
Wavelet-Based Histograms for Selectivity Estimation ∗

Yossi Matias
Department of Computer Science

Tel Aviv University

Tel Aviv 69978, Israel

matias+www@math.tau.ac.il

Jeffrey Scott Vitter
Purdue University

1390 Mathematical Sciences Building

West Lafayette, IN 47909, USA

jsv@purdue.edu

Min Wang†

IBM T. J. Watson Research Center

19 Skyline Drive

Hawthorne, NY 10532, USA

min@us.ibm.com
Phone: (914) 784-6268

FAX: (914) 784-7455

Abstract

Query optimization is an integral part of relational database management systems.

One important task in query optimization is selectivity estimation. Given a query P ,

we need to estimate the fraction of records in the database that satisfy P . Many

commercial database systems maintain histograms to approximate the frequency dis-

tribution of values in the attributes of relations.

In this paper, we present a technique based upon a multiresolution wavelet de-

composition for building histograms on the underlying data distributions. Histograms

built on the cumulative data distributions give very good approximations with limited

space usage. We give fast algorithms for constructing histograms and using them in an

on-line fashion for selectivity estimation. Our histograms can also be used to provide

quick approximate answers to OLAP queries when the exact answers are not required.

Our method captures the joint distribution of multiple attributes effectively, espe-

cially when the attributes are correlated. Experiments confirm that our histograms

offer substantial improvements in accuracy over random sampling and other previous

approaches.
∗A preliminary version of this paper was published at SIGMOD 1998 [MVW98].
†Contact author.
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1 Introduction

Several important components in a database management system (DBMS) require accurate esti-

mation of the selectivity of a given query. For example, query optimizers use it to evaluate the

costs of different query execution plans and choose the preferred one. In this section we briefly

review previous work on selectivity estimation.

1.1 System R

IBM’s System R is among the earliest RDBMSs, and its optimizer has set a tone for most modern

optimizers [SAC+79]. The optimizers of several major database products still follow the general

framework set by System R. That is, for any given query, the optimizer will do the following:

• Define a query plan space and an algorithm to search and enumerate all plans in the space.

• Define a cost model by which the cost of a query plan can be estimated.

• When a user issues a query, the optimizer will search through its query plan space and

estimate the cost of each plan. Then the best (least-cost) plan is chosen and given to a

query execution engine to run and the output is returned to the user.

However, the cost model of System R is not good enough because its most important com-

ponent, selectivity estimation, is too simple. The selectivity estimation is done based on very

simplified and unrealistic assumptions about the underlying data distribution. For example, the

query optimizer assumes that each column of a table has uniform distribution and the columns

are independent of each other. As a result, the selectivity estimation may be very inaccurate, and

the optimizer could choose very inefficient query plans.

1.2 Bucket Histograms

The histogram is the most widely used form to store statistical information of the data distrib-

utions in a database. Many different histograms have been proposed in the literature and some

have been deployed in commercial RDBMSs. However, almost all previous histograms have one

thing in common: they all use buckets to partition the data, although in different ways.

A bucket-based histogram approximates the data in an attribute of a relation by grouping

attribute values into buckets and estimating the attribute values and their frequencies based on

the summary statistics maintained in each bucket. More specifically, a histogram of an attribute
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is an approximation of the frequency distribution of the attribute values obtained as follows: The

(attribute value, frequency) pairs of the distribution are partitioned into buckets; The frequency

of each value in a bucket is approximated by the average of the frequencies of all values in the

bucket; The set of values in a bucket is usually approximated in some compact fashion as well.

The simplest histogram is the so-called equi-width histogram. It partitions the domain of an

attribute into consecutive equal-length subintervals. Each subinterval is characterized by just one

parameter: the average frequency of the values in the subinterval.

The popular equi-depth histogram [PSC84] partitions the interval between the minimum and

maximum attribute value of a column into consecutive subintervals so that the total frequency of

the attribute values for each subinterval is the same.

It is interesting to note that these two simple histograms (or their variants) are still used

extensively in today’s major commercial RDBMSs like Oracle, Informix, Microsoft SQL Server,

Sybase, and Ingres.

Poosala et al. [PIHS96, Poo97a] propose a taxonomy to capture all previously proposed his-

tograms; new histograms types can be derived by combining effective aspects of different his-

togram methods. Among the histograms discussed in [PIHS96, Poo97a], the MaxDiff(V,A) his-

togram gives the best overall performance. The MaxDiff(V,A) histogram uses attribute value V

as “sort parameter” and area A as “source parameter” to choose the bucket boundaries. In a

MaxDiff(V,A) histogram with β buckets, there is a bucket boundary between two adjacent at-

tribute values if the difference between their areas is one of the β − 1 largest such differences. It

is shown in [PIHS96, Poo97a] that MaxDiff(V,A) histograms achieve better approximation than

previous well-known methods like equi-depth and compressed histograms [PIHS96].

Poosala et al. [PIHS96] also mention other histogram techniques. For example, histograms

based on minimizing the variance of the source parameter such as area have a performance similar

to that of MaxDiff(V,A), but are computationally more expensive to construct. They also mention

a spline-based technique, but it does not perform as well as MaxDiff(V,A).

All the histograms discussed so far partition the underlying data in some particular fash-

ion. The effectiveness and accuracy of various partition methods highly depend on the data

distributions and query types. In general, using a specific partition method to capture many un-

predictable data distributions is a hard job, especially for multidimensional data. It is desirable

to study general methods to construct histograms whose usability is more robust.
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1.3 Non-Histogram Techniques

Random sampling has attracted extensive study in database community in the last 15 years and

there has been considerable amount of work done in sampling-based estimations [HS92, HS95,

LNS90, LN85, GM98]. All sampling-based techniques are based on the fact that a large data set

can be represented well by a small random sample of the data elements. For selectivity estimation,

sampling is a natural tool: at query optimization time, a random sample is collected and the

selectivity of any given query is computed based on the sample. The advantages of sampling-

based methods are obvious: no pre-computed and stored statistical information is needed, and

it has probabilistic guarantees on the accuracy. However, obtaining a good sample at query

optimization time is expensive, and sampling results cannot be preserved for later uses.

Another estimation technique is probabilistic counting and it is mainly used for estimating the

size of projections. We refer the readers to [FM85, SDNR96, GG81] for more details.

Parametric estimation is a standard statistical technique that can also be used to estimate

selectivity [Chr83, SLRD83]. However, this technique assumes that the data distribution resemble

some well studied mathematical distribution that is usually characterized by several parameters.

The assumption is often not true in real database applications.

1.4 Multidimensional Data

When a query involves multiple attributes in a relation, the selectivity depends on these attributes’

joint data distribution, that is, the frequencies of all combination of attribute values. The main

challenge for histograms for multidimensional (multi-attribute) data is to capture the correlations

among different attributes.

To simplify the selectivity estimation for multi-attribute queries, most commercial DBMSs

make the attribute value independence assumption. Under such an assumption, a system maintains

histograms only for individual attributes, and the joint probabilities are derived by multiplying the

individual probabilities. Real-life data rarely satisfy the attribute value independence assumption.

Functional dependencies and various types of correlations among attributes are very common.

Making the attribute value independence assumption in these cases results in very inaccurate

estimation of the joint data distribution and poor selectivity estimation.

Muralikrishna and DeWitt [MD88] use an interesting spatial index partitioning technique to

construct equi-depth histograms for multidimensional data. One drawback with this approach
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is that it considers each dimension only once during the partition. Poosala and Ioannidis [PI97]

propose two effective alternatives. The first approach partitions the joint data distribution into

mutually disjointed buckets and approximates the frequency and the value sets in each bucket

in a uniform manner. Among this new class of histograms, the multidimensional MaxDiff(V,A)

histograms computed using the MHIST-2 algorithm are the most accurate and perform better

in practice than previous methods [PI97]. The second approach uses the powerful singular value

decomposition (SVD) technique from linear algebra. The approach is limited to handling two di-

mensions, and its accuracy depends largely on that of the underlying one-dimensional histograms.

1.5 Contributions

The contribution of this paper is threefold. First, we propose a method to build efficient and

effective histograms using wavelet decomposition. Our histograms give accurate selectivity esti-

mation for query optimization and other related applications in database systems. Second, our

method can be naturally extended to capture the distribution of multidimensional data. Third,

we introduce the structure of error tree to represent wavelet decomposition procedure. Based on

this structure, we develop efficient reconstruction algorithm for query optimization time.

Subsequent to the introduction of wavelet-based selectivity estimation in the preliminary

version of this paper [MVW98], there have been many interesting new developments in using

wavelet-based techniques in databases and related applications [Wan99, VWI98, VW99, CGRS00,

MVW00, GG02, NRS99, GKMS01, WVLP, DR, PM, MP03, BMW]; further elaboration is given

in Section 6. Many of these developments are based on the basic techniques introduced in this

paper.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction on

wavelets and explain in detail how to build a wavelet-based histogram. In Section 3, we explain

how to estimate the selectivity of any given range query using our wavelet-based histogram at

query optimization time. In Section 4, we extend our work to multi-dimensional cases. We

compare the performance of our wavelet-based histogram with random sampling and state-of-the-

art histogram method through experiments in Section 5 and draw conclusions in Section 6.
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2 Wavelet-Based Histograms

In this section we describe how to construct a wavelet-based histogram. We first give a high-level

description of the construction algorithm. We then describe the algorithm steps in detail.

Wavelets are a mathematical tool for hierarchical decomposition of functions. Wavelets rep-

resent a function in terms of a coarse overall shape, plus details that range from broad to narrow.

Regardless of whether the function of interest is an image, a curve, or a surface, wavelets offer an

elegant technique for representing the various levels of detail of the function in a space-efficient

manner.

A histogram can be considered as a compressed representation of the original data. In this

sense, our approaches can also be categorized as histogram methods. However, our methods

neither use buckets nor do they try to partition the original data. Instead, our methods try to

extract and summarize information from the original data. Although the traditional histograms

also summarize the original data, they are local, while our methods are hierarchical and global.

2.1 Notations

The set of predicates we consider in this paper for purpose of estimating data distribution is the

set of selection queries, in particular, range predicates of the form l ≤ X ≤ h, where X is a

non-negative attribute of the domain of a relation R, and l and h are constants. The predicate

is satisfied by those tuples for which the value of attribute X is between l and h. The set of

equal predicates is the subset of the range predicates that have l = h. The set of one-side range

predicates is the special case of range predicates in which l = −∞ or h = ∞.

We adopt the notations in [PIHS96] to describe the data distributions and various histograms.

The domain D = {0, 1, 2, . . . , N − 1} of an attribute X is the set of all possible values of X.

The value set V ⊆ D consists of the n distinct values of X that are actually present in relation R.

Let v1 < v2 < · · · < vn be the n values of V . The spread si of vi is defined as si = vi+1 − vi.

(We take s0 = v1 and sn = 1.) The frequency fi of vi is the number of tuples in which X has

value vi. The cumulative frequency ci of vi is the number of tuples t ∈ R with t.X ≤ vi; that is,

ci =
∑i

j=1 fj. The data distribution of X is the set of pairs T = {(v1, f1), (v2, f2), . . . , (vn, fn)}.

The cumulative data distribution of X is the set of pairs T C = {(v1, c1), (v2, c2), . . . , (vn, cn)}. The

extended cumulative data distribution of X, denoted by T C+
, is the cumulative data distribution

of T C extended over the entire domain D by assigning zero frequency to every value in D − V .
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2.2 Building A Histogram: A High Level Description

Building a wavelet-based histogram is a three-step procedure:

1. Preprocessing In a preprocessing step, we form the extended cumulative data distribution

T C+
of the attribute X, from the original data or from a random sample of the original

data.

2. Wavelet Decomposition We compute the wavelet decomposition of T C+
, obtaining a set of

N wavelet coefficients.

3. Pruning We keep only the m most significant wavelet coefficients, for some m that corre-

sponds to the desired storage usage. The choice of which m coefficients we keep depends

upon the particular pruning method we use.

After applying the above algorithm, we obtain m wavelet coefficients. The values of these

coefficients, together with their positions (indices), are stored and serve as a histogram for re-

constructing the approximate data distribution in the on-line phase (query phase). To compute

the estimate for the number of tuples whose X value is in the range l ≤ X ≤ h, we reconstruct

the approximate values for h and l− 1 in the extended cumulative distribution function and then

subtract them.

Next we discuss each step in greater details.

2.3 Preprocessing

In the preprocessing step, we compute the full data distribution T . The extended cumulative

data distribution T C+
can be easily computed from T . Exact computation of T can be done

by maintaining a counter for each distinct attribute value in V . When the cardinality of V is

relatively small so that T fits in internal memory, which is often the case for the low-dimensional

data we consider, we can keep a (hash) table in memory, and T can be obtained in one complete

scan through the relation.

When the cardinality of V is too large, multiple passes through the relation will be required

to obtain T , resulting in possibly excessive I/O cost. We can instead use an I/O-efficient external

merge sort to compute T and minimize the I/O cost [Vit01]. The merge sort process here is

different from the traditional one: During the merging process, records with the same attribute
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value can be combined by summing the frequencies. After a small number of multi-way passes

in the merge sort, the lengths of the runs will stop increasing; the length of each run is bounded

by the cardinality of V , whose size, although too large to fit in memory, is typically small in

comparison with the relation size.

If for any reason it’s necessary to further reduce the I/O and CPU costs of the precomputation

of T , a well-known approach is to use random sampling [PSC84, MD88]. The idea is to sample s

tuples from the relation randomly and compute T for the sample. The sample data distribution

is then used as an estimate of the real data distribution. To obtain the random sample in a

single linear pass, the method of choice is the skip-based method [Vit87] when the number of

tuples T is known beforehand or the reservoir sampling variant [Vit85] when T is unknown. A

running up-to-date sample can be kept using a backing sample approach [GMP97]. We do not

consider in this paper the issues dealing with sample size and the errors caused by sampling. Our

experiments confirm that wavelet-based histograms that use random sampling as a preprocessing

step give estimates that are almost as good as those from wavelet-based histograms that are built

on the full data. On the other hand, as we shall see in Section 5, the wavelet-based histograms

(whether they use random sampling in their preprocessing or not) perform significantly better at

estimation than do naive techniques based on random sampling alone.

In this paper, we do not consider the I/O complexities of the wavelet decomposition and of

pruning, since both of them are performed on the cumulative data distribution T C+
, and the size

of T C+
is generally not large and can fit in internal memory for the low-dimensional data we

considered in this paper. For high-dimensional data, which is generally larger, the I/O efficiencies

of the wavelet decomposition and of pruning are considered in [VWI98, VW99].

2.4 Wavelet Decomposition

After the preprocessing step, we obtain the extended cumulative data distribution T C+
. We can

view T C+
as a one-dimensional array S of size N . The goal of the wavelet decomposition step is

to represent the array S at hierarchical levels of detail.

First we need to choose wavelet basis functions. Haar wavelets are conceptually the simplest

wavelet basis functions, and for purposes of exposition in this paper, we focus our discussion on

Haar wavelets. Suppose S is an array of N values:

S = [S(0), S(1), . . . , S(N − 1)].
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To apply the Haar wavelet decomposition to S, we assume N is a power of 2. (Otherwise we can

pad S with dummy zero entries. There are better methods than padding to use in practice.) We

first normalize S at base level j = log N by setting Sj,k = S(k)√
2j

for each 0 ≤ k < N .

The decomposition of array S can be done using the following recursive formulas:

Si,k =
√

2(Si+1,2k + Si+1,2k+1)
2

Ŝi,k =

√
2(Si+1,2k − Si+1,2k+1)

2

for 0 ≤ i ≤ j − 1 and 0 ≤ k ≤ 2i − 1. The decomposition results is the sequence

[S0,0, Ŝ1,0, Ŝ1,1, . . . , Ŝj−1,2j−1−1].

The entries in the sequence are called wavelet coefficients.

The reconstruction is a reverse process to the decomposition, and can be done using the

following backward recursive formulas:

Si,2k =
√

2(Si−1,k + Ŝi−1,k)
2

;

Si,2k+1 =

√
2(Si−1,k − Ŝi−1,k)

2
,

for 1 ≤ i ≤ j and 0 ≤ k ≤ 2i−1 − 1.

The following pseudocode accomplishes the decomposition in situ, transforming a set of values

into wavelet coefficients in place.

Procedure Decomposition(s : array[0 . . . 2j − 1] of reals)
s = s/

√
2j ; //normalize input values

g = 2j ;
while g ≥ 2 do

DecompositionStep(s[0 . . . g − 1]);
g = g/2;

Procedure DecompositionStep(s : array[0 . . . 2j − 1] of reals)
for i = 0 to 2j/2 − 1 do

s′[i] = s[2i] + s[2i + 1]/
√

2;
s′[i + 2j/2] = s[2i] − s[2i + 1]/

√
2;

s = s′;

The following pseudocode reconstructs the original data from the wavelet coefficients:
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Procedure Reconstruction(s : array[0 . . . 2j − 1] of reals)
s = s/

√
2j ;

g = 2;
while g ≤ 2j do

ReconstructionStep(s[0 . . . g − 1]);
g = 2g;

s = s′
√

2j ; //undo normalization

Procedure ReconstructionStep(s : array[0 . . . 2j − 1] of reals)
for i = 0 to 2j/2 − 1 do

s′[2i] = s[i] + s[2j/2 + i]/
√

2;
s′[2i + 1] = s[i] − s[2j/2 + i]/

√
2;

s = s′;

The wavelet decomposition (reconstruction) is very efficient computationally, requiring only

O(N) CPU time for an array of N values.

The above decomposition and reconstruction processes include the normalization operation.

The input array has been normalized in the very beginning. In the following, we illustrate the

process of Haar wavelet decomposition using a concrete example. To simplify the presentation,

we ignore the normalization factors.

Example 1 Suppose the extended cumulative data distribution of attribute X is represented by

a one-dimensional array of N = 8 data items:

S = [2, 2, 2, 3, 5, 5, 6, 6].1

We perform a wavelet transform on it. We first average the array values, pairwise, to get the

new lower-resolution version with values

[2, 2.5, 5, 6].

That is, the first two values in the original array (2 and 2) average to 2, and the second two values

2 and 3 average to 2.5, and so on. Clearly, some information is lost in this averaging process. To

recover the original array from the four averaged values, we need to store some detail coefficients,

which capture the missing information. Haar wavelets store one half of the pairwise differences
1The domain of attribute X is D = {0, 1, 2, · · · , 7}. The corresponding data distribution and extended cumu-

lative data distribution of X are {(0, 2), (3, 1), (4, 2), (6, 1)} and {(0, 2), (1, 2), (2, 2), (3, 3), (4, 5), (5, 5), (6, 6), (7, 6)},
respectively.
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of the original values as detail coefficients. In the above example, the four detail coefficients are

(2 − 2)/2 = 0, (2 − 3)/2 = −0.5, (5 − 5)/2 = 0, and (6 − 6)/2 = 0. It is easy to see that the

original values can be recovered from the averages and differences.

We have succeeded in decomposing the original array into a lower-resolution version of half

the number of entries and a corresponding set of detail coefficients. By repeating this process

recursively on the averages, we get the full decomposition:

Resolution Averages Detail Coefficients
8 [2, 2, 2, 3, 5, 5, 6, 6]
4 [2, 21

2 , 5, 6] [0, −1
2 , 0, 0]

2 [21
4 , 51

2 ] [−1
4 ,−1

2 ]
1 [37

8 ] [−31
4 ]

We have obtained the wavelet transform (also called wavelet decomposition) of the original

eight-value array, which consists of the single coefficient representing the overall average of the

original values, followed by the detail coefficients in the order of increasing resolution:

Ŝ = [37
8 , −31

4 , −1
4 , −1

2 , 0, −1
2 , 0, 0]. (1)

No information has been gained or lost by this process. The original array has eight values, and

so does the transform. Given the transform, we can reconstruct the exact values by recursively

adding and subtracting the detail coefficients from the next-lower resolution.

As illustrated in the pseudocode (but not the example), the wavelet coefficients at each level

of the recursion are normalized; the coefficients at the lower resolutions are weighted more heavily

than the coefficients at the higher resolutions. One advantage of the normalized wavelet transform

is that in many cases a large number of the detail coefficients turn out to be very small in

magnitude. Truncating these small coefficients from the representation (i.e., replacing each one

by 0) introduces only small errors in the reconstructed signal. We can approximate the original

signal effectively by keeping only the most significant coefficients, determined by some pruning

method, as discussed in the next subsection.

A better higher-order approximation for purposes of range query selectivity can be obtained

by using linear wavelets as a basis rather than Haar wavelets. Linear wavelets share the important

properties of Haar wavelets that we exploit for efficient processing. It is natural in conventional

histograms to interpolate the values of items within a bucket in a uniform manner. Such an

approximation corresponds to a linear function between the endpoints of the bucket. The ap-

proximation induced when we use linear wavelets is a piecewise linear function, which implies
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exactly this sort of linear interpolation. It therefore makes sense intuitively that the use of linear

wavelets, in which we optimize directly for the best set of interpolating segments, will perform

better than standard histogram techniques.

2.5 Pruning and Error Measures

Given the storage limitation for the histogram, we can only “keep” a certain number of the N

wavelet coefficients. Let m denote the number of wavelet coefficients that we have room to keep;

the remaining wavelet coefficients will be implicitly set to 0. Typically we have m � N . The

goal of pruning is to determine which are the “best” m coefficients to keep, so as to minimize the

error of approximation.

The problem is how to keep the “best” m coefficients by pruning out N − m “insignificant”

coefficients. To this end, we need to define what “best” means and what error measure we are

going to use so that the pruning will minimize the error of approximation.

We can measure the error of approximation in several ways. Let vi be the actual size of a

query qi and let v̂i be the estimated size of the query. We use the following five different error

measures:

Notation Definition
absolute error eabs

i |vi − v̂i|

relative error erel
i

|vi − v̂i|
max{1, vi}

modified relative error em rel
i

|vi − v̂i|
max{1,min{vi, v̂i}}

combined error ecomb
i min{α × eabs

i , β × erel
i }

modified combined error em comb
i min{α × eabs

i , β × em rel
i }

The parameters α and β are positive constants.

Our definition of relative error is slightly different from the traditional one, which is not defined

when vi = 0. The modified relative error treats over-approximation and under-approximation in

a uniform way. For example, suppose the exact size of a query is vi = 10. The estimated sizes

v̂i = 5 or v̂i = 20 each have the same modified relative error, namely, 5/5 = 10/10 = 1. In

contrast, in terms of relative error, the estimation v̂i = 5 has a relative error of 5/10 = 0.5, and

the estimation v̂i = 20 has a relative error of 10/10 = 1. The estimation v̂i = 0 has a relative error

of only 10/10 = 1, while the modified relative error is 10/1 = 10. The combined error reflects the
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importance of having either a good relative error or a good absolute error for each approximation.

For example, for very small vi it may be good enough if the absolute error is small even if the

relative error is large, and for large vi the absolute error may not be as meaningful as the relative

error.

Once we choose which of the above measures to represent the errors of the individual queries,

we need to choose a norm by which to measure the error of a collection of queries. Let e = (e1,

e2, . . . , eQ) be the vector of errors over a sequence of Q queries. We assume that one of the above

five error measures is used for each of the individual query errors ei. For example, for absolute

error, we can write ei = eabs
i . We define the overall error for the Q queries by one of the following

error measures:

Notation Definition

1-norm average error ‖e‖1
1
Q

∑
1≤i≤Q

ei

2-norm average error ‖e‖2

√
1
Q

∑
1≤i≤Q

ei
2

infinity-norm error ‖e‖∞ max
1≤i≤Q

{ei}

These error measures are special cases of the p-norm average error, for p > 0:

‖e‖p =

⎛⎝ 1
Q

∑
1≤i≤Q

ei
p

⎞⎠1/p

.

Given any particular weighting, we propose the following different pruning methods:

1. Choose the m largest (in absolute value) wavelet coefficients.

2. Choose m wavelet coefficients in a greedy way. For example, we might choose the m largest

(in absolute value) wavelet coefficients and then repeatedly do the following two steps m

times:

(a) Choose the wavelet coefficient whose inclusion leads to the largest reduction in error.

(b) Throw away the wavelet coefficient whose deletion leads to the smallest increase in

error.

Another approach is to do the above two steps repeatedly until a cycle is reached or im-

provement is small.

Several other variants of the greedy method are possible:
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3. Start with the m/2 largest (in absolute value) wavelet coefficients and choose the next m/2

coefficients greedily.

4. Start with the 2m largest (in absolute value) wavelet coefficients and throw away m of them

greedily.

It is well known that if the wavelet basis functions are orthonormal then Method 1 is provably

optimal for the 2-norm average error measure. However, for non-orthogonal wavelets like linear

wavelets and for norms other than the 2-norm, no efficient technique is known for how to choose

the m best wavelet coefficients, and various approximations have been studied [Don92].

At the end of the pruning step, we obtain m significant wavelet coeffcents. These coeffcients,

together with their indices, form our wavelet-based histogram. Let us denote by H the histogram

computed from a one-dimensional array S of length N . We can view H as a one-dimenional array

of length m, with each entry being a wavelet coeffcient value vj and its index ij

H[j] = (ij , vj), 1 ≤ j ≤ m. (2)

3 Online Reconstruction

At query optimization time, a range query l ≤ X ≤ h is presented. We reconstruct the approx-

imate cumulative frequencies of l − 1 and h, denoted by S(l − 1) and S(h), using the m wavelet

coefficients we obtained in Section 2.5. The size of the query is estimated to be S(h)−S(l−1). The

time for reconstruction is crucial in the on-line phase. In this section, we show how to efficiently

compute the approximate cumulative frequency S(i) ( for any 0 ≤ i ≤ N − 1).

To fully understand the on-line reconstruction algorithm, we examine the relationship between

wavelet coefficients and the reconstruction of an original data value by using the error tree struc-

ture. The error tree is built based upon the wavelet transform procedure. Figure 1 is the error

tree for Example 1 in Section 2.4. Each internal node is associated with a wavelet coefficient

value, and each leaf is associated with an original signal value. (For purposes of exposition, the

wavelet coefficients are unnormalized, but in the implementation the values are normalized as

described in Section 2.4 and the algorithm is modified appropriately.) Internal nodes and leaves

are labeled separately. Their labels are in the domain {0, 1, . . . , N − 1} for a signal of length N .

For example, the root is an internal node with label 0 and its node value is 3.875 in Figure 1. For

convenience, we shall use “node” and “node value” interchangeably.
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Figure 1: Error tree for N = 8.

The construction of the error tree exactly mirrors the wavelet transform procedure. It is

a bottom-up process. First, leaves are assigned original signal values from left to right. Then

wavelet coefficients are computed, level by level, and assigned to internal nodes.

As the figure shows, the (unnormalized) value of each internal node i is denoted by Ŝ(i), and

the value of each leaf j is denoted by S(j). We use left(i) and right(i) to denote the left and right

child of any node i, and we use leaves(i) to denote the set of leaves in the subtree rooted at i.

The average value of the nodes in leaves(i) is denoted by ave leaf val(i). For any leaf i, we use

path(i) to denote the set of internal nodes (or the node values) along the path from i to the root.

Below are some useful facts that are helpful for understanding our algorithm.

Lemma 1 For any nonroot internal node i, we have

Ŝ(i) =
ave leaf val

(
left(i)

)
− ave leaf val

(
right(i)

)
2

.

Lemma 2 The reconstruction of any signal value depends only upon the values of those internal

nodes along the path from the corresponding leaf to the root. That is, the reconstruction of any

leaf value S(i) depends only upon the nodes in path(i).

Consider the recontruction of any leaf value S(i). It is an algebraic sum of all the internal

nodes in path(i). For example, for i = 1,

S(1) = Ŝ(0) + Ŝ(1) + Ŝ(2) − Ŝ(4).

In general, any original signal value S(i) can be represented as the algebraic sum of the wavelet

coefficients along the path path(i). A nonroot internal node contributes positively to the leaves

15



in its left subtree and negatively to the leaves in its right subtree. (The root node contributes

positively to all the leaves.)

Lemma 3 Mathematically, we can write any original signal value S(i) in terms of all the wavelet

coefficients in path(i):

S(i) =
∑

j∈path(i)

sign(i, j) × Ŝ(j),

where

sign(i, j) ==

⎧⎨⎩ 1 if j = 0 or leaf i is in node j’s left subtree;

−1 if leaf i is in node j’s right subtree.

The summation is over all internal nodes x in path(i). In our algorithm, however, we do

not evaluate all the terms. We quickly determine the nonzero contributors2 and evaluate their

contribution.

Let us relook at Example 1 in Section 2.4; its error tree is shown in Figure 1. The original

signal S can be reconstructed from Ŝ by the following formulas:

S(0) = Ŝ(0) + Ŝ(1) + Ŝ(2) + Ŝ(4)

S(1) = Ŝ(0) + Ŝ(1) + Ŝ(2) − Ŝ(4)

S(2) = Ŝ(0) + Ŝ(1) − Ŝ(2) + Ŝ(5)

S(3) = Ŝ(0) + Ŝ(1) − Ŝ(2) − Ŝ(5)

S(4) = Ŝ(0) − Ŝ(1) + Ŝ(3) + Ŝ(6)

S(5) = Ŝ(0) − Ŝ(1) + Ŝ(3) − Ŝ(6)

S(6) = Ŝ(0) − Ŝ(1) − Ŝ(3) + Ŝ(7)

S(7) = Ŝ(0) − Ŝ(1) − Ŝ(3) − Ŝ(7)

For example, S(2) depends only upon path(2) = {Ŝ(5), Ŝ(2), Ŝ(1), Ŝ(0)}.

To estimate the selectivity of a range query of form l ≤ X ≤ h using the m coefficients of our

wavelet-based histogram H, we use the following algorithm:

Compute Selectivity(H,m, l, h)

2The relevant internal nodes that are kept as significant coefficients after pruning step.
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//compute the selectivity of range query l ≤ x ≤ h
//using our wavelet-based histogram H that contains m coefficients

//initialize the approximate cumulative frequencies S(l − 1) and S(h)
S(l − 1) = 0;
S(h) = 0;
for j = 1, 2, . . . ,m do

if Contribute(ij , l − 1) then
S(l − 1) = S(l − 1) + Compute Contribution(ij , vj , l − 1)

if Contribute(ij , h) then
S(h) = S(h) + Compute Contribution(ij , vj , h)

selectivity = S(h) − S(l − 1);
return selectivity ;

Function Contribute(i, j) returns true if the coefficient with index i (internal node i in the error

tree) contributes to the recontruction of leaf value S(j), and it returns false otherwise. Func-

tion Compute Contribution(i, v, j) computes the actual contribution of a coeffcient (i, v) to the

recontruction of leaf value S(j).

Based upon the regular structure of the error tree and the preceding lemmas, we devise two

algorithms to compute the functions Contribute and Compute Contribution .

Function Contribute(i, j)
//check the coefficient with index i to see if it contributes
//to the recontruction of leaf value S[j]

//get the the label of the left most leaf for the subtree
//rooted at node i in an error tree with N leaves
Ll = left most leaf (i,N);
//get the the label of the right most leaf for the subtree
//rooted at node i in an error tree with N leaves
Lr = right most leaf (i,N);
if (j ∈ [Ll, Lr]) //leave j is in the subtree

then contribute = true
else //leave j is not in the subtree

contribute = false;
return contribute;

Function Compute Contribution(i, v, j)
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//compute the contribution of coeffcient (i, v) to the recontruction of leaf value S[j]
contribution = v;
if (i = 0) //the special case for root node

then return contribution;

depth = 
log i�; //compute the depth of node i in the error tree
if (depth < log N − 1) //node i is not a parent of leaves

then
//get the the label of the left most leaf for node i’s right
//subtree in an error tree with N leaves
Lrl = left most leaf (right child(i), N);
//get the the label of the right most leaf for node i’s right
//subtree in an error tree with N leaves
Lrr = right most leaf (right child(i), N);

else //node i is a parent of leaves
Lrl = right most leaf (i,N);
Lrr = Lrl;

//use Lemma 3
if j ∈ [Lrl, Lrr]

contribution = contribution × (−1);
return contribution;

Function left most leaf (i,N)
//compute the label of the left most leaf for subtree of node i

//in an error tree with N leaves
//We denote the binary representation of i by (i)2 = (bn−1 . . . b2b1b0),
//where n = log N , bj ∈ {0, 1} for 0 ≤ j ≤ n − 1.

if (i = 0) or (i = 1) //special cases
then

L = 0;
return L;

//p is the position of the left most 1 bit of (i)2
p = max{k

∣∣ bk = 1, 0 ≤ k ≤ n − 1};
L = bp−1 << (n − p); //<< is the bitwise left shift operator
return L;
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Function right most leaf (i,N)
//compute the label of the right most leaf for subtree of node i

//in an error tree with N leaves
//We denote the binary representation of i by (i)2 = (bn−1 . . . b2b1b0),
//where n = log N , bj ∈ {0, 1} for 0 ≤ j ≤ n − 1.

if (i = 0) or (i = 1) //special cases
then

R = N − 1;
return R;

//p is the position of the left most 1 bit of (i)2
p = max{k

∣∣ bk = 1, 0 ≤ k ≤ n − 1};
L = bp−1 << (n − p); //<< is the bitwise left shift operator
R = L + 2n−p − 1;
return R;

Function left child(i)
//compute the label (index) of the left child of a nonroot node i in an error tree

return 2i;

Function right child(i)
//compute the label (index) of the right child of a nonroot node i in an error tree

return 2i + 1;

Theorem 1 For a given range query of form

l ≤ X ≤ h,

the approximate selectivuty can be computed based upon the m coefficients of our wavelet-based

histogram in O (min{m, 2 log N}) using a 2m-space data structure.

Proof Sketch: We need to process the m coefficients in H. Each of the coefficients is a tuple of

the form (2), so the space complexity is 2m. The CPU time complexity follows easily from that

of the two functions, Contribute and Compute Contribution , since both of them run in constant

time. An alternative way is to process only the coefficients needed, which are at most log N for

reconstructing either S(l − 1) or S(h).

4 Multi-Attribute Histograms

In this section, we extend the techniques in previous section to deal with the multidimensional

case.
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We extend the definitions in Section 1 to the multidimensional case in which there are multiple

attributes. Suppose the number of dimensions is d and the attribute set is {X1,X2, . . . ,Xd}. Let

Dk = {0, 1, . . . , Nk −1} be the domain of attribute Xk. The value set Vk of attribute Xk is the set

of nk values of Xk that are present in relation R. Let vk,1 < vk,2 < · · · < vk,nk
be the individual nk

values of Vk. The data distribution of Xk is the set of pairs Tk = {(vk,1, fk,1), (vk,2, fk,2), . . . , (vk,nk
fk,nk

)}.

The joint frequency f(i1, . . . , id) of the value combination (v1,i1 , . . . , vd,id) is the number of tuples

in R that contain vik,k in attribute Xk, for all 1 ≤ k ≤ d. The joint data distribution T1,...,d is

the entire set of (value combination, joint frequency) pairs. The joint frequency matrix F1,...,d

is a n1 × · · · × nd matrix whose [i1, . . . , id] entry is f(i1, . . . , id). We can define the cumulative

joint distribution T C
1,...,d and extended cumulative joint distribution T C+

1,...,d by analogy with the

one-dimensional case. The extended cumulative joint frequency FC+

1,...,d for the d attributes X1,

X2, . . . , Xd is a N1 × N2 × · · · × Nd matrix S defined by

S[x1, x2, . . . , xd] =
x1∑

i1=0

x2∑
i2=0

· · ·
xd∑

id=0

f(i1, i2, . . . , id).

A very nice feature of our wavelet-based histograms is that they extend naturally to mul-

tiple attributes by means of multidimensional wavelet decomposition and reconstruction. The

procedure of building the multidimensional wavelet-based histogram is similar to that of the one-

dimensional case except that we approximate the extended cumulative joint distribution T C+

1,...,d

instead of T C+
.

In the preprocessing step, we obtain the joint frequency matrix F1,...,d and use it to compute

the extended cumulative joint frequency matrix S. We then use the multidimensional wavelet

transform to decompose S. There are some common ways to perform multi-dimensional wavelet

decomposition. Each of them is a multi-dimensional generalization of the one-dimensional trans-

form described in Section 2.4. In this paper, we use the standard decomposition. To obtain the

standard decomposition of a multi-dimensional array S, we first apply the one-dimensional trans-

form along one dimension, e.g., dimension X1. Next, we apply the one-dimensional transform

along the second dimension X2 on the transform result of the first step, and so on. We repeat this

operation until we are done with the last dimension Xd. For example, for two-dimensional case,

we first apply the one-dimensional wavelet transform to each row of the two-dimensional array.

These transformed rows form a new two-dimensional array. We then apply the one-dimensional

transform to each column of the new array. The resulting values form our wavelet coefficients. Af-
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ter the decomposition step, pruning is performed to obtain the muiti-dimensional wavelet-based

histogram H of size m. We can view H as a multi-dimenional array of length m, with each

entry being of form (i1, i2, . . . , id, v), where v is the value of a significant wavelet coeffcient and

(i1, i2, · · · , id) is its index.

In the query phase, in order to approximate the selectivity of a range query of the form

(l1 ≤ X1 ≤ h1) ∧ · · · ∧ (ld ≤ Xd ≤ hd), we use the wavelet coefficients to reconstruct the 2d

cumulated counts S[x1, x2, . . . , xd], for xj ∈ {lj − 1, hj}, 1 ≤ j ≤ d. The following theorem

adopted from [HAMS97] can be used to compute an estimate S′ for the result size of the range

query:

Theorem 2 ([HAMS97]) For each 1 ≤ j ≤ d, let

s(j) =

⎧⎨⎩ 1 if xj = hj;

−1 if xj = lj − 1.

Then the approximate selectivity for the d-dimensional range query specified above is

S′ =
∑

xj∈{lj−1,hj}
1≤j≤d

d∏
i=1

s(i) × S[x1, x2, . . . , xd].

By convention, we define S[x1, x2, . . . , xd] = 0 if xj = −1 for any 1 ≤ j ≤ d.

Now we show how to reconstruct the approximate value of S(x1, x2, · · · , xd) using the m

wavelet coefficients in our multi-dimensional histogram using the following algorithm:

Reconstruct Value(H,m, d, x1, x2, . . . , xd)
value = 0;
for j = 1, 2, . . . ,m do

if Contribute(H[j], i1, i2, . . . , id) then
value = value + Compute Contribution(H[j], x1, x2, . . . , xd);

return value;

Function Contribute(H[j], x1, x2, . . . , id) returns true if the jth coefficient H[j] contributes to the

recontruction of the value S(x1, x2, · · · , xd), and it returns false otherwise. Function Compute Contribution

computes the actual contribution of H[j] to the recontruction of the original value S(x1, x2, · · · , xd).

We extend the observations in Section 3 to the multidimensional case and devise two algorithms

to compute the multidimensiional versions of functions Contribute and Compute Contribution .

The CPU time complexity of both algorithms is O(d).

We denote an entry of H by h = (i1, i2, . . . , id, v) in the following functions.
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Function Contribute(h, x1, x2, . . . , xd)
//check the coefficient h to see if it contributes to the reconstruction of value S(x1, x2, . . . , xd)

contribute = true;
j = 1;
while (contribute) and (j ≤ d)

//get the the label of the left most leaf for the subtree
//rooted at node ij in an error tree with |Dj | leaves
Ll = left most leaf (ij , |Dj |);
//get the the label of the right most leaf for the subtree
//rooted at node ij in an error tree of N = |Dj |
Lr = right most leaf (ij , |Dj |);
if (xj /∈ [Ll, Lr]) //leaf xj is not in the subtree rooted at node ij

then contribute = false;
return contribute;

Function Compute Contribution(h, x1, x2, . . . , xd)
//compute the contribution of coeffcient h to the reconstruction of value S(x1, x2, . . . , xd)

contribution = v;
for j = 1, 2, . . . , d do

if (ij = 0) //node ij is not the root in the error tree of dimension Dj

depth = 
log ij�; //compute the depth of node ij in the error tree
if (depth < log |Dij | − 1) //node ij is not a parent of leaves

then

//get the the label of the left most leaf for node ij ’s right
//subtree in an error tree with |Dj | leaves
Lrl = left most leaf (right child(ij), |Dj |);
//get the the label of the right most leaf for node ij ’s right
//subtree in an error tree with |Dj | leaves
Lrr = right most leaf (right child(ij), |Dj |);

else //node ij is a parent of leaves
Lrl = right most leaf (ij , |Dj |);
Lrr = Lrl;

//Use Lemma 3
if (xj ∈ [Lrl, Lrr] //leaf xj is in node ij ’s right subtree

contribution = contribution × (−1);
return contribution;
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5 Experiments

In this section we report on some experiments that compare the performance of our wavelet-

based technique with those of Poosala et al [PIHS96, Poo97a, PI97] and random sampling. Our

synthetic data sets are those from previous studies on histogram formation and from the TPC-D

benchmark [TPC95]. For simplicity and ease of replication, we use method 1 for pruning in all

our wavelet experiments.

5.1 Experimental Comparison of One-Dimensional Methods

In this section, we compare the effectiveness of wavelet-based histograms with MaxDiff(V,A)

histograms and random sampling. Poosala et al [PIHS96] characterized the types of histograms

in previous studies and proposed new types of histograms. They concluded in their experiments

that the MaxDiff(V,A) histograms perform best overall.

Random sampling can be used for selectivity estimation [HS92, HS95, LNS90, LN85]. The

simplest way of using random sampling to estimate selectivity is, during the off-line phase, to take

a random sample of a certain size (depending on the catalog size limitation) from the relation.

When a query is presented in the on-line phase, the query is evaluated against the sample, and

the selectivity is estimated in the obvious way: If the result size of the query using a sample of

size t is s, the selectivity is estimated as sT/t, where T is the size of the relation.

Our one-dimensional experiments use the many synthetic data distributions described in detail

in [PIHS96]. We use T = 100,000 to 500,000 tuples, and the number n of distinct values of the

attribute is between 200 and 500.

We use eight different query sets in our experiments:

A: {X ≤ b | b ∈ D}.

B: {X ≤ b | b ∈ V }.

C: {a ≤ X ≤ b | a, b ∈ D, a < b}.

D: {a ≤ X ≤ b | a, b ∈ V , a < b}.

E: {a ≤ X ≤ b | a ∈ D, b = a + ∆}, where ∆ is a positive integer constant.

F: {a ≤ X ≤ b | a ∈ V , b = a + ∆}, where ∆ is a positive integer constant.

G: {X = b | b ∈ D}.

H: {X = b | b ∈ V }.
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Different methods need to store different types of information. For random sampling, we

only need to store one number per sample value. The MaxDiff(V,A) histogram stores three

numbers per bucket: the number of distinct attribute values in the bucket, the largest attribute

value in the bucket, and the average frequency of the elements in the bucket. Our wavelet-based

histograms store two numbers per coefficient: the index of the wavelet coefficient and the value

of the coefficient.

In our experiments, all methods are allowed the same amount of storage. The default storage

space we use in the experiments is 42 four-byte numbers (to be in line with Poosala et al’s

experiments [PIHS96], which we replicate); the limited storage space corresponds to the practice

in database management systems to devote only a very small amount of auxiliary space to each

relation for selectivity estimation [SAC+79]. The 42 numbers correspond to using 14 buckets for

the MaxDiff(V,A) histogram, keeping m = 21 wavelet coefficients for wavelet-based histograms,

and maintaining a random sample of size 42.

The relative effectiveness of the various methods is fairly constant over a wide variety of value

set and frequency set distributions. We present the results from one experiment that illustrates

the typical behavior of the methods. In this experiment, the spreads of the value set follow the

cusp max distribution with Zipf parameter z = 1.0, the frequency set follows a Zipf distribution

with parameter z = 0.5, and frequencies are randomly assigned to the elements of the value set.3

The value set size is n = 500, the domain size is N = 4096, and the relation size is T = 105.

Tables 1–5 give the errors of the methods for query sets A, C, E, G, and H. Figure 2 shows how

well the methods approximate the cumulative distribution of the underlying data.

Wavelet-based histograms using linear bases perform the best over almost all query sets, data

distributions, and error measures. The random sampling method does the worst in most cases.

Wavelet-based histograms using Haar bases produce larger errors than MaxDiff(V,A) histograms

in some cases and smaller errors in other cases. The reason for Haar’s lesser performance arises

from the limitation of the step function approximation. For example, in the case that both

frequency set and value set are uniformly distributed, the cumulative frequency is a linear function

of the attribute value; the Haar wavelet histogram produces a sawtooth approximation, as shown
3The cusp max and cusp min distributions are two-sided Zipf distributions. Zipf distributions are described in

more detail in [Poo97a]. Zipf parameter z = 0 corresponds to a perfectly uniform distribution, and as z increases,

the distribution becomes exponentially skewed, with a very large number of small values and a very small number

of large values. The distribution for z = 2 is already very highly skewed.
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in Figure 2b. The Haar estimation can be improved by linearly interpolating across each step of

the step function so that the reconstructed frequency is piecewise linear, but doing that type of

interpolation after the fact amounts to a histogram similar to the one produced by linear wavelets

(see Figure 2a), but without the explicit error optimization done for linear wavelets when choosing

the m coefficients.

We also studied the effect of storage space for different methods. Figure 3 plots the results of

two sets of our experiments for queries from query set A. In the experiments, the value set size

is n = 500, the domain size is N = 4096, and the relation size is T = 105. For data set 1, the

value set follows cusp max distribution with parameter z = 1.0, the frequency set follows a Zipf

distribution with parameter z = 1.0, and frequencies are assigned to value set in a random way.

For data set 2, the value set follows zipf dec distribution with parameter z = 1.0, the frequency

set follows uniform distribution.

In addition to the above experiments we also tried a modified MaxDiff(V,A) method so that

only two numbers are kept for each bucket instead of three (in particular, not storing the number

of distinct values in each bucket), thus allowing 21 buckets per histogram instead of only 14. The

accuracy of the estimation was improved. The advantage of the added buckets was somewhat

counteracted by less accurate modeling within each bucket. The qualitative results, however,

remain the same: The wavelet-based methods are significantly more accurate. Further improve-

ments in the wavelet techniques are certainly possible by quantization and entropy encoding, but

they are beyond the scope of this paper.

5.2 Experimental Comparison of Multidimensional Methods

In this section, we evaluate the performance of histograms on two-dimensional (two-attribute)

data. We compare our wavelet-based histograms with the MaxDiff(V, A) histograms computed

using the MHIST-2 algorithm [PI97] (which we refer to as MHIST-2 histograms).

In our experiments we use the synthetic data described in [PI97], which is indicative of various

real-life data [Bur], and the TPC-D benchmark data [TPC95]. Our query sets are obtained by

extending the query sets A–H defined in Section 5.1 to the multidimensional cases.

The main concern of the multidimensional methods is the effectiveness of the histograms in

capturing data dependencies. In the synthetic data we used, the degree of the data dependency

is controlled by the z value used in generating the Zipf distributed frequency set. A higher z
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Error Norm Linear Wavelets Haar Wavelets MaxDiff(V,A) Random Sampling

‖erel‖1 0.6% 4.5% 8% 20%
‖eabs|1/T 0.16% 0.8% 3% 8%
‖eabs‖2/T 0.26% 0.64% 3.2% 10%
‖eabs‖∞/T 1.5% 5.6% 11% 13%
‖ecomb‖1, 0.6 4.4 8 20

α = 1, β = 100

‖ecomb‖1, 5 30 80 200
α = 1, β = 1000

‖ecomb‖2, 5.1 70.4 12.8 19
α = 1, β = 1000

‖ecomb‖2, 19 224 192 243
α = 1, β = 1000

Table 1: Errors of various methods for query set A.

Error Norm Linear Wavelets Haar Wavelets MaxDiff(V,A) Random Sampling

‖eabs‖1/T 0.2% 1.1% 5% 3.5%
‖eabs‖2/T 0.035% 0.18% 0.71% 0.6%
‖eabs‖∞/T 2.4% 10% 20% 16%

Table 2: Errors of various methods for query set C.

Error Norm Linear Wavelets Haar Wavelets MaxDiff(V,A) Random Sampling

‖eabs‖1/T 0.1% 0.42% 0.15% 0.35%
‖eabs‖2/T 0.19% 0.96% 0.26% 0.64%
‖eabs‖∞/T 1.5% 6% 3% 4.6%

Table 3: Errors of various methods for query set E with ∆ = 10.

Error Norm Linear Wavelets Haar Wavelets MaxDiff(V,A) Random Sampling

‖eabs‖1/T 0.03% 0.04% 0.04% 0.04%
‖eabs‖2/T 0.077% 0.32% 0.096% 0.24%
‖eabs‖∞/T 1.6% 7% 2% 4.6%

Table 4: Errors of various methods for query set G.

Error Norm Linear Wavelets Haar Wavelets MaxDiff(V,A) Random Sampling

‖eabs‖1/T 0.03% 0.42% 0.2% 0.4%
‖eabs‖2/T 7.7% 16.1% 25.6% 38%
‖eabs‖∞/T 0.2% 7% 2% 5 %

Table 5: Errors of various methods for query set H.

value corresponds to fewer very high frequencies, implying stronger dependencies between the

attributes. One question raised here is what is the reasonable range for that z value. As in [PI97],

we fix the relation size T to be 106 in our experiments. If we assume our joint value set size is

26



Data Range Linear Wavelets Haar Wavelets MHIST-2

255 0.3% 1.5% 7%
511 0.3% 1.6% 8%

1023 0.3% 1.6% 6%
2047 0.3% 1.6% 6%

Table 6: ‖eabs‖1/T errors of various two-dimensional histograms for TPC-D data.
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(b) Haar Wavelets
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(c) MaxDiff(V, A)
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(d) Random Sampling

Figure 2: Approximation of the cumulative data distribution using various methods.

n1 × n2, then in order to get frequencies that are at least 1, the z value cannot be greater than a

certain value. For example, for n1 = n2 = 50, the upper bound on z is about 1.67. Any larger z

value will yield frequency values smaller than 1. In our experiments, we choose various z in the

range 0 ≤ z ≤ 1.5. The value z = 1.5 already corresponds to a highly skewed frequency set; its

top three frequencies are 388747, 137443, and 74814, and the 2500th frequency is 3. In [PI97],

larger z values are considered; most of the Zipf frequencies are actually very close to 0, so they
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Figure 3: Effect of storage space for various one-dimensional histograms using query set A.
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Figure 4: Effect of frequency skew, as reflected by the Zipf z parameter for the frequency set

distribution.

are instead boosted up to 1, with the large frequencies correspondingly lowered, thus yielding

semi-Zipf distributed frequency sets [Poo97b]. The relative effectiveness of different histograms

is fairly constant over a wide variety of data distributions and query sets that we studied. Figure 4

depicts the effect of the Zipf skew parameter z on the accuracy of different types of histograms for

one typical set of experiments. In these experiments, we use N1 = N2 = 256 and n1 = n2 = 50; the

value set in each dimension follows cusp max distribution with zs = 1.0. The storage space is 210

four-bytes numbers (again, to be in line with the default storage space in [PI97]). It corresponds

to using 30 buckets for MHIST-2 histogram (seven numbers per bucket) and keeping 70 wavelet

coefficients for wavelet-based based histogram (three numbers per coefficient). The queries used
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Figure 5: Effect of storage space on two-dimensional histograms.

are those from query set A.

In other experiments we study the effect of the amount of allocated storage space upon the

accuracy of various histograms. As we mentioned above, the amount of storage devoted to a

catalog is quite limited in any practical DBMS. Even without strict restrictions on the catalog

size, a big catalog means that more buckets or coefficients need to be accessed in the on-line phase,

which slows down performance. Figure 5 plots the effectiveness of the allocated storage space on

the performance of various histograms. In the experiments, we use the same value set and query

set as for Figure 4. The frequency skew is z = 0.5 for (a) and z = 1.0 for (b).

We conducted experiments using TPC-D data [TPC95]. We report the results for a typical

experiment here. In this experiment, we use column L SHIPDATA and column L RECEIPDATA

in the LINEITEM table, defined as follows:

L SHIPDATA = O ORDERDATA + random(121)

L RECEIPTDATA = L SHIPDATA + random(30),

where O ORDERDATA is uniformly distributed between values STARTDATA and ENDDATA−

151, and random(k) returns a random value between 1 and k. We fix the table size to be T = 106

and vary the size n of the value set V by means of changing data range, the difference between

ENDDATA and STARTDATA. Table 6 shows the ‖eabs‖1/T errors of the different histogram

methods for Set A queries.
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6 Conclusions

In this paper we have proposed a method to build efficient and effective histograms using wavelet

decomposition. Our histograms give improved performance for selectivity estimation compared

with random sampling and previous histogram-based approaches. Ever since wavelet transforma-

tions were first used for selectivity estimation in the prelimary version of this paper [MVW98],

there have been many interesting new developments in using wavelet-based techniques in databases

and related applications [Wan99, VWI98, VW99, CGRS00, MVW00, GG02, NRS99, GKMS01,

WVLP, DR, PM, MP03, BMW]. We conclude this paper by a brief summary on these new

developments.

In [VWI98], a new method based on a logarithm transform is proposed to further reduce

the relative errors in wavelet-based approximation. Experiments show that by applying the new

method, we can achieve much better accuracy for the data considered in Section 5.

Besides selectivity estimation, an important application area for wavelet-based approximation

techniques is On-Line Analytical Processing (OLAP) in data warehouses. Data warehouses can

be extremely large, yet obtaining quick answers to queries is important. In many situations,

obtaining the exact answer to an OLAP query is prohibitively expensive in terms of time and/or

storage space. It can be advantageous to have fast, approximate query answers.

Selectivity estimation is completely internal to the database engine, and the quality (accuracy)

of the approximation is observable by a user only indirectly in terms of the performance of the

database system. Although a bad (inaccurate) estimation might cause a query to be executed

slower, the engine still gives the correct query result. On the other hand, in OLAP applications,

approximation plays a more direct role: the query result itself is an approximation. A bad

estimation implies a query result with big error that might be unacceptable to a user. Therefore

the nature and the quality of approximation become more salient.

Using the wavelet decomposition technique presented in this paper, Vitter and Wang initiate

the study of answering OLAP queries approximately in [VW99]. In [VW99], they present novel

methods that provide approximate answers to high-dimensional OLAP aggregation queries in

massive sparse data sets in a time-efficient and space-efficient manner. The methods consist

of I/O-efficient algorithms to construct an approximate and space-efficient representation of the

underlying multidimensional data. In the on-line phase, each aggregation query can generally

be answered using the compact representation in one I/O or a small number of I/Os, depending
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upon the desired accuracy.

While [VW99] mainly addresses multidimensional range-sum queries on a data cube, Chakrabarti

et al. extend the use of multi-dimensional wavelets as an effective tool for general-purpose ap-

proximate query processing in [CGRS00].

In this paper, we have shown that wavelet-based histograms provide more accurate selec-

tivity estimation answer than random sampling and traditional histogram methods. Since our

histograms are built by a nontrivial mathematical procedure, namely, wavelet transformation,

it is hard to maintain the accuracy of the wavelet-based histograms when the underlying data

distribution changes over time. In particular, simple techniques, such as split and merge, which

works well for traditional equi-depth histograms, and updating a fixed set of wavelet coefficients,

are not suitable here.

In [MVW00], Matias et al. propose a novel approach based upon probabilistic counting and

sampling to maintain wavelet-based histograms and compact data cubes with very little online

time and space costs. The accuracy of the method is robust to changing data distributions,

and we can get a considerable improvement over previous methods for updating transform-based

histograms. A very nice feature of the method is that it can be extended naturally to maintain

multidimensional wavelet-based histograms, while traditional multidimensional histograms can be

less accurate and prohibitively expensive to build and maintain.

Wavelet-based techniques have also been widely used in data mining [LLZO02] and references

therein. In [GKMS01], wavelet technique is used to compute small space representations of massive

data streams.

Even though the work in [VW99] and [CGRS00] has demonstrated the effectiveness of wavelet

decomposition in reducing large amounts of data to compact set wavelet coefficients that can be

used to provide fast and reasonably accurate approximate answers to queries, a major criticism

of such techniques is that unlike, for example, random sampling, they do not provide informative

error guarantees on the accuracy of individual approximate answers. In [GG02], Garofalakis et

al. introduce probabilistic wavelet synopses, the first wavelet-based data reduction technique with

guarantees on the accuracy of individual approximate answers.
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