
Machine Learning, 17, 1{26 (1994)
c 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Theory for Memory-Based Learning*

JYH-HAN LIN jyh-han lin@pts.mot.com

Motorola Inc., Applied Research/Communications Lab., Paging Products Group, Boynton Beach,

FL 33426

JEFFREY SCOTT VITTER jsv@cs.duke.edu

Department of Computer Science, Duke University, Durham, NC 27708

Editor: Lisa Hellerstein

Abstract. A memory-based learning system is an extended memory management system that

decomposes the input space either statically or dynamically into subregions for the purpose of

storing and retrieving functional information. The main generalization techniques employed by

memory-based learning systems are the nearest-neighbor search, space decomposition techniques,

and clustering. Research on memory-based learning is still in its early stage. In particular, there

are very few rigorous theoretical results regarding memory requirement, sample size, expected per-

formance, and computational complexity. In this paper, we propose a model for memory-based

learning and use it to analyze several methods| �-covering, hashing, clustering, tree-structured

clustering, and receptive-�elds|for learning smooth functions. The sample size and system com-

plexity are derived for each method. Our model is built upon the generalized PAC learning model

of Haussler (Haussler, 1989) and is closely related to the method of vector quantization in data

compression. Our main result is that we can build memory-based learning systems using new clus-

tering algorithms (Lin & Vitter, 1992a) to PAC-learn in polynomial time using only polynomial

storage in typical situations.

Keywords: Memory-based learning, PAC learning, clustering, approximation, linear program-

ming, relaxation, covering, hashing

1. MOTIVATION

In this paper, we introduce a model for memory-based learning and consider the
problem of learning smooth functions by memory-based learning systems.
A memory-based learning system is an extended memory management system that
decomposes the input space either statically or dynamically into subregions for the
purpose of storing and retrieving functional information for some smooth function.
The main generalization techniques employed by memory-based learning system
are the nearest-neighbor search,1 space decomposition techniques, and clustering.
Although memory-based learning systems are not as powerful as neural net models
in general, the training problem for memory-based learning systems may be com-
putationally more tractable. An example memory-based learning system is shown
in Figure 1. The \encoder" maps an input from the input space X into a set
of addresses and the \decoder" � maps the set of activated memory locations into
an output in the output space Y . The look-up table for memory-based learning

* This research was done while the authors were at Brown University.

2 J.-H. LIN AND J. S. VITTER

x1

x2

Table look-up

y1

y2

Input space X Output space Y

βγ

Memory Z

1

2

s

encoder decoder

Figure 1. An example memory-based learning system. The encoder maps an input from the

input space X into a set of addresses and the decoder � maps the set of activated memory locations

into an output in the output space Y .

systems can be organized as hash tables, trees, or full-search tables. The formal
de�nitions of memory-based learning systems will be given in Section 2.

The motivation for our model is as follows: In the human motor system, most
of the computations done are entirely subconscious. The detailed computations of
what each muscle must do in order to coordinate with other muscles so as to pro-
duce the desired movement are left to low-level, subconscious computing centers.
Considering the complexity of the type of manipulation tasks routinely performed
by biological organisms, it seems that the approach of controlling robotic manip-
ulator systems by a mathematical formalism such as trigonometric equations is
inadequate to produce truly sophisticated motor behavior. To remedy this situa-

A THEORY FOR MEMORY-BASED LEARNING 3

tion, Albus (1975a, 1975b, 1981) proposed a memory-driven, table-reference motor
control system called Cerebellar Model Articulation Controller (CMAC). The fact
that for n input variables with R distinguishable levels there are Rn possible inputs
may be su�cient to discourage this line of research. However, Albus observed that
for any physical manipulator system, the number of di�erent inputs that are likely
to be encountered (and thus the size of memory that is actually needed) is much
smaller than Rn. He also noticed for similar motor behaviors (for example, swinging
a bat or a golf club) that the required muscle movements are similar. Albus out-
lined a memory management technique to take advantage of these two properties
and make the memory-based approach to learning control functions more practical.
In the CMAC system, each input x from an input space X is assigned by a

mapping to a set (x) of locations in a memory V . Each location contains a
vector in an output space Y . The output f(x) is computed by summing the values
(weights) at all of the memory locations assigned to x:

f(x) =
X
i2(x)

V [i]:

The mapping has the characteristic that similar inputs in the input space X map
to overlapping sets of locations in the memory V , while dissimilar inputs map to
distinct sets of locations in the memory V . The amount of overlap between two
sets of locations in the memory V is related to the generalized Hamming distance
between two corresponding inputs in X . This mapping is supposed to give auto-
matic generalization (interpolation) between inputs in X : that is, similar inputs
produce similar outputs.
Clearly, this scheme may require the size of memory V to be on the same order

of magnitude as the total number of possible input vectors in X . In practice,
this is hardly feasible. For this reason, the memory V is considered to be only
a hypothetical memory; each location in V is mapped using a hash function h

to a physical memory Z of practical size. The output f(x) is then computed by
summing the values in the memory Z that are mapped to by the input x:

f(x) =
X
i2(x)

Z [h(i)]

=
X

i20(x)

Z [i];

where 0 = h�. As a result of the random hashing from the hypothetical memory
V to the physical memory Z , the sets of memory locations mapped to by dissimilar
inputs in input space X have a low, but nonzero, probability of overlapping; this
can create an undesirable generalization between dissimilar inputs.
The resulting system will produce an output f(x) 2 Y for any input x in the

input space X . Since the number of locations in the real memory Z will typically
be much smaller than the total number of possible inputs, it is unlikely that the
weights in Z can be found such that the outputs of CMAC system are correct over

4 J.-H. LIN AND J. S. VITTER

the entire input space. On the other hand, it is unlikely that all possible inputs
will be encountered in solving a particular control or classi�cation problem.

The standard CMAC model has been applied to the real-time control of robots
with encouraging success (Miller, 1987; Miller, Glanz & Kraft, 1987). Dean and
Wellman (1991) have given a comprehensive coverage of the CMAC models and
learning algorithms.

Research on the CMAC model and its variants is still in its early stage. In
particular, there are very few rigorous theoretical results available. Many problems
remained unanswered, among them the following:

1. In the current experimental study, learning parameters are chosen on an ad hoc

basis. The e�ects of the scale of resolution, the size of physical memory, and
the size of the training database (examples) on system performance are largely
unknown.

2. Given a class F of functions and a tolerable relative error bound, what are the
sample size and memory size required to approximate functions in F?

3. Given a sample, what are the computational complexities of training? That
is, how much time does it require to determine system parameters from the
sample?

In Section 2 we outline a theoretical framework for answering these problems. Our
memory-based learning model is built upon the generalized PAC learning model of
Haussler (Haussler, 1989) and is closely related to the method of vector quantization
in data compression (Gersho, 1982; Gray, 1984; Riskin, 1990; Gersho & Gray,
1991). Section 3 introduces the notion of quantization number , which is intended
to capture the optimal memory requirement of memory-based learning systems
for a given error bound. The quantization number can be signi�cantly smaller
than the covering number in practice. In Section 4 we use our model to analyze
several methods for learning smooth functions by nearest-neighbor systems. Our
main result is that we can build memory-based learning systems using the new
clustering algorithms (Lin & Vitter, 1992a) to PAC-learn in polynomial time using
only polynomial storage in typical situations. We extend our analysis to tree-

structured and higher-order memory-based learning system in Section 5 and 6,
respectively. We conclude with some possible extensions to our model in Section 7.

2. A MEMORY-BASED LEARNING MODEL

Let T be a complete and separable metric space with distance metric dT . We
denote the metric space by (T; dT). Let H(T) denote the space whose points are
the compact subset of T . The diameter of a set A 2 H(T), denoted as diam(A),
is supt1;t22T dT (t1; t2). The distance dT (t; A) from a point t to a set A 2 H(T), is
de�ned as infx2A dT (t; x). For any � > 0, an �-cover for A is a �nite set U � T such
that for all t 2 A there is a u 2 U such that dT (t; u) � �. If A has a �nite �-cover

A THEORY FOR MEMORY-BASED LEARNING 5

for every � > 0 then A is totally bounded. Let N (A; �; dT) denote the size of the
smallest �-cover for A. We refer to N (A; �; dT) as the covering number .
In this paper, we let X � <k be the input space and Y � <` be the output space

and let dX and dY be the Euclidean metrics. In typical applications, X and Y are
usually hypercubes or hyperrectangles. Let MX = diam(X) and MY = diam(Y).
For a positive integer s, let Ns denote the set f1; : : : ; sg. Let Nr

s be the collection
of all r-element subsets (r-subsets) of Ns. Let U = fu1; : : : ; usg and B be a subset
of U , then index (B) denotes the set of indices of elements in B.

2.1. MEMORY-BASED LEARNING SYSTEMS

De�nition. A generic memory based learning system G realizes a class of functions
from the input space (X; dX) to the output space (Y; dY). Each function g realizable
by G can be speci�ed by a sequence of memory contents Z = hz1; : : : ; zsi, where
s is a positive integer, and a pair of functions h; �i; is the encoder, which is a
mapping from X to 2Ns and � is the decoder, which is a mapping from 2Ns to Y .
We can write g as the composition � � . We denote Z(i) = zi.

We may regard Ns as the address (or neuronal) space and 2Ns as the collection
of sets of activated addresses (or neurons).
We will often study parameterized classes of memory-based learning systems. Let

C : G ! <+ be a complexity function of memory-based learning systems, which
maps a system g 2 G to a positive real number. The most straightforward com-
plexity measure is the size of memory, which we will use in this paper. However,
for some applications, other complexity measures may be more appropriate. For
example, in real-time applications, we may be more concerned with the speed of
encoding and decoding. In remote-control applications, the sensor/encoder and
e�ector/decoder may not be at the same location, and the sensor has to send
control signals (addresses) to the e�ector via communication channels. In such a
scenario, communication complexity may be a more important issue. We let Gs

denote the class of memory-based learning systems of complexity at most s, that
is Gs = fg j C(g) � sg.
We are interested in the following two types of memory-based learning systems:

full-search systems and tree-structured systems. In a full-search system, each mem-
ory location corresponds to a region in the input space and contains a representative
vector (key) and a functional value; the encoder maps an input to the memory loca-
tions corresponding to regions that include the input point. Examples of full-search
systems include Voronoi systems and receptive-�eld systems.

De�nition. The class G = [s�rGr
s of (generalized) Voronoi systems of order r is

de�ned as follows: Let U = fu1; : : : ; usg and B be an r-subset of U , then Vor(B; r)
denotes the Voronoi region of order r for B, i.e., Vor(B; r) consists of all x 2 X

such that the r nearest neighbors of x is B. The encoder of a Voronoi system of
order r and size s is a mapping from X to Nr

s and maps x 2 X to index (B) if and

6 J.-H. LIN AND J. S. VITTER

only if x 2 Vor(B; r). The decoder � is a mapping from N
r
s to Y and a function

g 2 G is de�ned as

g(x) =
1

r

X
i2(x)

Z(i):

We shall refer to the �rst-order Voronoi systems simply as Voronoi systems.

De�nition. The class G = [s�1Gs of receptive-�eld systems is de�ned as follows: Let
R = fR1; : : : ; Rsg be a collection of polyhedral sets (regions) such that

S
R
Ri = X .

The encoder maps an input x to the set (x) of indices of regions that contain x.
Note that the regions are allowed to be overlapped. The maximum degree of overlap
is the order of the system. The decoder � is a mapping fromN

r
s to Y and a function

g 2 G is de�ned as

g(x) =
X
i2(x)

Z(i):

Notable examples of receptive-�eld systems include the CMACmodel and Moody's
multi-resolution hierarchies (Moody, 1989).
In a tree-structured system, the encoder partitions the input space into a hierarchy

of regions. An input is mapped to the memory location corresponding to the region
represented by a leaf. The computational advantage of tree-structured systems over
full-search systems in sequential models of computation is that the mapping from
an input to a memory location can be done quickly by tree traversal.

De�nition. The class G = [s�1Gs of tree-structured systems is de�ned as follows:
The encoder of a tree-structured systems of size s partitions the input space into
a hierarchy of regions speci�ed by a tree with s nodes. Each internal node has a
number of branches, each of which is associated with a key. Given an input, starting
at the root node, the encoder compares the input with each key and follows the
branch associated with the key nearest to the input; the search proceeds this way
until a leaf is reached. The search path is output by the encoder as the address for
that input. The decoder � takes a search path and outputs the value in the leaf.

Examples of tree-structured systems include learning systems based upon quadtrees
and k-d trees such as SAB-trees (Moore, 1989).

2.2. THE MEMORY-BASED LEARNING PROBLEM

Informally, given a probability measure P over X � Y , the goal of learning in this
model is to approximate P by a memory-based learning system g 2 G of reasonable
complexity. The expected error of the hypothesis g with respect to P is denoted by

erP (g) = E [dY (g(x);y)] =

Z
X�Y

dY (g(x); y) dP (x; y);

A THEORY FOR MEMORY-BASED LEARNING 7

where hx;yi is the random vector corresponding to P . The formal PAC memory-
based learning model is de�ned below:

De�nition. A memory-based learning problem B is speci�ed by a class G of memory-
based learning systems and a class P of probability measures over X � Y , where
X � <k and Y � <`. We say that B is learnable if for any 0 < � < 1=2 and 0 <
� < 1=2 the following holds: There exists a (possibly randomized) algorithm L such
that if L is given as input a random sample sequence � = h(xi; yi)i of polynomial
sizem(1

�
; 1
�
; k; `), then with probability at least 1��, L will output a memory-based

learning system L(�) 2 G that satis�es

erP (L(�)) � �MY :

If L runs in polynomial time, then we say that B is polynomial-time learnable.

2.3. SMOOTH FUNCTIONS

Without any restriction on the class P of probability measures over X � Y , learn-
ing is not likely to be feasible in terms of memory requirement, sample size, and
computational complexity. In this paper, we restrict P to be generated by some
smooth function f and some probability measure PX over X , that is, the sample
point is of the form (x; f(x)). Poggio and Girosi (1989, 1990) have given further
justi�cation for the smoothness assumption.

De�nition. A function f from X into Y is called a Lipschitz function if and only if
for some K <1 we have

dY (f(x); f(x
0)) � KdX(x; x

0);

for all x; x0 2 X . Let kfkL denote the smallest such K. A class of functions F
from X into Y is called Lipschitz functions if and only if for some K <1 we have

sup
f2F

kfkL � K:

Let kFkL denote the smallest such K. We call K the Lipschitz bound.

The Lipschitz bound does not have to hold everywhere; it su�ces for our purpose
if it holds with probability one over the probability distribution P 2

X . For example,
the class of piece-wise Lipschitz functions satis�es this relaxed condition. Haussler
(1989) has relaxed the Lipschitz condition further:

De�nition. For each f 2 F and real � > 0, �(f; �; �) is the real-valued function on X
de�ned by

�(f; �; x) = supfdY (f(x); f(x0))g;

8 J.-H. LIN AND J. S. VITTER

where the supremum is taken over all x0 2 X for which dX (x; x
0) � �. Let PX

be a probability measure over X . We say that the F is uniformly Lipschitz on

the average with respect to PX if for all � > 0 and all f 2 F there exists some
0 < K <1 such that

E [�(f; �=K;x)] � �:

Let kFkPXL be the smallest such K. For a class PX of probability measures over X ,
we de�ne kFkPXL = supPX2PX kFkPXL .

3. VORONOI ENCODERS AND QUANTIZATION NUMBERS

The class G = [s�1Gs of Voronoi systems (nearest-neighbor systems) is de�ned as
follows: We can specify each g 2 Gs by a set U = fu1; : : : ; usg of size s. Let V or(uj)
denote the Voronoi region for the point uj . The encoder of g is a mapping from X

to Ns and maps x 2 X to j if and only if x 2 V or(uj). Let Z = fz1; : : : ; zsg � Y .
The decoder � of g is a mapping from Ns to Y de�ned by �(j) = zj . In other
words, the system maps an input x to its nearest neighbor in U , and then outputs
the value stored in the memory location corresponding to that point.
We call the encoders of Voronoi systems the Voronoi encoders . In the following,

we introduce the notion of quantization number , which characterizes the optimal
size of Voronoi encoders for a given error bound. The quantization number can be
substantially smaller than the covering number.

De�nition. Let PX be a probability measure overX and let x be the random vector
corresponding to PX . For any � > 0, the quantization number QPX (X; �; dX) of PX
is de�ned as the smallest integer s such that there exists a Voronoi encoder of
size s that satis�es

E

�
dX (x; u(x))

� � �:

For a class PX of probability measures over X , we de�ne

QPX (X; �; dX) = sup
PX2PX

QPX (X; �; dX):

3.1. THE PSEUDO-DIMENSION OF VORONOI ENCODERS

Building on the work of Vapnik and Chervonenkis (Vapnik & Chervonenkis 1971;
Vapnik 1982), Pollard (Pollard, 1984; Pollard, 1990), Dudley (Dudley, 1984), and
Devroye (Devroye, 1988), Haussler (1989) introduced the notion of
pseudo-dimension, which is a generalization of VC dimension. He �rst de�ned
the notion of fullness of sets :

De�nition. For x 2 <, let sign(x) = 1 if x > 0; else sign(x) = 0. For x =
(x1; : : : ; xk) 2 <m, let sign(x) = (sign(x1); : : : ; sign(xm)) and for A � <m let

A THEORY FOR MEMORY-BASED LEARNING 9

sign(A) = fsign(y) j y 2 Ag. For any A � <m and x 2 <m, let A + x = fy + x j
y 2 Ag, that is, the translation of A obtained by adding the vector x. We say that
A is full if there exists x 2 <m such that sign(A + x) = f0; 1gm, that is, if there
exists some translation of A that intersect all 2m orthants of <m.

For example, hyperplanes in <m are not full, since no hyperplanes in <m can
intersect all orthants of <m. The pseudo-dimension is de�ned as follows:

De�nition. Let F be a class of functions from a set X into <. For any sequence
�X = (x1; : : : ; xm) of points in X , let F(�X) = f(f(x1); : : : ; f(xm)) : f 2 Fg.
If F(�X) is full then we say that �X is shattered by F . The pseudo-dimension
of F , denoted by dimP(F), is the largest m such that there exists a sequence of m
points in X that is shattered by F . If arbitrarily long sequences are shattered, then
dimP(F) is in�nite.

It is clear when F is a class of f0; 1g-valued functions that the de�nition of the
pseudo-dimension is the same as that of the VC dimension. Dudley and Haussler
have shown the following useful property of pseudo-dimension:

Theorem 1 (Dudley, 1978) Let F be a k-dimensional vector space of functions

from a set X to <. Then dimP(F) = k.

Theorem 2 (Haussler, 1989) Let F be a class of function from a set X into <.
Fix any nondecreasing (or nonincreasing) function h : < ! < and let H = fh � f :
f 2 Fg. Then we have dimP(H) � dimP(F).
To derive the pseudo-dimension of Voronoi encoders, we use the following lemma

attributed to Sauer (1972):

Lemma 1 [Sauer's Lemma] Let F be a class of functions from S = f1; 2; : : : ;mg
into f0; 1g with jFj > 1 and let d be the length of the longest sequence of points �S
from S such that F(�S) = f0; 1gd. Then we have

jFj � (em=d)d;

where e is the base of the natural logarithm.

We now are ready to bound the pseudo-dimension of Voronoi encoders:

Lemma 2 Let Gs be the Voronoi system of size at most s and let dX be the Eu-

clidean metric. For each possible encoder of Gs, we de�ne f(x) = dX(x; u(x))
and let �s : X ! [0;MX] be the class of all such functions f(x). Then we have

dimP(�s) � 2(k + 1)s log(3s) = O(ks log s);

where k is the dimension of the input space.

Proof: First consider s = 1. By the de�nition of the Euclidean metric, we can
write (f(x))

2 as a polynomial in k variables with 2k+1 coe�cients, where k is the
dimension of the input space. By Theorems 1 and 2, we have dimP(�1) � 2k + 1.

10 J.-H. LIN AND J. S. VITTER

Now consider a general s. Let �X be a sequence of m points in X and let r
be an arbitrary m-vector. Since each function f(x) 2 �s can be constructed
by combining functions from �1 using the minimum operation, that is, f(x) =
minu2U dX(x; u), where jUj � s, we have

jsign(�s(�X) + r)j � jsign(�1(�X) + r)js

�
�

em

2k + 1

�(2k+1)s

:

The last inequality follows from Sauer's Lemma. If m = 2(k + 1)s log(3s), then
(em=(2k + 1))(2k+1)s < 2m. Therefore, we have dimP(�s) � 2(k + 1)s log(3s) =
O(ks log s).

3.2. THE UNIFORM CONVERGENCE OF VORONOI ENCODERS

In this section, we bound the sample size for estimating the error of Voronoi en-
coders. In the following, let Ê

�X
(f) = 1

m

Pm
i=1 f(xi) be the empirical mean of the

function f , and let d�(r; t) = jr � tj=(� + r + t). We need the following corollary
from Haussler and Long (1990):

Corollary 1 Let F be a family of functions from a set X into [0;MX], where
dimP(F) = d for some 1 � d < 1. Let PX be a probability measure on X.

Assume � > 0 and 0 < � < 1. Let �X be generated by m independent draws from

X according to PX . If the sample size is

m � 9MX

�2�

�
2d ln

24MX

(�
p
�)�

+ ln
4

�

�
;

then we have

Prf9f 2 F j d�(Ê�X
(f);E(f)) > �g � �:

Lemma 2 and Corollary 1 imply the following theorem:

Theorem 3 Let �s be de�ned as in Lemma 2. Assume � > 0 and 0 < � < 1. Let
PX be a probability measure on X and �X be generated by m independent draws

from X according to PX . If the sample size is

m � 9MX

�2�

�
2(2k + 1)s log(3s) ln

24MX

(�
p
�)�

+ ln
4

�

�
;

then we have

Prf9f 2 �s j d�(Ê�X
(f);E(f)) > �g � �:

Proof: By Lemma 2, we have dimP(�s) � 2(k+1)s log(3s): The rest of the proof
follows by applying Corollary 1 with d = 2(k + 1)s log(3s):

A THEORY FOR MEMORY-BASED LEARNING 11

4. MEMORY-EFFICIENT LEARNING OF SMOOTH FUNCTIONS

In this section, we investigate in detail three methods of learning smooth functions
by Voronoi systems: �-covering, hashing, and clustering. Our results are summa-
rized in Table 1.

First, we introduce some notation: Let � = h(x1; y1); : : : ; (xm; ym)i be a random
sample sequence of length m. We denote the sequence hx1; : : : ; xmi by �X . We
denote the random vector corresponding to a probability measure P 2 P by (x;y).
We denote the average empirical distance from the x-components of the examples
to U by

d̂
�X
(U) = 1

m

mX
i=1

dX (xi;U):

The discrete version of the above problem is to restrict U to be a subset of �X .

The learning problem is speci�ed as follows: We are given a class G of Voronoi
systems and a class P of probability measures generated by a class PX of probability
measures over X and a class F of smooth functions from X to Y with kFkPXL = K.
Each sample point is of the form (x; f(x)) for some f 2 F . Given 0 < �; � < 1 and
sample sequence � = h(x1; y1); : : : ; (xm; ym)i, the goal of learning is to construct a
Voronoi system g 2 G such that the size of g is as small as possible and the expected
error rate satis�es

erP (g) � �MY ;

with probability at least 1� �.

4.1. LEARNING BY �-COVERING

The main idea of �-covering is to cover the input space with small cells of radius �
and assign each cell a constant value. The smoothness condition assures a small
expected error for the resulting system. The algorithm essentially learns by brute
force:

Algorithm LE (learning by �-covering):

1. Let U be an �MY

4K
-cover of size N , where N = N (X; �MY

4K
; dX). Let m = 2N

�
ln N

�

be the sample size.

2. For each ui 2 U , if Vor(ui) \ �X 6= ; then we choose an arbitrary yj such that
xj 2 Vor(ui) \ �X and set Z(i) = yj ; otherwise, we set Z(i) arbitrarily.

Theorem 4 With probability at least 1 � �, the expected error for Algorithm LE

satis�es erP (LE(�)) < �MY .

12 J.-H. LIN AND J. S. VITTER

Table 1. Upper bounds on system size and sample size for six algorithms for learning smooth

functions by Voronoi systems. The goal of learning for each learning algorithm L is to achieve

with probability at least 1 � � an error bound of erP (L(�)) � �MY . In the table, k is the

dimension of the input space, N is the covering number N (X;
�MY

4K
; dX), p� 1 is the fraction

of nonempty Voronoi cells, and s is the quantization number QPX (X;
�MY

4K
; dX).

Algorithm System size Sample size

�-covering (LE) N O

�
N

�
log

N

�

�
perfect hashing (LH1) O

�
1

�
(pN)2

�
O

�
pN

�
log

pN

�

�
universal hashing (LH2) O

�
1

�
pN

�
O

�
pN

�
log

pN

�

�
coalesced hashing O(pN) O

�
pN

�
log

pN

�

�
optimal clustering (LC1) s O

�
ks

�
log s log

1

�
+
1

�
log

1

�

�

approx. clustering (LC2) O

�
s

�
log

ks

�
+ log log

1

�

��
O

�
ks

�
log s

�
log

ks

�

�2
+
1

�
log

1

�

�

Proof: For each Voronoi cell Vor(ui) satisfying PX (Vor(ui)) � �
2N

, we have

Pr(Vor(ui) \ �X = ;) �
�
1� �

2N

� 2N
�

ln N
�

� �

N
:

Therefore, with probability at least 1��, all Voronoi cells with probability over �
2N

will be hit by some sample point.
Let A be the event that the test sample falls in a Voronoi cell that was hit. Since

the diameter of each Voronoi cell is �MY

2K
and kFkPXL = K, we have

E
�
dY (z(x);y) j A

� � �MY

2
:

Furthermore, the total probability measure of Voronoi cells with less than �
2N

prob-

ability is at most �=2, that is, Pr(A) � �
2
. Therefore, we have

erP (LE(�)) = E
�
dY (z(x);y) j A

�
Pr(A) +MYPr(A)

� �MY

2

�
1� �

2

�
+
�MY

2
< �MY :

A THEORY FOR MEMORY-BASED LEARNING 13

4.2. LEARNING BY HASHING

Algorithm LE in the previous section covers the whole input space X with points.
However, most of the Voronoi cells formed by points in the �-cover U are likely to
be empty. In this section we use hashing techniques to take advantage of this prop-
erty. Below we outline three hashing-based algorithms: perfect hashing, universal
hashing, and hashing with collision-resolution. These algorithms are motivated by
Albus' CMAC motor control system (Albus, 1975a; Albus, 1975a; Albus, 1981),
where hashing techniques were used to reduce memory requirement. The CMAC
model has been applied to real-world control problems with encouraging success
(Miller, 1987; Miller, Glanz & Kraft, 1987). Our theoretical results in this section
complement their experimental study.

Let h be a hash function from NN to NN 0 , where N = jUj and N 0 is a positive
integer. For each address 1 � i � N 0 we de�ne h�1(i) to be the subset of points
in �X that hash to memory location i, namely, fxj j h((xj)) = i and xj 2 �Xg.
We let HN;N 0 be a class of universal hash functions (Carter & Wegman, 1979) from
NN to NN 0 .

For the ease of exposition, we assume in the following that the portion p of
nonempty Voronoi cells is known. This assumption can be removed2 using the
techniques of Haussler, Kearns, Littlestone, and Warmuth (1991).

4.2.1. Perfect Hashing

The �rst algorithm uses uniform hash functions and resorts to large physical mem-
ory to assure perfect hashing with high probability.3

Algorithm LH1 (learning by perfect hashing):

1. Let U be an �MY

4K
-cover of size N , where N = N (X; �MY

4K
; dX), and let 0 < p� 1

be the fraction of non-empty Voronoi cells. Let m = 2pN
�

ln 2pN
�

be the sample
size.

2. Let N 0 = 2
�
(pN)2 be the size of physical memory Z and choose a uniform hash

function h.

3. For each address i, if h�1(i) is not empty then we choose an arbitrary 1 � j � m

such that xj 2 h�1(i) and set Z(i) = yj ; otherwise we set Z(i) arbitrarily.

Theorem 5 With probability at least 1� �, the expected error for Algorithm LH1

satis�es erP (LH1 (�)) < �MY .

Proof: Without any collision, by similar analysis as in the proof of Theorem 4,
with probability at least 1� �=2, we have erP (LH1 (�)) < �MY .

By choosing physical memory size as N 0 = 2
�
(pN)2, we bound the probability

that at least one hashing collision occurs by

14 J.-H. LIN AND J. S. VITTER

(pN)2
1

2
�
(pN)2

� �

2
:

Therefore, with probability at least 1��, we have no collisions and erP (LH1 (�)) <
�MY .

4.2.2. Universal Hashing

It is not necessary to avoid collisions completely. What we really need is a \good"
hash function that incurs not too many collisions. The following algorithm uses
universal hashing for �nding a good hash function with high probability.

Algorithm LH2 (learning by universal hashing):

1. Let U be an �MY

4K
-cover of size N , where N = N (X; �MY

8K
; dX), and let 0 < p� 1

be the fraction of non-empty cells. Let m = 8pN
�

ln 2pN
�

be the sample size and
let N 0 = 8

�
pN be the size of physical memory Z .

2. Repeat the following procedure log4=3(2=�) times and choose the system with
minimum empirical error: We choose a hash function h randomly from the class
HN;N 0 of universal hash functions and then call the subroutine H(�; h), which
is given immediately below:

Subroutine H : Given a sample sequence � and a hash function h, for each
address i, if h�1(i) is not empty then we choose an arbitrary 1 � j � m such
that xj 2 h�1(i) and set Z(i) = yj ; otherwise we set Z(i) arbitrarily.

Theorem 6 With probability at least 1� �, the expected error for Algorithm LH2

satis�es erP (LH2 (�)) < �MY .

Proof: For each Voronoi cell Vor(ui) with PX(Vor(ui)) � �
8pN

, we have

Pr(Vor(ui) \ �X = ;) �
�
1� �

8pN

� 8pN

�
ln

2pN

�

� �

2pN
:

Therefore, using sample size m = 8pN
�

ln 2pN
�
, with probability at least 1� �=2, all

Voronoi cells with probability over �=(8pN) will be hit by some sample point. By the
property of universal hashing (Carter & Wegman, 1979), for each Voronoi cell hit,
the probability that the cell is involved in some hash collision is at most pN=N 0 =
�=8. Let A be the event that the test sample falls in a Voronoi cell that was hit.

A THEORY FOR MEMORY-BASED LEARNING 15

Since kFkPXL = K, we have

E
�
dY (zh((x));y) j A

�
�
�
1� �

8

� �MY

2
+
�

8
MY

<
5�MY

8
;

where h is the random universal hash function. Furthermore, the total probability
measure of Voronoi cells with less than �

8pN
probability is at most �=8, that is,

Pr(A) � �=8. Therefore, we have

E [erP (H(�; h))] = E

�
dY (zh((x));y) j A

�
Pr(A) +MYPr(A)

� 5�MY

8

�
1� �

8

�
+
�MY

8

<
3�MY

4
;

where the expectation is taken over HN;N 0 and �.

We say that a hash function h is \good" if the following inequality holds:

erP (H(�; h)) < �MY :

By Markov's inequality, at least one fourth of hash functions in HN;N 0 are good.
Therefore, by calling subroutine H at least log4=3(2=�) times, the probability that
we do not get a good hash function is at most �=2. Thus, with probability at least
1� �, we have erP (LH2 (�)) � �MY .

The physical memory size can be reduced to O(pN) while maintaining an O(1)
worst-case access time by using collision-resolution techniques. This can be achieved,
for example, by using coalesced hashing, which was analyzed in detail by Vitter and
Chen (1987) and Siegel (1991).

4.3. LEARNING BY CLUSTERING

Although hashing techniques take advantage of the sparseness of distributions, they
do not take advantage of the skewness of distributions. We can exploit the skewness
of distributions by using clustering (or median) algorithms. Given a positive integer
s � m, the (continuous) s-median (or clustering) problem is to �nd a median set
U � X such that jUj = s and the average empirical distortion d̂�X (U) is minimized.
The discrete s-median problem is to restrict U to be a subset of �X .

The following lemma shows that the empirical distortion of the optimal solution
of the discrete s-median problem is at most twice that of the optimal solution of
the continuous s-median problem.

16 J.-H. LIN AND J. S. VITTER

Lemma 3 Let U� be the optimal solution of the continuous s-median problem and

let U be the optimal solution of the corresponding discrete s-median problem. Then

we have

d̂�X (U) � 2d̂�X (U�):

Proof: Let U� = fu1; : : : ; usg. We can construct a s-median set V � �X that
meets the bound by replacing each point ui 2 U� by its nearest neighbor vi in �X .
By the de�nition of empirical distortions and by algebraic manipulations, we have

d̂�X (V) =
1

m

mX
i=1

dX (xi;V)

=
1

m

sX
i=1

X
x2Vor(ui)\�X

dX(x;V)

� 1

m

sX
i=1

X
x2Vor(ui)\�X

dX(x; vi):

The last inequality follows from the fact that dX(x;V) � dX (x; vi) for all vi 2 V .
By the triangle inequality, we have

d̂�X (V) � 1

m

sX
i=1

X
x2Vor(ui)\�X

(dX (x; ui) + dX(ui; vi))

� 1

m

sX
i=1

X
x2Vor(ui)\�X

2dX(x; ui)

= 2d̂�X (U�):
Since U is the optimal solution of the discrete s-median problem, we have shown

d̂�X (U) � d̂�X (V) � 2d̂�X (U�):

For simplicity, we assume in the following that the quantization number s =
QPX (X;

�MY

4K
; dX) is known. This assumption can be removed4 using the techniques

in Haussler, Kearns, Littlestone, and Warmuth (1991). In the following, we also
assume that the Lipschitz bound holds with probability one over the probability
distribution P 2

X .

4.3.1. Optimal Clustering

Ideally, we would like to use an algorithm for �nding optimal clustering for learning:

Algorithm LC1 (learning by optimal clustering):

A THEORY FOR MEMORY-BASED LEARNING 17

1. Letm =
(ks
�
log s log 1

�
+ 1

�
log 1

�
) be the sample size, where s is the quantization

number QPX (X;
�MY

4K
; dX).

2. Find the optimal s-median set U� such that d̂
�X
(U�) is minimized.

3. Construct an s-median set U by replacing each point ui 2 U� by its nearest
neighbor vi in �X .

4. For each vi 2 U , set Z(i) = f(vi).

Theorem 7 With probability at least 1� �, the expected error for Algorithm LC1

satis�es erP (LC1 (�)) < �MY .

Proof: In Theorem 3, we choose � = 1=11 and let � = �MY =(2K). Thus, by
choosing sample size as
(ks

�
log s log 1

�
+ 1

�
log 1

�
), with probability at least 1� �,

for all V � X of size s, we have

d̂�X (V) �
6E [dX(x; V)]

5
+
�MY

20K
;

and

E [dX(x; V)] � 6d̂�X (V)

5
+
�MY

20K
:

Let U� be the optimal median set of size s with respect to PX , then we have

E [dX(x;U)] � 6d̂�X (U)
5

+
�MY

20K

� 12d̂�X (U�)
5

+
�MY

20K

� 12

5

�
6E [dX(x;U�)]

5
+
�MY

20K

�
+
�MY

20K
:

The second inequality follows from Lemma 3. Since U� is optimal, we have
E [dX(x;U�)] � �MY

4K
. Therefore,

E [dX(x;U)] �
12

5

�
6

5

�MY

4K
+
�MY

20K

�
+
�MY

20K

<
�MY

K
:

The rest of the proof follows from the Lipschitz bound.

4.3.2. Approximate Clustering

Unfortunately, �nding optimal clusters is NP-hard even in Euclidean space (Kariv
and Hakimi, 1979; Garey & Johnson, 1979; Papadimitriou, 1981; Megiddo, 1984).
However, as shown by Lin and Vitter (1992a), we have approximate clustering algo-
rithms with provably good performance guarantees. We may use these approximate
clustering algorithms for learning:

18 J.-H. LIN AND J. S. VITTER

Algorithm LC2 (learning by approximate clustering):

1. Let m =
(ks
�
log s(log ks

�
)2 + 1

�
log 1

�
) be the sample size, where s is the quan-

tization number QPX (X;
�MY

4K
; dX).

2. Apply the greedy (discrete) s-median algorithm of Lin and Vitter (1992a) with
relative error bound on distortion as 1=8. (For convenience, the greedy s-median
algorithm is given in the appendix.) Let U be the median set returned by the
greedy s-median algorithm.

3. For each xj = ui 2 U we set Z(i) = yj .

By Corollary 3 in the Appendix and Lemma 3, we have the following corollary:

Corollary 2 Let U be the median set returned by the greedy s-median algorithm

and let U� be the set of optimal s-medians. Then we have

d̂�X (U) �
9

4
d̂�X (U�):

and

jUj = O(s logm):

Proof: Let U 0 be the optimal solution of the discrete s-median problem. By
Corollary 3 in the Appendix, the greedy algorithm outputs a median set U of size
less than 9s(lnm+ 1) such that

d̂�X (U) � (1 +
1

8
)d̂�X (U 0):

By Lemma 3, we have

d̂�X (U) � 2(1 +
1

8
)d̂�X (U�) �

9

4
d̂�X (U�):

Theorem 8 With probability at least 1� �, the expected error for Algorithm LC2

satis�es erP (LC2 (�)) < �MY .

Proof: We apply Theorem 3 with � = 1=11 and � = �MY =(2K). By using
m =
(ks

�
log s(log ks

�
)2 + 1

�
log 1

�
) sample points, with probability at least 1� �,

for all V � X of size at most jUj, we have

d̂�X (V) �
6E [dX(x; V)]

5
+
�MY

20K
;

and

A THEORY FOR MEMORY-BASED LEARNING 19

E [dX(x; V)] �
6d̂�X (V)

5
+
�MY

20K
:

Let U� be the set of optimal s-medians. By Corollary 2 and by algebraic manip-
ulations similar to the proof of Theorem 7, we have

E [dX(x;U)] <
�MY

K
:

The rest of the proof follows from the Lipschitz bound.

4.4. SUMMARY

We summarize the results of this section in Table 1. We remark that, in <k, the
covering number is exponential in the dimensionality of the input space. That
is, we have N = N (X; �MY

4K
; dX) = �((1

�
)k). On the other hand, as explained

in Section 1, the number of di�erent inputs that are likely to be encountered for
any physical manipulator system is much smaller than N . Hence, in practice, it
is reasonable to assume that the quantization number s = QPX (X;

�MY

4K
; dX) is a

low-degree polynomial in 1
�
. In such typical cases, clustering algorithms reduce the

dependency of memory size on dimensionality by an exponential factor.

5. TREE-STRUCTURED SYSTEMS

In a tree-structured system, the encoder partitions the input space into a hierarchy
of regions. An input is mapped to the memory location corresponding to the region
represented by a leaf. As mentioned in Section 2, the computational advantage of
tree-structured systems over full-search systems in sequential models of computa-
tion is that the mapping from an input to a memory location can be done quickly
by tree traversal. Tree-structured systems also have a distinguished \successive ap-
proximation" and \graceful degradation" character. By successive approximation,
we mean that as the tree grows larger, the partition will be �ner and hence in-
curs less distortion. By graceful degradation, we mean the capability to withstand
partial damages to the tree. The full de�nition of tree-structured systems is given
in Section 2.1. We call the encoders of tree-structured systems the tree-structured
encoders .

Lemma 4 Let Gs be the tree-structured systems of size s and let dX be the Euclidean

metric. For each possible encoder of Gs, we de�ne f(x) = dX (x; u(x)) and let

�s : X ! [0;MX] be the class of all such functions. Then we have dimP(�s) �
2(k + 1)(s� 1) log(3(s� 1)) = O(ks log s).

Proof: There are s � 1 branches in a tree of size s, in which each branch corre-
sponds to a comparison. By derivation similar to the proof of Lemma 2, we have
dimP(�s) � 2(k + 1)(s� 1) log(3(s� 1)) = O(ks log s).

20 J.-H. LIN AND J. S. VITTER

Lemma 4 and Corollary 1 imply the following result:

Theorem 9 Let �s be de�ned as in Lemma 4. Assume � > 0 and 0 < � < 1.
Let PX be a probability measure on X and �X be generated by m independent draws

from X according to PX . If the sample size is

m =

�
MX

�2�

�
ks log s log

MX

(�
p
�)�

+ log
1

�

��
;

then we have

Prf9f 2 �s j d�(Ê�X
(f);E(f)) > �g � �:

In the following we outline an algorithm for building tree-structured systems:

1. Construct a tree-structured encoder for the input space from the x-components
of the sample.

2. Estimate a functional value for each node of the tree by averaging the y-
components of examples covered by the region represented by that node.

The smoothness of the function to be learned assures that the resulting system
has small expected error. The algorithm for building a tree-structured encoder is
given by Lin and Vitter (1992a, 1992b). In addition to memory-based learning, the
algorithm also has applications to regression, computer graphics, and lossy image
compression (Lin & Vitter, 1992b).

6. HIGHER-ORDER SYSTEMS

In a higher-order memory-based learning system, an input can activate more than
one memory location. Higher-order learning systems have the advantages of fault
tolerance and possibly better generalization ability given a limited number of ex-
amples. By fault tolerance, we mean the capability to deal with memory failures
or misclassi�cation of sample points.
In this section, we look at the r-nearest-neighbor systems and receptive-�eld

systems based upon the combinations of �rst-order systems:
The de�nition for the Voronoi systems of order r (r-nearest-neighbor systems)

is given in Section 2.1. In this section we extend our analysis in Section 3 to the
rth-order Voronoi Systems. We call the encoders of Voronoi systems of order r the
Voronoi encoders of order r.

Lemma 5 Let Gr
s be the Voronoi systems of order r and size s and let dX be the

Euclidean distance. For each possible encoder of Gr
s, we de�ne

f(x) =
1

r

rX
i=1

dX (x; u(i)(x));

A THEORY FOR MEMORY-BASED LEARNING 21

where (i)(x) maps an input x to its ith nearest neighbor in U and let �rs : X !
[0;MX] be the class of all such functions. Then we have dimP(�

r
s) = O(krs log r log s).

Proof: By the de�nition of f(x), it is clear that the pseudo-dimension of �rs is
bounded by the pseudo-dimension of sums of r functions from �s, which is de�ned
as in Lemma 2. By derivation similar to the proof of Lemma 2, we have dimP(�

r
s) =

O(krs log r log s).

Lemma 5 and Corollary 1 imply the following:

Theorem 10 Let �rs be de�ned as in Lemma 5. Assume � > 0 and 0 < � < 1.
Let PX be a probability measure on X and �X be generated by m independent draws

from X according to PX . If the sample size is

m =

�
MX

�2�

�
krs log r log s log

MX

(�
p
�)�

+ log
1

�

��
;

then we have

Prf9f 2 �rs j d�(Ê�X
(f);E(f)) > �g � �:

In a receptive-�eld system, the regions may overlap. In the following, we propose
to model the receptive-�eld systems as weighted sums of �rst-order Voronoi systems.

De�nition. Let Gs be the class of (�rst-order) Voronoi systems as de�ned in Sec-
tion 3. The r-combinations Gr

s of Voronoi systems are de�ned as the weighted sums
of r Voronoi systems. That is, Gr

s = fPr
i=1 wigi j gi 2 Gs and 0 � wi �MY g.

A receptive-�eld system as de�ned above can be arranged in a \multi-resolution"
manner (Moody, 1989), that is, as a sum of r Voronoi systems of di�erent sizes.
The learning algorithm for such systems can start by approximating the function to
be learned by the smallest (lowest-resolution) component system, and then approx-
imating the errors by the second smallest component system, and so forth, until
the largest (highest-resolution) component system is trained.

7. CONCLUSIONS

In this paper, we propose a model for memory-based learning and use it to analyze
several methods for learning smooth functions by memory-based learning systems.
Our model is closely related to the generalized PAC learning model of Haussler
(1989) and the methods of vector quantization in data compression. Our main
result is that we can build memory-based learning systems using new clustering
algorithms (Lin & Vitter, 1992a) to PAC-learn in polynomial time using only poly-
nomial storage in typical situations. We also extend our analysis to tree-structured
and higher-order memory-based learning systems.

22 J.-H. LIN AND J. S. VITTER

The memory-based learning systems that we have examined in this paper ap-
proximate the functional value in each region by a constant. In practice, we might
get better approximations by using more complicated basis functions. However,
this usually makes the training problem harder; most work along this line has been
mostly experimental in terms of computational complexity. Interested readers are
referred to the work of Friedman (1988), Moody and Darken (1988), and Poggio
and Girosi (1989, 1990).
Our memory-based learning algorithms mainly take advantage of the skewness of

distributions over the input space and assume the smoothness of functions over the
input space. However, the degree of smoothness may vary widely from one region
to the other (Dean & Wellman, 1991). In practice, after the initial clustering,
we may estimate the degree of smoothness of each region and then merge or split
regions according to their degrees of smoothness. From a theoretical viewpoint, we
must develop models that adequately capture this property and are computationally
tractable.

Appendix

Approximate Clustering

In this appendix, we adapt the greedy (discrete) s-median algorithm of Lin and
Vitter (1992a) to do the clustering needed for Algorithm LC2 in Section 4.3.2.
The discrete s-median problem is de�ned as follows: Let �X = hx1; : : : ; xmi be a
sequence of points in X and let s be a positive integer. The goal is to select a
subset U � �X of s points such that the average distance (distortion)

d̂�X (U) =
1

m

mX
i=1

dX (xi;U):

is minimized.
The discrete s-median problem can be formulated as a 0-1 integer program of

minimizing

1

m

mX
i=1

mX
j=1

dX (xi; xj)pij (A.1)

subject to

mX
j=1

pij = 1; i = 1; : : : ;m; (A.2)

mX
j=1

qj � s; (A.3)

pij � qj ; i; j = 1; : : : ;m; (A.4)

pij ; qj 2 f0; 1g; i; j = 1; : : : ;m; (A.5)

A THEORY FOR MEMORY-BASED LEARNING 23

where qj = 1 if and only if xj is chosen as a cluster center, and pij = 1 if and only
if qj = 1 and xi is \assigned" to xj .

The linear program relaxation of the above program is to allow qj and pij to
take rational values between 0 and 1. Clearly, the optimal fractional solution (lin-
ear program solution) is a lower bound on the solutions of the discrete s-median
problem.

Our greedy algorithm for the s-median problem works as follows:

1. Solve the linear program relaxation of the discrete s-median problem by linear
programming techniques; denote the fractional solution by bq; bp.

2. For each i, compute bDi =
Pm

j=1 dX(xi; xj)bpij .
3. Given a relative error bound c > 0, for each j such that bqj > 0, construct a

set Sj : A point xi is in Sj if and only if dX(xi; xj) � (1 + c) bDi.

4. Apply the greedy set cover algorithm (Johnson, 1974; Lov�asz, 1975; Chv�atal,
1979): Choose the set which covers the most uncovered points. Repeat this
process until all points are covered. Let U be the set of indices of sets chosen
by the greedy heuristic. Output U = fxjgj2U as the median set.

The linear programming problem can be solved in provably polynomial time by
the ellipsoid algorithm (Khachiyan, 1979) or by the interior point method (Kar-
markar, 1984). The simplex method (Dantzig, 1951) works very e�ciently in prac-
tice, although in the worst case its performance is not polynomial-time.

The results of Lin and Vitter (1992a) yield the following application:

Corollary 3 Given any c > 0, the greedy algorithm outputs a median set U of

size less than

(1 + 1=c)s(lnm+ 1)

such that

d̂�X (U) � (1 + c) bD;
where bD is the average distance of the optimal fractional solution for the discrete

s-median problem.

Acknowledgements

Support was provided in part by by National Science Foundation research grant
CCR{9007851, by Army Research O�ce grant DAAL03{91{G{0035, and by Air
Force O�ce of Scienti�c Research grant F49620{92{J{0515.

24 J.-H. LIN AND J. S. VITTER

Notes

1. Nearest-neighbor rules and their asymptotic properties (for example, as compared to Bayes'

rules) have been studied by the pattern recognition community for many years (Wilson, 1973;

Cover, 1967; Duda & Hart, 1973). In contrast, our main focus in this paper is on functional

approximation.

2. One simple and e�cient way of doing this is to start with some small fractional value p0 as the

initial guess for p and double the value of p when the learning is not successful. This simulation

(or reduction) preserves polynomial-time learnability.

3. The perfect hashing techniques as surveyed by Ramakrishna and Awasthi (1991) assume a

static set of keys, so we are not able to use these techniques for learning, which is dynamic in

nature. However, when the learning is complete (the set of keys (addresses) is �xed), we can

use perfect hashing techniques to reduce the size of physical memory.

4. One simple and e�cient way of doing this is to start with s = 1 and double the value of s

when the learning is not successful. This simulation (or reduction) preserves polynomial-time

learnability.

References

J. S. Albus. Data storage in the cerebellar model articulation controller (CMAC). Journal of

Dynamic Systems, Measurement, and Control, pages 228{233, September 1975.

J. S. Albus. A new approach to manipulator control: The cerebellar model articulation controller

(CMAC). Journal of Dynamic Systems, Measurement, and Control, pages 220{227, September

1975.

J. S. Albus. Brains, Behaviour, and Robotics. Byte Books, Peterborough, NH, 1981.

J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer

System and Science, 18(2):143{154, April 1979.
V. Chv�atal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research,

4(3):233{235, 1979.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classi�cation. IEEE Transactions on

Information Theory, 13:21{27, 1967.

G. Dantzig. Programming of interdependent activities, II, mathematical models. In Activity

Analysis of Production and Allocation, pages 19{32. John Wiley & Sons, Inc, New York, 1951.

T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufmann Publishers, 1991.

L. Devroye. Automatic pattern recognition: A study of the probability of error. IEEE Transac-
tions on Pattern Recognition and Machine Intelligence, 10(4):530{543, 1988.

R. M. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.

R. M. Dudley. Central limit theorems for empirical measures. Annals of Probability, 6(6):899{929,

1978.

R. M. Dudley. A course on empirical processes. In Lecture Note in Mathematics 1097. Springer

Verlag, 1984.

J. H. Friedman. Multivariate Adaptive Regression Splines. Technical Report 102, Standford

University, Lab for Computational Statistics, 1988.

M. R. Garey and D. S. Johnson. Computers and intractability: A Guide to the Theory of

NP-completeness. W. H. Freeman and Co., San Francisco, CA, 1979.

A. Gersho. On the structure of vector quantizers. IEEE Transactions on Information Theory,

28(2):157{166, March 1982.

A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic

Press, Massachusetts, 1991.

R. M. Gray. Vector quantization. IEEE ASSP Magazine, pages 4{29, April 1984.

D. Haussler. Generalizing the PAC model: Sample size bounds from metric dimension-based uni-

form convergence results. In Proceedings of the 30th Annual IEEE Symposium on Foundations

of Computer Science, pages 40{45, 1989.

A THEORY FOR MEMORY-BASED LEARNING 25

D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of models for polynomial

learnability. Information and Computation, 95:129{161, 1991.

D. Haussler and P. Long. A generalization of sauer's lemma. Ucsc-crl-90-15, Dept. of Computer

Science, UCSC, April 1990.

D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and

System Sciences, 9:256{278, 1974.

O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems. II: The

p-medians. SIAM Journal on Applied Mathematics, pages 539{560, 1979.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,

4:373{395, 1984.

L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Math. Doklady, 20:191{
194, 1979.

J.-H. Lin and J. S. Vitter. �-approximations with minimum packing constraint violation. In

Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 771{782,

Victoria, BC, Canada, May 1992.

J.-H. Lin and J. S. Vitter. Nearly optimal vector quantization via linear programming. In

Proceedings of the IEEE Data Compression Conference, pages 22{31, Snowbird, Utah, March

1992.

L. Lov�asz. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383{
390, 1975.

N. Megiddo and K. J. Supowit. On the complexity of some common geometric location problems.

SIAM Journal on Computing, 13(1):182{196, 1984.

W. T. Miller. Sensor-based control of robotic manipulators using a general learning algorithms.

IEEE Journal of Robotics and Automation, 3(2):157{165, April 1987.

W. T. Miller, F. H. Glanz, and L. G. Kraft. Application of a general learning algorithm to

the control of robotic manipulators. International Journal of Robotics Research, 6(2):84{98,

Summer 1987.

J. Moody. Fast learning in multi-resolution hierarchies. In Advances in Neural Information

Processing Systems I, pages 29{39. Morgan Kaufmann Publisher, 1989.

J. Moody and C. Darken. Learning with localized receptive �elds. In Proceedings of the 1988

Connectionist Models Summer School, pages 133{143. Morgan Kaufmann Publisher, 1988.

A. W. Moore. Acquisition of Dynamic Control Knowledge for Robotic Manipulator. Manuscript,

1989.

C. H. Papadimitriou. Worst-case and probabilistic analysis of a geometric location problem.

SIAM Journal on Computing, 10:542{557, 1981.
T. Poggio and F. Girosi. A theory of networks for approximation and learning. A. I. Memo No.

1140, MIT. Arti�cial Intelligence Laboratory, Boston, MA, 1989.

T. Poggio and F. Girosi. Extensions of a theory of networks for approximation and learning:

Dimensionality reduction and clustering. A. I. Memo No. 1167, MIT. Arti�cial Intelligence

Laboratory, Boston, MA, 1990.

D. Pollard. Convergence of Stochastic Processes. Springer-Verlag New York Inc, 1984.

D. Pollard. Empirical Processes: Theory and Applications. NSF-CBMS Regional Conference

Series in Probability and Statistics Volume 2, 1990.

M. V. Ramakrishna and V. Awasthi. Perfect Hashing. Manuscript, December 1991.

E. A. Riskin. Variable Rate Vector Quantization of Images. Ph. D. Dissertation, Stanford

University, 1990.

N. Sauer. On the density of families of sets. Journal of Combinatorial Theory (A), 13:145{147,

1972.

A. Siegel. Coalesced Hashing is Computably Good. Manuscript, 1991.

V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer Verlag, New York,

1982.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. Theory of Probability and its Applications, pages 264{280, 1971.

J. S. Vitter and W.-C. Chen. Design and Analysis of Coalesced Hashing. Oxford University

Press, 1987.

D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans-

actions on Systems, Man, and Cybernetics, 2(3):408{421, 1973.

Received November 16, 1992

Final Manuscript December 14, 1993

