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Abstract

One of the central tasks in managing, monitoring and
mining data streams is that of identifying outliers. There is
a long history of study of various outliers in statistics and
databases, and a recent focus on mining outliers in data
streams. Here, we adopt the notion of “deviants” from Ja-
gadish et al [19] as outliers. Deviants are based on one of
the most fundamental statistical concept of standard devi-
ation (or variance). Formally, deviants are defined based
on a representation sparsity metric, i.e., deviants are val-
ues whose removal from the dataset leads to an improved
compressed representation of the remaining items. Thus, de-
viants are not global maxima/minima, but rather these are
appropriate local aberrations. Deviants are known to be of
great mining value in time series databases.

We present first-known algorithms for identifying de-
viants on massive data streams. Our algorithms monitor
streams using very small space (polylogarithmic in data
size) and are able to quickly find deviants at any instant,
as the data stream evolves over time. For all versions of this
problem—uni- vs multivariate time series, optimal vs near-
optimal vs heuristic solutions, offline vs streaming—our al-
gorithms have the same framework of maintaining a hierar-
chical set of candidate deviants that are updated as the time
series data gets progressively revealed. We show experimen-
tally using real network traffic data (SNMP aggregate time
series) as well as synthetic data that our algorithm is re-
markably accurate in determining the deviants.

1. Introduction

A challenge in data mining is to develop methods for
mining data streams. Data streams are ubiquitous: obser-
vations of atmospheric conditions (rainfall, temperature),
network traffic (highway, telephone, internet, web click),
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financial transactions (point-of-sales, credit card transac-
tions, stock tickets), etc. Traditional databases deal with
data stored in finite, persistent data sets with moderate up-
date rates. Streams are potentially infinite, continuous, ar-
riving at a fast rate and in large amount. Mining data streams
entails rather unique constraints: (1) individual data items
have to be processed extremely fast to match the stream rate,
(2) only limited storage is available for processing–or cap-
turing and archiving–data at stream rate, (3) mining has to
be adaptive to changing trends in the stream, and (4) mining
often has to support decision systems in near-real time be-
cause a number of applications are derived from monitoring
systems that feed alarms, operations and other regulatory
activities that require real-time response. These challenges
in data stream mining have now engaged the database com-
munity; see [29] for a survey and [30] for a topical selection
of papers.

Clustering, classification and outlier analyses are some
of the fundamental mining tasks. There has been a signifi-
cant amount of work on clustering and classification in data
streams. The focus of this paper is on outlier analysis. The
notion of outliers is intuitive in general, but there are many
formal approaches to defining and searching for them in
Statistics, Databases and KDD communities (a selection of
books is [27, 18, 3]). The simplest outliers are “heavy hit-
ters”, i.e., values that are large. Heavy hitters are relevant
in network traffic applications and have been studied exten-
sively in that context (for example [10, 25], though this is by
no means exhaustive). In general, one seeks more sophisti-
cated notions of outliers. A common approach is to define
outliers as those that are unexpected based on some posited
probability distribution satisfied by the data; a small selec-
tion of references of this genre include [24, 28, 29]. An in-
teresting distance-based approach to outliers was originally
proposed by Knorr and Ng [22]. There are other approaches
as well, such as clustering-, classification-, depth-based, etc.
Many of these methods describe a global criterion for out-
liers. An interesting tension, in the area of outlier analyses,
is based on the local vs global aspect of outliers. There is a
large body of work on finding outliers within local windows
by using one of the outlier approaches above within win-
dows (for example, see the density-based approach of [4]).



Finally, a recent work studies local outliers, but at multi-
ple granularities [23].1

In this paper, we adopt the notion of outliers introduced
in Jagadish et al [19], namely, that of deviants. Deviants
are outliers defined based on a representation sparsity met-
ric. In particular, fix the histogram representation of the in-
put data (the discussion may proceed equally in terms of
any other representation mechanism for input data). A his-
togram comprises a few “buckets” that are used to summa-
rize the data lossily. Say we have a budget of B words to
store the histogram. Suppose we removed k ≤ B points
out of the data and stored them separately, and used the
rest of the budget of B words to lossily compress the re-
maining data distribution. Now, the problem is posed as an
optimization one. What is the choice of k points, so that
the combined representation of k points and the remaining
histogram representation best approximates the input data
distribution? (The formal definition of this problem will be
presented in Section 2.) The k points that are removed are
called deviants. The authors in [19] showed that there is a
choice of k for which one obtains the “best” overall repre-
sentation, and that the deviant points can be used as a highly
effective mining device for time series data. They also pre-
sented efficient algorithms for finding the deviants, taking
time O(n2k2B), on stored data of size n. Their methods do
not work in the data stream case.

In this paper, we study the problem of estimating de-
viants on data streams. Intellectually, deviants are intrigu-
ing because they implicitly combine the local outlier prop-
erty (deviants are points that “stick out” in the context of
a local bucket) with the global context (the bucket bound-
aries are based on global criteria of sparse data representa-
tion). Technically, finding deviants appears to be challeng-
ing. In fact, the result in [19] relied on double dynamic pro-
gramming, and it captures deviants over a large class of so-
lutions. However, we observe here that the deviants found
in [19] are not optimal. Rather, one can obtain a truly opti-
mal set of deviants using a structural property of deviants
within buckets (Lemma 1). Thus the problem of optimal
choice of deviants is fairly sophisticated. Finally, deviants
seem to apply quite naturally to data streams which are time
series observations. In many applications that generate data
streams–eg., IP network data–a few buckets suffice to cap-
ture most of the energy of the data distributions [10]. Hence,
for relatively small parameters b and k, one can obtain a few
meaningful deviants for data streams. This is quite attrac-
tive for data mining.

We initiate the study of deviant mining on data streams.
Our main contributions are as follows.

• We first consider the univariate time series case where
at each time t, we have a function f(t) that is observed.

1 This paper also has a nice overview of outlier detection literature.

We present the first known optimal algorithm for
finding provably optimal deviants. More importantly,
we present the first known provably near-optimal
streaming algorithms for mining deviants in data
streams. Our algorithm uses O((k3/ε) log n) space
to store a summary data structure of the stream tak-
ing O((k4/ε) logn) time to process each item.
When queried, we can obtain deviants in time
O((k3/ε) logn). Algorithms that work in less than
linear space and time need to necessarily output an ap-
proximation rather than the exact answers for this
problem. We prove that the approximation is 1 + ε,
for any user specified tolerance ε, on the error of ap-
proximating the datastream using the combined
representation of deviants and the histogram on the re-
mainder. We also present heuristics based on pseudo
deviants, which do not have the provably approxi-
mate guarantee, but perform well nevertheless, and are
significantly faster.

Besides simple outliers such as heavy hitters [10,
17], we do not know of any outlier detection algorithm
that works on data streams, i.e., in sublinear space and
time.

• We next consider the multivariate time series case
where at each time t, we have several functions as
f1(t), f2(t), . . . , f`(t) that are observed. This is typ-
ically the case in practice, and ` is small. Even in
the offline case where all the data is stored, this prob-
lem is likely to be hard. We present heuristic solutions
based on relaxed deviants for finding deviants in mas-
sive multivariate time series data streams. There are
the first known algorithms for deviant analysis in mul-
tivariate time series.

• We perform systematic experiments with real data–
SNMP data of aggregated traffic flow in backbone
links of an ISP–and show that our approximations are
remarkably accurate in determining near-optimal de-
viants efficiently over large data streams. Our solutions
can be used to continuously monitor the change in de-
viant patterns over time and can give a hierarchy of sig-
nificant deviants. Also, the experiments show that our
solutions runs much faster and storage used is less than
what our worst case bounds predict.

All our solutions are derived using a uniform framework.
We maintain a hierarchical set of potential bucket bound-
aries as we stream through the input. For each potential
bucket, we maintain a set of candidate items (that may be
deviants, pseudo deviants or relaxed deviants), that is suit-
able for the problem under consideration. The precise de-
tails differ: which items are suitable candidates, how to up-
date them, and how to update the bucket boundaries, etc.
This framework is not novel in algorithm design: many of



the recent data stream algorithms use such a framework in-
cluding those that find wavelets [11], quantiles [12], his-
tograms [14], heavy hitters [6], etc. However it is novel to
combine this framework with a set of candidate items per
potential bucket at each level of the hierarchy. For the uni-
variate case, the candidates we identify form a small super-
set of items in a bucket which are guaranteed to contain the
deviants. (A similar characterization is inherent in [5] which
may be thought of as a 1-bucket version of our Lemma 1.)
A similar characterization does not exist for the multivari-
ate case. For the sake of efficiency, some of our solutions
use candidates that can be identified quickly which prove
quite effective in experimental analysis, but do not a pri-
ori have guarantees.

Map. The rest of the paper is organized as follows. In Sec-
tion 2 we formally present problems of our interest. In Sec-
tion 3 we outline some structural properties of deviants and
provide a small space, fast per-item processing time approx-
imation algorithm. In Section 4 we describe a faster heuris-
tic, based on what we call pseudo deviants. In Section 5 we
extend this to the multivariate time series data streams. Sec-
tion 6 provides some experimental observations over real
and synthetic data sets and we conclude in section 7.

2. Models and Problem Formulations

Here, we give some definitions and provide an optimiza-
tion framework for the problem of finding deviants in the
data stream.

2.1. Histogramming

First, we formally define the problem of finding his-
togram representation. While constructing the histogram,
we break the data stream v1, v2, ..., vn into buckets of con-
tiguous indices. Then, all the numbers in a given bucket B
are replaced by a single value h. The histogramming er-
ror of this bucket is the sum squared error (SSE) given
by

∑
v∈B(v − h)2. Given a bucket, it is easy to see that

the value h which minimizes this histogram error is just
the average (mean) of all the values in B and the mini-
mum possible error then in B is nothing but the variance
of all the values in B. A simple expression for the vari-
ance V AR[B] is

∑
v∈B v2−(

∑
v∈B v)2/|B|. However, the

non-trivial task here is to find out how to split the given se-
quence into buckets.

Problem 1 Optimal Histogram Construction.
Given a sequence X of length n and number of buckets
k, find a partition of X into k contiguous buckets such
that the total error of the histogram representation that is∑k

i=1
V AR[Bi] is minimum over all such partitions.

Jagadish et al [20] gives an optimal O(kn2) dynamic
programming algorithm for the above problem. When this
problem is seen as a streaming data problem, this algorithm
takes O(kn) space and O(kn) per-item processing time.

In the data stream context, one provably can not find the
optimal histogram using only sublinear space. So, one seeks
an approximate histogram that has k buckets, but SSE is at
most 1 + ε of the SSE of the optimal histogram.

Guha et al [14] show that when we only want to find
a histogram representation which is approximate up to the
factor 1 + ε of the optimal, this can be achieved by a
streaming algorithm which takes O(k2 log n/ε) space and
the same per-item processing time. [15] gives an even faster
algorithm using wavelets. Typically, in these applications,
n is very large and k is a small constant. We can only af-
ford per-item-time and space sublinear in n, preferably log-
arithmic in n.

2.2. Deviant Histogramming

We next describe the deviant histogramming problem.
[19] defines this problem. Let E(X, k) denote the mini-
mum histogram error (SSE) for sequence X when we are al-
lowed to use k buckets. Consider omitting a subset D from
the sequence X . Now, if E(X − D, k − |D|) is less than
E(X, k), then rather than storing a k bucket histogram rep-
resentation of X we would prefer to store these values in
set D separately and then store a k − |D| bucket histogram
of X − D. This representation would use exactly the same
space but will give lesser error. Any such set D, such that
E(X − D, k − |D|) < E(X, k) is then called a set of de-
viants for a particular value of k. D is said to be an optimal
deviant set if it admits the minimum error over all such pos-
sible deviant sets. The problem then is to find such a set and
create corresponding histogram:

Problem 2 Optimal Deviant Histogram (ODH). Given a
sequence X , and number of resources k, find the optimal
deviant set D and k − |D| bucket histogram on the remain-
ing elements such that E(X − D, k − |D|) is minimized.

Jagadish et al [19] give an O(n2k3) algorithm for the
above problem. Their solution uses double dynamic pro-
gramming. However, it is not guaranteed to produce the op-
timal solution to this problem since the problem does not
have the optimal subproblem structure [7]. Their algorithm
work incrementally over a bucket, and assumes that if the
new value in the bucket is not a deviant then the previously
selected deviants do not change, which is not true. We cor-
rect this algorithm to find the optimal deviants using struc-
tural properties of deviants and the data structures to main-
tain them. In the data stream case, the goal is to produce one
with SSE at most 1+ε times the error of the optimal deviant
histogram.



Problem 3 k Deviant Histogram (kDH). Given a se-
quence X , and number of buckets b and number of de-
viants k, find the optimal deviant set D of size k and a
b-bucket histogram on the remaining elements such that
E(X − D, b) is minimized over all such possible de-
viants sets such that |D| = k.

The main difference between this problem and the pre-
vious one is that here we specify the exact number of de-
viants we want to extract. In the previous one it is chosen by
the algorithm to achieve the minimum possible error. Note
that by using kDH we do not necessarily achieve better er-
ror than basic histogramming with k + b buckets and we
never achieve better error than ODH with k + b resources.
Nevertheless, we can find the exact number of deviants de-
sired. An O(n2bk2) algorithm is given by [19] for this.

2.3. Multivariate Deviants

We now generalize the definitions above to the multivari-
ate case. Now, the data stream ~v1, . . . , ~vn is such that each
~vi is a d-dimensional vector. All the vectors in a bucket B
are replaced by a vector ~h. The histogramming error of this
bucket is

∑
~v∈B ||~v − ~h||22 where ||..||2 is the L2 norm of

the vector. With this notion of error, the definitions above of
optimal as well as approximation (deviant) histogram prob-
lems can be generalized to the multivariate case.

3. Univariate Deviant Histogram Problem

We will first identify a structural property of univari-
ate deviants. This will motivate the candidate data struc-
tures which we will describe next. Subsequent to that we
describe the optimal deviant histogram algorithm. We then
introduce the hierarchical bucketing framework incorporat-
ing the candidate deviants, and derive a provably approxi-
mate algorithm for the univariate deviant histogram prob-
lem for the data stream case.

3.1. Structural Property of Deviants.

Let v1, v2, ...., vn be the data stream. Let Bij be a block
(or a set) consisting of data points {vi, vi+1, ..., vj}. Let
VAR[Bij ] denote the variance of set Bij . Whenever con-
venient we shall also denote this by VAR[i, j]. Let Si =
∑i

j=1
vj and let S

′

i =
∑i

j=1
v2

j . S0 = S
′

0 = 0 Then,

VAR[i, j] = (S
′

j − S
′

i−1) −
(Sj − Si−1)

2

j − i + 1

Now let us assume we are allowed to omit k values from
Bij so that the remaining numbers in Bij have least possi-
ble variance. We call it k-variance of the block and denote
it by VARk[i, j]. Then,

VARk[i, j] = min
T⊆Bij ,|T |=k

VAR[Bij − T ]

Let ST =
∑

v∈T v and S
′

T =
∑

v∈T v2. Then,
VARk[i, j] = minT⊆Bij ,|T |=k(S

′

j − S
′

i−1 − S
′

T ) − (Sj −

Si−1 − ST )2/(j − i − k + 1). And such a T = T k
ij which

achieves the minimum k-variance is the optimal set of k de-
viants.

Let Hk
ij be the sequence of k highest values h1

ij ≥ h2
ij ≥

.. ≥ hk
ij of Bij . Similarly, let Lk

ij be the sequence of k low-
est values l1ij ≤ l2ij ≤ .. ≤ lkij of Bij . Let T k

ij be the optimal
set of k-deviants in Bij . Then,

Lemma 1 (Candidacy Lemma) T k
ij ⊆ Hk

ij ∪ Lk
ij . More

specifically,

VARk[i, j] = min
0≤l≤k

VAR[Bij − (H l
ij ∪ Lk−l

ij )]

That is, the optimal set of k deviants always consists of
the l highest and remaining k − l lowest values, for some
l ≤ k.

Proof : Skipped for conciseness.
A similar lemma is in [5] for outlier analysis within a sin-
gle bucket. As we will see, we will use this lemma in an in-
tricate way, maintaining such candidates in structured buck-
ets over data streams. Using this notion of k-variance, prob-
lems ODH and kDH can be reformulated. For example, the
formulation of kDH would be: Find the partition P of the
index set {1, 2, ..., n} into b buckets p1, p2, .., pb such that
∑b

i=1
VARki

[pi] is minimized subject to the constraint that
∑b

i=1
ki = k.

3.2. Candidate Data Structures for Deviants

Here, we describe our data structure to find k-variance
of a given block Bij and to find the corresponding deviants.
We call it the k-variance data structure and denote it by
k-VDS [i, j]. This data structure takes O(k) space and an-
swers each variance query in O(k) time. As the size of the
block grows, the data structure can be updated to corre-
spond to the larger block in O(k) time. The data structure
k-VDS [i, j] consists of the following: (1) Hk

ij sorted in de-
creasing order. (2) Lk

ij sorted in increasing order. (3) Sij

and S
′

ij .
Hij and Lij , according to candidacy lemma 1 form a set

of candidates from which k (or less than k) deviants can be
chosen. This forms an important part of the streaming solu-
tion because we have to visit the time series in only one pass
and can maintain only limited (sublinear) storage, and can-
not remember every point visited for its possible selection
as a deviant.



For singleton block B[i, i], it is easy to construct k-
VDS [i, i]. Hk

ii and Lk
ii are both singleton lists consisting

of element vi. Sii = vi and S
′

ii = v2
i . We can quickly con-

struct k-VDS [i, j + 1] from k-VDS [i, j] as follows:
1. Insert vj+1 into Hk

ij to form Hk
i,j+1. Hk

i,j+1 may or
may not contain vj+1. In case it does, the lowest el-
ement hk

ij is removed and does not appear in Hi,j+1.
This takes O(k) time.

2. Likewise, insert vj+1 into Lk
ij .

3. Si,j+1 = Sij + vj+1 and S
′

i,j+1 = S
′

ij + v2
j+1.

Once we maintain this data structure k-VDS [i, j], we
can easily find VARp[i, j] along with the list of correspond-
ing deviants for any p ∈ {0, .., k} in O(k) time. For this
we try all possible sets of deviants D (|D| = p) such that
D = H l

ij ∪ Lp−l
ij and we choose the one which gives mini-

mum variance for Bij −D. The variance value correspond-
ing to each set D of deviants can be computed in constant
time from Sij , S

′

ij , SD and S
′

D. We can enumerate these
possible sets of deviants as l goes from 0 to p. And we can
also keep track of SD and S

′

D values in constant time (af-
ter O(k) preprocessing) as we enumerate these sets.

3.3. Optimal Deviant Histogram

We derive an O(n2k2) dynamic programming algorithm
for finding the optimal deviant histogram on n-sized time
series. Here k is the total number of buckets plus deviants.

Let DH [k, n] denote the minimum SSE for histogram-
ming v1, ..., vn with k being number of buckets plus de-
viants used for histogramming. Then,

DH [1, n] = VAR0[1, n]
DH [p, 1] = 0
DH [p, n] = min1≤x<n,0≤i≤p−2{

DH [p − i − 1, x] + VARi[x + 1, n]}
To calculate DH [k, n], we first calculate VARp[i, j] for

all values of p(≤ k), i, j(≤ n). This makes it O(kn2)
values. And each value can be calculated incrementally in
O(k) time. Hence this takes O(k2n2) time. Also, the stor-
age is O(kn2) because for each block Bij we store Hij and
Lij which amounts to O(k) values per block. Given this, we
calculate the table of DH [p, m] which makes O(kn) values.
Computing each value takes O(kn) time. Hence, totally, we
spend O(k2n2) time and O(kn2) space.

3.4. Approximate Deviant Histogram on Streams

Consider what happens when we apply the abovemen-
tioned algorithm to the streaming setting. When item vi is
finished processing, we have computed and stored DH [p, x]
for all values of p ∈ {0, .., k} and for all values of x ∈
{1, .., i}. We have also stored k-variance data structures for
all blocks B[j, i] for all values of j ∈ {0, .., i}. So, the to-
tal storage is O(ik) thus far. On seeing the next value vi+1,

we update the k-variance data structures for blocks B[j, i]
to B[j, i + 1] for all j ∈ {0, .., i} and we add k-variance
data structure for the singleton block B[i + 1, i + 1]. This
takes O(ik) time in all. Then we compute DH [p, i + 1]
for all values of p ∈ {0, .., k}. This takes O(ik2) time be-
cause we scan O(ik) different combinations and generat-
ing VARi in each case takes O(k) time. Thus we can con-
clude that this dynamic programming algorithm transforms
directly into streaming algorithm with O(nk) storage and
O(nk2) processing time per item.

In the data stream case, we would like an algorithm that
works in O(poly(k)poly(log n)) space. The difficulty in the
algorithm presented earlier was that x may take n values. x
would take on fewer values if we settle for 1+ε approxima-
tion. So the idea is to maintain DH [k, x] only for logarith-
mically many interspersed values of x. This is achievable
because when we only go for 1+ ε approximation, we need
to store DH [k, x] value only when it is more by certain fac-
tor than that for previous value of x. Note that DH [k, x] is
a monotonically increasing function of x and the maximum
value it can achieve is nR2 where R is the largest num-
ber in the series. So if we maintain a constant factor 1 + δ
between each successive DH [k, x] values stored, then we
have to store at most O((log n + log R)/ log(1 + δ)) val-
ues of x.

3.4.1. The Algorithm. Instead of DH [p, x] as in dynamic
programming algorithm, we maintain ADH [p, x] (approxi-
mate deviant histogram) here. We will show that ADH [p, x]
closely approximates DH [p, x].

Let ADH [p, x] denote the cost of our solution where p is
the number of buckets plus deviants in v1, ..., vx. Our al-
gorithm will inspect the values indexed in increasing or-
der. Let the current index being considered be x. The pa-
rameter δ will be fixed later. For every 0 ≤ p ≤ k,
the algorithm will maintain ADH [p, y] for values 1 =
yp
1 < yp

2 < yp
3 < ... < yp

l = x − 1 of y such that
ADH [p, yp

i ] ≤ (1 + δ)ADH [p, yp
i−1 + 1] for all i ≤ l and

ADH [p, yp
i ] > (1 + δ)ADH [p, yp

i−1
] for all i < l. Associ-

ated with each ADH [p, y] value we also store the first block
(block containing y) along with the list of deviants in this
first block in the solution of ADH [p, y]. This is maintained
to reconstruct the histogram and get the deviants when we
complete our pass on the entire data set. For each such
value of y, we have also maintained k-VDS [y + 1, x − 1].
Thus the total storage is O(k2l). Additionally, the algorithm
also maintains a benchmark value b = ADH [p, yp−1

l + 1]

(yp−1

l + 1 can be the same as yp
l ).

On seeing the xth value vx, the algorithm does the fol-
lowing:

1. It updates k-VDS [y + 1, x − 1] to k-VDS [y + 1, x].
There are at most kl values of y. So this can be done
in O(k2l) time.



2. Then it computes ADH [p, x] for each value of p. For
this it scans ADH [q, y] for each value q < p and
each value of y in yq

1, y
q
2, .., y

q
l . It checks the quantity

ADH [q, y]+VARp−q−1[y+1, x] and selects the com-
bination which minimizes this sum. Along with the
ADH [p, x] value, it also stores the VARp−q−1[y +
1, x] term which minimized it and the list of corre-
sponding deviants in the block [y + 1, x]. Each VAR

computation takes O(k) time and we try O(kl) differ-
ent values. So this takes O(k2l) time for each value of
p and hence totally, O(k3l).

3. Once ADH [p, x] values are computed, the algorithm
decides, for each of them, whether to discard the previ-
ous value ADH [p, x− 1] and replace it by ADH [p, x]
or to just add ADH [p, x] to the collection increasing
l by 1. It replaces the previous value if ADH [p, x] ≤
(1+ δ)b. Otherwise, (i.e. ADH [p, x] > (1+ δ)b) it in-
crements l, adds ADH [p, x] to the collection and sets
new benchmark b = ADH [p, x].

4. Finally, the algorithm computes ADH [k, n]. Then it
outputs the boundaries of the first bucket [n, y +1] and
its list of q deviants, and then repeats this recursively
on ADH [k − q − 1, y] to get the entire list of deviants
and buckets.

3.4.2. Correctness.

Theorem 1 The values generated by our algorithm approx-
imate the values for the optimal dynamic programming al-
gorithm. The following inequality gives the approximation
bound:

ADH [p, x] ≤ (1 + δ)p−1
DH [p, x]

Proof : We first note that DH [k, x] ≤ DH [k, y] when-
ever x ≤ y. Also VARk[y, z] ≤ VARk[x, z] whenever
x ≤ y. Now, we shall prove the theorem by induc-
tion in p. Base case, p = 1, is trivially true because
ADH [1, x] = DH [1, x] = VAR0[1, x]. Now let’s assume
ADH [q, x] ≤ (1 + δ)q−1DH [q, x] for all q < p. Then, let’s
say DH [p, x] = DH [q, z] + VARp−q−1[z + 1, x] for some
q, z. That is these q, z are the minimizing combination. Let
t be the smallest index such that yq

t ≥ z. Then z ≥ yq
t−1+1.

So, DH [q, z] ≥ DH [q, yq
t−1 + 1]. By induction hypothesis

ADH [q, yq
t−1 + 1] ≤ (1 + δ)q−1DH [q, yq

t−1 + 1]. Also, by
our construction, ADH [q, yq

t ] ≤ (1 + δ)ADH [q, yq
t−1 + 1].

Combining all these, we get

ADH [q, yq
t ] ≤ (1 + δ)q

DH [q, z]

Since our algorithm, while computing ADH [p, x],
checks ADH [q, yq

t ], ADH [p, x] ≤ ADH [q, yq
t ] +

VARp−q−1[y
q
t + 1, x]. Also, VARp−q−1[y

q
t + 1, x] ≤

VARp−q−1[z + 1, x]. Hence, ADH [p, x] ≤
(1 + δ)qDH [q, z] + VARp−q−1[z + 1, x]. Since q < p, this
implies,

ADH [p, x] ≤ (1 + δ)p−1
DH [p, x]

3.4.3. Analysis. Since, we want ADH [k, n] ≤ (1 +
ε)DH [k, n] we need to set δ such that (1 + δ)k ≤ 1 + ε.
Thus setting log(1+δ) = ε/k is sufficient. The number l of
values maintained is bounded above by O(log DH [k, n +
1]/ log(1 + δ)). DH [k, n + 1] ≤ nR2 where R is the
largest number in the series. Also, for our operations, we
would assume the size of each number is O(log n) i.e.,
log R = O(log n). Therefore, l = O(k log n/ε). Combin-
ing this with running times in previous subsections we get
the following theorem:

Theorem 2 Our algorithm gives (1 + ε) approximation to
optimal deviant histogramming (ODH) problem. The space
required for the algorithm is O(k3 log n/ε) and per item
processing time is O(k4 log n/ε).

3.5. Extension to kDH

We can similarly apply the same technique to the dy-
namic programming algorithm used to solve kDH. Here, in-
stead of DH [k, n], we have to define k-DH [k, b, n] which
denotes the minimum square error in histogramming v1..vn

with b buckets and k deviants removed.

Theorem 3 We can compute (1 + ε) approximation to
kDH problem with b buckets and k deviants using only
O((k2b2/ε) logn) space and O((k3b2/ε) log n) per item
processing time.

4. Pseudo-Deviant Algorithm

In this section, we will show another algorithm for the
univariate deviant histogram problem on data streams. This
has the same hierarchical framework as the data stream al-
gorithm above. Along the notion of deviants we shall de-
fine slightly different outliers called pseudodeviants or pde-
viants for short. As will be evident, they are faster to com-
pute but have a slightly different notion of optimality than
deviants. They follow the optimality of deviants in the sense
of alignment of bucket boundaries but when it comes to
choosing deviants within the bucket they perform differ-
ently. Hence, they may be suboptimal. However, the speed
of computation is not the only main motivation for defining
pdeviants. Pdeviants are also very attractive when we ex-
tend this idea to multivariate data streams. This will be dis-
cussed in the next section.

Pseudo Deviants. Let AVE [i, j] denote the aver-
age (mean) of the block Bij . Let T̂ be the set of k points
in Bij which are the farthest from AVE [i, j]. i.e. set
of k points with highest |vl − AVE [i, j]| value. Then



k-pseudovariance (k-pvariance for short) of a block Bij is
defined as PVARk[i, j] = VAR[Bij − T̂ ] and such a set T̂
is called the set of k-pseudodeviants (k-pdeviants for short).
Note that PVARk[i, j] ≥ VARk[i, j] by the minimality of
VARk[i, j]. As pointed out by lemma 1 the difference be-
tween deviants T and pdeviants T̂ is that the deviants T
are the k farthest values from AVE [Bij − T ] while pde-
viants are k farthest values from AVE [Bij ]. As will be evi-
dent from analysis and experiments, pdeviants are not sig-
nificantly different from deviants in most cases (aside
from some pathological examples) and are much eas-
ier and faster to compute over streams.

Problem 4 Optimal Pdeviant Histogram (OPH). Given
a sequence v1, v2, ..vn and a number of resources k, find a
partition P into b buckets p1, p2, p3, .., pb along with pde-
viants such that

∑b
i=1

PVARki
[pi] is minimized subject to

the constraint b +
∑b

i=1
ki = k.

Candidate Data Structure. For pdeviants, the k-pvariance
data structure is almost the same as that for the deviants. We
maintain Hij and Lij in sorted order. Each can be updated
in O(k) time. The main difference is that in O(k) time to-
tally, we can answer all of the k pvariance queries. Thus,
each pvariance, on an average, can be answered in O(1)
time instead of O(k). This is where pdeviants achieve the
speed up by factor of a k.

Algorithm. The algorithms for pdeviants are almost exactly
the same as the ones for deviants. The only change is in how
the pseudovariance for a given block is computed. The k-
pvariance data structure here maintains Hij , Lij as before
and moreover it maintains a value µ which is the average of
the values in the block. µ is merely Sij/(j − i + 1). Now
to form the set of pseudodeviants P , it merely merges the
sorted lists Hij and Lij and finds k pseudodeviants in the
order of their distance from µ. This merge procedure can
also give the pseudovariance values for each k in a single
pass. Thus a k-PVDS data structure can be updated in O(k)
time and each pseudovariance query on the given structure
can be answered in O(1) time (given the preprocessing dur-
ing merge).

This means the offline algorithm for k-pseudodeviants
(similar to the one in section 3.3) runs in time O(n2k)
because processing the ith point takes O(ik) (instead of
O(ik2) earlier). Similarly, for the streaming case, the up-
dates can be done in O(k2l) time giving the following the-
orem.

Theorem 4 There is an algorithm which gives (1 + ε) ap-
proximation to the optimal pseudodeviant histogram-
ming (OPH) problem. The space required for the algo-
rithm is O(k3 log n/ε) and per item processing time is also
O(k3 log n/ε).

5. Multivariate Data Streams

First consider the offline version where all data is stored.
Further, consider a simplified version of the problem where
the number of buckets is 1 and we wish to remove k de-
viants. Given n vectors, which k of these should be removed
so that the remaining vectors will have minimum variance?
This problem is closely related to the problem in [9] of out-
lier removal in high dimensions, as well as to learning lin-
ear threshold functions in presence of noise [2]. Although
we have not proved our problem to be NP-Hard, we sus-
pect that it is very likely to be hard.

Offline pseudodeviants. In the case of pseudodeviants, the
mean to be considered is the average of entire bucket with-
out removal. Hence, pseudodeviants are easily computed
over multivariate time series (MTS). We now outline the of-
fline algorithm to compute the pseudodeviants on MTS. The
algorithm is similar to the offline dynamic programming for
univariate time series in section 3.3, with the exception that
k-VDS contains all the points in the bucket, not just Hij

and Lij . Hence, the update of the k-VDS takes O(n) time
in the worst case. Therefore, instead of being an O(n2k) al-
gorithm, this becomes an O(n3) algorithm (assuming d as a
small constant). To compute the k-variance of a given block,
we have to first obtain the mean value of the bucket and
then amongst all the points in the bucket choose the k far-
thest ones to this mean value point. This is because even a
small change in the mean value point of the bucket can re-
sult in completely new pseudodeviants and hence we can-
not really limit the number of candidate points for pseudo-
deviants (or deviants) as in the case of univariate time se-
ries. The absence of candidate based structure also means
that we cannot actually calculate the pseudodeviants or ap-
proximate pseudodeviants in the streaming model.

Example. Consider an example of a time series in 2 di-
mensions for which we want to find k pseudodeviants in a
bucket of n + 1 points. Let the first n points visited con-
sist of n/k groups of k points each at unit distance from the
origin (0, 0). Each group consists of k copies of the same
point. The ith group has points whose angle from vector
(0, 1) is 2πki/n. Now, any of these n/k groups could form
the group of k-pseudodeviants depending on the n + 1st
point.

Streams and Relaxed deviants. The mean value point of the
bucket, in most cases is progressively less likely to change
as the bucket size grows. Hence, a reasonable heuristic to
guess the candidates based on current position of the mean
value point is as follows. Choose a parameter c (this param-
eter will depend on dimensionality). Maintain the first ck el-
ements in the bucket as candidates. Now at the entry of each
new point in the bucket, find the new mean value point. If all
the candidates maintained are farther from this mean value
point than the new point then the list of candidates remains



the same. Else, insert this new point in the list of candidates
and remove the one which is the nearest to the mean value
point. Now, out of these ck candidates, choose the k farthest
from the mean value point as pseudodeviants. We call these
relaxed deviants or rdeviants for short. They may be far dif-
ferent from pseudodeviants in pathological cases, but they
are nearly similar in practical data sets.

Given a bucket b of data points ~vi, .., ~vj (also denoted
B[i,j]), a point ~vl, i ≤ l ≤ j, is one of the k relaxed de-
viants if and only if

1. ~vl is one of the ck farthest elements from AVE (B[i, l])
in amongst the elements in B[i, l].

2. Among the all points in B[i, j] which satisfy the pre-
vious criteria, ~vl is one of the k farthest elements from
AVE(B[i, j])

If R is the set of k relaxed deviants in B[i, j], then the k-
rvariance RVARk[i, j] = V AR(B[i, j] − R). The problem
Optimal Rdeviant Histogram (ORH) can be defined simi-
lar to previous deviant histogram problems above. Interest-
ingly, note that if entire data stream were to be reversed,
deviants and pdeviants stay the same while rdeviants can
be different. This is because the definition of rdeviants de-
pends on the directionality of the stream.

Candidate data structure. The candidate data struc-
ture for B[i, j] consists of ck candidates sorted in de-
creasing order of their distance from AV E(B[i, j]).
Call them ~r1, ~r2, ..., ~rck. We also store the partial sums
~Sl =

∑l
m=1

~rm and S
′

l =
∑l

m=1
||~rm||22. Note that S

′

are scalars while S are vectors. Then, variance calcula-
tion is the same as in previous sections.

Algorithm. The algorithm again only differs from the uni-
variate case in how the k-rvariance data structure is up-
dated. During each update we sort the candidates; assum-
ing parameter c and dimensionality d are small constants,
the updates can be done in O(k log k) time. And then
with this preprocessing, each rvariance query can be an-
swered in O(1) time. Hence, the per-item processing time
is O(k3 log k log n/ε).

6. Experiments

We implemented the exact as well as the approximate
versions of ODH and kDH problems. The experiments were
done on a pentium PC (2.78GHz). We used these algorithms
over synthetic as well as real (IP network) data. Based on a
large number of experiments carried out, we present some
representative and interesting observations. We use SNMP
data sets which shows the time series of aggregated traf-
fic on internet links. We use synthetically generated data for
experiments with multivariate time series.

In general, for our experiments, we choose a parameter d
which is equal to 1/δ. For the worst case approximation ra-

tio as we discussed in the section 3.4.3, log(1 + δ) has to
be set to ε/k. i.e., δ ≤ ε/k. This means for approximat-
ing a solution within 1% error with 10 resources we need
d = 1000. However, this is only in the worst case. We ob-
serve that, in most practical cases even d = 10 or d = 50
can achieve 1% error. As an added advantage, our algorithm
stores fewer values and works quite fast. We discuss this fur-
ther in one of the subsections which follow.

Experimental example. We first used an artificially de-
signed small data set consisting of 90 points, mainly con-
centrated around three buckets. Six outliers were introduced
among these. The algorithm, when given 9 resources, cor-
rectly identified 3 buckets and 6 deviants.

Convergence of approximation algorithm towards the opti-
mal. In most cases, even 1% error tolerance is enough for
a suboptimal solution to not catch one or more of the signif-
icant deviants. If the bucket boundaries determined by the
suboptimal algorithm is very different than the optimal, then
the deviants captured can be significantly different. Thus the
question in general is whether the approximation algorithm
identifies the significant deviants given by the optimal al-
gorithm. There is no definitive answer to this question, but
all our experimental experience indicates that our approxi-
mation algorithm captures significant deviants identified by
the optimal.

We experimented with many SNMP data sets. As the pa-
rameter d increases in value, the SSE goes down and we ob-
served that the bucket boundaries are refined more and more
to be similar to those in the optimal solution for deviants and
hence deviants turn out to be the almost same. The most sig-
nificant deviants are captured first at even coarser (small d)
levels of approximation, and other less significant ones are
captured later, as d increases. For one particular data set,
at d = 30 the deviants captured were exactly the same as
the optimal, whereas the SSE was 431805 as compared to
428223 for optimal. Looking at the plot of the data series,
these deviants are intuitively very accurate as seen from hu-
man eye. However, due to space limitations, we omit the
figure depicting the data series.

Emergence of deviants with varying number of resources.
When we experiment using the ODH model, the number

of resources have to be split between buckets and deviants.
These comparisons of the splitting of resources was done by
[19]. We observe that it is almost always the case that initial
resources are used as buckets for histogramming and then,
as resources increase, the algorithm uses them as deviants.
The order in which deviants emerge with increasing num-
ber of resources indicates their significance or ranking. Our
data structure can be simultaneously queried in real time
with different number of resources. This can be used to es-
tablish the hierarchy of significant deviants at any point in
time.
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Figure 1. Timing analysis

Timing analysis. Here, we present some details on running
times of algorithm, for different parameter values. The first
two in figure 1 are the charts generated from the same ta-
ble. These indicate much faster running times than the ac-
tual theoretical bounds. Theoretically, the running time of
algorithm should scale linearly with d. However, we ob-
serve it is quite sublinear, and actually more like log d.
Hence, even though in worst case our data storage is lin-
ear in d, we observe a much more sublinear trend indicat-
ing a smaller storage and faster access. With k, our run-
ning times scale roughly around k2.6. Although our theoret-
ical bound is O(k4). We get one k factor down by isolat-
ing d from k which for theoretical requirements is linear in
k. And further improvement can be attributed to the spar-
sity in dynamic programming.

In the third chart, we expect the running time to scale as
n logn. The plot looks almost linear with a very slight up-
ward curvature for the log n factor. This plot was done for
d = 100 and k = 10.

Pseudodeviants vs Deviants. We used an SNMP data set to
do the comparative experiments for pseudodeviants and de-
viants. We found absolutely no difference in the deviants
and pseudodeviants reported for various values of param-
eters. The comparative processing times for pdeviants are
much lesser than those for deviants. This is shown in the
fourth chart in figure 1 where we take n = 500 and d = 25.
In the chart, we see that against k, pseudodeviants tend to
have time complexity which grows as k1.8 while the em-
pirical growth proportionality for deviants seems to be k2.6.
Again, these should be k3 and k4 respectively, but we cut
down a factor of k in both by fixing d. Thus, pseudode-
viants are effective and fast substitutes for deviants.

Multivariate time series. For the experiments with multi-
variate time series, we use synthetically generated 3 dimen-
sional data set, which is blockwise gaussian with outliers.
The mean value point and the deviation of data are cho-
sen at uniformly at random. Each coordinate of the mean
value point is chosen from [−50, 50] and deviation is cho-
sen uniformly at random from [0, 5]. At each point there is
0.01 probability of changing these parameters to new ones.
Also, at each point there is 0.01 probability that it is intro-
duced as an outlier in which case this particular point can
be chosen just like the mean value point above.

We did various experiments for offline as well as stream-
ing cases. We found that rdeviants found by streaming are
almost the same as pdeviants found by the offline algorithm.
And significant deviants thus found are same. When we in-
crease the number of resources, sometimes we get one or
two deviants to be different from the pdeviants but they are
not the significant ones. When the value of parameter c is in-
creased (≥ 2), even the slight difference between pdeviants
and rdeviants is eliminated.



7. Concluding Remarks

Outlier detection in data streams is an important prob-
lem, and we expect many different kinds of outlier analy-
ses to be studied over time. Deviants are intriguing outliers,
combining local and global features. We have presented first
known, efficient algorithms for finding deviants—optimal,
approximate, heuristic or univariate, multivariate, etc—on
data streams. Pdeviants are motivated by their speed of
computation in the univariate case and in multivariate case
they are in fact the only known solution. Rdeviants are mo-
tivated by the fact that even pdeviants can’t be computed
effectively in the data stream model in the case of multi-
variate time series. We have seen by the experiments that
pdeviants are remarkably close to deviants and in multi-
variate case, rdeviants are remarkably close to pdeviants.
Hence, we think that rdeviants provide a good substitute for
deviants for mining multivariate time series data streams.
The problem of finding an optimal algorithm for deviants in
multivariate case still remains open. Our experimental re-
sults show that our algorithm is faster than our worst case
bounds. Also, the approximate algorithms with reasonable
precision parameters capture significant deviants of the op-
timal algorithms.
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