2”) XPathLearner using the
delta rule and the cache-based approach. The off-line method differs from the
XPathLearner in that the Markov histogram is constructed by scanning the
repository. It differs from the Markov table method [1] in that (1) no sum-
marization is done of the tag-tag counts, (2) the tag-value counts are stored,
and (3) the tag-value counts are summarized using the method described in
Section 4.3.

Initial Condition. We assume that we do not know anything about the
workload distribution at the start of each experiment; that is, we start with
an empty Markov histogram. More sophisticated ways of obtaining an initial
Markov histogram are possible, but an empty initial histogram represents a
reasonable worst case.

Counting Memory. An order (m−1) XPathLearner using the compressed
histogram approach consists of m tables and a compressed histogram data
structure. Each table i stores entries of the form 〈path i, count〉, where path i

is a simple path of length i. A compressed histogram stores k entries of the
form 〈pathm, count〉 where pathm is a single-value path of length m, and some
number of aggregated entries of the form 〈pathm−1, feature, sum, num〉, where
pathm−1 is a simple path of length m−1. Each length i path requires i integers.
All other fields take one integer each. Each integer takes four bytes. (For a
first order example see Figure 6.)

An order (m − 1) XPathLearner using the cache-based approach consists of
just m tables, each table i storing entries of the form 〈path i, count , counter〉,
where path i is a simple or single-value path of length i. Each length i path
again requires i four-byte integers, each count requires one four-byte integer,
and each counter requires one byte.

The memory requirements of each method is accounted for by counting the
number of entries in each table and compressed histogram, and multiplying
by the corresponding memory requirement of each type of entry.

Parameters. We set the learning rate γ to 1 for the heavy-tail rule update
strategy and 0.1 for the delta rule update strategy. For the cache-based ap-
proach, we set the threshold for evicting low count entries to 30, i.e., entries

25

with count less than 30 are candidates for eviction. These values were found
to be reasonably good by experimentation.

5.1 Accuracy vs Space

In this experiment, we measure the estimation error under varying memory
constraints. Two different query workloads from the DBLP data set are used:
one as the training set and the other as the testing set. Each workload consists
of 4096 query paths, of which about 3100 paths are distinct. The average
true selectivities of the training and testing workloads are 2034 and 2296 10 ,
respectively.

The goal of this experiment is to see how our on-line Markov histogram per-
forms on a workload that is different from its training workload. We define a
workload difference measure with respect to a first-order Markov histogram
in order to quantify the difference between two workloads.

Workload Diff. Given two workloads A and B, we construct for each work-
load the set of length-2 paths of all the query paths in the workload. Let the
set of length-2 paths of A and B be SA and SB, respectively. The workload
difference measure of A and B is

workload diff(A,B) = 1− |SA ∩ SB|
|SA ∪ SB|

. (29)

Intuitively, the workload diff measures how different the first-order Markov
models of the two given workloads are.

We experimented on a large number of training-testing workload pairs and we
present a typical result set in Figure 8. The workload diff of the training and
testing workload we present is 88.4%. For the XPathLearner using the com-
pressed histogram approach, we measure the estimation error as k varies from
32 to 4096. The k values (for the top k values) are then converted to memory
usage in bytes and the estimation errors are plotted against memory usage.
Our experiments show that in terms of absolute errors our on-line XPath-
Learner (xpl-o1-ht-lb, xpl-o1-dt-lb, and xpl-o2-dt-ca) is more accurate
than the off-line version. Amongst the two on-line update strategies, the delta
rule is usually more accurate than the heavy-tail strategy. In terms of rela-
tive errors, the second order xpl-o2-dt-ca is the most accurate under tight
memory constraints. The performance of xpl-o1-ht-lb and xpl-o1-dt-lb are
within 10% of the off-line method.

10 Since the total number of nodes in the XML data tree is N = 261, 256, these
selectivities correspond to 0.77 % and 0.87 %.

26

30

40

50

60

70

80

6 8 10 12 14 16 18

A
ve

. A
bs

ol
ut

e
E

rr
or

Memory(KiloBytes)

Average Absolute Error vs Memory

off-line
xpl-o1-ht-lb
xpl-o1-dt-lb
xpl-o1-dt-ca
xpl-o2-dt-ca

30

35

40

45

50

55

6 8 10 12 14 16 18

A
ve

. R
el

at
iv

e
E

rr
or

(%
)

Memory(KiloBytes)

Average Relative Error vs Memory

off-line
xpl-o1-ht-lb
xpl-o1-dt-lb
xpl-o1-dt-ca
xpl-o2-dt-ca

Fig. 8. Accuracy vs Memory for DBLP data set. Accuracy of the on-line
Markov histogram method on a testing workload that is 88.4% different from the
training workload. Both workloads contain 4096 single-value query paths, about
3100 of which are distinct.

The relationship between k and the memory usage in bytes for the off-line and
on-line XPathLearner (using compressed histogram approach) is graphed in
Figure 12. We note that, for fixed k, the memory requirement of the off-line
method is more than that of the on-line method; for k = 512, the off-line
method requires 2947 bytes and the on-line method only 1934 bytes. The off-
line method has to store statistics for the entire XML repository while the
on-line method only needs to store the statistics of the workload.

We also show our results for two workloads (training and testing) consisting
of simple path expressions only (no value nodes involved). Both workloads
consist of 1000 simple path expressions, and although the two workloads are
different, their workload diff is zero 11 . This property arises because the set of
length-2 paths entailed by both workloads are the same. The estimation error
rates are tabulated in Table 2.

11 Since the number of possible tags is small, a workload of 1000 paths captures
most of the length-2 paths.

27

Method a.a.e. a.r.e.(%) Memory

xpl-o1-dt-lb 0.086 0.197 764 Bytes

off-line 0.110 0.331 796 Bytes

xpl-o1-ht-lb 1.198 0.243 764 Bytes

xpl-o1-dt-ca 87.9 19.535 760 Bytes
Table 2
Accuracy of various methods for simple path expression queries on the
DBLP data set. Estimation error of the off-line method, the on-line xpl-o1-
ht-lb, xpl-o1-dt-lb, and xpl-o1-dt-ca methods for a workload consisting only
of simple path expressions (tag-only path expressions). The on-line xpl-o1-dt-lb
outperforms the others.

5.2 Convergence

We want to investigate how well the on-line method converges to a given
workload distribution. One query workload of 1000 query paths (840 distinct)
from the DBLP data set is used in this experiment. We measure the average
absolute and relative errors over the entire workload as the histogram learner
processes each query path in the same workload. Since the Markov histogram
is initially empty, the first few error measurements will be large, and as the
Markov histogram converges to the workload distribution, the measured er-
ror will be small. The error measurements over each iteration or update of a
Markov histogram are plotted in Figure 9 and Figure 10. All the methods are
given the same amount of memory (7.7 KBytes or k = 512). The results in
Figure 9 and Figure 10 show that the accuracy of our XPathLearner reaches
very acceptable levels within the first 100 iterations. Figure 11 shows how the
memory constraint (governed by k when the compressed histogram approach
is used) affects the convergence properties of XPathLearner. Our results show
that XPathLearner can still be very accurate even when little memory is allo-
cated. The spike in the xpl-o1-dt-lb plot of Figure 9 is due to the occurrence
of a path that violates the Markov assumption.

5.3 Adapting to Data Distribution Change

This experiment investigates how the on-line Markov histogram will adapt
to a workload that has its first 1000 query paths generated from the original
DBLP path tree and the next 1000 query paths generated from a modified
DBLP path tree with random perturbation to the counts at each node. The
perturbation is intended to simulate the DBLP data changing over time. We
introduce the perturbation by generating a random number U ∈ [1− δ, 1 + δ]
for each node r in the path tree. The count associated with node r is then

28

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. A
bs

ol
ut

e
E

rr
or

iteration no.

Average Absolute Error vs iteration

xpl-o1-ht-lb

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. A
bs

ol
ut

e
E

rr
or

iteration no.

Average Absolute Error vs iteration

xpl-o1-dt-lb

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. A
bs

ol
ut

e
E

rr
or

iteration no.

Average Absolute Error vs iteration

xpl-o1-dt-ca

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. A
bs

ol
ut

e
E

rr
or

iteration no.

Average Absolute Error vs iteration

xpl-o2-dt-ca

Fig. 9. Convergence of a.a.e. (fixed memory) on the DBLP data set. The
absolute error averaged over an entire workload at each iteration of the learning
process.

scaled by the random number U ,

count(r)← max{1, U · count(r)} (30)

We realize that these perturbations are simplistic and a finer model of the
changes in XML data is part of our future work.

The modified path tree that we generated using δ = 0.7 has a Kullback-
Liebler divergence of 0.129299 bits. The Kullback-Liebler (KL) divergence of
a modified path tree f1 with respect to the original path tree f0 is defined as

KL(f0|f1) =
∑

y∈{root-to-node paths}
f0(y) log

f0(y)

f1(y)
. (31)

The KL divergence is a common difference measure of distributions [11].

This experiment is performed as follows. Let the workload of 1000 query paths
generated from the original path tree be Qold and the workload of 1000 query
paths generated from the modified path tree be Qnew . Let Qmix be the con-
catenation of Qold and Qnew . We let our XPathLearner (k = 32) learn the
Markov histogram from this mixed workload. For the first 1000 iterations we
measure the average absolute error over Qold after each update and for the

29

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. R
el

at
iv

e
E

rr
or

(%
)

Iteration no.

Average Relative Error vs iteration

xpl-o1-ht-lb

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. R
el

at
iv

e
E

rr
or

(%
)

Iteration no.

Average Relative Error vs iteration

xpl-o1-dt-lb

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. R
el

at
iv

e
E

rr
or

(%
)

Iteration no.

Average Relative Error vs iteration

xpl-o1-dt-ca

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. R
el

at
iv

e
E

rr
or

(%
)

Iteration no.

Average Relative Error vs iteration

xpl-o2-dt-ca

Fig. 10. Convergence of a.r.e. (fixed memory) for the DBLP data set. The
relative error averaged over an entire workload at each iteration of the learning
process.

next 1000 iterations we measure the average absolute error over Qnew after
each update. The average absolute error at the end of each iteration is plotted
in Figure 13. The spikes near iteration 320 in the plot for xpl-o1-dt-ca is
probably an artifact of the cache-based approach. The spike at iteration 1001
is expected and shows the transition from workload Qold to workload Qnew .
Since the distribution underlying Qold is different from that underlying Qnew ,
the average absolute estimation error with respect to Qnew at iteration 1001 is
very large. About 100 iterations after the transition, the on-line method has
adapted to Qnew .

5.4 On-line Accuracy vs Space

How does XPathLearner perform in an on-line setting? We measure the on-
line estimation errors of XPathLearner under different memory constraints
and plot the results in Figure 14. A query workload of 10,000 queries gener-
ated from the XMark data set is used. Recall that the on-line average error
measures the error of each query in the workload while allowing the esti-
mation method to update itself after each query. The on-line average error
therefore measures the performance of XPathLearner while it is “in action”.

30

In terms of on-line a.r.e., the XPathLearner using the delta rule and com-
pressed histogram is the most accurate among the four methods. In terms of
on-line a.a.e., the cache-based approach (with delta rule) seems to be more
accurate.

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. A
bs

ol
ut

e
E

rr
or

iteration no.

Average Absolute Error vs iteration

xpl-o1-ht-lb k=32
xpl-o1-ht-lb k=512

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. A
bs

ol
ut

e
E

rr
or

iteration no.

Average Absolute Error vs iteration

xpl-o1-dt-lb k=32
xpl-o1-dt-lb k=512

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. A
bs

ol
ut

e
E

rr
or

iteration no.

Average Absolute Error vs iteration

xpl-o1-d1-ca 2.3 KB
xpl-o1-d1-ca 7.7 KB

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

A
ve

. A
bs

ol
ut

e
E

rr
or

iteration no.

Average Absolute Error vs iteration

xpl-o2-d1-ca 2.3 KB
xpl-o2-d1-ca 7.7 KB

Fig. 11. Convergence of a.a.e. (variable memory) for the DBLP data set.
Each plot shows the absolute error convergence curves for two different memory
constraint and for most of the time, the two curves are indistinguishable. These
plots show that convergence is not sensitive to the memory constraint.

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
em

or
y(

K
ilo

B
yt

es
)

k

Memory vs k

off-line
xpl-o1-{ht,dt}-lb

Fig. 12. Memory vs k for the DBLP data set.

31

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

. A
bs

ol
ut

e
E

rr
or

Iteration no.

Average Absolute Error vs iteration

xpl-o1-ht-lb

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

. A
bs

ol
ut

e
E

rr
or

Iteration no.

Average Absolute Error vs iteration

xpl-o1-dt-lb

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

. A
bs

ol
ut

e
E

rr
or

Iteration no.

Average Absolute Error vs iteration

xpl-o1-dt-ca

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

. A
bs

ol
ut

e
E

rr
or

Iteration no.

Average Absolute Error vs iteration

xpl-o2-dt-ca

Fig. 13. Adaptability (DBLP data set). Average absolute error averaged over
Qold for iteration 1-1000 and averaged over Qnew for iteration 1001-2000.

200

250

300

350

400

450

500

550

6 8 10 12 14 16 18

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Memory(KiloBytes)

Online Average Absolute Error vs Memory

offline-o1-lb
xpl-o1-ht-lb
xpl-o1-dt-lb
xpl-o1-dt-ca
xpl-o2-dt-ca

30

35

40

45

50

55

6 8 10 12 14 16 18

A
ve

. R
el

at
iv

e
E

rr
or

(%
)

Memory(KiloBytes)

Online Average Relative Error vs Memory

offline-o1-lb
xpl-o1-ht-lb
xpl-o1-dt-lb
xpl-o1-dt-ca
xpl-o2-dt-ca

Fig. 14. On-line error vs memory for the XMark data set. The on-line
estimation performance of XPathLearner under varying memory constraints on a
workload of 10,000 queries drawn from the XMark data set.

5.5 On-line Errors vs Selectivity

We further analyze the on-line estimation errors (absolute errors) by parti-
tioning the errors into 40 bins according to the true selectivity of the queries.
The errors in each bin are averaged and the average error for each bin is
plotted in Figure 15. The on-line errors we used are for the same workload
of 10,000 queries from the XMark data set used in Section 5.4. Each XPath-
Learner method is given about 7.3 KBytes of memory. The plots show that the

32

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Selectivity

Average Absolute Error vs Selectivity

xpl-o1-ht-lb

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Selectivity

Average Absolute Error vs Selectivity

xpl-o1-dt-lb

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Selectivity

Average Absolute Error vs Selectivity

xpl-o1-dt-ca

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Selectivity

Average Absolute Error vs Selectivity

xpl-o2-dt-ca

Fig. 15. On-line error distribution across selectivities for the XMark data
set.

compressed histogram approach tend to produce larger errors for larger selec-
tivities compared to the cache-based approach. This result is consistent with
the on-line accuracy results in Section 5.4 where the compressed histogram
approach is more accurate than the cache-based approach in terms of relative
error, even though the cache-based approach is better in terms of absolute
error.

5.6 The Frequency of Online Errors

We investigate how often on-line errors of a certain (relative) magnitude oc-
curs. The on-line relative errors we used are for the same workload of 10,000
queries from the XMark data set used in Section 5.4. Each XPathLearner
method is given about 7.3 KBytes of memory. The on-line relative errors are
partitioned into 40 bins by their magnitude and the normalized count of the
number of errors in each bin is plotted in Figure 16. Our results show that the
relative estimation error is very small most of the time. Relative errors larger
than 200% occur less than 2 % of the time.

33

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

Fr
eq

ue
nc

y
of

 O
cc

ur
re

nc
e

(%
)

Relative Error (%)

Frequency of Relative Error

xpl-o1-ht-lb

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

Fr
eq

ue
nc

y
of

 O
cc

ur
re

nc
e

(%
)

Relative Error (%)

Frequency of Relative Error

xpl-o1-dt-lb

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

Fr
eq

ue
nc

y
of

 O
cc

ur
re

nc
e

(%
)

Relative Error (%)

Frequency of Relative Error

xpl-o1-dt-ca

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

Fr
eq

ue
nc

y
of

 O
cc

ur
re

nc
e

(%
)

Relative Error (%)

Frequency of Relative Error

xpl-o2-dt-ca

Fig. 16. Frequency of on-line relative errors for the XMark data set. The
occurrence frequency of different ranges of on-line relative errors for an XMark query
workload of 10,000 queries are plotted. More than half the errors that XPathLearner
makes are relative errors of less than 5%.

5.7 Discussion

Our experiments have shown that XPathLearner is very accurate in terms
of the traditional error measures as well as the on-line error measures we
proposed. Moreover, we have shown that most of the the errors that XPath-
Learner makes are very small relative errors. XPathLearner adapts readily to
changing data distributions and converges to very low error rates even under
tight memory constraints.

What may be surprising is that XPathLearner can be even more accurate than
the costly off-line method. We would expect the off-line method to be more
accurate than the on-line method because the Markov histograms are con-
structed by scanning the data itself. The main reason for the on-line method
being more accurate than the off-line is that the off-line method attempts to
model all the data using the limited amount of given memory, whereas the
on-line method uses the same amount of memory to model the portion of the
data that is frequently queried in the workload. A secondary reason is that
in constructing a Markov histogram over all the data, the off-line method can
be affected by paths that violate the Markov assumption. Recall that for an
order-1 Markov chain, the frequency of the next tag depends on the frequency

34

B

C200

D1 D100

C2

A

Path Tree

(a) An artificial example.

Michael
Stonebraker

Michael
Stonebraker

Path Tree

editor editor

proceedingsbook

DBLP

3

71 269

1

(b) An example from the DBLP data.

Fig. 17. Two examples of a pair of paths that violate the order-1 Markov assumption.

of the current tag only. We illustrate effect these Markov-violating paths with
an example.

Example of paths violating the order-1 Markov assumption. Con-
sider the path tree in Figure 17(a) and the two paths //A/C/D and //B/C/D in
the path tree. Assume that the tags A, B, C, D do not occur anywhere else in
the path tree. The two paths //A/C/D and //B/C/D violate the order-1 Markov
assumption because the count of D conditioned on being at C (via B) is 1/200
and the the count of D conditioned on being at C (via A) is 50. The violation
is due to the large difference between the two conditional counts. In the off-
line method, these two conditional counts will be aggregated and the entries
f(AC) = 2, f(BC) = 200, and f(CD) = 101 will be stored. Hence, the selec-
tivity of path //B/C/D will be computed as σ̂(BCD) = 200×101÷202 ≈ 100
which has an absolute error of 99. For the on-line method, in the best case
when the workload does not contain any path with //A/C or //C/D, the on-line
method with delta rule will learn that f(BC) = 200 and f(CD) = 1. XPath-
Learner with delta rule will then give a more accurate estimate of //B/C/D.

The effect of these Markov-violating paths on the on-line method depends on
whether the Markov-violating paths occur in the workload and how they are
interleaved in the workload. The bottom line is that the on-line method has
a chance of avoiding these Markov-violating paths, while the off-line method
does not.

6 Conclusions

In this paper, we presented XPathLearner, a new method for estimating the
selectivities of path expressions (simple, single-value, multi-value) without ex-
amining the XML data. Our method relies on the feedback from the query

35

execution engine to construct and refine a Markov histogram of the underlying
path selectivity statistics. We also proposed two approaches to deal with the
large number of single-value paths that allows us to estimate the selectivity
of paths containing data values using our Markov histogram. We presented
two update or refinement strategies—the heavy-tail rule and the delta rule—
and evaluated their performance experimentally. Our experiments show that
our method is accurate under modest memory requirements. As future work,
we plan to extend the current fixed-order Markov model to a more general
variable-order Markov model.

References

[1] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton. Estimating
the selectivity of XML path expressions for internet scale applications. In VLDB
2001, pages 591–600, 2001.

[2] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: Building
histograms without looking at data. In SIGMOD 1999, pages 181–192, 1999.

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible
markup language (XML) 1.0 (2nd edition). W3C Recommendation, October 6,
2000.

[4] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. STHoles: a
multidimensional workload-aware histogram. In Walid G. Aref, editor,
SIGMOD 2001, pages 211–222. ACM Press, 2001.

[5] Don Chamberlin, James Clark, Daniela Florescu, Jonathan Robie, Jerome
Simeon, and Mugur Stefanescu. XQuery 1.0: An XML query language. W3C
Working Draft, June 7, 2001.

[6] Zhiyuan Chen, H. V. Jagadish, Flip Korn, Nick Koudas, S. Muthukrishnan,
Raymond T. Ng, and Divesh Srivastava. Counting twig matches in a tree. In
ICDE 2001, pages 595–604, 2001.

[7] James Clark. expat—XML parser toolkit, 2000.

[8] James Clark and Steve DeRose. XPath 1.0: XML path language. W3C
Recommendation, November 16, 1999.

[9] Roy Goldman, Jason McHugh, and Jennifer Widom. From semistructured data
to XML: Migrating themlore data model and query language. WebDB (Informal
Proceedings), pages 25–30, 1999.

[10] H. V. Jagadish, Raymond T. Ng, and Divesh Srivastava. Substring selectivity
estimation. In PODS 1999, pages 249–260, 1999.

36

[11] Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E.
Shapire, and Linda Sellie. On the learnability of discrete distributions.
Proceedings of the 26th Annual ACM Symposium on the Theory of Computing,
pages 273–282, 1994.

[12] P. Krishnan, Jeffrey S. Vitter, and Balakrishna R. Iyer. Estimating
alphanumeric selectivity in the presence of wildcards. In SIGMOD 1996, pages
282–293, 1996.

[13] Michael Ley. DBLP XML records, 2001.

[14] Jason McHugh and Jennifer Widom. Query optimization for XML. In
Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik,
and Michael L. Brodie, editors, Proceedings of 25th Intl. Conf. on Very Large
Data Bases, pages 315–326. Morgan Kaufmann, 1999.

[15] Jeffrey F. Naughton, David J. DeWitt, David Maier, Ashraf Aboulnaga, Jianjun
Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy, Qiong Luo,
Naveen Prakash, Ravishankar Ramamurthy, Jayavel Shanmugasundaram, Feng
Tian, Kristin Tufte, Stratis Viglas, Yuan Wang, Chun Zhang, Bruce Jackson,
Anurag Gupta, and Rushan Chen. The Niagara internet query system. IEEE
Data Engineering Bulletin, 24(2):27–33, June 2001.

[16] Neoklis Polyzotis and Minos N. Garofalakis. Statistical synopses for graph-
structured XML databases. In SIGMOD 2002, pages 358–369, 2002.

[17] Neoklis Polyzotis and Minos N. Garofalakis. Structure and value synopses for
XML data graphs. In VLDB 2002, pages 466–477, 2002.

[18] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. In Parallel Distributed
Processing—Explorations in the Microstructure of Cognition, chapter 8, pages
318–362. MIT Press, 1986.

[19] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.
XMark: A Benchmark for XML Data Management. In Proceedings of 28th Intl.
Conf. on Very Large Data Bases, pages 974–985, Hong Kong, China, August
2002.

[20] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system. In
Proceedings of the 1979 ACM SIGMOD Intl. Conf. on Management of Data,
pages 23–34, 1979.

[21] XMark 100 MB standard dataset., 2002. http://www.xml-benchmark.org.

[22] Xyleme home page, 2001. http://www.xyleme.com.

37

