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In this paper we describe a fast algorithm that creates a wavelet tree for a sequence of 
symbols. We show that a wavelet tree can be constructed in O (n 

⌈
logσ/

√
log n

⌉
) time 

where n is the number of symbols and σ is the alphabet size.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Wavelet tree, introduced in [1], is one of the most extensively studied succinct data structures. Wavelet trees are fre-
quently chosen as a space-efficient data structure that supports access, rank and select queries on a sequence of symbols. 
An access query access(i, X) returns the i-th symbol in a sequence X ; a rank query ranka(i, X) computes how many times a 
symbol a occurs in the prefix X[1..i] of X ; select query selecta(i, X) finds the position where a occurs for the i-th time. Since 
wavelet trees can efficiently support operations rank and select, they can be used in succinct representations of graphs [2], 
strings, points and other geometric objects on a grid, full-text indexes [1,3], data structures for document retrieval [4], XML 
documents [5], and binary relations [6]. It was also shown that wavelet trees and their variants can be used to answer vari-
ous queries on points and other geometric objects [7]. We refer to recent extensive surveys of Navarro [8] and Makris [9] for 
a description of these and other applications of wavelet trees. In this paper we describe the first algorithm that constructs 
a wavelet tree in o(n logσ) time. no We show how to construct a wavelet tree in O (n� log σ√

log n
�) time.

Let X be a sequence of length n over an alphabet of size σ . We can assume w.l.o.g. that the i-th element X[i] of X is 
an integer in the range [1, σ ]. Essentially constructing a wavelet tree for a sequence X requires re-grouping the bits of X
into a bit sequence of total length n logσ . Since different bits of an element X[i] are stored in different parts of the bit 
sequence, it appears that we need �(n log σ) time to construct a wavelet tree. In this paper we show that the cost of the 
straightforward solution can be reduced by an O (

√
log n) factor. The main idea of our method is usage of bit parallelism, i.e. 

we use bit operations to keep �(1) elements of X in one word and perform certain operations on elements packed into one 
word in constant time. Suppose that we can pack L symbols of a sequence X into one machine word. Then we can generate 
the wavelet tree for the resulting sequence of symbols in O (n(logσ/L)) time by processing O (L) symbols in constant time.

✩ An early version of this work appeared in SPIRE 2014.
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Previous and related work. Since wavelet trees were introduced in 2003 [1], a large number of papers that use this data 
structure appeared in the literature [3,10–16]. A more extensive list of previous results can be found in surveys of Makris [9]
and [8]. In spite of a significant number of previous papers, no results for constructing a wavelet tree in o(n log σ) time were 
previously described. Algorithms that generate a wavelet tree and use little additional workspace were considered by Claude 
et al. [17] and Tischler [18].

Chazelle [19] described a linear space (O (n log n)-bit) geometric data structure that answers certain kinds of two-
dimensional range searching queries. Data organization in [19] is the same as in wavelet tree. no quite similar to the 
approach of wavelet trees. We remark, however, that the intended usage of the wavelet tree and Chazelle’s data structure 
are different. The data structure of Chazelle [19] supports different kinds of geometric queries and uses O (n log n) space to 
store n two-dimensional points. On the other hand, the wavelet tree, as described in [1] and later works, uses n log σ bits 
to store a sequence of size n over an alphabet of size σ ; the space usage can also be reduced to nH0 bits, where H0 is the 
zero-order entropy of the original sequence. Some other linear-space geometric data structures [20] also use similar ways of 
structuring data. By the same argument, we need O (n log n) time to construct these data structures. Chan and Pǎtraşcu [21]
showed that bit parallelism can be used to obtain linear-space data structures with faster construction time. In [21] they 
describe data structures that use linear space and can be constructed in O (n

√
log n) time. Their approach is based on re-

cursively reducing the original problem to several problems of smaller size. When point coordinates are sufficiently small, 
we can pack L points into one machine word and process data associated to L points in constant time. Very recently, the 
problem of constructing a wavelet tree was addressed by Babenko et al. [22]; the result presented in [22] and published 
after the conference version of this paper, is equivalent to our result.

In this paper we show how bit parallelism can be applied to speed-up the construction of the standard wavelet tree data 
structure. Our simple two-stage approach improves the construction time of the wavelet tree by O (

√
log n). After recalling 

the basic concepts in Section 2, we describe the main algorithm and its variants in Section 3. In Section 4 we show how we 
can construct secondary data structures stored in the wavelet tree nodes. Finally, in Section 5 we show how our result can 
be used to speed-up the construction algorithm for a geometric data structure that answers two-dimensional orthogonal 
range maxima queries.

2. Wavelet tree

Let X denote a sequence over alphabet � = { 1, . . . , σ }. The standard wavelet tree for X is a balanced binary tree with bit 
sequences stored in each internal node. These bit sequences can be obtained as follows: we start by dividing the alphabet 
symbols into two subsets �0 and �1 of equal size, �0 = { 1, . . . , σ/2 } and �1 = { σ/2 +1, . . . , σ }. Let X0 and X2 denote the 
subsequences of X induced by symbols from �0 and �1 respectively. The bit sequence X(v R) stored in the root v R of the 
wavelet tree indicates for each symbol X[i] whether it belongs to X0 or X1: X(v R)[i] = 0 if X[i] is in X0 and X(v R)[i] = 1
if X[i] is in X1. The left child of v R is the wavelet tree for X0 and the right child of v R is the wavelet tree for X1.

A symbol from an alphabet � can be represented as a bit sequence of length �log σ � or � logσ �. Bit sequences X(u) in 
the nodes of the wavelet tree consist of the same bits as the symbols in X , but the bits are ordered in a different way. The 
sequence X(v R) contains the first bit from each symbol X[i] in the same order as symbols appear in X . Let vl and vr be the 
left and the right children of v R . The sequence X(vl) contains the second bit of every symbol in X0. That is, X(vl) contains 
the second bit of every symbol X[i], such that the first bit of X[i] is 0. X(vr) contains the second bit of every X[i] such 
that the first bit of X[i] is 1, etc.

Some generalizations of the wavelet tree often lead to improved results. We can consider t-ary wavelet tree for t = logε n
and a small constant ε > 0. In this case the original alphabet � is divided into t parts �0, . . ., �t−1. The sequence X(v R)

in the root node is a sequence over an alphabet { 0, . . . , t − 1 } such that X(v R)[i] = j iff X[i] is a symbol from � j for 
1 ≤ j ≤ t . Let X j be the subsequence of X induced by symbols from � j . The j-th child v j of v R is the root of the wavelet 
tree for X j . The advantage of the t-ary wavelet tree is that the tree height is reduced from O (logσ) to O (logσ/ log log n). 
Another useful improvement is to modify the shape of the tree so that the average leaf depth is (almost) minimized. Finally 
we can also keep the binary or t-ary sequences X(u), stored in the nodes, in compressed form. Two latter improvements 
enable us to store a sequence X in asymptotically optimal space.

3. Constructing a wavelet tree

In this section we describe our algorithm for constructing a wavelet tree. Our method uses bit parallelism in a way that is 
similar to [21]. However a recursive algorithm employed in [21] to reduce the problem size is not necessary. Our algorithm 
consists of two stages. During the first stage we construct an L-ary wavelet tree T g for L = 2

√
log n . That is, each internal 

node u ∈ T g has L children. To avoid tedious details, we assume that L is an integer that divides σ . An L-ary wavelet tree 
can be defined in the same way as in Section 2. We partition the alphabet � = { 1, . . . , σ } into L parts �1, �2, . . ., �L . 
Each �i for 1 ≤ i ≤ L − 1 contains σ/L alphabet symbols; the last part �L contains at most σ/L symbols. The root node uR
of T g contains a sequence X g(uR). Every element of X g(uR) is a positive integer that does not exceed L. X g(uR)[i] = j if 
X[i] is a symbol from � j . The child ui of u is the root node of the wavelet tree for the subsequence Xi , where Xi is the 
subsequence of X induced by symbols from �i . An L-ary tree can be constructed in O (logσ/L) time. During the second 
stage, we transform an L-ary tree into a binary tree. We replace each internal node u of T g with a subtree T (u) of height 
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� = log L. T (u) has at most L − 1 internal nodes; leaves of T (u) correspond to children of u in T g . If the sequence X g(u)

contains m elements, then all binary sequences X(v) in the nodes v ∈ T (u) contain m� nits. Since we can pack � elements 
of X g(u) into one word, T (u) can be constructed in O (m) time. A more technical description is provided below. We start 
by showing in Lemma 1 how the wavelet tree can be constructed in linear time when elements are bounded by L. Then 
we show in Theorem 1 how a binary wavelet tree for any sequence X can be constructed following the method outlined 
above. The result for a balanced binary wavelet tree can be easily extended to a t-ary tree of an arbitrary shape. Finally we 
can also obtain the original sequence X from its wavelet tree by reversing the algorithm that constructs the wavelet tree.

Lemma 1. Let X be a sequence of L positive integers such that L ≤ 2
√

log n and X[i] ≤ 2
√

log n for all i, 1 ≤ i ≤ L. A binary balanced 
wavelet tree for X can be constructed in O (L) time using workspace O (L). The algorithm employs a universal look-up table of o(n)

bits.

Proof. We start by constructing a packed sequence X ; X consists of � L/� � words and every word contains � = √
log n

elements of X . We initialize X(uR) = X for the root node uR and visit all nodes in the depth-first order. When a node u
is visited, we traverse X(u) and construct the bit sequence X(u) that must be stored in the root u of the wavelet tree. We 
extract the first bit from each X[i] and append it to the end of X(u). We also produce two sequences X(ul) and X(ur)

unless u is a leaf node. If the first bit in X(u)[i] is 0, we append the value v to the end of X(ul), where v is X(u)[i] without 
the first bit; if the first bit in X(u)[i] is 1, we append v to the end of X(ur). Sequences X(ul) and X(ur) are also stored in 
packed form. When X(u), X(ul) and X(ur) are generated, we can discard X(u).

The key observation is that each X(u) can be processed in O (� |X(u)|/� �) time using universal look-up tables T and T1. 
For any sequence of �/4 elements Y [1] . . . Y [�/4] of p ≤ � bits each, T can output (i) the bit sequence Y [1] . . . Y [�/4], where 
Y [i] is the first bit of Y [i] (ii) sequences Y l and Y r defined below. The sequence Y l contains elements Y [i] whose first bit is 
0 in the same order as in Y ; the sequence Y r contains elements Y [i] whose first bit is 1 in the same order as in Y . Another 
look-up table, T1 can produce for any sequence Y [1] . . . Y [�/4] a sequence Z [1] . . . Z [�/4], where Z [i] equals to Y [i] without 
the first bit. Using these two look-up tables, we can read �/4 elements of X(u) and produce the next �/4 elements of X(u), 
X(ul), and X(ur) in O (1) time. T and T1 contain one entry for each p, 1 ≤ p ≤ �, and for each sequence of �/4 integers of 
p bits each. Hence both tables have O (n1/4) entries and use o(n1/2) bits. Since we spend O (� |X(u)|/� �) time in each node 
u and the total length of all X(u) is O (L�), we can construct the binary wavelet tree for X in O (L) time. �
Theorem 1. Let X be a sequence of n positive integers such that 1 ≤ X[i] ≤ σ for 1 ≤ i ≤ n. A binary balanced wavelet tree for X can 
be constructed in O (n� log σ√

log n
�) time.

Proof. We employ the two-stage procedure described at the beginning of this section. During the first stage we construct a 
wavelet tree with node degree L = 2

√
log n . We will consider elements of X as binary sequences of length σ . For an integer v , 

we denote by v.bits(a..b) the bit sequence obtained by extracting bits at positions a, a + 1, . . ., b from v (bit positions are 
in the left-to-right order so that the most significant bit is at position 1). The process of recursive alphabet division can be 
re-formulated as recursive division of symbols according to their prefixes. That is, elements of X are distributed among 2�

subsequences according to their prefixes of length � = √
log n. Each subsequence is further divided into 2� subsequences, 

etc. Let � = √
log n. We process the sequence X and generate sequences Xα . Initially all Xα are empty. For every j =

0, 1, . . . , � logσ/
√

log n � − 1 we append X[i].bits( j� + 1.. j(� + 1)) to the sequence Xα for α = X[i].bits(1.. j�). Sequences Xα

are stored in an L-ary wavelet tree T g . First � bits of each X[i] are kept in a sequence Xε for an empty string ε . Xε is 
stored in the root node that has 2� children labeled with bit sequences of length �. The child that is labeled with α contains 
the sequence Xα . Every internal node also has 2� children that are labeled by bit sequences of length �. Thus there are �i

nodes of depth i. A node u of depth i contains the sequence Xα where α is the concatenation of node labels on the path 
from the root to u. We spend O (n� log σ√

log n
�) time to produce T g .

It remains to show how to construct a binary wavelet tree for each Xα . We divide Xα into subsequences Xα,i for 
i = 1, . . . , � |Xα |/2

√
log n �, where |Xα,i| = 2

√
log n for 1 ≤ i ≤ �|Xα |/2

√
log n� and |Xα,i| ≤ 2

√
log n for i = � |Xα |/2

√
log n �. Then 

we apply Lemma 1 to each Xα,i . �
The result of Theorem 1 can be easily extended to the case when the wavelet tree has an arbitrary shape.

Theorem 2. Let X be a sequence of n positive integers such that 1 ≤ X[i] ≤ σ for 1 ≤ i ≤ n. Any binary wavelet tree for X can be 
constructed in time O (n� h√

log n
� + σ) where h is the average leaf depth.

Proof. We assume in this theorem that the shape of the wavelet tree is already known. Let the codeword for a symbol 
a ∈ � denote the bit string α obtained by following the path from the root to the leaf that contains a; we start with an 
empty string α and append 0 (1) to α every time when the left (respectively, the right) edge is taken. We start by replacing 
each element X[i] with its codeword. Then we proceed exactly as in Theorem 1. If the codeword for a symbol X[i] is of 
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length l[i], then the bits of X[i] will be stored at � l[i]/√log n � nodes of the L-ary wavelet tree. Hence the first stage takes 
O (n� h√

log n
�) time and the total number of symbols in all sequences Xα is also O (n� h√

log n
�). We showed in Theorem 1

that a wavelet tree for each Xα is constructed in linear time. Hence node u of an L-ary wavelet tree is transformed into a 
binary tree in O (|X(u)|) time, where |X(u)| denotes the number of symbols in X(u). Hence the total time to construct the 
wavelet tree is O (n� h√

log n
�). �

Besides our algorithm can be also modified for the case when the wavelet tree has arity logα n for a small constant α.

Theorem 3. Let X be a sequence of n positive integers such that 1 ≤ X[i] ≤ σ for 1 ≤ i ≤ n. A wavelet tree with node degree logα n for 
the sequence X can be constructed in time O (n� hα log log n√

log n
� + σ) where h is the average leaf depth.

Proof. Let T denote the wavelet tree to be constructed. We extend T to a binary tree T E by inserting some dummy 
nodes. Each node u ∈ T with descendants u1, . . . , ud is extended to a full binary tree1 of height α log log n with root u and 
leaves u1, . . . , ud . The nodes of the original tree will be called data nodes; all other nodes will be called auxiliary nodes. Our 
procedure constructs wavelet tree T E in the same way as in Theorem 2, but we generate sequences X(u) only for the data 
nodes u. Suppose that we visit a node and generate sequences X(ul), X(ur). If ul and ur are auxiliary nodes, then X(ul)

and X(ur) contain the elements of X(u); unlike Theorem 2, the leftmost bits of X(u) are not removed. We simply assign 
the elements of X(u) to X(ul) and X(ur) according to the t-th bit of X(u) where t is the distance from ul to its lowest 
ancestor that is a data node. If ul and ur are data nodes, we generate X(ul) and X(ur) according to the value of the d-th 
bit in X(u) for d = α log log n; depending on the value of the d-th bit in X(u) we append lshift(X(u)[i]) to X(ul) or X(ur), 
where lshift(v) denotes the value of v with α log log n leftmost bits removed. If a data node u is visited, we also generate 
a sequence X(u) such that X(u)[i] = X(u)[i].bits(1..α log log n). That is, we retrieve the α log log n leftmost bits from each 
X(u)[i] and store them in X(u); we note that X(u)[i] do not change when u is visited. �

Finally we can also restore the original sequence X from its wavelet tree.

Theorem 4. We can obtain a sequence X from its binary wavelet tree T in O (n h√
log n

+σ) time, where h is the average leaf depth and 

n is the length of X. We can obtain a sequence X from its wavelet tree T with node degree logα n in O (n hα log log n√
log n

+ σ) time.

Proof. We say that a node u ∈ T is special, if its depth is divisible by � = √
log n. Our algorithm consists of two stages. 

First, we create sequences X(u) stored in special nodes u, so that each X(u)[i] is an integer of at most � bits. That is, we 
turn T into a wavelet tree Tb such that each internal node of Tb has up to 2� children. no and the maximal leaf depth in 
Tb is bounded by O (

log σ√
log n

). The total bit length of all sequences stored in the nodes of Tb equals the total bit length of 
all sequences stored in the nodes of T . Thus the total space usage does not increase. The procedure for converting T into 
Tb works as follows. For every node u, such that both its children are special nodes, we assume that X(u) = X(u). Then we 
work up the tree and produce X(v) for ancestors v of u until a special node is reached. Suppose that sequences X(ul) and 
X(ur) for children of a node w are already produced. We generate X(w) according to the following rule: if X(w)[i] = 0, 
then X(w)[i] = 0X(ul)[i]; if X(w)[i] = 1, then X(w)[i] = 1X(ur)[i]. The total time to construct Tb is O (n h√

log n
+ σ).

Finally we collect the values of X(u)[i] in special nodes u and obtain the sequence of integers X by concatenating those 
values. The procedure starts in the root node uR of Tb . Depending on the value of X(uR)[i] we visit the corresponding child 
u of uR in Tb (we observe that uR can have up to 2

√
log n children) and retrieve the next element eu in X(u). Then we 

replace X(uR)[i] with the concatenation of X(uR)[i] and eu . Proceeding in the same way for nodes of Tb on all levels, we 
obtain the values of the original sequence X in X(uR). �
4. Rank and select queries in wavelet trees

In this section we consider the problem of storing a sequence S = s1s2 . . . sn over an alphabet σ that supports the 
following queries:

– access(i, S) returns S[i]
– ranka(i, S) computes the number of times a occurs in S[1..i] = s1 . . . si
– selecta(i, S) finds the position j of the i-th occurrence of a, i.e., selecta(i, S) = j such that access( j, S) = a and 

ranka( j, S) = i.

1 To simplify the description we assume that logα n is a power of 2.
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Wavelet trees support rank, select, and access queries in O (log σ) time. This is achieved by augmenting sequences X(u), 
stored in the nodes, with data structures that answer rank and select queries. If queries on sequences X(u) are answered in 
constant time, then queries on the original sequence X are answered in O (logσ) time. The sequence X(u) stored in a node 
of a binary wavelet tree is a sequence of bits. In the case of a t-ary wavelet tree, sequences X(u) are over an alphabet of 
size t . Thus a wavelet tree reduces rank, select, access queries on a sequence X to O (logσ) queries on binary sequences or 
O (logσ/ log t) queries on t-ary sequences. For details we refer to e.g., [8]. It remains to show how data structures for X(u)

can be constructed quickly.
Rank and select on binary and t-ary sequences. We will describe below several results on constructing rank-select data 

structures for sequences over a small alphabet. We remark that the data structures are not new and are based on standard 
techniques. However, we show that these data structures can be constructed in less than linear time, provided that the 
original sequence is available in packed form.

We show in the following Theorem that the data structure of Jacobson [23] can be constructed in O (m/ log n) time.

Theorem 5. A bit sequence B of length m can be stored in data structure that answers rank, select, and access queries in constant 
time. This data structure uses m + O (m log log n/ log n) bits and can be constructed in O (m/ logn) time. The construction algorithm 
relies on a universal table of size o(n).

Proof. B is divided into blocks of d1 = log2 n bits. We compute and store the number of 0’s and the number of 1’s in the 
first i blocks for i = 1, . . . , m/ log2 n. Since the number of blocks is O (m/ log2 n), this information takes O (m/ log n) bits. We 
assume that B is kept in packed form, so that this information can be computed in O (m/ log n) time. Each block is divided 
into sub-blocks of size d2 = logn/2. We compute and store the number of 0’s and the number of 1’s in the first j sub-blocks 
of a block for each block and for j = 1, . . . , 2 log n. The number of 0’s or 1’s in a block is at most log2 n. Hence, we can 
keep information about 0 and 1’s in the first j sub-blocks of a block in O (log log n) bits. The total number of sub-blocks is 
O (m/ log n). Hence, all sub-block counts take O (m log log n/ log n) bits.

Using a pre-computed universal table of size O (n1/2 log n) we can find the number of 0’s and the number of 1’s within 
the first t positions of a sub-block for t = 1, 2, . . . , logn/2 in O (1) time. A rank query rank0(i, B) is answered by finding the 
block j1 that contains the i-th bit and the sub-block j2 within the j1-th block that contains the i-th bit. We also find the 
position j3 of the i-th bit within that sub-block. Now rank0(i, B) = c1 + c2 + c3 where c1 is the number of 0’s in the first 
j1 − 1 blocks, c2 is the number of 0’s in the first j2 − 1 sub-blocks of the j1-th block, and c3 is the number of 0’s among 
the first j3 bits in the j2-nd sub-block of the j1-th block. Queries rank1(i, B) are answered in the same way.

The data structure for rank queries can be created in O (m/ logn) time. Using the same universal table, we can compute 
the number of 0’s and the number of 1’s in each sub-block in O (1) time. Using this information, we count the number 
of 0’s in the first t sub-blocks of each block for t = 1, . . . , log2 n. Then we count the number of 0’s in the first i blocks 
for i = 1, 2, . . . , m/ log2 n. The total number of sub-blocks in all blocks is O (m/ logn) and the total number of blocks is 
O (m/ log2 n). Since we spend O (1) time in every sub-block, auxiliary data structures for rank queries can be computed in 
O (m/ log n) time.

The data structure for select queries is based on a similar approach. Suppose that we want to answer queries select0(i, B). 
We divide B into chunks, so that each chunk contains log2 n 0-bits. If the size of a chunk exceeds, log4 n, we say that this 
chunk is sparse; otherwise a chunk is dense. We keep left boundaries of each chunk in an array. If a chunk is sparse, we also 
keep the position of the t-th 0-bit in that chunk for t = 1, . . . , log n. A dense chunk is divided into words, so that each word 
consists of log n/2 bits. We keep the number of 0-bits in every word in a data structure M . The number of 0-bits in every 
word is at most log n/2, the number of words in a chunk is O (log3 n). We can implement M so that it uses O (log log n) bits 
per word; moreover we can find the word that contains the t-th 0-bit in a block and the number of 0-bits in the first d
words for any t , d in time O (1).

A query select0(i, B) is answered by finding the starting position of the i0-th chunk for i0 = �i/ log n�. Let i1 = i − i0 · logn. 
Clearly select0(i, S) = j where j is the position of the i1-th 0 in the i0-th chunk. If this chunk is sparse, then the position 
of the i1-th 0 is stored. Otherwise we find the word W j that contains the i1-th 0-bit using M . We can find the position of 
the i1-th bit in W j using a universal look-up table.

There are O (n/ log2 n) chunks and O (n/ log4 n) sparse chunks. The number of 0-bits in sparse chunks is O (n/ log2 n); 
hence, we can store positions of all 0-bits in O (n/ log n) bits. We can create the array that contains left boundaries of all 
chunks and positions of 0-bits in all chunks in O (m/ log n) time. The time needed to create data structures M for all dense 
chunks is proportional to the number of words in all dense chunks. Hence all M are created in O (m/ log n) time.

Data structures that support rank1 and select1 on B are implemented in the same way. �
Theorem 6. A bit sequence B of length m can be stored in data structure that answers rank, select, and access queries in constant 
time. This data structure uses mH0(B) + O (m log log n/ log n) bits and can be constructed in O (m/ logn) time, where H0(B) is the 
zero-order entropy of B. The construction algorithm relies on a universal table of size o(n).

Proof. The only difference is that the bit sequence B itself is stored in compressed form. We employ the method of Raman 
et al. [24] that splits the sequence into pieces of size 	(log n) and keeps all pieces in mH0(B) + O (m log log n/ log n) bits. �
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Theorem 7. A sequence B of length m over an alphabet { 1, 2, . . . , logε n }, where ε > 0 is a constant, can be stored in data structure 
that answers rank, select, and access queries in constant time. This data structure uses mH0(B) + O (m logε n log log n/ log n) bits 
and can be constructed in O (m/ log1−ε n) time, where H0(B) is the zero-order entropy of B. The construction algorithm relies on a 
universal table of size o(n).

Proof. We keep auxiliary structures that answer ranka and selecta for every a such that 1 ≤ a ≤ logε n. These data struc-
tures are implemented as in Theorems 5 and 6 and need O (m(log log n/ log n)) bits. All auxiliary data structures use 
O (m(log log n/ log1−ε n)) bits. Since data structures for a fixed symbol a can be constructed in O (m/ logn) time, all aux-
iliary structures are constructed in O (m/ log1−ε n) time. �

Wavelet trees. In Section 3 we showed how bit sequences X(u) stored in the nodes of the wavelet tree of a sequence 
X can be obtained. Using Theorems 5, 6, and 7, we can augment X(u) with secondary data structures that enable us to 
answer rank, access, and select queries on X .

Corollary 1. Let X be a sequence of n positive integers such that 1 ≤ X[i] ≤ σ for 1 ≤ i ≤ n. We can construct a binary balanced 
wavelet tree T for a sequence X, such that T uses nH0(X) + o(n logσ) bits and answers queries rank, select, and access in O (logσ)

time. The wavelet tree T can be constructed in O (n� log σ√
log n

�) time.

Proof. We construct a balanced binary wavelet tree as in Theorem 1. Sequences X(u) are stored in compressed form. It can 
be shown that the total space usage of all X(u) is n logσ + o(n logσ) bits; see e.g., [8], Section 3.1. �

We can further improve the construction time if a wavelet tree of special shape is used.

Corollary 2. Let X be a sequence of n positive integers such that 1 ≤ X[i] ≤ σ for 1 ≤ i ≤ n. We can construct a wavelet tree T for 
a sequence X, such that T uses n(H0(X) + 2) + o(n logσ) bits and answers queries rank, select, and access in O (logσ) time. The 
wavelet tree T can be constructed in O (n� H0(X)√

log n
�) time.

Proof. Barbay and Navarro [25] describe a wavelet tree T , such that the average leaf depth in T is O (H0(X)) and the 
maximum leaf depth is O (logσ). Furthermore the total number of bits in all sequences X(u) stored in nodes of T is 
bounded by n(H0(X) + 2). We construct T using Theorem 2. Data structures for sequences X(u) are constructed as in 
Theorem 5. �

We also remark that we can construct wavelet trees for X with node degree logε n where ε is a small positive constant. 
In this case the space usage and construction times are the same as in Corollaries 1 and 2, but queries are supported in 
O (logσ/ log log n) time.

5. Range maxima queries

In this section we show how our algorithms can be used to efficiently construct data structures for a certain type of 
geometric queries on a plane. Let P denote the set of two-dimensional points, such that all points have distinct x- and 
y-coordinates and all coordinates are integers in [1, n]. A point p is dominated by a point p′ if p′.x > p.x and p′.y > p.y. 
A two-dimensional range maxima query Q asks for all point p in a range Q , such that p is not dominated by any other 
point p′ in Q . We will show below how wavelet trees can be used to answer range maxima queries in O ((k + 1) log n)

time, where k is the number of reported points. We will need one additional type of queries. A range predecessor query 
Q asks for the topmost point p in a query rectangle Q = [a, b] × [c, d]. Gagie et al. [26] showed that wavelet tree (with 
secondary structures that support rank and select queries in its nodes) can be used to answer range predecessor queries in 
O (log n) time. Hence we can construct a data structure that supports range-next value queries in O (log n) time and uses 
n log n + o(n log n) bits of space.

It is known that we can employ a data structure for range predecessor queries to report all maximal points in a 
two-dimensional range. Consider a query range Q = [a, b] × [c, d]. Let p1 = (x1, y1) denote the highest point in Q . Let 
p2 = (x2, y2) denote the highest point in Q 1 = [x1 +1, b] ×[c, y1]. For i ≥ 2, we recursively define pi = (xi, yi) as the highest 
point in Q i−1 = [xi−1 + 1, b] × [c, yi−1]. When pi−1 and Q i−1 are known, we can find pi by answering a range predecessor 
query. Our procedure for finding all maximal points in Q finds points p1, . . ., ps until the range Q s = [xs + 1, b] × [c, ys]
is empty. It is easy to check that p1, . . ., ps contains all maximal points in Q and only those points. Since xi > x j for all 
1 ≤ j < i ≤ s and pi is the topmost point in [xi−1 + 1, b] × [c, d], every pi is not dominated by any other point in Q . Hence 
all p1, . . ., ps are maximal points in Q . Suppose that there is a point p′ = (x′, y′) such that xi−1 < x′ < xi and p′ is a 
maximal point. Then p′ is the topmost point in Q i = [xi−1 + 1, b] × [c, yi]. Hence p′ is identical with pi . Thus p1, . . ., ps is 
exactly the set of maximal points in Q .
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Theorem 8. There exists a data structure that uses n logn + o(n log n) bits and answers two-dimensional orthogonal range maxima 
queries in O ((k + 1) log n) time, where k is the number of reported points. The data structure can be constructed in O (n

√
log n) time.

For comparison, it is possible to answer orthogonal range maxima queries in O ((k +1) logε n) time using an O (n log n)-bit 
data structure [27] or in O (log n/ log log n + k) time using O (n log1+ε n)-bit data structure [28]. In both cases the pre-
processing time is O (n log n). Thus our result enables us to reduce the space usage and construction time at a cost of 
slightly increasing the query time.

6. Conclusions

In this paper we described fast algorithms for constructing a wavelet tree. We showed that this important data structure 
can be constructed in O (n� log σ√

log n
�) time. If the wavelet tree with a special shape is used, then construction cost can be 

further reduced.
The problem of designing faster algorithms (e.g., algorithms that work in O (n) or O (n log log n) time for an alphabet 

{ 1, . . . , n }) remains open.
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