
IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 7, JULY 1991 843

1/0 Overhead and Parallel VLSI
Architectures for Lattice Computations

Mark H. Nodine, Daniel P. Lopresti, Member, ZEEE, and Jeffrey S. Vitter, Member, ZEEE

Abstract-In this paper we introduce inputloutput (I/O) over-
head .1c, as a complexity measure for VLSI implementations
of two-dimensional lattice computations of the type arising in
the simulation of physical systems. We show by pebbling argu-
ments that .1c, = s2(n-’) when there are n2 processing elements
available. If the results are required to be observed at every
generation, and no on-chip storage is allowed, we show the lower
bound is the constant 2. We then examine four VLSI architectures
and show that one of them, the multigeneration sweep architec-
ture, also has I/O overhead proportional to n-l. We compare
the constants of proportionality between the lower bound and
the architecture. Finally, we prove a closed-form for the discrete
minimization equation giving the optimal number of generations
to compute for the multigeneration sweep architecture.

Index Terms-Discrete minimization, input/output complexity,
lattice computations, pebbling, VLSI.

I. INTRODUCTION TO LATTICE COMPUTATIONS

two-dimensional cellular automaton, in its simplest form, A is a discrete, infinite rectangular grid of cells, each of
which assumes one of two possible states (“on” or “off’) at
any given instant. Evolution of a cellular automaton takes place
in discrete time steps called generations. Each cell determines
in parallel what its state will be at the next time step, based
on its current state and the states of the cells around it.
Cellular automata can be generalized to lattice computations,
in which each cell retains more than a single bit of information.
In this paper, we restrict ourselves for brevity to the class
of lattice computations where the computation at each cell
requires information from its eight neighboring cells, as well
as from itself. We call these nine-cell lattice computations.
The algorithms and lower bounds we develop can be extended
easily to other interconnection patterns.

A famous example of a cellular automaton is the game
of “Life,” which was introduced by John Conway in 1969.
Despite the apparent simplicity in having purely local rules
govern the time evolution of the system, Life exhibits complex
behavior and in fact possesses the same computational power
as a Turing machine [2]. It also admits a universal constructor
to allow self-replicating structures [8].

Manuscript received March 21, 1989; revised February 12, 1990. This work
was supported in part by an NSF Presidential Young Investigator Award
CCR-8451390 with matching funds from IBM, by NSF Research Grant DCR-
8403613, by NSF Research Grant MP18710745, by an NCR cooperative
research and development agreement, by an IBM departmental grant, and
by ONR Grant N00014-83-C-K-Ql46, ARPA Order 6320.

The authors are with the Department of Computer Science, Brown Univer-
sity, Providence, RI 02912.

IEEE Log Number 9100996.

Lattice computations have important applications in
physical simulations. Examples of simulations that use such
automata are two-dimensional lattice gas computations [5],
diffusion-limited aggregation [7], two-dimensional diffusion,
fluid dynamics, spin glasses, and ballistics [lo]. A VLSI circuit
to solve the Poisson equation has been implemented using
lattice computation techniques [6] .

Highly local data movement coupled with a tremendous
potential for parallelism would seem to make these problems
an ideal match for VLSI. Kugelmass et al. showed, however,
that VLSI-based machines performing such computations are
severely constrained by input/output (I/O) requirements [5].
Using a simpler new argument, we improve by a constant
factor the theoretical lower bound on I/O that can be de-
rived from their work. We then present and analyze four
VLSI architectures within this framework. One of these,
the multigeneration sweep architecture, is optimal in that it
meets the lower bound asymptotically within a small constant
factor. In all cases, we derive and compare the constants of
proportionality.

The quantity of interest in the following analysis is the I10
overhead $, which we define as

1 + 0
$ E - -

c g ’

where
I = number of input operations,
0 = number of output operations,
C = number of cells computed,
g = number of generations computed.

The I/O overhead $J reflects an amount of I/O needed per unit
of computation that is independent of the problem size. This
quantity does not assume that the results must be viewed after
every generation; the number of 1/0 operations is amortized
against the amount of progress made.

In Section 11, we give a lower bound argument based on
pebbling to show that the 1/0 overhead for nine-cell lattice
computations is at least l/m, where S is the amount of
on-chip storage. In Section 111, we give several architectures
for lattice computations, one of which, the multigeneration
sweep architecture, is within a constant factor of the lower
bound. Section IV proves a closed form for the optimal
number of generations to compute in the multigeneration
sweep architecture before viewing the results. Our conclusions
are given in Section V.

0018-9340/91/0700-0843$01.00 0 1991 IEEE

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

844 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 7, JULY 1991

11. LOWER BOUNDS ON I/O OVERHEAD

Graph pebbling is a powerful technique for proving compu-
tational lower bounds [l] , [4], [5], [9]. For nine-cell lattice

specialized to

pebbling with the restriction that at most S red pebbles are on
vertices Of the lattice at any One time*

for a lattice

the size of the problem during all g generations can be bounded
by an m x m array of cells. The vertex set is

we define the graph Gg = (‘g,
computations, a general result in Kugelmass et al. can be computation Of generations as Choose such that

assuming that each of n2 processors (e.g., an n x n array)
has Q bits of local storage. Their result can be improved by
factor of fi by taking advantage of the connectivity of nine-
cell lattice computations instead of the five-cell computations
they consider.

In this section, we improve upon this lower bound by
a simpler argument. We make no assumptions about when
results of the computation are viewed. If the states of all cells
must be examined after every generation, we show that $ 2 2.
This last result implies that VLSI implementations are more
effectively used for analyzing the long-term behavior of lattice
computations.

Our arguments, like those of Kugelmass et al., are based
on the red-blue pebble game [4]. The red-blue pebble game
is played by placing pebbles on the vertices of a computation
graph G = (V, E) , which is a directed acyclic graph modeling
a computation. Each vertex in V corresponds to a result
that is computed at some stage of the computation. An edge
e = (VI, v2) in the graph indicates that the result corresponding
to w1 is used to compute the result for vertex v2. Pebbles
represent memory locations. A red pebble represents a result
that is in memory on the chip, and a blue pebble represents a
result that is off-chip. There is an implicit assumption that the
number of red pebbles is limited, while the number of blue
pebbles is as large as needed. The actual pebbling takes place
according to the following rules:

1) A pebble of either color may be removed from a vertex
at any time.

2) A red pebble may be placed on any vertex that has a
blue pebble.

3) A blue pebble may be placed on any vertex that has a
red pebble.

4) If all the immediate predecessors of a vertex 71 have a
red pebble, then a red pebble may be placed on v.

Rule 1 represents the forgetting of information (usually to
reuse the memory). Rules 2 and 3 model input and output
operations, respectively. Rule 4 models a computation taking
place within the chip. In this paper, we ignore internal com-
putations and consider only I/O. Our measure of performance
is the number of applications of rules 2 and 3.

Those vertices of the graph that have no predecessors are
the lattice inputs, and those that have no successors are the
lattice outputs. The initial configuration has blue pebbles on
all the lattice inputs.

Definition: Apebbling of a computation graph is a sequence
of ordered pairs, (n, v), where n E { 1, . . . ,4} is a rule number
and v E V , such that starting from the initial configuration and
applying the rules to the nodes in sequence results in all of
the lattice outputs having blue pebbles. An S-pebbling is a

The cells on the border have either three or five predecessors,
rather than eight. The computation is then a sequence starting
at time t = 0 and progressing towards larger t. When t = g,
the outputs have been computed, and the computation halts.

We first present a few lemmas leading up to our main lower
bound result. The basic strategy is to bound the number of
computations that can be done with no inputs starting from
any configuration, and then compute the minimum number of
inputs that must be done in order for every node to have been
red-pebbled. We start by showing that we can consider only
pebblings that red-pebble the generations in order.

Lemma 1: Let us consider a pebbling game in which an
initial configuration of S < m red pebbles is given, and only
rules 1 and 4 are allowed for pebbling moves (that is, no 1/0
operations are allowed). Then there is pebbling for maximizing
the number of computations in the lattice such that all red
pebbles are placed on nodes in earlier generations before any
are placed on nodes in later generations.

Proof: Let R be the set of vertices pebbled by some
pebbling starting from an initial configuration K of S - 1
red pebbles. We do not need to consider configurations of S
red pebbles, since the first operation in such a configuration
will always be an application of rule 1, giving a configuration
of S - 1 red pebbles. We show that there is a schedule that
pebbles earlier generations before later ones that results in
all the vertices in R being pebbled. Let g + 1 be the first
generation containing some node in R. For S < m, there is
a pebble on some vertex on generation g that contributes to
the placing of exactly one pebble on generation g + 1, say on
vertex w. Apply rule 4 to place a red pebble on w and apply
rule 1 to remove the pebble from vertex ‘U. Since the pebble on
vertex ‘U was used only in computing w, removing the pebble
from there does not decrease the number of possible vertices
that can be pebbled. Moreover, we can consider this as a new
starting configuration K‘ with a new set R‘ = R - {w}, since
again at most S - 1 pebbles are on the graph. Continuing in
this way guarantees that all the vertices in R eventually have
a red pebble on them. Since this can be done for any pebbling,
then in particular any pebbling that maximizes the number of
nodes pebbled can be redone in an order that pebbles earlier

Next, we show that we can group the inputs into phases,
suffering at most a penalty of requiring twice as many red-
pebbles.

generations before later ones.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

NODINE et al.: 110 OVERHEAD AND PARALLEL VLSI ARCHITECTURES 845

Lemma 2: Any red-blue S-pebbling P with T input op-
erations can be simulated by some 2s-pebbling P' of the

perimeter of a cluster of S pebbles is at least 4&?, at most
half of which can be along the edge of the lattice, so we have

following type.
a) P' can be divided into phases such that in each phase,

all inputs are done consecutively at the beginning of the
phase.

b) P' has [T/S1 phases, each containing at most S input
operations.

c) The individual input operations in P' are a subsequence
of those in P.

Proof: This can be proved by an easy simulation of the
original pebbling. Let I I , . . . , IT be the inputs in pebbling
P. We transform P into P' by moving I k S + 2 ; " , I k s + s

to follow immediately after I k S + 1 , for k = 1 . . . rT/S1,
eliminating those inputs that would be to a location that already
has a red pebble on it. We then maintain the invariant that at
the beginning of each phase k in P', the same nodes in the
computation graph have red pebbles on them as in P just prior
to doing 4 s . This can be done inductively. It is initially true
since no nodes have red pebbles on them in either pebbling.
Assume that P and P' are in the same configuration just prior
to doing I k , S . Then P' must have r < S pebbles on the graph,
so it has at least S available to do all the inputs for the phase.
After doing the inputs, P and P' both have S - r pebbles
left, so P' can exactly simulate P with the exception that it
need not put a red pebble on any vertex already containing
one. At the end of the phase, P' removes red pebbles from all
vertices not covered with red pebbles by P, and the induction

4
Finally, we show how many nodes in the lattice can be

red-pebbled using only internal computations.
Lemma 3: The maximum number of nodes in the lattice

that can be pebbled with S red pebbles using rule 4 alone is
(s3I2 - ~) / 2 , assuming s < m.

Proof: Let us consider any schedule that maximizes the
number of nodes pebbled using rule 4 only. By Lemma 1
we can assume that the schedule proceeds generation by
generation, for generations 0 ,1 , . . . , g - 1. Each generation
will be pebbled in parallel. Let A; 2 0 be the number of red
pebbles moved while pebbling generation i + 1 from genera-
tion i , and let B; > 0 be the number of red pebbles "left
behind" on generation a. We have

hypothesis is maintained. This proves Lemma 2.

Bi = S, (2)
O < i < g - l

since each red pebble must eventually be left behind, or more
moves would be possible. The term Ai is maximized if all
S pebbles are on generation i at some point in the schedule,
arranged in a square in a corner of the lattice. The fact that
S 5 m means that the square can touch at most one corner.
If this is the case, then A; will be exactly (a - 1)2. Thus,
for any value of i we have

A; 5 (a- l)2. (3)

Likewise, the border of each cluster of pebbles must be left
behind unless the border is at the edge of the lattice. The

Bi > 2 a . (4)

We can get an upper bound on xi Ai, the number of nodes
pebbled, by maximizing xi Ai subject to constraints (2), (3),
and (4), where A; and Bi are allowed to be real nonnegative
numbers. Thus, E; Ai is strictly bounded by a hypothetical
case with A; = (a- 1)2 for SIB; = S/(2(&?- 1)) values
of i . This gives us the bound Ci Ai 5 (S3I2 - S) /2, which

We are now ready to prove our main lower bound result.
Theorem 1: For lattice computations with g 2 2, in which

proves the lemma. 4

there are S < m bits of on-chip storage, we have

1
$2- Jzs'

Proof: Lemma 2 showed that every S-pebbling strategy
with T I/O's can be simulated efficiently by a 2s-pebbling of
roughly T I S phases in which at most S inputs occur at the
beginning of each phase. We use Lemmas 1 and 3 to bound the
number of internal computations that can be done on the lattice
during one phase. Since we know how many nodes there are
in the lattice that must be red-pebbled, we get a lower bound
on the number of inputs required.

From Lemma 3, the maximum number of internal compu-
tations that can be done without I/O using 2 s red pebbles
is

(2 ~) ~ ' ~ - 2s
2

Since a total of gm2 lattice elements must be red-pebbled, the
number of phases is at least

Here, we have used the facts that m > S and g 2 2. Since
each S-pebbling of the lattice with T I/O's has a corresponding
2s-pebbling with [T/S1 phases, every S-pebbling must have
at least S(G - 1) input operations. Thus, from formula (1)
defining the I/O overhead, the number of input operations is
at least

leading to the result. 4
In particular, in an array of n2 processors, each of which

has Q bits of storage, the 1/0 overhead is at least

(5)

What happens if we insist that we want to see the results of the
calculation after every generation? This corresponding lower
bound is easy to determine.

Lemma 4: The I/O overhead to compute one generation of
a lattice computation and look at the results is at least 2.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

846 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. I , JULY 1991

Proof: In this case, the computation graph consists of
only two layers, each with m2 cells. Clearly it will take
a minimum of m2 inputs to red-pebble the inputs and a
minimum of m2 outputs to blue-pebble the outputs, once they
have been red-pebbled. Thus, we have

as claimed.
So any lattice computation in which we wish to examine all

the cells at each generation will have an I/O overhead 4 2 2 ,
Fig. 1. Interprocessor communication.

-
regardless of the number of generations computed, assuming
no values are retained on the chip between generations. The

do not have to be examined at each generation. VLSI chips

Thus, the limited-size architecture has an I/O overhead at most

not useful because it ignores problems larger than n x n,
bound in (6) is clearly than that of where the cells 2.83 times the optimal. In practice, of course, this scheme is

to do lattice computations seem to be best suited for studying
the asymptotic behavior of initial configurations. B. Array Sweep Architecture

In this architecture, described by Toffoli [lo], the complete

111. ARCHITECTURAL APPROACHES

In this section, we present and analyze four parallel VLSI
architectures for lattice computations. Each one uses a two-
dimensional processor grid. The limited-size architecture at-
tempts to keep the entire problem in the processor array.
The various sweep architectures permit the processor array
to sweep over portions of a much larger problem. In the case
of the sweep architectures, the I/O overhead is computed for
the “steady-state” case, that is, assuming that the problem size
is large with respect to the number of processors.

A. Limited-Size Architecture

The most straightforward approach to simulating a lattice
computation is to assume there exists a one-to-one corre-
spondence between processors and cells. For this we use
n2 processors arranged in an n x n square mesh, each
communicating directly with eight neighbors, as shown in
Fig. 1. Only computations of size m x m, with m 5 n, can be
considered, as there are no provisions for saving intermediate
results. Each processor requires one storage location to hold
its current state. The algorithm used is

1) Input m x m problem.
2) Compute for G generations.
3) Output results.

It should be noted that, although the problem initially fits
entirely within the array of processors, there is no guarantee
that it will continue to do so as G’ + 00. Conservatively, we
must take G = [(n - m)/2] . After this point, we are forced
to stop and output the results, since we can no longer be sure
that we will get the same result as would be obtained in an
infinite grid. A short deviation using (1) shows that the 1/0
overhead for this architecture is

.~

lattice computation is stored in an m x m grid of memory
cells. The processor array repetitively loads n x n subproblems,
updates states by a single generation, and writes results back to
their original off-chip locations. In this manner, the processors
wind their way through the problem space, tessellating the
computation as demonstrated in Fig. 2. The algorithm for this
architecture is:

1) For each subproblem in tessellation, do steps 2-4.
2) Input n x n subproblem.
3) Compute for one generation.
4) Output results.
Here the I/O overhead is found to be

$as = 2 + 4n-1 + 4n-2

Because the array sweep architecture outputs each state at
every generation, (6) correctly predicts that 4 2 2. A slight
improvement over this is possible by observing that the
rightmost two columns of a given computation become the
leftmost two columns in the next computation; these values
need not be written to memory as they will always be reread
immediately. With this change the 1/0 overhead is reduced to

gmas = 2 + 2 n - I .

C. n f 2-Generation Sweep Architecture

The array sweep architecture computes only a single gen-
eration for each subproblem before moving on to the next.
This policy seems wasteful when 1/0 overhead is a primary
concern. Why not compute multiple generations once a given
subproblem has been loaded? The potential pitfall here is that
states at the memory-processor border are not updated as they
should be. As the computation progresses, these incorrect val-
ues propagate their effect inward. Eventually, after (n - 1)/2

gls = 2mn-2 + 0 (~ 2 ~ - 3) . generations, only the centermost cell is correct (assuming n is
odd). Nevertheless, we can proceed by saving this one valid
value and loading a new subproblem. Fortunately, this last
step is greatly simplified if each processor stores an additional
bit, its original state. These values are left-shifted one position
before beginning the next computation, so that only n + 2

With a = 1, the lower bound from (5) tells us that

1

Jz $ > -K1.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

NODINE et al.: 110 OVERHEAD AND PARALLEL VLSI ARCHITECTURES 847

+ + i + + + + + + + + + + + +

+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + m x m p r o b l e m

/'
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + * + + + + + + + + + + + +

n x n
processor

a r y y

+ + + + + + + + + + + + + + + /
+ + + + + + + + + + + + + + + H=H + + + + + + + + + + + + + + +

Fig. 2. Tessellating the problem space. Fig. 3. Multigeneration sweep architecture.

new values need be input along the array's right border. In
this architecture, we no longer tessellate the problem space, but
truly sweep it. The n/2-generation sweep architecture employs
the following algorithm:

asymptotic expression becomes invalid when g approaches
n/2 .

We can adopt a different approach and compute the value of
g that minimizes the expression for I/O overhead. By setting
the partial derivative of .J, with respect to g equal to zero, we
get

1) For each row in problem space, do steps 2-5.

3) Left-shift original states one position, input n + 2 new

4) Compute for (n - 1) / 2 generations.

2) For each column in problem space, do steps 3-5.

values.

5) Output result from centermost processor.
The 1/0 overhead can be computed as of which the negative root gives the minimum. Thus,

Thus, this architecture is slightly better than the original array
sweep architecture, but not as good as the modified version.

D. Multigeneration Sweep Architecture

The previous two schemes are, in fact, the extreme cases in
a spectrum of architectures. It is possible to work anywhere
between the array sweep architecture and the n/2-generation
sweep architecture, as shown in Fig. 3. Processor requirements
in this case are the same as those in the n/2-generation sweep
architecture, except for the need to output a IC x IC matrix of
results. The algorithm is changed slightly so that the array
computes only (n - k) / 2 + 1 generations in step 4.

Toffoli and Margolus mention this technique under the name
"scooping," but do not analyze it from the standpoint of I/O
efficiency [7], [lo].

1/0 overhead for this architecture is easiest to derive in terms
of k , but can be related to g since

The tilde superscript is to indicate that this quantity is always
an integer multiple of an irrational number and is therefore
always nonintegral. What we want is the discrete minimum
for (7). We show in Section IV that taking the nearest integer
of (8) gives the discrete minimum:

Thus, we can calculate the asymptotic 1/0 overhead by noting
that

so

$ J ~ ~ ~ = (6 + 4&)n-l+ O (n - 2) .

IC = n - 2(g - 1). The pebbling bound in this case (assuming cy = 2) is

1 111 > -n-l.
2

Thus, this architecture is asymptotically optimal and falls
within a factor of about 23 of the best possible 1/0 overhead.

The equation is

2(n - g + 2)
g(n - 29 + 2) ' (7)

If the asymptotics are done directly from this equation for 1/0
overhead, one gets the unrealistic idea that the I/O overhead
can become arbitrarily good if the number of generations
computed goes to infinity. This is not only unreasonable, since
at most Ln/2] generations can be validly computed, but it
also seems to contradict the finding for the n/2-generation
sweep architecture, which has a constant I/O overhead. The
discrepancy is that the approximation used in generating the

+mgs =

Iv. PROOF OF VALIDITY OF DISCRETE
MINIMIZATION FORMULA

In the Section 111, we found that the I/O overhead for the
multigeneration sweep architecture was

2(n - g + 2)
= g (n - 2g + 2) .

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

848

From (S), we have the value of g that minimizes $:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 7, JULY 1991

where

Jz <=1- - .
2

Let R(z) be the rounding function, defined by

R(z) = Lz + 1/21. (9)

We want to prove the assertion that taking the nearest integer
function of gmin provides an integer value at which the
minimum occurs, in other words

This formula could produce the wrong result if the fractional
part of (n + 2)< falls in some “window of vulnerability”
around 1/2, so that the actual discrete minimum occurs at one
integer value, but R rounds to the other integer value. The
basic idea behind the proof of validity of (10) is to compute
the window of vulnerability and then show that there is no
smallest value of n for which the fractional part falls within
that window.

A. The Stern-Brocot Tree

The proofs of the theorem depend heavily on the properties
of the Stern-Brocot (S-B) tree [3]. This section explains how
the tree is derived and gives the properties it has that are
important to the proof.

The S-B tree starts with the fractions 0/1 and 1/0 and derives
the next level by inserting between every pair of fractions m/n
and m’/n/ the fraction (m + m’)/(n + n’). Fig. 4 shows the
top part of the tree. The fractions that evaluate to 0 and cc
are not really part of the tree; they are merely seeds to get the
tree started. The S-B tree has several important properties:

1) All fractions that appear in the tree are in reduced form.
2) All reduced-form fractions appear in the tree.
3) If the fractions are read from the tree by inorder tra-

versal, they are in ascending order.
4) We can treat the S-B tree as a binary search tree. If

“L” means go down the left branch of the tree and
“R” means go down the right branch, then all real
numbers can be mapped to a unique element of the
regular language [LR]”. For rational numbers, that
is those that can be given a finite representation, the
unique infinite representation is the finite part followed
by RL”. The element of [LR]” so generated is called
the S-B expansion of a number.

5) If b is an irrational number, then the fractions generated
in its S-B expansion are the simplest rational approxima-
tions to b in the sense that if mln is an approximation
to b, there exists an S-B expansion m’/n’ such that
m’ 5 m, n’ 5 n, and m’/n’ is between m/n and b.

1 I /\ 2

/\
/i\ /+\
4 2 2 4
3 3 2 1

Fig. 4. Top of the Stern-Brocot tree.

B. The Lemmas

These are the lemmas which lead up to the main theorem
of this section. The first lemma establishes that $ (n , g) is
asymmetric about its minimum.

Lemma 5: Let h(n, 6) be the symmetric difference of $(n, g)
about its minimum for S > 0, that is,

h(n. 6) = $(n, Qmin(n) + 6) - $(n, imin(n) - 6).

Then h(n ,S) > 0 for all integer n > 0 and 0 < S 5 1/2.
Proof: This is mostly a matter of algebra. We find that

h(n,S) =
16S3

We can set the partial derivative with respect to S equal to 0
to find the minima and maxima. When we do this, we find a
double root at zero, two imaginary roots, and roots at

6& = ztL4%(2 4 - a) (n + 2) x f0 .243(n + a) ,

of which we take the positive root, since we are only interested
in S > 0. S+ > 1/2 for all n > 0. It also represents a maximum
in the curve, since

. (n + E -76142(n + 2)-3

which is negative for all n > 0. Since for all n > 0, h(n, 0) =
0 and the first local extremum in the curve is a maximum at
h(n,S) with S > 1/2, we conclude that h(n,S) > 0 for all

Now we can show that the nearest integer can only produce
an incorrect result if the fractional part of (n is slightly greater
than 1/2 for some n.

Lemma 6: Formula (10) for gmin can only produce an
incorrect result if Frac(<n) = 1/2 + E, for some E > 0.

Proof: Fig. 5 shows the behavior of $ about its minimum
for m < gmin < m + 1. If $(n,g) were exactly symmetric
about its minimum, then R(gmin(n)) would always produce
the discrete minimum of $(n,g) , where R is as defined
in (9). From Lemma 5, we know that $(n, &in + 6) >
$(n,gmin - S), so that if the minimum falls at a fractional

0 < s 5 1/2.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

NODINE et al.: 110 OVERHEAD AND PARALLEL VLSI ARCHITECTURES 849

m m+ 112 m+ 1

g -

Fig. 5. Behavior of q, near its minimum.

part that is 112 + E , +(n, m) may be less than $(n, m + 1) .

Thus, there are “windows of vulnerability” if the fractional
part of En is slightly larger than 112. The next lemma shows
how large these windows of vulnerability are.

Lemma 7: If m is any integer, then (10) will produce the
wrong result if

No similar problem exists if E < 0.

1 1
2 2 m + - < j m i n (n) < m + - + ~ (m) ,

for some n, where

Proof: A window of vulnerability exists when jmin(n)
falls between m + 112 and the point such that $ (n , m) =
+(n, m + 1) for some integer m and n. Given a value of m,
we determine n from the equation

1
2 gmin(n) = (n + 2) 1 = m + - + E ,

or equivalently

The windows of vulnerability thus start out small and shrink
asymptotically to zero.

Now, we adopt a different tack to find out which multiples
of E could possibly have fractional parts that fall within the
windows of vulnerability. The next lemma gives the S-B
expansion of 1.

Lemma 8: The S-B expansion for E is L(LLRR)”.
Proof: It is clear that the expansion begins with L,

since < < 1. Let those fractions that would underestimate
1 according to the expansion above (those with an “R’
in their next digit) be denoted by m k / n k and those that
would overestimate < be denoted by p k l q k . We can derive
expressions for m k , n k , p k , and q k by using recurrence
relations (see Fig. 6). For example, the recurrence for m k and
n k when k is odd is given by the simultaneous recurrence

m1= 1;

nl = 4;
n k = 3 n k - 2 + 4qk+i;

p2 = 1;
pk = 2mk-3 + 3 P k - 2 ;

q 2 = 3;

mk 3 m k - 2 + 4pk+l;

q k 2nk-3 + 3 q k - 2 .

From this recurrence, we can get generating functions for m k

and n k when k is odd:

% 3 + Z
modd(Z) = m k Z k =

z4 - 6z2 + 1 ’
k odd

which yield

2 k - 1

for k 2 1;
The condition $(n. m) = $(n, m + 1) leads to

n2 + 2n(1 - 2m) + 2m(m - 3) = 0.

Plugging in the value of n from (12) gives + (4 - 3 h) (1 - h)2k-2), for k 2 1.

(2 m + 1) ~ - 1 = 0 .
Similarly, we get

The values of E solving this equation are
m 2 k = 1 ((4 + 3 h) (1 + h)2k-2

’ n 2 k = l ((7 + 5 \ / ?) (1+h)2k-2

1 4
E(m) = (h - 1) (*d4m2 + 4m + 2 - (2m + I)) .

+ (4 - 3fi) (1 - J”)~~-~), for IC 2 1;
The negative root is negative for all m > 0, so the positive
root must be the correct one.

It is instructive to do the asymptotics on ~ (m) to see how 2
large the windows of vulnerability are. A simple derivation
reveals that

+ (7 - 5 h) (1 - h)2k-z), for IC 2 1.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

850 lEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 7 , JULY 1991

1 - 1

4 \

2

-
3 / :o

Fig. 6. Stern-Brocot expansion of 1 - &/Z. The table at the left indicates
which subscript of which variables corresponds to each fraction of the tree.
For example, p 2 / q 2 = 1/3

which is the fractional part of [n k . It is straightforward to
show that

k
A 2 k - 1 = (3 - 2 d) , for IC 2 1;

AZk=[3 - 2 J " , f o r k 2 1 . (> k

Since these quantities are always positive, m k / n k always
underestimates [. Similarly, it can be shown that p k / q k always
overestimates E . Thus, these fractions must constitute the S-B

The next lemma tells about the convergence properties of

Lemma 9: The fractions m k / n k converge monotonically

Proof: It should be noted that monotonic convergence is
not an automatic property of S-B expansions of numbers. Let
A,+ be as in (14). Let 61, be defined by 6 k = E - m k / n k . Then
6k = A,/?%,. w e get

62k-1
62 k

expansion of E .

m k / n k .

to [.

-

- (7+ 5 J z) (1 + a y 1 + (7 - 5 J z) (1 - a),,-,
-

(1 + + (7 - 5 4 (1 - a),,-,
This ratio converges rapidly to 3 + 2 a FZ 5.282 and is always
greater than 5.28. Similarly,

This ratio also converges rapidly to 3 + 2a and is always
greater than 5.28. Since these ratios are both greater than one,

We want the set of numbers bk for which the fractional part
b,t& approaches 112 from the top more closely than n[for any
other n < bk. It is easy to see from the generating functions
that when k is odd, m k is odd and n k is even. If we define

these fractions converge monotonically.

Ak = Erik - mk, then

n 2 k - 1 m 2 k - 2 - 1 1 A 2 k - 1 = - + -

where the two fractions on the left-hand side are integers and
A2k-1 gets exponentially small. Thus, the series of numbers

S T - 2 2 2

n2k-1 = ((4 + 3 h) (3 + 2 q k - l + (4 - 3J") 4
bk = -

2

would seem to be a good candidate for the numbers we are
seeking. The next lemma proves that this is actually the case.

Lemma IO: Let us define

X(n) = Frac(6n - 1 / 2) , (16)

so that X(n) is the amount by which the fractional part of [n
exceeds 112 (or a value greater than 1 / 2 if the fractional part
does not exceed 1 / 2) . The values of bk defined in (15) have
the property that

Proof: Assume that there exists an n < bk such that
x(n) < ~ (b k) . By definition, there exists an m such that

1
2

Doubling this equation leads to

<n - m = - + X (n) .

[(a n) - (2 m + 1) = 2 ~ (n) .

Thus, the fraction (2 m + 1) / 2 n is a rational approximation
that underestimates E . By property 5 of the S-B tree, there
must be an underestimator to [in its S-B expansion, mjlnj,
with nj 5 2 n , that is at least as good as (2 m + 1) / 2 n . Also,
2 n < 2bk = n 2 k - 1 , so that j < 2k - 1. But now we have two
fractions in the S-B expansion of E , of which the one with the
smaller index approximates [better. This is a contradiction to
Lemma 9. Thus, the assumption that there was such a value

The only remaining fact needed to prove the theorem is
that X(bk) 2 & (m (b k)) for all I C , where m(n) is defined by

of n was incorrect, and the lemma is proved.

m(n) = LEnJ.
Lemma 11: We have X(bk) = & (m (b k)) .

Proof: We know that
1 k

X (b k) = a2k-1 = - (3 - 2 h) .
2 2

We also know from Lemma 10 that

D

Plugging into (l l) , we get

(/ (1 + ,>4k-2 + 2 + (1 - ,),,-,
- (1 + ,)2k-1 - (1 -

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

NODINE et al.: 110 OVERHEAD AND PARALLEL VLSI ARCHITECTURES 85 1

The item in the square root is a perfect square, so

~ (m (b k)) =

consider the following probabilistic argument about whether
the discrete minimum equation is true for all values of n: We (a - 1) ((1 + a)”-’ - (1 - &)2k-1 assume that in any interval m to m + 1, there is a probability
of ~ (m) that a multiple of E falls within the &-window. If we
define

1

- (1 + a)2k-1 - (1 - a y)
1 k

= - (3 - 2 d 5)
2

A = 1 (h - l) ,
16

, the probability that all of the &-windows is missed is, from The expressions for ~ (b k) and ~ (m (b k)) are thus equal.
(13)

C. The Theorem

We are now ready to prove the theorem.
Theorem 2: The formula for gmin above gives an integer

value that minimizes +(g, n).
Proof: The values of gmin comprise all the multiples

of an irrational number, [. The nearest integer function R
will give the wrong answer only if the fractional part of that
multiple of E is sufficiently close to 1 /2 that R will round it one
way, but the minimum would occur by rounding it the other.
Lemma 6 shows that, for positive n, this will only happen if
the fractional part is slightly larger than 1/2. If we let m =
LEn] then Lemma 7 computes the window of vulnerability
~ (m) , that is, the maximum amount by which the fractional
part of a failing value of En can exceed 112. This window of
vulnerability is a monotonically decreasing function of m. Let
N be the set of all n for which R(jmin(n)) # gmin(n). Then
if N # 0, it has a smallest element n’. Define x(n) as in (16).
For any n” < n’, ~ (n ’) < ~ (n ”) since otherwise En” would
fall within its larger window of vulnerability, contradicting the
assumption that n’ is the smallest failing multiple. So we need
consider only those values of n such that x(n) is smaller than
for any preceding value. Lemma 10 proved the explicit form
of those numbers b k . Finally, Lemma 11 demonstrated that
each b k falls exactly at the edge of a window of vulnerability,
which means that

$ (b k - 2,gmin(bk - 2)) = 11,(bk - 2,grnin(bk - 2) - I),

so that rounding to either side produces a minimum. This , concludes the proof of the theorem.

D. The Significance of this Result

Proving an exact closed form for the optimal number of
generations to compute is not strictly necessary to show
that the architecture meets the lower bound asymptotically to
within a constant factor. However, from a practical standpoint,
it is nice to have a closed-form formula that tells how
many generations to compute for a particular value of n.
Furthermore, the fact that there exists a closed-form equation
is quite unexpected, as we hope to show in this subsection.
The technique of using a Stern-Brocot tree to prove such an
exact result is novel.

It is known that the set of fractional parts of all multiples of
any irrational number p is dense on the unit interval (0, l),
which is to say that given any 0 < y < 1 and E >
0, there exists an integer n such that the fractional part
of pn is within E of y. It turns out that the fractional
parts are uniformly distributed along the unit interval. Let us

Pr{everywhere correct} 5 n (1 - 2Xm-l + Amp2).
m l l

Taking logs, we get

log(Pr{everywhere correct})

5 log(1- 2Xm-l+ Am?)

5 (-2m-’+ Am-2) = -W.

m > l

m21

Therefore, we find that Pr{everywhere correct} = 0.
So it seems that the fact the discrete minimization formula

is everywhere correct is a bit of a surprise: even though the
fractional parts of the multiples of E are uniformly distributed
on the unit interval, the probabilistic argument is not valid
because the fractional parts of the multiples of [do not
approach 1/2 from the top until the €-window has shrunk
just enough to be missed.

V. CONCLUSIONS
In this paper, we discussed 1/0 overhead 11, as a measure of

merit for parallel VLSI architectures for lattice computations.
We derived theoretic lower bounds on 11, based on the red-blue
pebbling game. We presented and analyzed four potential
architectures showing that one, the multigeneration sweep
architecture, was optimal in terms of 11, within a small constant
factor. Finally, we proved the discrete minimization formula
that results in the optimal performance of the multigeneration
sweep architecture.

Do the asymptotic differences exhibited in this paper have
any practical significance? Table I indicates values of 11, for
three of our schemes. The multigeneration sweep architecture
is noticeably superior even when n is relatively small. A value
of 31 is achievable with current technology, resulting in an
improvement of almost a factor of 6 in 1/0 performance; using
wafer technology, a chip with 1002 processors is conceivable,
in which case there is more than a factor of 18 improvement
in the 1/0 overhead of the multigeneration sweep architecture
over the normal sweep architecture.

It is interesting to note that when n is larger than about 6,
the 1/0 performance of the array sweep architecture proposed
by other researchers is almost independent of n. In a problem
like this, for which the limiting factor is I/O, we have the
undesirable result that packing more processors onto a chip
does not help much.

We conclude that a VLSI implementation of a two-
dimensional lattice computation does not need to be severely

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

852 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 7, JULY 1991

TABLE I
IiO OVERHEAD FOR VARIOUS ARCHITEC~URES

n -
1
2
3
4
5
6
7
8
9

10
11
21
31

101
1001 -

genera tion

w -
4
3
2.67
2
1.67
1 .5
1.33
1.17
1.07
1
0.9
0.51
0.35
0.11
0.01 -

restricted by its U0 performance so long as viewing the
results after each generation is unnecessary. In this case,
the increased complexity of designing a chip to use the
multigeneration sweep architecture may be more than offset
by its 1/0 efficiency.

An interesting extension to this work currently being inves-
tigated is the I/O overhead associated with simulating neural
net computations.

REFERENCES

[I] S.A. Cook, “An observation on time-storage tradeoffs,” in Proc. 5th
Annu. ACM Symp. Theory Comput., May 1973, pp. 29-33.

121 A. K. Dewdney, “Computer recreations,” Scienfij Amer., vol. 252, no. 5,
pp. 18-30, May 1985.

[3] R. L. Graham, D. E. Knuth, and 0. Patashnik, Concrete Mathematics.
Reading, M A Addison-Wesley, 1989, ch. 4.

[4] J. W. Hong and H. T. Kung, “I/O complexity: The red-blue pebble
game,” in Proc. 13th Annu. ACM Symp. Theory Comput., May 1981,

1.5) S.D. Kugelmass, R. Squier, and K. Steiglitz, “Performance of
VLSI engines for lattice computations,” Complex Syst., vol. 1, no. 5,
pp. 939-965, Oct. 1987.

[6] S. Manohar, “Superconducting with VLSI,” Ph.D. dissertation, Brown
Univ., 1988.

[7] N. Margolus and T. Toffoli, “Cellular automata machines,” Complex
Syst., vol. 1, no. 5, pp. 967-993, Oct. 1987.

[8] W. Poundstone, The Recursive Universe. Chicago, IL: Contemporary
Books, 1985.

(91 J. E. Savage and J. S. Vitter, “Parallelism in space-time trade-offs,’
Advances Comput. Res., vol. 4, pp. 117-146, 1987.

[lo] T. Toffoli and N. Margolus, Cellular Automata Machines: A Ne&
Environment for Modehg.

pp. 326-333.

Cambridge, MA: MIT Press, 1987.

Mark H. Nodine received the B.A. degree in math-
ematics (magna cum laude with departmental hon-
ors), the B.S. degree in chemistry and physics
(magna cum laude with departmental honors in
chemistry) from Tulane University, New Orleans,
LA, in 1978, and the S.M. degree in chemistry
from the Massachusetts Institute of Technology,
Cambridge, in 1982.

He spent 1982 to 1983 with Schlumberger work-
ing on computer-aided-design software and from
1983 to 1988 at Bolt Beranek and Newman working

on authoring and network monitoring systems. He received the S.M. degree
in computer science from Harvard University, Cambridge, MA in 1986, and
again from Brown University, Providence, RI, in 1988. He is currently a
candidate for the degree of Ph.D. at Brown University, Providence, RI.
His research interests include the design and analysis of combinatorial
algorithms; efficient I/O algorithms for external sorting, database applications,
computational geometry, and neural networks; and computer graphics.

Mr. Nodine has been a student member of the Association for Computing
Machinery since 1989.

Daniel P. Lopresti (M’87) received the A.B. degree
in mathematics from Dartmouth College, Hanover,
NH, in 1982, and the M.A. and Ph.D. degrees in
computer science from Princeton University, Prince-
ton, NJ, in 1984 and 1987, respectively.

He is an Assistant Professor in the Department of
Computer Science, Brown University, Providence,
RI. His research interests include parallel architec-
tures, VLSI CAD, and computational aspects of
molecular biology. He is also a consultant for the
Supercomputing Research Center, Bowie, MD.

Jeffrey S. Vitter (S’80-M’8l) was bom in New
Orleans, LA, on November 13, 1955. He received
the B.S. degree in mathematics with highest honors
from the University of Notre Dame in 1977, and
the Ph.D. degree in computer science from Stanford
University in 1980.

He joined the faculty of Brown University in
1980, where he is currently Professor of Com-
puter Science. Prior to finishing graduate school,
he worked as a Computer Performance Analyst at
Standard Oil Co. of California and as a Research

Assistant and teaching fellow in the Department of Computer Science at
Stanford University. He was on sabbatical in 1986 as a member of the
Mathematical Sciences Research Institute in Berkeley and in 1986- 1987 as
a member of INRIA in Rocquencourt, France, and as a Visiting Professor at
Ecole Normale Superieure in Paris. He is currently an associate member of the
Center of Excellence in Space Data and Information Sciences. His research in-
terests include mathematical analysis of algorithms, computational complexity,
parallel algorithms, I/O efficiency, machine learning, computational geometry,
and incremental computation. He has written numerous articles and has been
a frequent lecturer, guest editor, conference program committee member, and
consultant. He has coauthored the book Design and Analysis of Coalesced
Hashing (Oxford University Press, 1987) and is coholder of a patent in the
area of external sorting.

Dr. Vitter is an IBM Faculty Development Awardee, an NSF Presidential
Young Investigator, and a Guggenheim Fellow. He serves on the editorial
board of SIAM Journal on Computing, Communications of the ACM, and
Mathematical Systems Theory: An International Journal on Mathematical
Computing Theory. His professional memberships include IEEE Computer
Society, The Association for Computing Machinery, and Sigma Xi.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 13,2010 at 17:44:39 UTC from IEEE Xplore. Restrictions apply.

