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1. Introduction 

What is the “best” algorithm for a given problem? There is obviously more than one 

answer, depending on what we mean by “best.” If we consider worst-case time 

behavior, traditionally an algorithm is considered the best possible if it meets the 

information theoretic lower bound. There is another way of looking at the situation, 

wherein we are not worried about the time taken to evaluate every instance from 

scratch. We ask that once the algorithm has preprocessed an instance of the problem, 

it should handle any changes to the instance very fast. 

In Section 2 we formalize these notions in terms of the classes incr-POLYLOG- 

TIME, the class of problems whose dynamic versions are solvable in poly-logarithmic 

time, and incr-POLYLOGSPACE, the class whose dynamic versions can be solved 

with poly-logarithmic work space. We also give a restricted notion of nondeterminis- 

tic incremental computation. We show that if a problem can be solved sequentially 

with a small amount of work space then there exists an efficient dynamic algorithm to 

solve the same problem. We then introduce the concept of an incrementul reduction 

between problems, and we present problems that are incrementally complete for other 

existing complexity classes under such a reduction. 

In Section 3 we show that commonly known P-complete problems (under LOG- 

SPACE reductions) are incr-POLYLOGTIME-complete for the class P. We further 

prove that all nonredundant P-complete problems are incr-POLYLOGTIME-com- 

plete for P. This suggests that problems that are hard to parallelize are hard to 

dynamize. We also show that a variant of transitive closure is incr-CONSTANT- 

TIME-complete for NLOGSPACE and give similar problems which are incr-CON- 

STANTTIME-complete for LOGSPACE and NC’. In Section 5 we demonstrate that 

under certain restrictions, problems which have efficient dynamic solutions also have 

efficient parallel solutions. 

In Section 4 we consider a nonuniform model of incremental computation and show 

that in this model most problems have almost linear complexity. In addition, we present 

some techniques for lower bounding the complexity of explicitly defined problems. 
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In Section 6 we look at incr-LOGSPACE; the class of problems that can be 

“updated” using only logarithmic work space. This is an interesting class because 

problems in this class are amenable to fast parallel updates (since LOG- 

SPACE E NC*). We show that the circuit-value problem for comparator gates, 

discussed in Mayr and Subramanian [ 1.51 is in incr-LOGSPACE while the network 

stability problem is in relativized incr-LOGSPACE with respect to an NLOGSPACE 

oracle. Since these problems have no known efficient parallel solutions, we get a new 

class of problems which seem to be somewhat more sequential in nature than the 

problems in NC but nonetheless exhibit a degree of parallelism absent in P-complete 

problems. In Section 7 we present the conclusions and some open problems. 

2. Preliminaries 

Informally, we want a decision problem n to belong to the class incr-TIME [f(n)] if 

we can “react” to the changes in a given instance of the problem in time proportional 

tof(n) where n is the size of the problem statement. First we take some time to build 

a data structure for an initial instance of the problem. After that point we are required 

to react to any one-bit change in the current instance in time O(f(n)); i.e. we should 

calculate the solution for the new instance and update the current data structure all in 

time O(f(n)). 

Let rc be a decision problem. An n-bit instance I of rc is any n-bit string of zeros and 

ones. An instance I is said to be a positive instance if a decision procedure for 

rc outputs a 1 given I as the input. A single bit change to an instance Z would involve 

flipping some bit of Z from 0 to 1 or vice versa. We define the size of an incremental 

change d to an instance Z (where A changes I to I’) to be the number of bits of Z that 

are flipped. Another reasonable model of incremental change would be one that 

allows one to insert and delete “zeros” and “ones” at various points in I. Ideally we 

would like to use a definition that measures an incremental change by the minimum 

amount of information needed to convert Z to I’, but that would involve issues of 

Kolmogorov complexity, which would not allow concrete time or space complexity 

results. 

Our replacement model that we define above, where we can replace various bits of 

Z by “zeros” or “ones,” is a reasonable measure of incremental change and at the same 

time a sufficiently simple model for developing a theory of incremental complexity. In 

the remainder of the paper we only deal with the replacement model of incremental 

computation. 

A dynamic algorithm for solving a problem rr will have two stages: the preprocessing 

stage and the update stage. Given an initial instance Z”, in the preprocessing stage, the 

algorithm constructs an internal data structure D, D associated with the instance I’. 

The data structure DIo is just the portion of the internal state of the algorithm A (after 

it processes Z”) that is carried over to the next stage. In the update stage, given an 

incremental change A to the current instance I, the algorithm computes the answer to 
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the new instance I’ and makes changes to the internal data structure DI to get DIs. The 

data structure D, is the portion of the internal state of the algorithm (after the instance 

I has been processed) that is carried over to the next stage. We will use the term 

current instance to denote the instance I that was encountered last by the algorithm, 

and the term current data structure to refer to the associated internal data structure D, 

constructed by A when it processes the instance I. 

Strictly speaking the notation DI is not entirely appropriate since the relevant 

portions of the internal state (after I has been processed) depend not only on I but also 

on the algorithm A, the initial instance 1’, and the sequence of updates that were used 

to arrive at I. We will use the notation Df when we want to disambiguate between two 

algorithms but wherever there is no ambiguity we will continue using the notation DI 

in the interest of not overloading the symbols with too many subscripts and super- 

scripts. 

Definition 2.1. A decision problem rt belongs to the class incr-TIME [f‘(n)] if there are 

RAM programs PI and P, such that for all nEN we have 

(I) Given any initial n-bit instance I0 of rr, PI efficiently precomputes some internal 

data structure DIo associated with instance I’. 

(2) Given the current input instance I, the incremental change d to I and the 

current data structure DI in the random access memory, P, determines ~(1’) and 

modifies D, into the new data structure DI, in O(ld if(n)) time. 

Our notion of “efficient” in condition 1 is somewhat flexible; we could require that 

the precomputation be doable in polynomial time or logarithmic space, for example. 

The RAM programs are allowed to operate on 0 (log n) length words in constant 

time, where n is the size of the problem instance. They are therefore allowed to read, 

write, add and subtract 0 (log n) length words. The program counter is also allowed to 

transfer control to an arbitrary address (e.g. to execute a jump). 

We denote by incr-POLYLOGTIME the class 

,Ib incr-TIME [logk n] 
I 

We believe that such a definition captures the intuitive notion of incremental compu- 

tation; e.g. the problem of maintaining an ordered set through a set of updates of 

queries is in incr-TIME [log n]. 
Given the technical inconvenience in making the data structure an explicit part of 

the definition one might argue that we do not mention the data structure explicitly but 

simply state that the updating program P2 be allowed 0( 1 A if(n)) time to modify its 

internal state. We have chosen to make the data structure an explicit part of the 

definition because doing so allows us to control the kind of access that we allow the 

updating procedure P2 to have on the current data structure. For example, in defining 

the class incr-SPACE [.f(n)] we allow Pz a read-only-access to the current data 

structure thus limiting the amount of work space that it can have. 
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Definition 2.2. A decision problem n belongs to the class incr-SPACE [f(n)] if there 

are RAM programs Pi and Pz such that for all HEN we have 

(1) Given any initial n-bit instance I0 of rc, P1 efficiently precomputes some internal 

data structure D10 associated with instance IO. 

(2) Given the current input instance I, the incremental change d to I and the 

current data structure D1 in a read-only memory, P2 determines ~(1’) and constructs 

the new data structure D1, on a write-only memory while using only 0( 1 A If(n)) work 

space. 

We denote by incr-LOGSPACE the class incr-SPACE [log n], and define incr- 

POLYLOGSPACE in a manner similar to incr-POLYLOGTIME. 

To extend these notions to nondeterminism we allow the update procedure P, 

access to some nondeterministic decision oracle S. The decision oracle S can be used 

by P2 to ask queries regarding the current input I and the current data structure D,. 

P2 is allowed to make a polynomial number of calls to S. By restricting P2’s access to 

decision oracles that are allowed to operate in NLOGSPACE we get the following 

definition for rincr-LOGSPACE(NLOGSPACE). 

Definition 2.3. A decision problem n belongs to the class rincr-LOGSPACE(NLOG- 

SPACE) (read as n is in incr-LOGSPACE relative to the class NLOGSPACE) if there 

are RAM programs P1 and P2 such that for all neN 

(1) Given any initial n-bit instance I0 of 7~, P1 efficiently precomputes some 

auxiliary data structure D1o associated with instance I’. 

(2) Given the current input instance I, the incremental change A to Z and the 

current data structure D1 in a read-only random access memory, P2 determines n(Z’), 

and constructs the new data structure D, I (output to a write-only memory) while using 

0( 1 A 1 log(n)) work space. 

The update procedure P2 is allowed to make a polynomial number of calls to some 

nondeterministic decision oracle S that uses 0 (log n) work space. P2 can take the help 

of the decision oracle S in determining rc(Z’) and for making decisions about how to 

construct D1 ,. 

We now show that problems which can be solved sequentially using small amounts 

of work space can be incrementally solved using small amounts of time per 

update. 

2.1. Incremental execution of space bounded computations 

Standard techniques give that a nondeterministic s(n)-space bounded computations 

can be simulated from scratch on a RAM in time O(n2°‘“‘““). In an incremental 

setting, we show that for small (sublogarithmic) space bounds the cost of updating 
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a solution is much smaller than the cost of constructing it from scratch. For instance, 

as a corollary to the following theorem, NSPACE [log log n] c incr-POLYLOG- 

TIME. 

Theorem 2.4. Let s(n) be a space bound that can be computed in no(l) time such that 

s(n) = O(log n). Then, NSPACE [s(n)] z incr-TIME [(log n)2°(S(“‘)]. 

Proof. Consider the computation of a nondeterministic Turing machine M on 

a fixed input .Y =x x 1 2 . . . x,. We assume that the input is given on a read only 

input tape with a blank symbol # at the beginning and the end. Put x0=x,+ 1 = #. 

We can assume that the head on the input tape does not leave the segment 

XIJX, . x,+1 during the computation. Furthermore, by changing the finite 

control, we can assume that M accepts by letting the head on the input tape 

leave the segment at the end of the computation, and rejects by staying inside the 

segment. By a semi-con$guration of M we mean a description of the content of each 

work tape and the position of each work tape head, but with content and head 

position of the input tape omitted. Let S denote the set of semi-configurations of M. 

Given a segment xi. . .~j of the input tape, consider the following binary relation 

Ri,j between S x {l, r> and S x {L, R 1 think of 1 and r as denoting “enter from the left” 

and “enter from the right”, respectively, and L and R as denoting “exit to the left” and 

“exit to the right”): 

l (u, l)Ri.j(o, R) iff when M is started with the input head in cell Xi while in semi- 

configuration u there is a computation where the input head leaves the segment 

Xi.. .~j for the first time by moving from .Xj to Xj+, while the machine enters 

semi-configuration L’. 

l (u,r)Ri,j(ti, L) iff when M is started with the input head in cell Xj while in 

semi-configuration u there is a computation where the input head leaves the 

segment xi . . . Xj for the first time by moving from xi to ximl while the machine 

enters semi-configuration c. 

l (u, l)Ri, j(~l, L) iff when M is started with the input head in cell Xi while in semi- 

configuration u there is a computation where the input head leaves the segment 

_yi . xj for the first time by moving from Xi to xi_ 1 while the machine enters 

semi-configuration u. 

l (u,r)Ri, j(c, R) iff when M is started with the input head in cell Xj while in semi- 

configuration u there is a computation where the input head leaves the segment 

Xi.. .. Yj for the first time by moving from .xj to xj+ 1 while the machine enters 

semi-configuration ~3. 

Suppose we know Ri,k and RCk+ 1,, j for some i 6 k <j and we want to compute Ri. j. 

Let R1=Ri,k and R2=Rtk+I,,j. Consider the directed graph G =( V, E) with 

nodes 

V=Sxjl,r,L,R,m,,m,) 
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and edges given by the following rules: 

Let R be the binary relation from S x {l,r} to S x {L, R} defined by taking the 

transitive closure of G and restricting it to this domain. We refer to R as the 

concatenation RI *R2 of RI and R2. It is easily seen that if i< k < j then 

Ri,j=Ri,k*Rck+i),j. This suggests the following data structure: Given a tape segment 

Xi ... Xj, we maintain a representation of the relation Ri,j by recursively maintaining 

Ri,k and Rk+l,j where k=Lq]. The segments Xi . Xj for which the relation Ri, j is 

kept form a binary tree of height O(log n). Since we keep a representation of Ro,,+ 1 we 

can decide membership of L in constant time. When a letter Xi in the input is changed, 

we only have to recompute each of the Rj,k in the data structure for which j< i d k, i.e. 

0( log n) updates on relations on sets of size 2 o(S(n” Each update is a transitive closure . 

which can be done in polynomial time, i.e. the entire operation takes time 

O((logn)2°‘“‘“” ). Furthermore, by the assumption on s(n), the data structure can be 

initialized in time no”‘. 0 

2.2. Incremental reductions 

To compare the “hardness” of solving two problems in this incremental sense, 

we need the notion of incremental reduction. It is clear that the program doing 

the reduction from problem rcl to problem rc2 has to be incremental in the same 

sense as the RAM program P, in Definition 2.1. In the same way as before we 

allow some computation to construct a data structure to an initial instance 

of rci and to find the corresponding instance of z*. We then require that any 

change to the current instance of n, be reflected as a change to the correspond- 

ing instance of x,, within a stated time limit. There are however two differences 

since we are now dealing with functions (in the previous case the solution was 

always a “yes” or a “no”) which map instances of nl to instances of 7c2. We 

need to quantify the relative sizes of the corresponding instances as well as the 

amount of change the mapping undergoes when the input changes by a specified 

amount. 

We take care of these by introducing two more parameters to quantify a 

reduction. 
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Definition 2.5. A decision problem 7c1 is incrementally reducible to another deci- 

sion problem 7c2 with time and size bounds [f(n), g(n), p(n)], denoted 

x1 6 incr[f(n~,y(n~,p(n)~ ~2, if 
(1) There is a transformation T: 7~~ -+ z2 that maps instances of 7c1 to instances of 7~~ 

such that for any n-bit instance Z of x1 the size of the corresponding instance T(Z) of 7r2 

is bounded above by p(n). Furthermore, Z is a positive instance of 7c1 if and only if T(Z) 

is a positive instance of x2. 

(2) There are RAM programs P and Q such that for all n30 we have 

(a) Given any n-bit initial instance I0 of n,, P efficiently computes T(Z”) and some 

auxiliary data structure S1o associated with I’. 

(b) Given the current instance I, the incremental change A 1 to Z (where A 1 changes 

I to I’ of 7~~) and the current data structure S, in the random access memory, 

Q constructs the incremental change A2 to T(I) (where A2 changes T(Z) to T(Z’)), such 

that 1 A2 1 < g(n) 1 AI 1, and modifies S, into the new data structure S,, in O(/AI If(n)) 

time. 

Note that y(n) is always O(f(n)). 

We use the symbol S, to denote the data structure maintained by the transforma- 

tion T so as to differentiate it from DI which is the data structure associated with an 

algorithm that solves a given problem 7~. 

Theorem 2.6. Zf x1 is incrementally reducible to 7c2 in time and size bounds 

[f(n),g(n), p(n)], and if 7r2 is in incr-TIME[k(n)], then 7t1 is in incr- 

TIME U(n)+ Wn))s(n)l. 

Proof. We now give a dynamic algorithm B to solve 7~~ that is a composition of the 

transformation T (from 7cn, to 7c2) and the dynamic algorithm A that solves 7c2 in 

incremental time ,f(n). The basic idea is as follows: We run the transformation 

algorithm Tin the background and whenever the current instance Z of x1 changes, we 

use T to compute the incremental change to the corresponding instance T(Z) of 7r2 and 

feed that change to algorithm A. By the definition of the transformation the answer 

given by A is also the answer for the modified instance I’ of 71,. 

More specifically, in the preprocessing stage, given the initial instance I’, we start 

the background transformation T that maps I0 of x1 to the corresponding instance 

T(Z’) of n2. We now also start the dynamic algorithm A, for solving n2, with T(Z’) as 

the initial instance. The internal data structure of B is therefore a combination of the 

internal data structures S1o of the transformation algorithm T and T,o of the algo- 

rithm A. In other words D~o=S~OUD$(,O,. 

By the definition of the transformation T, x2( T(Z’)) is the same as x1(1’). Therefore 

the initial computation on T(Z’) computes 7c1 (Z’). 

Given an incremental change AI to the instance I, we first use the dynamic 

transformation algorithm T to compute the incremental change A2 to T(Z) in time 

0( I Al If(n)) time. At this time the data structure S1 is modified to reflect the change in 

the input. Then, we give A2 as input to the dynamic algorithm A, which computes 
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nz(7(Z’)) and modifies the data structure DATcr, to get DA,,,,,. By definition 

rc2( T(Z’))=rc,(I’) therefore the answer returned by A is correct. 

By construction 1 A2 1 d 1 A 1 Is(n). Also, since the size of T(I) is no more than p(n) and 

rc2 is in incr-TIME [h(n)], algorithm A takes 0( I A2 I h(p(n))) = 0 (I A 1 I g(n)h(p(n))) 

time to modify DA,(,) and to compute rcz (T(Z’)). Therefore, the time taken to compute 

rci(l’) and to modify 0: is the time for computing A2 summed with the time required 

by algorithm A to compute rc2 (T(I’)). Thus the total time for the updating process is 

O(lAl If(n)+lA,Ih(p(n))g(n)). Hence, rrl is in incr-TIME[f(n)+k(p(n))g(n)]. 0 

3. Incrementally complete problems 

We now turn to the notion of incremental completeness. The idea is to find 

a problem which is hard to solve incrementally as any other problem in a given class. 

In this section we use incremental reductions to get natural problems incrementally 

complete for P, NLOGSPACE, LOGSPACE, and NC’. 

Definition 3.1. A problem 7c is said to be incr [,f(n), g(n), p(n)]-complete for a class C if 

(1) rr is in the class C. 

(2) For all 7c1 in C, rcl is incrementally reducible to rc in time and size bounds 

Cf(47s(n),P(n)l. 

We call a problem 7c incr-POLYLOGTIME-complete for a class C if rr is 

incr [f(n),g(n),p(n)]-complete for C, where p(n) is bounded above by some poly- 

nomial in n, andf(n) and g(n) are 0 ( logk n) for some k. We define incr-CONSTANT- 

TIME-completeness in an analogous fashion. 

The obvious question to explore is how the complexity classes incr-POLYLOG- 

TIME, incr-POLYLOGSPACE, and incr-LOGSPACE are related to the well known 

sequential complexity classes? Our first intriguing result is that the commonly known 

P-complete problems listed in [18, lo] are incr-POLYLOGTIME-complete for the 

class P. These problems include the circuit-value problem (CV), the solvable path 

system problem (SPS), propositional horn satisfiability, and a host of other well 

known P-complete problems. These problems are therefore as hard to solve incremen- 

tally as any other problem in P. 

Theorem 3.2. AI/ P-complete problems in [18, lo] are incr-POLYLOGTIME-complete 

for the class P. 

Proof. We present the proof for the case of circuit-value problem. In this problem we 

are given a directed acyclic graph as the input. A node in this graph is either labeled an 

input node or an output node, or it corresponds to a gate in the circuit. A gate could be 

AND, OR, or NOT gate. The edges in the graph correspond to wires of the circuit. All 

the input nodes have in-degree zero and out-degree one and all the output nodes have 
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in-degree one and out-degree zero. The AND and OR gates have in-degree at least 

two and out-degree at least one while the NOT gate has both in-degree and out- 

degree equal to one. Given an assignment of zeros and ones to the input nodes and 

a specific output node X, our aim is to find the value of the output node. In other 

words our aim is to find the value of the output wire attached to X given a particular 

assignment to the input wires of the circuit. 

To prove that the circuit-value problem is incr-POLYLOGTIME-complete for 

P we proceed as follows: Given any problem rr in P and an initial instance 1’ with 

/ 1 ‘I< n, we use the standard LOGSPACE reduction 1141 to create a circuit of size t(n) 

by t(n) (where t(n) is a time bound for some polynomial-time turing machine M to 

solve instances of 71 of size at most n) that simulates the turing machine M used to 

solve the problem TC. 

The inputs to this circuit are the bits of the initial instance 1’. This gives us the 

initial transformation of 1’. A one bit change to I0 results in a one bit change to the 

corresponding instance of the CV (the input variable in the circuit corresponding to 

the changed bit is changed to reflect the new input). All this can be done in constant 

time, and thus the circuit-value problem is incr-POLYLOGTIME-complete 

for P. 

We can provide similar proofs for the other problems listed in [18, lo]. The 

reductions needed to show this are sometimes different from those given in the 

literature. The modifications are minor and are needed to ensure the following 

property: For the reduction to be incremental we require that when a general problem 

rc in P is changed by one bit, input to the incrementally complete problem under 

consideration changes only by a polylog number of bits. The use of preprocessing 

plays a significant role, since the size of the instance of the incrementally complete 

problem may be a polynomial factor larger than the problem rc in P. 0 

Corollary 3.3. [f the P-complete prohlerns in [ 18, lo], like circuit-value problem, are in 

incr-POLYLOGTIME then all qf P is in incr-POLYLOGTIME. 

Corollary 3.4. Jf there are NC algorithms to update dynamically the P-complete 

problems in [ 18, lo], then tile automatically yet NC algorithms to update dynamically all 

of P. 

These corollaries suggest that it is highly unlikely that we can use polylogarithmic 

time sequential or parallel algorithms to incrementally update these problems. 

Delcher and Kasif [S] propose other notions of completeness. They define the 

incremental version of a functionf‘as follows: Letf be a function that maps input X of 

length 1x1 to output f(X). Then Inc .f’ is the function that given inputs of form 

(X,,f(X), X’), computes ,f (X’), where X and X’ differ in at most log /X 1 bits. A func- 

tion f is Inc P-complete iff for every function g in P, Inc g is LOGSPACE-reducible to 

IncJ With this definition they argue that the “all-outputs monotone circuit value 

problem” is Inc-P-complete. The drawback in this approach is that it disallows the use 
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of dynamic data structures. In other words their incremental reductions are not strong 

enough to conclude that it is unlikely that one will get good algorithms (meaning NC 

algorithms) for the incremental versions of Inc-P-complete problems irrespective of 

the size of the auxiliary storage. They try to overcome this drawback by proving that 

the incremental versions of many P-complete problems are also P-complete. Here 

they completely ignore the issue of preprocessing. Although their results are interest- 

ing, they are somewhat weak in that the issues of data structures and preprocessing 

are overlooked. They conjecture that the incremental versions of all P-complete 

problems are P-complete. 

Interesting notions of completeness are sketched by Reif [21]. He shows that some 

problems are unlikely to have efficient incremental solutions, but he does not develop 

a comprehensive theory or consider the necessary details of preprocessing. Some 

interesting techniques are explored in [Z, 6,201 to derive lower bounds for incremental 

algorithms. Their main idea is to construct an algorithm for the batch version of the 

problem with input I by computing a dynamic data structure for some easily 

computed instance I’, whose Hamming distance from I is small, and then applying the 

incremental algorithm repeatedly while I’ is successively modified to I. This gives 

lower bounds for the incremental problem in terms of that for the batch problem. The 

drawbacks of this approach are that it limits the amount of preprocessing available 

and is problem specific. 

Theorem 3.2 would seem to suggest that all P-complete problems are incr-POLY- 

LOGTIME-complete for P. Unfortunately that is not the case, since one can take any 

incr-POLYLOGTIME-complete problem ‘II and create another problem rc’ by du- 

plicating the input, so that 7~’ is no longer incr-POLYLOGTIME-complete even 

though it is still P-complete. In fact we prove that some P-complete problems can be 

solved effectively incrementally. 

Theorem 3.5. There are P-complete problems that are in incr-POLYLOGTIME. 

Proof. Let L be some P-complete language over the alphabet C = {0, 1} such that it 

takes linear sequential time to determine whether a given word M? is in L or not (the 

restriction to languages that can be recognized in linear time is only made for the sake 

of convenience, the same can be done with any P-complete language). Let us consider 

the language L’ = {w I wi 1 WEL). Obviously L’ is also P-complete. We claim that 

membership queries for L’ can be performed dynamically. We will abuse notation 

slightly by using the symbol L’ both for the language and the associated membership 

problem. Consider an initial n2-bit instance 1’ of the problem L’ (instances which are 

not of the form n2 for some nEN can be handled without too much trouble). We spend 

polynomial time to see if it is of the form WI”’ for some WEL. This, we can do by 

running a subroutine SL to check membership in L and some associated linear time 

work to see if I0 is of the form w IwI. At any point in time let the current instance I be 

a concatenation of n bit strings a,, a2, . . . , a,. The idea behind our dynamic algorithm 

is as follows. 
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As long as less than n/2 of the ai’s are equal (i.e., less than n/2 of the strings 

are the copy of the same string w) we answer “no” for every instance. If at some 

point more than n/2 of the ai’s are all equal to the same w, we start a background 

process which executes the subroutine SL on the string w. As long as more than half 

the ai’s are equal to w we spend a constant amount of time on the background 

computation for every update to the current instance. Therefore, by the time I be- 

comes equal to wlw’ we would have run S, for a linear number of steps and thus will 

know whether w is in L or not. We can therefore answer the membership query of I in 

L’ at that point. 

It seems hard to dynamically figure out whether more than half the Ui’S are all equal 

to the same w. Therefore, we perform the following easier computation. 

(1) The data structure. We divide each a, into k= n/log n words u&z!, 

each of which is composed of logn consecutive bits from Ui. We now construct k 

sets Si, Sz, . . . , Sk such that the set Sj contains the ,jth word from each ui. In 

other words Sj=(U{,a$, ,a;>. With each set Sj we maintain two flags f;: and 

gj. The flag ,J is set to 1 if more than half the words in that set become equal 

to the same word wj, otherwise it is set to 0. The flag gj is set to 1 if all the 

words in Sj are the same, otherwise it is set to 0. The word wi associated with 

Sj is called the majority word of Sj. If the flagfj of Sj is 0 then wj is set to a string of log n 

0’s. We also maintain a string HI that is the concatenation of wl, w*, . . . , wk in that 

order. 

(2) The algorithm 

l As long as at least one of the flags gi , gz, , gk is equal to 0 we answer “no” for 

every instance. 

l If at some point all of the jllagsj; ,f2,. . ,,ji are equal to 1, we start a background 

process which executes the subroutine SL on the string w maintained by the data 

structure; and from then on we simulate a constant number of steps of SL for every 

update operation (the constant depends on the sequential time complexity 

of L). 

l It at some point one of the f flags becomes equal to 0 we abort the background 

process that runs the subroutine S,,. 

l If all of the g flags gl-gk are equal to 1 we get the answer to the background 

computation on w from SL and return that as the answer. 

By definition when all the y flags gi-gk are equal to 1 the input is of the form Wl”“. 

for some W. Therefore, to prove our algorithm correct we need to prove that by the 

time all the g flags become 1 the background process already has the answer to 

whether W is in L or not. 

To prove the correctness of our algorithm let us consider the sequence of instances 

starting at Ia, going through I ‘, I *, , all the way up to the current instance I = I’ for 

some I, where every instance I” is derived from the previous instance I”- ’ by updating 

the bit that was changed at time x- 1. Let Zh be the instance closest to I such that it is 

a concatenation of the strings a,, a *, . a, and n/2 + 1 of the u;s are equal to W. Since 

at instance !I only n/2 + 1 of the Ui’s are equal to \i;, I-h >, n/2 - 1. Suppose we start the 
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background process SL on the string W at time h and execute a constant number 

of its operations for every subsequent update. Since 1 -h 2 n/2- 1 and S, 

requires linear time to recognize W, at instance 1 we would know whether W is in L or 

not. 

We now show that the algorithm outlined above will start the background process 

at time h. Consider a division of W into n/log n words W’, W2, . . , Wk each of which 

consists of log n consecutive bits from W. Since at time h more than half of the strings 

are equal to W, for each set Sj the flagfj is set and the majority word wj of the set is 

equal to G? Therefore, the string formed by concatenating all the majority words 

is equal to W. Hence, our algorithm will start the background computation SL on 

W at the right time thus ensuring the availability of the answer when all the g flags 

become 1. 

We now show in detail how the sets S1-Sk can be maintained dynamically as the 

input I undergoes changes. Each set Sj is maintained at the leaves of a balanced binary 

search tree Tj. The words a{, ai,, . . . , aj, are stored at its leaves in sorted order (by 

treating each a{ as longn bit integer). Note that since the words are sorted all the 

words that are equal to each other are stored in contiguous leaves. 

Each internal node i in Tj maintains three numbers maxi, right,, and lefii and three 

associated words max_wordi, left_wordi and right_wordi. The quantity maXi indicates 

the maximum number of words in the subtree rooted at i that are equal to the same 

word max_wordi which is the word stored at the “left-most” leaf in the subtree rooted 

at i, while right, is equal to the number of words that are equal to the word right-word, 
which is the word stored at the “right-most” leaf in the subtree rooted at i. We also 

store a value totali that is equal to the total number of leaves in the subtree rooted 

at i. 
Let z be an internal node in q, and x and y be, respectively, the left and right child 

of z. We can then use the following program to derive the values of total,, left=, right,, 
max,, left_word,, and max_word, from corresponding values at x and y: 

procedure update 

begin 

[The default case] 

total,+- total, + total, 

left-word,+left-word, 
leftz t leftX 
right-word,+-right-word, 

right,+-right, 
if (max,>max,) then 

max, +- max, 
max_word,+max_word, 

else 
max,+max, 
max_word,+max_word, 
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[when the boundary words of x and y are the same] 

if (right-word, = lefttword,) then 

if (leftX = total,) then 

I&,-l&, + I<& 

if (right, = totul,) then 

right=+right, + right, 
if (mu.xz <(right, + kfty)) then 

mux=+-right, + kftft, 

max_word,+right_word, 
end 

end [procedure update] 

Given the values at the nodes x and y these operations can be performed in constant 

time to derive the values at node z. Whenever the current instance I changes by 

a single bit, exactly one of the words a’, (for some x andj) changes. Therefore only one 

of the sets Sj needs to be updated. The elements of Sj are stored in sorted order at the 

leaves of a balanced binary search tree. Therefore, a change in one of the acs implies 

we have to delete it from its current location in tree and reinsert it in another location 

so as to preserve the sorted order. A delete or an add operation causes changes along 

a leaf-to-root path (starting at the leaf-node that was deleted or added). However, 

since the tree is balanced there are only O(logn) nodes along any leaf-to-root path. 

This implies that all the values along this path can be appropriately changed in 

O(logn) time to reflect the change at the leaf node. Thus the data structure can be 

modified in O(log n) time to reflect a single-bit change in the current instance 1. 

The above construction works by taking an incr-POLYLOGTIME-complete prob- 

lem and introducing redundancy by copying, and in fact all the ways to generate 

incrementally tractable problems from P-complete problems seem to involve redund- 

ancy in some form or the other. We restrict ourselves therefore to P-complete 

problems that are in some sense nonredundant. To do that we first look at a much 

stricter definition of P-completeness; one in terms of projections, introduced by 

Skyum and Valiant [22]. 

Definition 3.6. A decision problem rcr is projection reducible to unother decision 

problem 7~2 (n I< proj ?I 2 ) if there is a function p(n) bounded above by a polynomial in n, 

and a polynomial time computable family of mappings 0 = (cI,( i,n3 1 where 

such that for any n-bit instance I of rcl we can derive a p(n)-bit instance I’ of 7c2 using 

the mapping cm. The mapping has the property that I is a positive instance of 7c1 if and 

only if I’ is a positive instance of rr2. To derive I’ we give xi the same value as the ith bit 

of I and use O,(yi) as the bit of I’. We say that 0 is bounded above by p and rcl is 

o-reducible to rr2. 
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Definition 3.7. A problem 71 is said to be <proj- complete for a class C if 7~ is in C and 

there is a function p(n) bounded above by a polynomial in n such that every problem 

x1 EC is projection reducible to 71 by a projection c = {o,, }n2 1 bounded above 

by P. 

Problems like the circuit-value problem are < ,,,j-complete for P. Even under this 

restricted setting it is possible to create problems which are < p,,j-complete for P but 

are in incr-POLYLOGTIME. To remedy that we introduce the following notion of 

nonredundancy. 

Definition 3.8. Let 7c1 be a decision problem and n be another problem such that 

7(1 Gproj T-C. We say that n is nonredundant with respect to 7c1 if there exists a polynomial 

time computable family o = IO,,},, 31 of mappings and a number kEN such that z1 is 

a-reducible to 7~ (where cn is a mapping from the set (y,, .._, yp(,,)) to 

{- ,, x1,x1, ..., X,,X 0, l}), and for all symbols Xi, 10,’ {Xi, xi} j = O(logkn). 

Intuitively the reduction from x1 to n is nonredundant if in the projection mapping 

a single bit xi of xl does not affect more than O(polylog(n)) bits of 7~. 

We now define the notion of nonredundancy with respect to a class C. 

Definition 3.9. Let 71 be a problem which is <p,,j-complete for C. We say that n is 

nonredundant with respect to C if it is nonredundant with respect to every problem in 

C. We then call x a nonredundant projection complete problem (or a NRP-complete 

problem) for the class C. 

Lemma 3.10. Let C be a class of decision problems and let nI be a NRP-complete 

problem for C. If n is another decision problem in C such that x1 <proj~ and 71 is 

nonredundant with respect to x1 then x is NRP-complete for C. 

Proof. The proof follows from the definitions in a straightforward manner. 0 

Th P-complete problems listed in [ 18, IO] are all NRP-complete for P. The 

following theorem shows that this large class of P-complete problems are difficult to 

make efficient incrementally. 

Theorem 3.11. Let C be a class @“decision problems and K be an NRP-complete problem 

for C, then 7c is incr-POLYLOGTIME-complete for C. 

Proof. The proof follows from noting the fact that given any problem x~EC, there is 

projection mapping from TZ to z1 (that can be computed in the preprocessing stage) 
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such that a one bit change in an input instance of xi causes at most polylog number of 

bits to change in the corresponding instance of 7~. 0 

We now look at the classes NLOGSPACE, LOGSPACE, and NC’. 

Theorem 3.12. The following variant of transitive closure is incr-CONSTANTTIME- 

complete for NLOGSPACE: 

Input: A directed graph G = ( V, E) such that each eeE is colored with 0 or 1; a pair of 

vertices v1 and v2; a partitioning qf V into sets VI, V2,. . . , Vk; and a color vector C of 

length k. 

Output: Is there a path p from v1 to v2 such that all edges in p emanating from vertices 

in Vi have color C[i]? 

Proof. The reduction from any problem in NLOGSPACE to this variant is straight- 

forward. The trick that makes the reduction go in constant time and constant storage 

is the use of the sets VI, Vz, 0, . , Vk and the color vector. We group all intermediate 

states that read the input bit i into the class Vi; C[i] is assigned the same value as 

input bit i. Now a change in some input bit i changes C[i]. 0 

A restriction of the above problem is incr-CONSTANTTIME-complete for LOG- 

SPACE while a similar variant of bounded width polynomial size branching programs 

[l] gives us an incr-CONSTANTTIME-complete problem for nonuniform NC’. 

Surprisingly, however, there are problems which are NC’-complete for LOG- 

SPACE, but are nevertheless in incr-POLYLOGTIME. We consider the problem of 

undirected forest accessibility (UFA). The UFA problem is defined as follows: Given 

a forest of undirected trees (there should be at least two trees) and given two nodes 

u and v, determine if they are in the same tree. This was shown to be NC’-complete for 

LOGSPACE by Cook and McKenzie [4]. Thus from the point of view of parallel 

computation UFA is as hard as any problem in LOGSPACE. However, as the 

following theorem shows, UFA is in incr-TIME [log n] while we do not know whether 

all problems in LOGSPACE can be efficiently dynamized. Thus in the dynamic 

setting UFA is not the hardest problem in LOGSPACE. 

Theorem 3.13. The undirected forest accessibility problem is in incr-TIME[logn], 

under additions, deletions, linking and cutting of trees. 

Proof. The dynamic maintenance is done by using balanced trees such as red-black 

trees to maintain ordered sets with insert, delete, split and join [ 1 l] (see also [23]). 

l Preprocessing: An Euler tour of each tree in the forest is maintained in a red-black 

tree. Each edge of the tree occurs twice in its Euler tour. 

l Query(n,, n2): Let e be an edge in the adjacency list of n, andf’an edge in the list of 

n2. We follow pointers in the red-black tree to determine if they both have the same 

root. 
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l Linking and cutting are implemented using the split and join operations of red- 

black trees, with O(logn) time per operation. 0 

4. Nonuniform complexity 

In traditional, nonincremental complexity, it has proven useful to consider comput- 

ing in nonuniform models, e.g. to consider the circuit complexity of decision problems. 

In this section, we consider the nonuniform complexity of incremental problems. 

Given a decision problem 7c, we may consider it as a subset of 10, 1 j* and consider its 

restriction ?I, to (0, l}“, i.e. we consider 71 as a family of Boolean functions. The 

nonuniform model in which we consider implementing this restricted problem is the 

cell probe or decision assignment tree model, previously considered by Fredman [7, S] 

and Fredman and Saks [9]. In this model, the complexity of a computation is the 

number of cells accessed in the random access memory containing the data structure 

during the computation, while the computation itself is for free (and information 

about which operation to perform is also given for free). The number of bits B in a cell 

is a parameter of the model. Formally, the model is as follows: For each of the 2n 

possible incremental changes (corresponding to changing each bit to either 0 or l), we 

assign a decision assignment tree, i.e. a rooted tree containing read nodes and write 

nodes. When performing an operation we proceed from the root of its tree to one of 

the leaves. The read nodes are labeled with a location of the random access memory. 

Each has 2’ sons, one for each possible content of the memory location. The write 

nodes which are unary are labeled with a memory location and a value between 0 and 

2’- 1. When such a node is encountered, the value is written in the memory location. 

In the leaf finally encountered, the answer to the decision problem is found. The 

complexity of an implementation is the depth of its deepest tree, initialization of the 

data structure is for free. 

Definition 4.1. If a problem z,, can be solved with cell size B and a system of trees of 

depth at most d, we say that z,ECPROBE[B,d]. 

The model is very general, focusing on the storage and access aspect of data 

structuring. We consider two natural choices of B, namely, B= 1 and B=logn. 

We note that if a decision problem z is in incr-TIME[f(n)], then 

x,ECPROBE [log n, 0 (f(n))]. Thus, lower bounds in the B = log n model is also lower 

bounds for the complexity of solving the problem on a random access machine. 

The following theorem gives tight bounds on the complexity of almost all functions. 

Theorem 4.2. For any B> 1, the following holds. For any function f: (0, l)“+(O, I}, 

fECPROBE[B,rn/BJ 1. 



Furthermore, for almost all jimctions f on this domain, 

f$CPROBE[B,(n-2logn-4)/J?]. 

Proof. The upper bound follows from the data structure consisting of the string 

xg{O, 1)” to be maintained itself. For the lower bound we only have to consider the 

case B= 1. We can determine f from the system of 2n decision assignment trees 

implementing the incremental version of f‘and the state of the data structure when the 

value to maintain is initialized to x=0”. However, note that we may without loss of 

generality assume that the initial state of the data structure consists entirely of cells 

containing O’s, since we can convert an algorithm with a different initial state into such 

an algorithm by “hardwiring” information about the initial state into the algorithm. 

Thus, we only have to give an upper bound on the number of systems of trees of depth 

d. The total number of nodes and leaves in the trees in such a system is at most 

2n(2*+ l - 1)<4n2*. Thus, there are at most 4n2* cells in the data structure, we may 

assume without loss of generality that these are numbered 1, ,4n2*. Each node/leaf 

is either a “answer 0” leaf, an “answer 1” leaf, one of 4n2* possible read nodes or one of 

8n2* possible write nodes. There are thus at most ( ln2d)4n2d systems. Therefore, there 

are at most 22” ’ different systems of depth d = Ln - 2 log n - 41. There are, however, 

22” Boolean functions on n inputs. c 

Thus, almost all decision problems have nonuniform complexity @(n/B) and are 

thus not in “nonuniform incr-POLYLOGTIME”. However, in order to make pro- 

gress on the P vs. incr-POLYLOGTIME question, we have to give lower bounds for 

easily computed functions. 

We will present two methods giving such bounds: The first gives bounds of the type 

,f$ CPROBE [ 1, o( log n)] for some special, but easily computed, functions. The idea of 

the proof is very similar to Neciporuk’s method for proving lower bounds on formula 

size (see Boppana and Sipser [3]): If a function has many subfunctions on a small set 

of variables, it must have high complexity. 

Letfbe a Boolean function on the set of variables X = (x1, .x2, . ,x, ). A subfunc- 

tion of .fon Y c X is a function obtained from f by setting the variables of X - Y to 

constants. 

Theorem 4.3. Let f: {0, 11” -+ (0, 1 i be a function that supports s difSerent subfunctions 

on a set of cariables Y of size m. Then 

f$CPROBE [ 1, log log s-log log log s - log nz -41. 

Proof. Let a system of decision assignment trees of depth d for the incremental version 

off be given. We can get an algorithm for the incremental problem for each of the 

subfunctions on Y by performing a sequence of operations from the initial state 

changing the value of the variables in X - Y to the appropriate values and letting the 

resulting state be the initial state of the data structure. As in the proof of Theorem 4.2, 
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there are at most ( 13m2d)4m2d different functions on m variables in CPROBE [ 1, d], so 

we must have (1 3m2d)4m2d > s. This implies 

d>loglogs-logloglogs-logm-4. 0 

Let the storage access function ACCESS,+rr,s”l: (0, l}n+r’osn’+ (0, l} be the func- 

tion which takes as input a bit vector x=x0x1 . . x,_ 1 E {O, l}” and a binary vector 

YE{@ 11 r”snl denoting an integer i and outputs xi. Let the element distinctness 

function DISTINCT,r2iopnl: {O, 1) nr2’osnl-+ (0, l} be the function which takes as 

input n Boolean strings of length r21og nj and outputs 1 if and only if all strings 

are distinct. Clearly, DISTINCT,r21,,.1 and ACCESSrl,s.l+, are both in 

CPROBE [ l,O(log n)]. Theorem 4.3 provides matching lower bounds for these 

functions. 

Corollary 4.4. Neither ACCESS,+rlOg,l nor DISTINCTnr210gnl are in 

CPROBE[ 1, o(log n)]. 

It is however, easy to see that Theorem 4.3 is unable to provide larger bound on 

Boolean functions on n variables than log n - O(log log n). 

Lower bounds in the B=logn model can be derived from a lower bound by 

Fredman and Saks for the complexity of maintaining an array during changes and 

prefix queries. Fredman and Saks [9] show that any cell probe algorithm for the 

problem of maintaining a vector (x0, . . . , x, _ 1 )E (0, 1)” during change(i) opera- 

tions which flip the value of xi and prefix(j) queries returning x0 @x1 @ ... @Xi 

uses R(log n/loglog n) probes per operation (0 denotes exclusive or). From this 

result, we get lower bounds on decision problems like the undirected forest accessibil- 

ity problem. Consider the UFA problem in which we have to determine whether the 

nodes 1 and n are in the same tree or not: 

Theorem 4.5. UFA +! CPROBE [log n, o(log n/log log n)] 

Proof. Assume that the incremental version of UFA can be solved in 

0 (log n/log log n) probes. We show that the same holds for the prefix problem. We 

maintain the vector (x0, x1, . . , x,_ 1) by maintaining the graph G=( V, E) with 

V={1,...2n+3} and 

E= U {(2i+l, 2i+3),(2i+2,2i+4)} u 
x,=0 

xv, ((2i+ 1,2i+4), (2i+2,2i+3)}. 

A change of an xi corresponds to a constant number of insertions and deletion of 

edges. In order to compute x0 @xi 0 ... @ Xj, we insert the edge (2j + 3,2n + 3). If 

vertex 1 and vertex 2n + 3 are in the same tree, the answer is 0, otherwise it is 1. After 

getting the answer we remove the edge (2j+3,2n+3). 0 
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Corollary 4.6. UFA 4 incr-TIME [o (log n/log log n)] 

However, for no polynomial-time computable function do we know any cell probe 

lower bounds better than Q(log n) (for B = 1) or Q(log n/log log n) (for I3 = log n). Once 

again, we see a similarity between incremental and parallel complexity: A nonuniform 

measure of parallel time is depth, and for no problem in P do we know a better lower 

bound on its depth than Q(logn), although we know that most problems require 

linear depth, which is also an upper bound. 

5. Incremental computation in restricted realms 

The class of Z-strutijed trees was introduced by Overmars [ 191 in an effort to form 

a general theory of balancing in search trees. It subsumes a large portion of the search 

structures used to design dynamic algorithms. In this section we show that under 

reasonable assumptions problems which have incremental solutions based on these 

structures also have parallel solutions. 

The class of Z-stratified trees generalizes (among others) the following classes of 

balanced search trees: AVL-trees, generalized AVL-trees, one-sided height-balanced 

trees, power trees, 2-3 trees, B-trees, symmetric binary B-trees, height-balanced 2-3 

trees, k-neighbor trees and BB[r] trees. Thus Z-stratified trees generalize a large class 

of structures that are used in designing dynamic algorithms. 

For the sake of completeness we now give some definitions from [19] that charac- 

terize the class of Z-stratified trees. For a more complete treatment the reader is 

referred to [19]. 

Definition 5.1. Let X be a class of balanced binary trees and for each k 30 let Xk 

denote the subclass of trees in X that have height k (the height of a tree is the longest 

path from the root to a leaf). X is called a-proper (for a 3 0) if and only if for each t 3 N 

there is a tree in X with t leaves. 

Definition 5.2. Let Z be a set of trees all of the same height fi (Z need not be a subset of 

X,). Also, let L2 be the smallest and the largest number of leaves (respectively) that any 

tree in Z can have. Z is a P-variety iff the following conditions hold: 

(1) 1 <I=<hz 

(2) For each t such that lz< t<h, there is a tree in Z with exactly t leaves. 

Let r,, T2, . , 7; be trees and let T be a tree with t leaves x1, .x2, . . . ,x, from left to 

right. The composition T[ Tl, T,, , T,] denotes the tree obtained by grafting Ti onto 

xi for every i. In other words for each i such that 1 <i < t we replace the ith leaf xi of 

T by the root of the ith tree K. 
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Definition 5.3. Let X be an x-proper class and let Z be a b-variety. We say that Z is 

a regular P-variety for X iff Vt 2 a, for any tree TEX, and TI , T,, . . , T, in Z the 

composition T[T,, T,, . . . . T,] is in X. 

Let X be a a-proper class of trees and let Z be a regular P-variety of X. Essentially 

the class of Z-stratified trees in X are the trees in X that can be formed by taking 

small trees from X and building larger trees from them by layering trees from Z 

using the composition operator defined above. We now make these notions more 

precise. 

Definition 5.4. Let X and Z be tree classes as defined above and let 

k=max {aIz, rlz- l/&--lZJ}. Let y be the smallest integer such that for each t with 

CL d t <k there exists a tree TEX of height at most y that has exactly t leaves (such 

a y always exists). The class of Z-stratified trees (in X) is the smallest subclass of trees 

satisfying the following properties: 

l Each TEX of height d y with CY d t < k leaves is Z-stratified. 

l If a tree T with t is Z-stratified, then so is the composition T[ TI , T,, . . . ,7;] for any 

set of trees T,, T,, . . . , T,EZ. 

Overmars [19] showed that the class of Z-stratified trees generalizes many other 

search trees. He also showed that these trees can be used to efficiently store and search 

elements in a dynamic environment, using only 0 (log n) basic operations to perform 

inserts, deletes and queries. In the following theorem we show that dynamic algo- 

rithms which use Z-stratified trees can be transformed efficiently into parallel algo- 

rithms for the batch version of the same problem. 

Theorem 5.5. Let n: be a problem in incr-TIME[logk n], for some k 2 1. Then rt is in 
NCki2, tf the following constraints hold: 

(1) The data structure used by the dynamic algorithm is an augmented Z-strat$ed 

search tree. Each internal node may contain information relevant not only to enable 
search but may contain the result of some function f applied to its children. The only 

restriction is that f be computable in time O(logkn). 

(2) There is a special instance IO such that the tree corresponding to IO can be built in 

LOGSPACE. 

(3) Any l-bit change to the current input I, where 1 < 1 Gn, involves modifying the tree 

by inserting or removing some number of elements. The elements to be inserted or deleted 
arefunctions of the current input, the current data structure and the change, and they can 
be computed in LOGSPACE. 

(4) After all the insertions and deletions some sort of search is conducted in the tree in 

time O(logkn) to get the answer to the updated instance. 

Proof. Given instance I we proceed as follows: First we create the tree corresponding 

to I0 in LOGSPACE and calculate all the deletions and additions needed to get the 
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tree for I, also in LOGSPACE. Now we determine the order in which they are to be 

present in the final tree in NC?+‘. This can be done because the function is used in 

determining the order between two elements is computable in O(logkn). Therefore, 

the set of elements in the tree for I can be sorted in EREWk”, and hence in NCk+’ 

[ 131. We then construct the tree in time NC k+2 in a bottom-to-top sweep. This can be 

done because Z-stratified trees have logarithmic depth and the value of the function 

,fat a node depends only on the contents of the nodes of its children. All we have to do 

now is to let one processor walk down the tree and get the answer to I in time 

O(logkn). 0 

This deceptively simple theorem demonstrates why most known problems with 

efficient dynamic solutions have optimal parallel solutions. For example, we can use 

this theorem to parallelize dynamic algorithms using degree-balanced trees, height- 

balanced trees, path-balanced trees, etc. We can derive similar results for other classes 

of trees as well. 

One important technique in getting dynamic solutions for problems is the divide 

and conquer approach. To exploit this technique Mehlhorn and Overmars [16] 

consider an important class of problems called order-decomposable problems. 

Definition 5.6. A set problem is loosely defined as follows: Given a set V a set problem 

n asks some question about V. For example, the maximum problem asks for the largest 

element in a given set of numbers. 

Note that in this definition rr is not necessarily a decision problem. For many set 

problems it is possible to derive the answer over the total set V by combining the 

answers over two, in some ways separated, “halves” of the set. Set problems of this 

kind are called order decomposable. More formally, given a smooth nondecreasing 

integer function C(n) we have the following definition for a C(n)-order-decomposable 

set problem. 

Definition 5.7. A set problem 7r is called C(n)-order-decomposable if and only if there 

exists an ordering ORD (that can be used to order any input set V) and a binary 

function q such that the following holds: Given a set of n> 1 points 

V=(p,,p, ,..., Pn), ordered according to ORD, for each 1 <i<n, we have 

where C, takes at most C(n) time to compute when V contains n points. In other 

words a problem is order decomposable if after arranging it according to a specific 

ordering, the problem can be split at any point to give two smaller subproblems whose 

solutions can be glued together “efficiently” using the function S to get the solution 

for the original problem. 
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Mehlhorn and Overmars essentially prove that if n is an O(logkn)-order-decom- 

posable set problem and it takes less than 0 ( logk n) time to compare two elements to 

determine their ordering with respect to ORD, then rr( V) for any set Vcan be maintained 

dynamically in time 0 (logk+ ’ n). We make the following rather simple extension. 

Theorem 5.8. If 71 is an O(logk n)-order-decomposable set problem and the ordering of 

two elements with respect to ORD takes time O(logk n), then XENC~‘~ and a “suitable 

decision version of z” is in incr-TIME [logkfl n]. 

Proof. The parallel algorithm uses a divide and conquer approach to split the 

problem recursively into roughly equal parts. The solutions are later glued together 

using 0. We first sort the input according to ORD. This takes time O(logk+’ n) in 

a EREW PRAM and is therefore in NC kt-2, then we solve the problem for n singleton 

sets. We now use a bottom-up approach to glue the solutions back together. This 

takes log n phases and hence can be done in O(logk+’ n) by an EREW PRAM, which 

in turn implies that it can be done in NCkf2. 0 

This theorem gives automatically generated parallel algorithms for problems such 

as 

l calculating the convex hull of a set of points, 

l finding the maximal element in two dimension, and 

l finding the union and intersections of a set of line segments. 

For these three problems we get automatically generated parallel algorithms that 

place them in the class NC3. Note that the automatically generated parallel algo- 

rithms are not as efficient as the special purpose algorithms for the same problems (in 

terms of processor utilization or parallel time) although they are within a logarithmic 

factor of the optimum. However, the aim of Theorem 5.8 is to show that such 

automatic transformations are possible and not to attempt the construction of 

optimal parallel algorithms for these problems. 

6. Problems on comparator gates 

In this section we consider the circuit-value and network-stability problems over 

comparator gates, introduced in [IS]. We show that these two problems are in 

incr-LOGSPACE and in rincr-LOGSPACE(NLOGSPACE), respectively and thus 

their dynamic versions can be solved quickly in parallel, even though the batch 

versions have no known NC solutions. 

The definitions of circuits and gates are taken from [ 1 S] and are given here for the 

sake of completeness. 

Definition 6.1. A i-input, p-output gate is defined to a function g from the domain 

(0, 1)” to the range (0, 1)“. Thus, g maps a i-bit word to a p-bit word. 
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A network is a finite labeled directed graph. Source (in-degree zero) nodes of the 

directed graph have out-degree one and are called output nodes; sink (out-degree 

zero) nodes have in-degree one and are called output nodes. Each internal node is 

labeled with a gate and an ordering of its predecessors and successors. If an internal 

node has in-degree J. and out-degree p, its gate has i inputs and p outputs. If the 

underlying directed graph of the network is acyclic, the network is a circuit. 

In the preceding definitions of networks and circuits outputs of gates are not 

allowed to be explicitly duplicated. We are only allowed to use the p outputs that 

a gate produces as inputs to the other gates. 

A gate is said to preserve adjacency (is adjacency preserving) if it maps adjacent 

input words (binary words of the same length that differ in at most one bit) into 

adjacent output words. A gate is monotone if it cannot simulate the NOT gate. 

A circuit is adjacency preserving if it maps adjacent input words to adjacent output words. 

A comparator gate is a 2-input, 2-output gate that takes as input a and b and gives as 

output a A b and a v b. The circuit-value problem over comparator gates (C-CV) is 

the circuit-value problem where all the gates are comparator gates. 

Theorem 6.2. The circuit-value problem ouer comparator gates (C-CV) is in incr- 

LOGSPACE. 

Proof. Compartor circuits are adjacency preserving; a one-bit change at any input bit 

only propagates one-bit changes to successive gates. Thus when an input bit of gate 

y changes exactly one of its outputs changes, which in turn changes an output of the 

gate y’ which takes as input the changed output of g. Therefore, to propagate a single 

bit change we have to follow a path in the circuit changing the input and output values 

of the gates along the path. 

l Preprocessing: The circuit is evaluated in polynomial time for the initial instance 

and the values at each edge are maintained. 

l Change in one input bit: This change is propagated in LOGSPACE, by walking 

through the circuit. If one of the input values of a gate g changes then exactly one of 

its output values changes. Let us suppose output o1 of g changes due to a change in 

one of its inputs. Since o1 is fed as an input to exactly one gate g’ this results in 

a change in the input of exactly one gate y’ one of whose outputs therefore changes. 

Thus to propagate the input change we have to follow a path in the circuit changing 

one input and one output value at each gate on the path. 

l Introduction of a gate: Let il and i2 be inputs to gates g1 and g2, such that the new 

gate g to be introduced takes as input i, and iz and feeds its outputs or and o2 to g1 

and g2, respectively. To effect this change, we just walk down the circuit twice, 

starting at gates gi and g2, taking into account the new inputs to these gates caused 

by the introduction of the new gate. 

l Deletion qf a gate: The process here is similar to insertion and we again walk down 

the circuit twice from the point where the deletion took place, updating edge values 

in the process. 
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l Other changes: Other changes like changing the connections between different 

gates in the circuit can be modeled as a constant number of add and delete 

operations. 

All these steps can be done in logspace. Therefore, C-CV is in incr-LOGSPACE. 

Note that we have considered addition and deletion of gates in the circuit even though 

the input changes are restricted to changing zeros to ones and vice versa. Additions 

and deletion of gates can be achieved by changing the input-bits in a suitable coding of 

the input. For instance the initial input could be padded with zeros which could be 

changed at various points to introduce new gates. 0 

A similar argument holds for any circuit that is adjacency preserving. This result is 

interesting because C-CV is not known to be in NC. Therefore, C-CV has the 

distinction of being a problem that can be updated fast in parallel, though it is not 

known whether it can be solved fast from scratch in parallel. This also means that 

problems like the “lex-first maximal matching”, problem which can be parsimoniously 

reduced to C-CV are in incr-LOGSPACE. 

We now turn our attention to the network stability problem on comparator gates. 

A network is stable for a given input assignment if we can assign values to the edges 

which are consistent with the gate equations and the given input assignment. Given 

a network N consisting of only monotone gates and an input assignment Sin, it can be 

easily seen that there exists a stable configuration. Therefore, the answer to the 

network-stability problem on comparator gates is always a yes. The interesting 

question therefore, is the value of an edge in particular types of stable configurations. 

Given a network N and an input assignment Si” we are interested in knowing the 

value of an edge in the “most-zero” stable configuration Smin This configuration has 

the property that if an edge e is 0 in any stable configuration S of the network, it is 0 

in Smin. 

Theorem 6.3. The problem of jinding whether an edge e is 0 in the “most-zero” 

conjiguration ofa comparator network N is in rincer-LOGSPACE(NLOGSPACE). 

The basic idea behind the dynamic algorithm is the same as before. Since at each 

comparator gate if one input changes exactly one of the outputs changes, therefore 

when an input is changed we need to traverse a path in the network changing output 

values as we proceed. However, since we are now dealing with a network this “path of 

change” may not be a simple path. Furthermore, since we are only allowed to record 

changes to a write-only memory (we are only allowed logarithmic work space) we 

cannot re-read the changes that we have already made. We therefore have to resort to 

nondeterminism to recognize and traverse cycles so that we do not keep going around 

the same cycle over and over again. A complete proof is provided in the Appendix. 

Subramanian [24] has shown that a number of problems concerning stable mar- 

riage are equivalent to the problem of network stability in comparator gates. Decision 

problems based on the “man-optimal stable marriage problem” and other problems 
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parsimoniously reducible to the comparator network stability problem are therefore 

in rincr-LOGSPACE(NLOGSPACE). Like the comparator circuit-value problem, 

these too have no known NC algorithms to solve them from scratch. 

7. Conclusions and open problems 

We have provided a firm theoretical base to conduct the study of incremental 

computation. We have demonstrated the existence of problems that are incrementally 

complete for various natural complexity classes and shown some important special 

cases wherein dynamic solutions imply parallel ones. We have also shown that 

the comparator circuit-value problem is in incr-LOGSPACE and the comparator 

network-stability problem is in rincr-LOGSPACE(NLOGSPACE). We would like 

canonical problems for the classes we have defined, and would like to answer some of 

the following questions. 

(1) How is incr-POLYLOGTIME related to the class LOGSPACE? 

l Is there some restriction to LOGSPACE that will automatically give us incremen- 

tal algorithms for languages in this restricted class? The problem here seems to be in 

defining a meaningful restriction of LOGSPACE for which directed forest accessi- 

bility is incr-POLYLOGTIME-complete. 

l Is there some restriction of incr-POLYLOGTIME which is a subset of LOG- 

SPACE? 

(2) What is the relation between incr-POLYLOGTIME and NC, the class of 

problems solvable by bounded fan-in circuits of polynomial size and polylog depth? 

l Are restrictions of either class comparable to the other? 

(3) What is the relation between incr-POLYLOGTIME and problems which have 

optimal parallel algorithms‘? 

l Are there general reductions from one to the other? Do problems like St-numbering 

that have optimal parallel algorithms also have incremental algorithms. 

l It seems hard to convert any parallel algorithm that uses reachability in some form 

into a corresponding dynamic algorithm for the same problem. We feel that 

restricting ourselves to parallel algorithms which avoid using transitive closure as 

a subroutine may help us in getting dynamic algorithms. This is the case with 

a number of recent parallel algorithms for planar graphs. It would be interesting to 

see if any generic reductions are possible in this restricted realm. 

(4) A particularly interesting class of problems in computational geometry deals 

with the manipulation of generalized trees. In this restricted class there seems to be an 

even stronger relation between incr-POLYLOGTIME and NC, as is demonstrated by 

Theorems 5.5 and 5.8. We would like to explore this relation further. 

(5) How are incr-POLYLOGTIME, incr-LOGSPACE and rincr-LOG- 

SPACE(NLOGSPACE) related to the class CC of problems reducible to C-CV? Does 

the fact that comparator gates preserve adjacency make these problems incrementally 

tractable‘? We have partially solved this problem by showing that the circuit-value 
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problem on comparator gates is in incr-LOGSPACE and the network-stability 

problem is in rincr-LOGSPACE(NLOGSPACE). However we are unable to show 

that CC is in rincr-LOGSPACE(NLOGSPACE); this is because the many-one 

reduction used by Subramanian [24] may not be parsimonious. In particular we don’t 

know whether the network-stability problem on nonbipartitionable X-gates is in 

rincr-LOGSPACE(NLOGSPACE). 

We believe that the classes incr-TIME and incr-SPACE are an important means for 

getting a better understanding of the relationship between incremental and parallel 

computation. 

Appendix 

In this section we provide a detailed proof for Theorem 6.3. We reproduce the 

statement of the theorem for convenience. 

Theorem 6.3. The problem of finding whether an edge e is 0 in the “most-zero” 

conjiguration of a comparator network N is in rincr-LOGSPACE(NLOGSPACE). 

Proof. 

l Preprocessing: The most-zero configuration of the network is evaluated in poly- 

nomial time for the initial instance and the values at each edge are maintained. The 

initial edge values are evaluated byforcing the inputs (determining the effect of the 

input on the network) one by one in some predetermined order until no more edges 

can be forced. For any input i the edges are forced form a path (not necessarily 

simple) from i to some output o. We will call this path the snake i and label every 

edge in the snake with i. The snake i is thus a sequence of edges which get the value 

of the ith input whose effect on the network is determined after the first i- 1 inputs 

have been forced. 

Let x be the order in which the inputs are forced. We say that snake i is less than 

snakej, if input i was forced before inputj. We call i a zero-snake (a one-snake) if the 

input i is zero (one). All the edges which are not forced by any inputs are given the 

value 0 and are given a special cycle label C. C is placed at the end of the ordering rr. 

It can be shown that C is a collection of zero-cycles. 

l Update: We now show how to maintain these values and the labels of snakes when 

an input is changed; the other operations of introducing or removing gates can be 

similarly handled. We consider just the change from 0 to 1; the other case is similar. 

The idea is to start at the changed input i and follow a path in the network changing 

the values of the edges along the path from 0 to 1. The path we follow may traverse 

the edges of many different snakes, we will therefore maintain a variable Fl which 

will tell us which snake we are currently following. During the course of our 

algorithm at times it would be convenient to change our perception of the input 

that has changed. We will therefore maintain a variable Sn which is our current 
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al 

Fig. 1. When two zero snakes meet. 

perception of the snake whose input has changed from zero to one. Initially both Sn 

and Fl have the value i (the changed input). 

We walk down the circuit following label F1 changing edge values and replacing 

edge labels with Sn. All the changes are recorded in a write only copy of the network 

which in the beginning of the update corresponds to the current state of the network. 

Any changes made cannot be read again. This restriction is to constrain the algorithm 

to work in LOGSPACE. At each step we decide whether to continue along the same 

path, or to do certain intermediate computations. Let X be the current gate along the 

path, with input edges a, and a2 and output edges oi and oz. Let o1 be the AND 

output and o2 the OR output. Suppose that ai was changed from 0 to 1 in the last step 

then we make the decision on what to do next based on the following criteria. 

(1) ~ a, is on the snake f and a2 is on snake g. 

~ Both f and g are zero-snakes. 

- ,fis less than g in the ordering. 

We are now in a situation where or was onfand o2 was on g (Fig. 1). We therefore 

need to do some label changing since the OR output should be on snakef(this is so 

becausefis less than g in the ordering and hence should force the OR output). Snake 

fshould therefore get label g beyond X (or, put another way, the snakes are changing 

pieces). However we cannot just change the label off to g, all the zero-snakes in 

between f and g will be affected as well. We do this by the subroutine ZERO- 

LABEL(f; g) (to be described later), which relabels edges in all zero-snakes f< h <g 
with labels greater than h. It is clear that these will be the only snakes that will be 

affected. We now have to follow g instead off: We therefore change the value of Fl to 

be g, assign the label Sn to the edge 02, change its value from 0 to 1, and 

continue. 

(2) - a1 is on the snake f and a2 is on snake g. 

~ Both ,f and g are zero-snakes. 

- f is greater than g in the ordering. 
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snake 

Fig. 2. When a zero-snake meets with a one-snake. 

We are now in a situation where the AND output or was on snake g and the OR 

output o2 on snake f(Fig. l), o2 should now become 1, we therefore make no changes 

to either Sn or FI. We change the edge o2 to have label Sn and value 1 and continue 

forcing (changing labels and values as warranted) the input change in the network. 

(3) - a, is on the snakef(or on C) and a2 is on snake g. 

~ f is a zero-snake while g is a one-snake. 

- Sn is less than g in the ordering. 

We are in a situation similar to case 1 (Fig. 2). The OR output is on snake g (since g is 

a one-snake), but now thatf(C) has become part of the one-snake Sn the OR output 

should be on Sn. The edges on snake g therefore have to get the label Sn (and maybe 

others in between Sn and g). We now use a similar routine ONE-LABEL (Sn, g) to 

(this routine is symmetric to the ZERO-LABEL (f, g) subroutine) relabel the edges of 

all one-snakes Sn < h d g. A careful look at Fig. 2 shows that in the subsequent steps 

the network labellings have to change as if snake g had been changed from zero to 

one. For instance the or output of the gate X must now get the value 1 and the label g. 

Therefore we assign the value g to Sn; change the edge or to have value 1 and label Sn 

and continue (note: assigning Sn the value g is equivalent to changing our perception 

of the input that changed to g). 

(4) ~ a, is on the snakef(or on C) and a2 is on snake g. 

~ f is a zero-snake while g is a one-snake. 

- Sn is greater than g in the ordering. 

We are now in a situation similar to case 2 (Fig. 2); since Sn is greater than g the OR 

output o2 should be on g. Now that a, changes to 1, so should or. Sn and Fl remain 

the same, and we continue forcing the input change in the network. 

(5) - a, is on the snakefand a2 is on C. 

- f is a zero-snake. 

We are now in a situation wherein one or more zero-cycles of C will become part of 

the new one-snake Sn (Fig. 3). We perform the following steps: 
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Fig. 3. When the forcing path meets a zero-cycle 

- Find out if the edges of this cycle Cr of C have already had their values changed. 

This is done by a call to an oracle FORCED(a,, a*, X) which looks to see whether 

the edge u2 is forced to 1 after a1. The oracle FORCED works in NLOGSPACE 

and will be described later. 

~ If the cycle has already been forced we do not enter it but force the AND output or 

to 1 instead and change its label to Sn before continuing. 

- If Cr has not been entered before, we mark X, and enter the cycle, by making use of 

a temporary follow TFl which is set to C. 

~ We continue with the forcing using the criteria for cases 2 and 4 until we get back to 

X. During this process we may enter into other zero-cycles, but we can argue 

inductively that we will always come back since the follow TFl is always C (this is so 

because cases 1 and 3 never apply since C is greater than all the snakes in the 

ordering). 

~ The only thing left to show is how to recognize that we have indeed come back. 

Suppose we arrive at a node Y that has input edges al and a2 and output edges or 

and o2 all of which have the label C. Further, suppose we arrive at the input edge a2. 

We now need to determine whether we should take the AND output or or to take 

the OR output ox, we can determine that by calling the oracle FORCED(a,, a2, Y) 

and taking OR if it answers “no” and the AND output if it answers “yes.” 

~ When we reach X we continue as before. 

(6) - a, azo, and o2 belong to the same zero-snakef: 

We have now encountered a loop in the snakef(Fig. 4). Since a1 has changed in value 

to 1, we should now take the OR output oz. The edges in the loop formed with the 

AND output should therefore get other labels. As before we need to see if the loop has 

been encountered; we therefore call FORCED(ar, u2, X) to determine if u2 is forced 

after u1 If the answer is “no” we change the label and value of o2 and continue, 
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Fig. 4. A self-loop that breaks up. 

otherwise we perform the following steps to change the labels of the loop L consisting 

of all the edges starting from o1 to a2 on the snakef: 
_ Change the labels of the edges in L to C (in the output tape). 
_ For all zero-snakes h >f(in the reverse order) find the earliest node Yin L such that 

we can reach Y with a label h. Due to the change in snakefthe default labeling for 

the edges in the loop L is C, however, if we can reach some node Yin L with some 

label h (where h is a zero-snake), then some of the edges in L beyond Y would get the 

label h (since C is greater than all the snakes in the ordering 7~). We therefore find the 

earliest such Y by calling the routine REACHED( Y, h) (to be described later) for all 

the Y’s one by one. Some of the ways a label h can reach the node Y are shown in 

Figs. 4 and 5. In Fig. 4 we see the case wherein a subcycle of L gets the label h, and in 

Fig. 5 we see how to reach Y with a label h after a complicated interchange of labels. 

In this case all of L gets the label h. 
_ Label the edges in the smallest subcycle of L containing Y with label h. 

The loop L has now been divided amongst the other snakes and C, note since we did 

all the writes in the reverse order as in n we are guaranteed that the various orderings 

will be obeyed at all nodes in the loop. 

We now describe the subroutines FORCED, REACHED and ZERO-LABEL. The 

procedure ONE-LABEL is similar to the ZERO-LABEL procedure and is omitted. 

The procedure FORCED (a,, a*, Y) works as follows: 

(1) Start at the input which has been changed and follow the path of forcing until 

a node with a zero-cycle is reached. At this point we know that if we take the OR 
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Fig. 5. How label interchanges affect the new labeling. 

output we will come back; therefore we have a nondeterministic choice to make as to 

whether we should take the OR or the AND output to reach the edge a2 of gate Y. 

(2) If we reach a, first and then a2 within it steps we answer “yes” otherwise “no.” 

The procedure REACHED( Y, h) works as follows: 

(1) This procedure assumes that h is a zero-snake. We start at the input which has 

been changed and follow the path of forcing until we encounter a zero-cycle or 

a zero-snake g 3 h that is higher than or equal tof(the current F1) in the ordering. In 

the former case we make a nondeterministic choice and follow one of the two outputs, 

in the later case a nondeterministic choice is made to either continue with the forcing 

(which means following snake g) entering the labeling phase. 

(2) At the beginning of the labeling phase the followfl is set tofand the label I is set 

to g if g ffand is set to C otherwise. We trace the snakefl till we meet a zero-snake gi 

such that hdg, ~1. We now use nondeterminism again to decide which snake to 

follow, if we followfl we change our current label 1 to gi, otherwise we changefl to be 

equal to gi 

(3) If we reach Y with label h in 2n steps we answer “yes,” otherwise we answer “no”. 

The procedure ZERO-LABEL(5 g) works as follows: 

(1) For all zero-snakes h, that f< h < g consider all the zero-snakes k # h and g in 

the reverse order, and do the following: 

(2) Find the earliest node Y on h with inputs a,, a2 and outputs or, o2 such that the 

AND output o1 is on snake h, and Y can be reached with label k. This is done using the 

subroutine REACHED. 

(3) If such a Y exists relabel all the edges in h beyond Y with the label k. 
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An inductive proof can be used to show that ZERO-LABEL(i g) labels the snakes 

f<h<g correctly. Note that all the changes are made on the write-only memory. 

The proof of correctness of these procedures and the algorithm as a whole depends 

upon the following crucial facts. 

l While following snakefif we reach a node X such that a, is on the snakefand a2 is 

on snake g, both f and g are zero-snakes, and f is less than g in the ordering, then 

g has not been changed in any previous labeling. 

l While following snake f if we reach a node X such that a, is on the snake f and a2 is 

on snake g, f is a zero-snake while g is a one-snake, and the value of Sn is less than 

g in the ordering, then g has not been changed in any previous labeling. 

The proof follows from the fact that after every zero-labeling the value of Fl 
becomes greater than all the snakes whose edges have changed and after every 

one-labeling the value of Sn becomes greater than all the snakes whose edges have 

changed. This implies that even though we are allowed to look only at the input tape, 

we have sufficient information to make correct decisions. In all our calls to NLOG- 

SPACE oracles we have taken the liberty of assuming that the oracle gives both “yes” 

and “no” answers accurately, which is not entirely correct. Every call to any of the 

subroutines should be interpreted as a dual call to the routine and its complement 

(executed in an interleaved fashion). When one of them answers we stop the other 

routine, the whole computation is still in NLOGSPACE because NLOGSPACE and 

CO-NLOGSPACE are the same [12]. Since the algorithm above works in LOG- 

SPACE and uses NLOGSPACE oracles, the network-stability problem is in rincr- 

LOGSPACE(NLOGSPACE). 
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