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Abstract

In this paper we consider aggregate predicates and their sup-
port in database systems. Aggregate predicates are the predi-
cate equivalent to aggregate functions in that they can be used
to search for tuples that satisfy some aggregate property over
a set of tuples (as opposed to simply computing an aggregate
property over a set of tuples). The importance of aggregate
predicates is exempli�ed by many modern applications that
require ranked search, or top-k queries. Such queries are the
norm in multimedia and spatial databases.

In order to support the concept of aggregate predicates in
DBMS, we introduce several extensions in the query language
and the database engine. Speci�cally, we extend the SQL syn-
tax to handle aggregate predicates and work out the semantics
of such extensions so that they behave correctly in the existing
database model. We also propose a a new rk SORT opera-
tor into the database engine, and study relevant indexing and
query optimization issues.

Our approach provides several advantages, including en-
hanced usability and improved performance. By supporting
aggregate predicates natively in the database engine, we are
able to reuse existing indexing and query optimization tech-
niques, without sacri�cing generality or incurring the runtime
overhead of database-external approaches. To the best of our
knowledge, the proposed framework is the �rst to support user-
de�ned indexing with aggregate predicates and search based
upon user-de�ned ranking. We also provide empirical results
from a simulation study that validates the e�ectiveness of our
approach.
Keywords: aggregate predicates, nearest neighbor,
query optimization

1 Introduction

In traditional database systems, users can
limit the results of queries by using the
standard relational and logical operators
(<; �; =; 6=; �; >, AND, OR, NOT). In addi-
tion, object relational databases, such as IBM's
DB2, allow users to de�ne their own predicates
that can be used in queries and be exploited by
query optimizers (Chen, Chow, Fuh, Grandbois, Jou,
Mattos, Tran & Wang 1999). These predicates are
scalar predicates and are True or False for individual
tuples independent of other tuples.

Existing database systems support both scalar
functions (e.g., ABS, SQRT) as well as aggregate
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functions (e.g., MAX, MIN, AVG). The main di�er-
ence between the two types is that aggregate func-
tions work over a set of tuples, while scalar func-
tions take individual tuples as arguments. Unlike
functions, however, existing database systems sup-
port only scalar predicates but not aggregate pred-
icates. At the same time, many real world applica-
tions, especially in the multimedia domain, require
aggregate predicates. The most well known example
is ranked search applications, illustrated by the fol-
lowing types of queries:

� Find the top 10 images similar to a query image.

� Find the top 5 fault lines nearest to my house?

� For each store, �nd the top 10 selling products.

These examples share some common aspects. First,
each query involves an aggregate predicate. In particu-
lar, we cannot determine if an image is in the answer
set of the �rst query without comparing it with re-
spect to other images in the database. Second, all
examples involve a search based upon an aggregate
predicate. In other words, we are not checking to see
if a given image is the most similar one to the query
image|instead, we are searching for the image most
similar to the query image. Such queries are preva-
lent in multimedia and spatial applications, and are
the focus of this work.

The rest of the paper is organized as follows. In
the remaining part of this section we discuss related
work on the ranked search problem, and list some ad-
vantages and disadvantages of the alternative meth-
ods. We also outline the main contributions of our ap-
proach and compare it with the previous approaches.
Section 2 de�nes the notion of aggregate predicates
and introduces certain extensions to the SQL query
language to handle aggregate predicates. We give
several query examples and explain the syntax and
semantics of aggregate predicates in SELECT state-
ments, and clarify their relationship in the context of
WHERE, HAVING, ORDER BY, and GROUP BY
clauses. In Section 3 we describe the runtime model
and introduce a new rk SORT operator. Section 4
deals with query optimization. In particular, we
show how to extend the traditional query optimiza-
tion techniques to the case of ranked search. Sec-
tion 5 describes the experimental study we performed
and lists empirical results to validate the e�ectiveness
of our approach. We draw conclusions in Section 6.

1.1 Related work

The problem of nearest neighbor queries is well-
known and has been studied extensively in the lit-
erature. One of the main approaches is to de-
velop indexing mechanisms that target speci�c ap-



plications of that problem. For example, evalua-
tion of nearest neighbor queries has been investigated
using the familiar R-trees in (Roussopoulos, Kelley
& Vincent 1995). New indexing data structured
have also been developed, such as SS-trees (White
& Jain 1996). The Hybrid tree, although developed
for a di�erent purpose|namely indexing of high-
dimensional data|can also support nearest neighbor
queries, although the authors do not address the prob-
lem directly (Chakrabarti & Mehrotra 1998). While
the approach of developing domain-speci�c indexing
mechanisms works for speci�c applications, it has
only been investigated for a very limited number of
distance metrics, and it requires implementations of
new tree facilities for search, concurrency, and recov-
ery, for each new application. The cost of implement-
ing such trees is very high, especially if they are to be
used only for speci�c applications.

Another approach that alleviates the above prob-
lem is to develop generalized search trees that support
nearest neighbor queries and ranked search. This ap-
proach is exempli�ed by the extension of GiST (Aoki
1997, Hellerstein, Naughton & Pfei�er 1995), and it
has the advantage of generality by allowing users to
control every step of the traversal in the search tree.
The disadvantage is that such user control is typ-
ically accomplished through expensive user-de�ned
functions. The invocation of user-de�ned functions at
each step of the tree traversal can cause heavy run-
time overhead.

Due to the high cost of implementing domain-
speci�c approaches or new indexing techniques, many
applications use a simple application-driven ap-
proach, where the rank is explicitly computed for each
tuple in the database, all tuples are then sorted, and
only the top k are fetched by the application. This
naive approach has high computation overhead if the
number of desired responses is very small compared
to the total number of records in the table.

A fourth approach is to reduce the top-k selection
queries to a normal range query by estimating a cut-
o� threshold for the score used for ranking. Ideally, a
top-k selection query based on a scoring function over
a set of attributes A is transformed into an equivalent
query with predicate Score(A) > � , where � is the op-
timal cut-o� threshold (i.e., the score of the kth best
answer). In that case, there is no longer a need to
sort all tuples in order to answer the query. Further
savings can be achieved if there is also an index over
the attributes A that can be exploited to fetch only
those tuples that satisfy the score range predicate.
In practice, however, the optimal � is hard to �nd
without sorting all tuples so the goal is to approxi-
mate the optimal threshold at a relatively small cost.
The approach of (Chaudhuri & Gravano 1999) uses
heuristics and histogram statistics about the data dis-
tribution in order to estimate � , while (Donjerkovic &
Ramakrishnan 1999) uses a probabilistic model and
chooses � so that the expected cost of the query ex-
ecution is minimized. Both methods, however, su�er
in the case of poor guesses since they lead to ranges
that are either too small (with insu�cient number of
responses to the query) or too large (with more tuples
than necessary).

If the estimated range does not produce enough
answers to the query, the whole process is restarted
and much of the work is done again, without being
able to reuse the answers returned in the previous
attempt. The reason for this computation overhead
is the fact that the whole process is performed out-
side of the database engine and repeated range esti-
mates lead to completely independent queries. The
problem of incorporating these approaches into the
database engine in order to eliminate this computa-
tion overhead turns out to be a non-trivial task how-

ever. First, it is not clear what the semantics of these
approaches would be in relational database systems
that are based on non-fuzzy set algebra and are tra-
ditionally built in the spirit of a push data model.
Incorporating fuzzy functionality and ordered sets in-
side the database engine poses some semantic and
optimization issues with respect to the proper inter-
pretation and execution of such fuzzy operators. In
addition, lack of accurate statistic information about
the data distribution is a major obstacle for the above
approaches since it leads to large errors when approx-
imating � . In contrast, the approach we propose in
this paper is well-de�ned semantically and syntacti-
cally, works entirely within the database engine, and
provides optimizations even in the case of inaccurate
statistic information.

Carey and Kossman (Kossmann & Carey 1997,
Carey & Kossmann 1998) were the �rst to push
ranked sort into the database engine and to introduce
early termination through a new STOP AFTER oper-
ator. They showed that considerable savings can be
achieved by pushing that operator down the access
plan tree, when the number of matches, k, is signi�-
cantly smaller than the size of the relation. They pro-
vided two heuristics for the placement of the STOP
AFTER operator|a conservative one that avoids
restarts by placing the operator higher in the access
plan tree, and an aggressive one that pushes the oper-
ator more deeply into the tree at the risk of having to
re-execute the query in some cases. The disadvantage
of the conservative approach is that it does not fully
realize the savings that can be achieved from early
termination, while the aggressive approach gets pe-
nalized when the cardinality is overestimated at an in-
termediate stage of the execution plan and the query
needs to be restarted. The authors later extended
their approach by using range partitioning techniques
which allowed only partial re-computations (Carey &
Kossmann 1998). The basic idea is similar to the ap-
proaches in (Chaudhuri & Gravano 1999, Donjerkovic
& Ramakrishnan 1999) and it involves estimating
range cardinalities so that the data can be partitioned
into independent buckets, and all computation (in-
cluding restarts) is done only on the relevant buckets,
thus avoiding overhead for irrelevant buckets. This
approach alleviates the problem of insu�cient distri-
bution statistics somewhat because even if the par-
titioning is not optimal, the system can still prune
some irrelevant buckets. However, the amount of data
that gets pruned is still highly dependent on the par-
titioning and therefore on the distribution statistics.
Such statistics are generally unavailable whenever the
ranking is done according to a user-de�ned function
for example. In addition, for partitioning purposes,
the approach requires the score value for each tuple,
and therefore, needs to do a full table scan and eval-
uate the user-de�ned predicate on each tuple. The
major cost savings come from the fact that sorting
is avoided for some of the tuples but the data still
needs to be scanned completely. Ideally, we would
like to avoid that if there is an index available for the
predicate used for ranking.

In order to exploit the full bene�ts of early termi-
nation in the case of user-de�ned indexing and rank-
ing, the system simply must delegate some decisions
to the user. This paper proposes an approach similar
to the above one but with several distinctions. First,
it allows index exploitation so that savings can be
achieved not only from avoiding to sort unnecessary
data but also from avoiding to scan such data. Most
importantly, such index exploitation is available even
for user-de�ned indexes and when the sorting is based
on a user-de�ned predicate. This opens up more op-
portunities for query optimization based on early ter-
mination, and is the main advantage of our approach



over that of Carey and Kossman|by utilizing the ex-
isting framework for user-extensible indexing, we are
able to exploit such indexes and achieve early termi-
nation even if no runtime system statistics are avail-
able. In addition, we extend the functionality of the
ranked search so that the sorting is performed over
an independent aggregation window, thus enabling a
richer set of queries.

1.2 Proposed approach and advantages

This paper makes several contributions towards ag-
gregate predicates and ranked search in DBMS:

� We extend the SQL language with the concept
of ranked search and aggregate predicates. We
work out the syntax and semantics of aggre-
gate predicates so that they can be used in the
same way as traditional scalar predicates without
disturbing the meaning of WHERE, HAVING,
GROUP BY, and ORDER BY clauses.

� We design a 
exible language mechanism (sim-
ilar to OLAP window speci�cation) that allows
aggregate predicates to operate over an arbitrary
set of tuples

� We design runtime query execution strategies for
aggregate predicates that support both ranked
incremental retrieval with no explicit bound
and ranked incremental retrieval with a speci�c
bound, such as top 10.

� We design indexing and query optimization
strategies for aggregate predicates when the rank
in an aggregate predicate is computed using only
system built-in functions.

� We extend the above scenario to the previously
unsupported case of user-de�ned functions, and
we support extensible indexing with aggregate
predicates.

The main advantage of our proposal is the native
support of aggregate predicates with better perfor-
mance, as compared to some alternative solutions.
The introduction of aggregate predicates into the
SQL language provides enhanced expressive power for
users. While users may be able to simulate some
aggregate predicates using aggregate functions and
relational operators, such an approach has a usabil-
ity problem and a performance problem. The rea-
son is that aggregate functions and aggregate pred-
icates serve di�erent purposes. For usability con-
siderations, if a user wants to �nd the top 5 im-
ages most similar to a query image, the user would
have to create an explicit column for image similarity
ranking, and then create a condition on the explicit
rank column. This leads to signi�cant rank mainte-
nance problems with respect to data insertions and
deletions|in particular, the user would have to re-
compute the rank column every time data is updated.
In terms of performance, aggregate functions are al-
ways computed and involve scanning of the entire ta-
ble, while search based on aggregate predicates can
avoid or limit such computations and data scan.

We believe that the native support of ranked
search is a signi�cant advantage in practice. For
example, consider an improvement to the naive ap-
proach, where the application controls the number of
records being processed for ranking by doing the com-
putation in rounds. This is essentially the same as the
approach we are proposing but implemented entirely
through a stored procedure or a client command. The
disadvantages of using this approach outside of the
database engine are several. In terms of usability,
not all of the functionality can be achieved that way.

For example, nested queries involving aggregate pred-
icates would not be possible because the stored proce-
dure or client command cannot put the ranked output
into the pipeline. In addition, Boolean expressions in-
volving aggregate predicates would either be unavail-
able or would have to be implemented as separate
stored procedures or client commands. This would
result in a signi�cantly more limited query power.
On the other hand, pushing the functionality into the
database engine enhances the query power and reuses
existing indexing and optimization techniques for the
case of aggregate predicates. In terms of performance,
implementing the approach outside the engine would
mean using separate SQL queries for each round. In
addition to potential network delay, this would also
lead to increased compilation and initialization time,
and therefore degraded e�ciency. The performance
bene�ts of a database engine approach have been pre-
viously investigated in (Kossmann & Carey 1997) for
example. Finally, the database-external approach re-
quires a separate stored procedure/client command
for each index type, which is programming labor con-
suming and entails high maintenance cost.

Compared to the alternative methods, our ap-
proach is most similar to the work of Carey and Koss-
man (Kossmann & Carey 1997, Carey & Kossmann
1998) in that it uses early termination and pushes the
ranked sort computation down the plan tree. How-
ever, in our approach this is achieved through the
introduction of a new and more powerful rk SORT
operator, which enables query optimization and ex-
ploitation of user-de�ned indexes. This helps us to
reduce not only sorting costs but also data scanning
costs. In contrast to other related work, our approach
is extensible in the sense that users can control ranked
search, thus avoiding some of the shortcomings of
domain-speci�c approaches. Such control is further-
more exercised at a high level in our framework by
generating a sequence of search ranges that are used
by the underlying access method without compromis-
ing its e�ciency. This avoids the runtime overhead
of the GiST approach, for example. Also, our ap-
proach is dynamic and incremental|it handles data
insertions and deletions that make the rank hard to
maintain by some of the other approaches. Finally,
it does not rely heavily on distribution statistics, al-
though it can make use of such statistics, if available.
Using data distribution information and heuristics,
the rk SORT operator could minimize the number
of rounds, thus avoiding some initialization overhead
and restricting unnecessary work to a minimum.

2 Language model

In this section we describe the SQL extensions
necessary to support aggregate predicates. Infor-
mally, we de�ne aggregate predicates as functions
AP (W; : : :) ! fTrue; Falseg, where W denotes a
window speci�cation (i.e., the �rst argument is a set
argument), and the dots denote one or more scalar
arguments. In other words, aggregate predicates op-
erate over a set of items and compute a true or a false
value based on the scalar attributes with respect to
the speci�ed window. Usually, this means searching
for some tuples that satisfy a certain aggregate prop-
erty with respect to the search window, such as the
top 10 salaries in a department. Note that aggregate
predicates are more general than ranked search but
for simplicity we refer to aggregate predicates only
as ranked search in this paper and use the two inter-
changeably.

Our approach of supporting aggregate predicates
is to treat them the same way as scalar predicates
(e.g., relational or logical operators). Consider a
scalar predicate such as c1 < c2 + 10. To determine



the truth value of this predicate, all we need are the
values for c1 and c2. In contrast, an aggregate predi-
cate needs more information in order to determine its
truth value. For instance, in order to �nd the top 5
salaries, we need the following information:

� the ranking used in the aggregate predicate: the
attribute \salary" in this case

� the order we are interested in: descending for the
top 5 or ascending for the bottom 5 salaries

� the number of answers we want: 5 in this case

� the set of values over which the aggregate predi-
cate is evaluated (e.g., all salaries or per depart-
ment)

We need to capture all of the required information
in our extension to the SQL language. For this par-
ticular example, suppose that we have a table called
EMP , with columns of name , dept , salary , age . The
following query requests the top �ve salaries and the
corresponding names:

SELECT name, salary
FROM EMP
WHERE RANK(salary) DESC FIRST 5

If we need to retrieve the top �ve salaries in each de-
partment, we can use the following syntax, similarly
to the way window speci�cation is done with OLAP
functions:

SELECT dept , name, salary
FROM EMP
WHERE RANK(salary) DESC FIRST 5

OVER(dept)

There is a question of how aggregate predicates in-
teract with scalar predicates. Consider the following
query:

SELECT dept , name, salary
FROM EMP
WHERE RANK(salary) DESC FIRST 5

OVER(dept)
AND age < 25

What is the semantics of this query? Since the aggre-
gate and the scalar predicate are on the same level,
the semantics is to �nd the department, name, and
salary of employees in each department who earn one
of the top �ve salaries in the department and who
are younger than 25. What if we want the top �ve
salaries among young employees instead? The follow-
ing query can be used for this purpose:

SELECT dept , name, salary
FROM EMP
WHERE age < 25
HAVING RANK(salary) DESC FIRST 5

OVER(dept)

From the above examples, it may seem that aggre-
gate predicates have di�erent semantics in WHERE
clauses and in HAVING clauses. This is not the case!
The aggregate predicates, just like any other predi-
cate, have unique semantic meanings and can appear
in both types of clauses. It is the di�erent seman-
tics of the WHERE/HAVING clauses that cause the
query to be interpreted di�erently since they impose
di�erent order on the predicates. Note that when the
HAVING clause does not have any aggregate predi-
cates, all scalar predicates in the clause can usually
be merged with the predicates in the WHERE clause.
Such merge, however, cannot be allowed if the HAV-
ING clause has at least one aggregate predicate.

The syntax informally introduced above is well de-
�ned even if the statement contains GROUP BY or
ORDER BY clauses. The RANK term will still inter-
act nicely with such clauses because aggregate pred-
icates have their own group speci�cation (indicated
by the OVER term). A potential problem for the
rank search syntax arises when we have more than k
tuples that satisfy the aggregate predicate. For the
salary example, what if we have the top �fth and
sixth salary being actually the same? Do we include
the sixth in the answer set as well, or do we choose
one of them randomly? One possible solution, used
with OLAP functions, for example, is to introduce
another keyword, (e.g., RANKGAP), to indicate the
desired behavior.

So far we have considered only isolated aggregate
predicates. Just like scalar predicates, however, ag-
gregate predicates can be combined with others us-
ing logical operators, such as AND and OR. Note
that such combinations of aggregate predicates are
di�erent from those considered by Fagin (Fagin 1998).
To support compound aggregate predicates like those
in (Fagin 1998), we can use the following informal
syntax:

SELECT dept , name , salary
FROM EMP
WHERE RANK(salary) DESC AND

RANK (age) ASC FIRST 5
OVER(dept)

In this query we are trying to �nd, for each depart-
ment, the top �ve young and high salaried employees.
The ranking of a compound aggregate predicate de-
pends on how the ranking of each component aggre-
gate predicate is combined with each other. In such
a case, we may want to decide how much weight to
give to each component aggregate predicate, and in-
troduce some new syntax for that. For our purposes,
however, we are not interested in such compound ag-
gregate predicates, and for Boolean combinations of
aggregate predicates we adopt the semantics dictated
by set theory. For simplicity, in the rest of the paper,
we do not consider Boolean combinations of multiple
aggregate predicates.

Formally, we introduce a new syntax, aggregate
predicate, into the \search condition" of the SQL
language. The extended grammar is as follows:

predicate := scalar-predicate j
aggregate-predicate

aggregate-predicate := RANK (scalar-expression)
[ASC j DESC]
[FIRST numeric-expr.]
[OVER (aggregate-window)]

The RANK word identi�es the scalar expression
as an aggregate predicate, the order of the ranking is
done according to the ASC(ending) or DESC(ending)
keyword (ASC by default), and the number of desired
results is speci�ed in the FIRST clause. If the FIRST
clause is missing, all results are output in the speci�ed
order. The window speci�cation in the OVER clause,
if present, determines how the aggregation is to be
performed. If no aggregation window is speci�ed, the
result is aggregated over the entire table.

Let distance be a user-de�ne function (UDF) that
computes the distance between two points. The fol-
lowing query �nds the nearest 10 ATMs from a given
location using an \aggregate predicate" syntax in the
WHERE clause:

SELECT a:name , a:location , a:address
FROM ATM a
WHERE RANK(distance(a:location , :whereIam))

FIRST 10



Intuitively, the query engine fetches the tuples in the
ATM table and sorts them based on the value of the
UDF invocation in the WHERE clause. The top 10
tuples in the default sort order are returned as the
result. If there are less than 10 records, the entire
table is returned. Score ties among tuples for the
10th place are broken arbitrarily.

Just like normal predicates, aggregate predicates
can appear not only in the WHERE clause but also
in the HAVING clause of a query, as shown in the
following example:

SELECT s :id , c:name, c:address , c:location
FROM customers c, stores s
WHERE within(c:location , s :zone) = 1
HAVING RANK(c:income)

FIRST COUNT(�) � 0:1 OVER(s :id)

The result of the above query contains, for each store,
the tuples that represent the top 10% of customers in
terms of their annual income. The WHERE clause
speci�es the join condition between the two tables,
while the HAVING clause speci�es the aggregation
to be done for each store.

3 Runtime model

In this section we describe the runtime model of our
proposed framework and we discuss its implementa-
tion. In the current database model, the only avail-
able approach to dealing with ranked search is to sort
all tuples in the database and then fetch k answers
from the top. The main problem with this approach is
that all tuples need to be processed and ranked, even
if we need only a small subset of them. The reason is
that the sorting and fetching phases are separate and
the latter depends on the former. One natural solu-
tion is to combine the two phases in a sequence of in-
dependent rounds so that we can answer the query in
the early rounds and avoid unnecessary computation.
We can achieve this by introducing a new operator,
rk SORT, into the database engine. The rk SORT
operator is similar to the existing SORT operator but
it is aware of the notion of rounds, and is capable
of stopping or resuming computation at the end of a
round. By pushing the rk SORT operator deep into
the database engine, we can also reuse all of the ex-
isting indexing and optimization techniques.

This additional functionality raises the question,
however, of where the new operator �ts in the current
\push" model for databases. Traditionally, the query
execution model has been one of pushing data from
one end of the pipeline (the physical layout of the
data) to the other (the output of the database query).
The pipeline 
ow therefore stops only when there is
no more data to be channeled through. In ranked
search queries, though, we would like to terminate
execution, as soon as we have enough answers, even
though there may be more data in the pipeline. This
leads us to reconsider the query execution model, and
conceptually to think of a \pull" model, where data
is pulled from the input towards the output end of
the pipeline. This demand-driven model is already
getting adopted in commercial systems in terms of
functionality { all of the major DBMS support some
form of top-k queries. Unfortunately, the architecture
and implementation details for this kind of support in
the commercial systems have not been published, and
it is not clear if such support is provided to the extent
of functionality only or with query optimization.

We now give a more formal description of our
runtime model. We focus on support for aggregate
predicates with extensible indexing because it is the
harder case but exploitation of system built-in index
types is also available. In that case, the role of the

range producer below is performed by the query op-
timizer itself, who generates the sequence of ranges.
User-de�ned indexing is described in the context of
IBM's DB2 database system. In particular, we as-
sume that the user is provided with certain hooks into
the database engine in order to allow maintenance
and exploitation of user-de�ned index types (Chen
et al. 1999). The main such hook that is crucial to
our framework is the range producing function. The
range producer's task is to map a speci�c (possibly
user-de�ned) predicate into a set of index key ranges
that contain the tuples that satisfy the given predi-
cate. Each user-de�ned predicate (such as distance,
within, etc.) has an associated user-de�ned range pro-
ducing function. The main premise of our approach
is to isolate domain-speci�c knowledge into the range
producer and to place the burden of searching onto
that function.

As an example of how this might work, suppose
that a database table contains two-dimensional data
about ATM locations, stored in a grid index. The
domain is therefore divided into grid blocks (per-
haps organized in a multi-layer fashion) so that each
grid block contains only the points that fall into that
block. Given a query position, the nearest 5 ATMs
will be located in the grid blocks nearest to the query
point. It is therefore desirable to start processing of
the grid blocks in a spiral-like order, unwinding from
the query point outwards, until we �nd the nearest 5
ATMs. This suggests an intuitive order for generat-
ing search ranges. The only assumption we need in
order to make this approach work is the requirement
that we consider all points within a certain distance
of the query point before we make a decision whether
we have the top 5 answers or not. In other words,
in the �rst iteration we generate a set of ranges that
cover all points within a radius r0 from the query
point. We then sort only these points by their dis-
tance to the query point and output them. If we
have more than 5 answers we terminate processing.
Otherwise, we proceed to the next iteration, in which
we increase the radius to r1 > r0 in order to include
the next round of grid block ranges. Performing the
processing in such ring-wise fashion limits the search
space while guaranteeing the correctness of the an-
swers. The selection of the radii for the successive
iterations can be based on heuristic or probabilistic
models, as in some of the approaches discussed in
Section 1.1 (Chaudhuri & Gravano 1999, Donjerkovic
& Ramakrishnan 1999). When there are no statistics
available to help us choose the round radii, the system
can revert to a simple heuristic of using the density
from each round in order to guess next round's radius
(e.g., see Section 5).

The above example refers to the spatial domain
but can be generalized to arbitrary domains, includ-
ing multimedia ones, with user-de�ned indexes and
scoring measures used for ranking. The range pro-
ducer generates a set of ranges Ri, i 2 [1; n], where
Ri = (begin i; end i; ri) and begin i and end i are the be-
ginning and ending index keys, while ri is a scalar
measurement representing the round radius. Concep-
tually, the ranges are divided into \rounds" so that
all ranges in a given round A have an identical radius,
rA, which must be strictly bigger than the radius used
in the previous round (we refer to this restriction as
the \round monotonicity assumption"). Informally,
the notion of a round refers to all tuples with scores
less than or equal to the round's radius, as identi�ed
through the sequence of ranges. The range producer
is responsible for making sure that all ranges with
radii � rA cover the tuples that fall into the round
with radius rA. More formally, round A with ra-
dius rA consists of all tuples (key ; score; data) for
which score � rA, where key ; score , and data de-



rk SORT (str(Radius), k , groupByList , scoreFn):

1. Initialize the round radius to -1 for all groups;

2. While not end-of-stream, do:

(a) Fetch the next available tuple in str ;

(b) If the target group for the new tuple is
frozen, discard the tuple and goto 2;

(c) Let r be that tuple's Radius and let rg be
the Radius of that tuple's group;

(d) If r 6= rg then

i. If the number of tuples with
scoreFn � rg is � k , then \freeze"
the current group and goto step (a);

ii. Set rg = r ;

(e) Insert the new tuple into the sorted table
based on groupByList and scoreFn , only if
the tuple is not in the table already;

3. Pipe rank-sorted table to next stage in access plan

Figure 1: Pseudo code for the rk SORT operator.

note the tuple's index key, measurement score used
for ranking, and general data. The range producer
ensures that 9i 2 [1; n] s.t. begin i � key � endi
and ri � rA. Given the above assumptions, the
database engine can use the user-de�ned index to do
the search e�ciently, performing the range processing
in the user-speci�ed order and terminating as soon
as k answers have been output.

The de�nition implies that all scores for tuples in a
given round are smaller than or equal to that round's
radius. The round monotonicity assumption above
implies that ri < rj ; 8i < j. Both conditions to-
gether imply that if a tuple belongs to round i, it also
belongs to all rounds j, for j > i. Thus, the de�ni-
tion of a round suggests an inclusive relationship be-
tween successive rounds. For performance purposes,
however, it is more e�cient to implement the range
producer so that each successive round of ranges in-
cludes only ranges that have not been generated be-
fore. That way, at each iteration the range pro-
ducer outputs only the successive round di�erences
and generates disjoint ranges that collectively form
the rounds. This restriction does not have to be en-
forced by the system so even if the range producer
generates duplicate ranges, they can be removed au-
tomatically.

The runtime model described above is imple-
mented through the introduction of a new rk SORT
operator. The rk SORT operator is described by the
pseudo code in Figure 1. It takes four inputs and
produces as output a rank-sorted set of tuples. The
�rst argument is the input stream str . A designated
column for the Radius is associated with each tuple
of the input stream. The second argument, k , deter-
mines the cardinality of the result set by specifying
how many answers should be produced. The third ar-
gument, groupByList , is the list of expressions which
de�ne the formation of groups in the result set. The
last argument, scoreFn, is the expression in the ag-
gregate predicate that is used for ranking purposes (it
appears right after the RANK keyword).

As described previously, the concept of round ra-
dius facilitates early termination of the rk SORT op-
eration in certain cases where the input stream is di-
vided into multiple rounds. The idea is that if, at the
end of round n, there have been at least k tuples with
score less than or equal to the radius of round n, then

1. For each ci in index (c1; c2; : : : ; ck), do:

(a) keyPredicates(i).� = +1;

(b) keyPredicateFound = False;

(c) For each predicate pj 2 P , do:

i. If pj is not a key predicate or
target(pj) 6= ci continue;

ii. keyPredicateFound = True;
iii. Let � be the "�lter factor" of pj ;

iv. If � < keyPredicates(i):� then
A. keyPredicates(i):� = � ;
B. keyPredicates(i) = pj ;

2. Construct the ISCAN operator followed by the
FETCH operator using the information in the
keyPredicates array;

3. If an aggregate predicate is used in the index ex-
ploitation, then build the rk SORT operator on
top of the FETCH operator.

Figure 2: Pseudo code for index exploitation.

the rk SORT for that group can terminate by ignoring
the remaining tuples in the group (i.e., freezing the
group). Correctness is assured since all tuples in the
following rounds are guaranteed to have scores worse
than the current round radius. Taking 2-D search as
an example, the search for candidates is intuitively
performed based on a sequence of \rings" from inside
out. The round radius is set to the distance between
the point of interest and the outer circle of the ring.
Therefore, change of round radius indicates change of
the search ring. In the case where ring search is not
possible or available, the Radius of the input stream
should be set to in�nity so that all tuples will be con-
sidered in the rk SORT.

4 Query optimization

So far, we have described the runtime model for
search based upon aggregate predicates, and we have
introduced the necessary tools for database engine
support of such aggregates. We now turn to the
problem of query optimization in the new model and
exploitation of indexes using aggregate predicates.
For query optimization, we simply reuse the exist-
ing optimization techniques through index exploita-
tion (Hass, Chang, Lohman, McPherson, Wilms,
Lapis, Lindsay, Pirahesh, Carey & Shekia 1990, Sell-
inger, Astrahan, Chamberlin, Lorie & Price 1979,
Stonebraker, Wong & Kreps 1976). A typical access
plan for a JOIN query, for example, would join the
corresponding tables, pipe the result to a SORT oper-
ator, group tuples if necessary, and output the result.
The amount of savings achieved depends on how the
JOIN is performed. For example, if there is an index
de�ned on any of the join attributes (resp., the user-
de�ned predicate used for joining the tables), then the
corresponding table may become an inner JOIN table
and the index could be exploited through a key pred-
icate. For index exploitation purposes, the optimizer
needs to identify a match between a predicate and an
index, and then use both to generate ranges that limit
the search space. In the case of aggregate predicates,
that match means that the scoring expression in the
predicate needs to be a user-de�ned predicate or an
attribute with an associated index.

In the cases where no index is available (i.e., all
table scan cases), the round radius passed on to the



rk SORT operator is the in�nity value and all records
are fetched in a single round. The same holds for in-
dex exploitation cases where the key predicate used
for index exploitation is not an aggregate predicate.
In such cases, there is a partial index exploitation to
�lter out some records but there is no early termi-
nation based on ranking. We note that our frame-
work does not force any access plans to the query op-
timizer but only provides more options to consider.
Ultimately, the access plan used by the optimizer will
be the one that has minimized expected cost of exe-
cution. In order to be able to fully exploit aggregate
predicates for rank-based early termination, however,
the following conditions must be met:

� There must be a match of the aggregate predicate
to an index, either through a ranking attribute
or UDF.

� The cardinality argument of the aggregate pred-
icate must be known at execution time (e.g., it
could be a numeric argument, a host variable, or
a column from an outer table in a nested join).

� The access plan generated must have the
rk SORT operator immediately after the
FETCH operator, following an index scan
(ISCAN) with the aggregate predicate being
used as a key predicate.

We now give a more formal overview of the mod-
i�ed index exploitation process for a JOIN query.
Without loss of generality, we only consider left-deep
join trees. Also, note that when the join composite is
the empty set, everything is still well de�ned and we
have the special case of a non-join query. The de�-
nitions below, as well as the basic idea of the index
exploitation algorithm of Figure 2, are borrowed from
the standard literature on query optimization (e.g.,
see (Hass et al. 1990, Sellinger et al. 1979, Stone-
braker et al. 1976)). Let T = ft1; t2; : : : ; tng be the
set of tables to be joined. Let C = ftc1 ; tc2 ; : : : ; tcmg
be the set of tables in a join composite, where m < n
and tci belongs to T and tci 6= tcj ; 8i 6= j. Let t be
the new table to be joined to the composite C. Let
P = fp1; p2; : : : ; plg be the set of predicates of the en-
tire query block. For each pi 2 P , let TabRef (pi) be
the set of tables referenced in pi. Predicate pi is eligi-
ble with respect to (C; t) i� TabRef (pi) 2 C [ ftg. In
this case, we denote the column being constrained
as target(pi) and the constraint caused by pi as
bound(pi). For example, target(salary > 50000) is
the column "salary" and bound(salary > 50000) is
the literal 50000. Predicate pi is a join predicate be-
tween C and t if pi is eligible and t 2 TabRef (pi) and
TabRef (pi) \ C 6= ;. Predicate pi is a local predicate
of t if TabRef (pi) = t. Predicate pi is a key predicate
on index (c1; c2; : : : ; ck) of table t if target(pi) is a key
column and bound(pi) is invariant given C as the join
composite. In particular, an aggregate predicate ap:
"RANK(exp1) FIRST exp2" is a key predicate if exp1
is a key column or it is a user-de�ned predicate of
which target(ap) is a key column, and bound(ap), as
well as exp2, are invariant with respect to C. The
index exploitation algorithm is listed in Figure 2.

Figure 3 depicts two possible access plans avail-
able to the query optimizer for one of the most basic
scenarios involving aggregate predicates. The query
being optimized selects the nearest 10 customers to
the IBM Silicon Valley Laboratory (i.e., the :svl loca-
tion). An example of another query of the same type
is given below:

SELECT �
FROM customer C
WHERE RANK(C :income) DESC FIRST 10

This query selects the top 10 customers with high-
est income but it uses a table attribute rather than a
UDF as the aggregate predicate. Both of these queries
are similar because the only possible optimization of
the predicate evaluation is early termination through
index exploitation. This is so because neither query
contains joins, aggregate functions, Boolean expres-
sions, GROUP BY, ORDER BY, or HAVING clauses.
However, the two queries di�er in that the �rst one
would have to exploit a user-de�ned index, while the
second one would exploit a system index. Figure 3
shows the two access plans the query optimizer will
have to choose from. If an index is available on the ap-
propriate attribute (C :loc or C :income , resp.), then
the optimizer would generate the access plan with in-
dex exploitation. Due to space considerations, we do
not discuss here access plan choices for more com-
plicated queries. However, more details are available
upon request from the authors.

5 Performance

In this section, we evaluate several ranked search ap-
plication scenarios and compare our approach with
alternative methods using simulation experiments.
For the experiments in this section, we used IBM's
DataJoiner v.2.1 running on an RS/6000 (133 MHz)
Model E30 workstation with 576 MB of RAM. We
used synthetic data for our experiments consisting
of one million tuples in a customers table with at-
tributes id , location , name , salary , address , city ,
state, zip, and category . The types of the attributes
are straightforward, with the exception of the location
type, which is a two-dimensional point. All cus-
tomers' locations were distributed in a grid of size
10000� 10000 in a non-uniform fashion with concen-
tration around the origin. A spatial grid index was
built on the location column using IBM's Spatial Ex-
tender. Due to space and time considerations, we do
not report experiments using built-in index types but
only with extended index types, such as the grid in-
dex extension for 2-dimensional data de�ned by the
IBM Spatial Extender. We also do not report com-
parisons with the naive approach of sorting the entire
dataset and fetching only the top k answers. The per-
formance bene�ts over that approach were illustrated
in (Kossmann & Carey 1997), for example, and were
con�rmed by our observations.

We compared our approach to the alternative
repeated-guess approach, which tries to guess an ap-
propriate range that would return the top-k answers.
If the guess is wrong, and fewer than k answers are
returned, the process is repeated with a re�ned guess.
The heuristic we used was to consider the overall data
density, d, and based on that to estimate the range, r,
that would return k answers (e.g., r =

p
k=d). If the

guess was wrong and k0 < k answers were returned,
then for the next guess we used density d0 = k0=r2.
We also limited the maximum range increment to
avoid situations where very low density in a certain
area causes excessively large range guess for the next
iteration. Our integrated ranked search approach was
simulated by modifying the user-de�ned range pro-
ducing function for the spatial grid index type de-
�ned in the Spatial Extender. The range producer
was modi�ed to generate the 2-D search ranges in the
spiral order discussed previously. The same guess-
ing heuristic was used to generate the sequence of
ranges as in the repeated-guess approach but in that
case, previous computation was reused, and the whole
search was performed as a single query.

The experiments that we performed fall in the
client-server scenario, where some output of a ranked
search query needs to be returned to the user via the
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Figure 3: Simple aggregate predicate: with and without index exploitation. The SQL query is:
SELECT � FROM customer WHERE RANK(dist(customer :loc, :svl)) FIRST 10

network. Since the CPU time spent on the client
side was negligible, we only distinguish between server
CPU time and everything else (including client side
CPU time, network delay and disk I/O time). In
addition, we provide data for the total number of log-
ical page requests and the number of actual disk I/Os
to illustrate the I/O behavior of each approach. We
considered three di�erent types of queries: top-100
(0.01% selectivity), top-1000 (0.1% selectivity), and
top-10000 (1% selectivity) queries. The �rst type is
representative of highly selective queries with very
small �lter factor that return all available informa-
tion for just a few tuples. An example would be to
return all the data for the top 100 employees with
highest salaries. The second class of queries is what
we call mid-range queries that request data from a
moderately large number of tuples but require only
some of the information available for each tuple. For
example, we may be interested in compiling a mailing
list consisting of the names and addresses of the clos-
est 1000 customers to a given store. Finally, the third
query type is representative of large-scale queries that
request only aggregate information or certain statis-
tics about a large subset of all tuples. An example in
this case would be to get the average customer income
of the closest 10 000 customers to a given prospective
store location. Such information could be used, for
example, to determine the best choice for a new store
location. Queries with lower selectivities (i.e., higher
�lter factors) are typically used in a server-server sce-
nario, where the returned data is inserted back into a
table or a view for later referencing. In addition to a
usability advantage of supporting such functionality
with a single query, our approach would also have a
performance gain in this scenario as well. However,
since no database external approaches can support
such nested queries, we do not report performance
data for such queries.

The experimental results are presented in Fig-
ure 4. The left hand side shows timing results for
the Repeated Guess (RG) and the integrated Ranked
Sort (RS) approaches in three di�erent data densities
(high, medium, and low). Each bar illustrates the

server-side CPU time (the lower portion of the bar),
as well as the turn-around wall clock time (the en-
tire bar). The right hand side of the �gure shows the
equivalent disk I/O comparisons for the same queries.
The lower part of each bar depicts the number of ac-
tual I/Os for the corresponding approach, while the
entire bar depicts the total number of disk page re-
quests. The results are presented for each of the se-
lectivity scenarios (top-100, top-1000, and top-10000
queries).

The results lead to several conclusions. The �rst is
that the performance of both approaches is inversely
proportional to the density of the dataset. This can
be explained by the fact that the queries in dense
areas underestimate the cardinality of the guessed
ranges and therefore return more tuples than needed
even in the very �rst round. In that case, the perfor-
mance of both approaches is almost identical because
the work done in both cases is the same. However, as
the query area density decreases and approaches the
overall dataset density, the range estimates become
better and therefore both approaches exhibit im-
proved performance, with the Ranked Sort approach
outperforming the Repeated Guess approach due to
less overhead for each round. Finally, at the low den-
sity scenario, both approaches keep overestimating
the range cardinalities and thus the number of rounds
(guesses) needed for fetching k answers increases. In
the case of the Repeated Guess approach, this leads to
performance degradation due to re-computation over-
head, while the Ranked Sort approach retains its per-
formance due to its low round overhead. This demon-
strates that the proposed Ranked Sort approach is
more robust with respect to query area density and
less sensitive to range estimation errors. Also, the
results show a consistent advantage of our approach
over the alternative one, with the performance gap in-
creasing for the queries with higher �lter factors. The
reason for this gap is the fact that queries with high
�lter factors need to fetch more data, and therefore,
the wrong range guess leads to more rounds (i.e., re-
computation overhead) in the case of the Repeated
Guess approach.
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Figure 4: Run time and disk I/O comparisons for the Repeated Guess (RG) and Ranked Sort (RS) methods.



We also note that the number of logical page re-
quests is consistently reduced in our approach. How-
ever, due to the fact that the search is done in a spi-
ral fashion, these page requests are more random and
lead to a lower cache hit rate. Still, despite of the
lower hit rate, our approach has comparable I/O per-
formance and a lower overall running time. We should
note the amount of random I/O can be reduced sig-
ni�cantly simply by sorting all record IDs before do-
ing the actual record fetch. Record ID sorting and
prefetching will increase the cache hit rate consider-
ably, and given the overall reduction in disk page re-
quests of the proposed approach, it would likely lead
to signi�cant further improvements in I/O times.

6 Conclusions and Future Work

In this paper we have introduced the notion of aggre-
gate predicates, or predicates whose value depends
on a set of tuples, and we addressed the problem of
search based upon aggregate predicates. We identi-
�ed ranked search, or top-k queries, as an instance of
the above problem in many multimedia applications,
geographic information systems, as well as traditional
databases with structured data. We then proposed
a method for incorporating aggregate predicates and
ranked search into the database engine. More specif-
ically, we de�ned the syntax and explained the se-
mantics of aggregate predicates, thus enhancing the
expressive power of the SQL query language and im-
proving usability. The added functionality allows for
very powerful queries to be executed as a single SQL
statement, with the potential to achieve signi�cant
performance gains. We also provided a mechanism for
natively supporting aggregate predicates and treating
them uniformly with scalar predicates with respect
to indexing and query optimization purposes. Our
proposed framework o�ers performance improvement
for many applications by introducing a new rk SORT
operator that limits the search space and allows early
termination while guaranteeing correctness of the out-
put. To the best of our knowledge, our framework
is the �rst to natively support aggregate predicates
with the ability to exploit user-de�ned indexes. The
e�ectiveness of the proposed method is corroborated
by the empirical results, and overall, the usability and
performance advantages of our method enable the use
of databases in a wider variety of applications.

As future work, it would be interesting to explore
ways of supporting approximate top-k queries and
ranked search based on approximate evaluation of ag-
gregate predicates. In many applications, the scoring
function used for ranking can be approximated much
more e�ciently than having it evaluated exactly. In
some of those applications, it is su�cient to answer
a top-k query approximately by returning tuples that
are within a certain distance to the true top k tuples.
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