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1/0 Overhead and Parallel VLSI 
Architectures for Lattice Computations 

Mark H. Nodine, Daniel P. Lopresti, Member, ZEEE, and Jeffrey S. Vitter, Member, ZEEE 

Abstract-In this paper we introduce inputloutput (I/O) over- 
head .1c, as a complexity measure for VLSI implementations 
of two-dimensional lattice computations of the type arising in 
the simulation of physical systems. We show by pebbling argu- 
ments that .1c, = s2(n-’) when there are n2 processing elements 
available. If the results are required to be observed at every 
generation, and no on-chip storage is allowed, we show the lower 
bound is the constant 2. We then examine four VLSI architectures 
and show that one of them, the multigeneration sweep architec- 
ture, also has I/O overhead proportional to n-l. We compare 
the constants of proportionality between the lower bound and 
the architecture. Finally, we prove a closed-form for the discrete 
minimization equation giving the optimal number of generations 
to compute for the multigeneration sweep architecture. 

Index Terms-Discrete minimization, input/output complexity, 
lattice computations, pebbling, VLSI. 

I. INTRODUCTION TO LATTICE COMPUTATIONS 

two-dimensional cellular automaton, in its simplest form, A is a discrete, infinite rectangular grid of cells, each of 
which assumes one of two possible states (“on” or “off’) at 
any given instant. Evolution of a cellular automaton takes place 
in discrete time steps called generations. Each cell determines 
in parallel what its state will be at the next time step, based 
on its current state and the states of the cells around it. 
Cellular automata can be generalized to lattice computations, 
in which each cell retains more than a single bit of information. 
In this paper, we restrict ourselves for brevity to the class 
of lattice computations where the computation at each cell 
requires information from its eight neighboring cells, as well 
as from itself. We call these nine-cell lattice computations. 
The algorithms and lower bounds we develop can be extended 
easily to other interconnection patterns. 

A famous example of a cellular automaton is the game 
of “Life,” which was introduced by John Conway in 1969. 
Despite the apparent simplicity in having purely local rules 
govern the time evolution of the system, Life exhibits complex 
behavior and in fact possesses the same computational power 
as a Turing machine [2]. It also admits a universal constructor 
to allow self-replicating structures [8]. 

Manuscript received March 21, 1989; revised February 12, 1990. This work 
was supported in part by an NSF Presidential Young Investigator Award 
CCR-8451390 with matching funds from IBM, by NSF Research Grant DCR- 
8403613, by NSF Research Grant MP18710745, by an NCR cooperative 
research and development agreement, by an IBM departmental grant, and 
by ONR Grant N00014-83-C-K-Ql46, ARPA Order 6320. 

The authors are with the Department of Computer Science, Brown Univer- 
sity, Providence, RI 02912. 

IEEE Log Number 9100996. 

Lattice computations have important applications in 
physical simulations. Examples of simulations that use such 
automata are two-dimensional lattice gas computations [5], 
diffusion-limited aggregation [7], two-dimensional diffusion, 
fluid dynamics, spin glasses, and ballistics [lo]. A VLSI circuit 
to solve the Poisson equation has been implemented using 
lattice computation techniques [6] .  

Highly local data movement coupled with a tremendous 
potential for parallelism would seem to make these problems 
an ideal match for VLSI. Kugelmass et al. showed, however, 
that VLSI-based machines performing such computations are 
severely constrained by input/output (I/O) requirements [5].  
Using a simpler new argument, we improve by a constant 
factor the theoretical lower bound on I/O that can be de- 
rived from their work. We then present and analyze four 
VLSI architectures within this framework. One of these, 
the multigeneration sweep architecture, is optimal in that it 
meets the lower bound asymptotically within a small constant 
factor. In all cases, we derive and compare the constants of 
proportionality. 

The quantity of interest in the following analysis is the I10 
overhead $, which we define as 

1 + 0  
$ E - -  

c g  ’ 

where 
I = number of input operations, 
0 = number of output operations, 
C = number of cells computed, 
g = number of generations computed. 

The I/O overhead $J reflects an amount of I/O needed per unit 
of computation that is independent of the problem size. This 
quantity does not assume that the results must be viewed after 
every generation; the number of 1/0 operations is amortized 
against the amount of progress made. 

In Section 11, we give a lower bound argument based on 
pebbling to show that the 1/0 overhead for nine-cell lattice 
computations is at least l/m, where S is the amount of 
on-chip storage. In Section 111, we give several architectures 
for lattice computations, one of which, the multigeneration 
sweep architecture, is within a constant factor of the lower 
bound. Section IV proves a closed form for the optimal 
number of generations to compute in the multigeneration 
sweep architecture before viewing the results. Our conclusions 
are given in Section V. 
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11. LOWER BOUNDS ON I/O OVERHEAD 

Graph pebbling is a powerful technique for proving compu- 
tational lower bounds [l] ,  [4], [5], [9]. For nine-cell lattice 

specialized to 

pebbling with the restriction that at most S red pebbles are on 
vertices Of the lattice at any One time* 

for a lattice 

the size of the problem during all g generations can be bounded 
by an m x m array of cells. The vertex set is 

we define the graph Gg = (‘g, 
computations, a general result in Kugelmass et al. can be computation Of generations as Choose such that 

assuming that each of n2 processors (e.g., an n x n array) 
has Q bits of local storage. Their result can be improved by 
factor of fi by taking advantage of the connectivity of nine- 
cell lattice computations instead of the five-cell computations 
they consider. 

In this section, we improve upon this lower bound by 
a simpler argument. We make no assumptions about when 
results of the computation are viewed. If the states of all cells 
must be examined after every generation, we show that $ 2 2. 
This last result implies that VLSI implementations are more 
effectively used for analyzing the long-term behavior of lattice 
computations. 

Our arguments, like those of Kugelmass et al., are based 
on the red-blue pebble game [4]. The red-blue pebble game 
is played by placing pebbles on the vertices of a computation 
graph G = (V, E ) ,  which is a directed acyclic graph modeling 
a computation. Each vertex in V corresponds to a result 
that is computed at some stage of the computation. An edge 
e = (VI, v2) in the graph indicates that the result corresponding 
to w1 is used to compute the result for vertex v2. Pebbles 
represent memory locations. A red pebble represents a result 
that is in memory on the chip, and a blue pebble represents a 
result that is off-chip. There is an implicit assumption that the 
number of red pebbles is limited, while the number of blue 
pebbles is as large as needed. The actual pebbling takes place 
according to the following rules: 

1) A pebble of either color may be removed from a vertex 
at any time. 

2) A red pebble may be placed on any vertex that has a 
blue pebble. 

3 )  A blue pebble may be placed on any vertex that has a 
red pebble. 

4) If all the immediate predecessors of a vertex 71 have a 
red pebble, then a red pebble may be placed on v. 

Rule 1 represents the forgetting of information (usually to 
reuse the memory). Rules 2 and 3 model input and output 
operations, respectively. Rule 4 models a computation taking 
place within the chip. In this paper, we ignore internal com- 
putations and consider only I/O. Our measure of performance 
is the number of applications of rules 2 and 3. 

Those vertices of the graph that have no predecessors are 
the lattice inputs, and those that have no successors are the 
lattice outputs. The initial configuration has blue pebbles on 
all the lattice inputs. 

Definition: Apebbling of a computation graph is a sequence 
of ordered pairs, (n, v), where n E { 1, . . . ,4} is a rule number 
and v E V ,  such that starting from the initial configuration and 
applying the rules to the nodes in sequence results in all of 
the lattice outputs having blue pebbles. An S-pebbling is a 

The cells on the border have either three or five predecessors, 
rather than eight. The computation is then a sequence starting 
at time t = 0 and progressing towards larger t. When t = g, 
the outputs have been computed, and the computation halts. 

We first present a few lemmas leading up to our main lower 
bound result. The basic strategy is to bound the number of 
computations that can be done with no inputs starting from 
any configuration, and then compute the minimum number of 
inputs that must be done in order for every node to have been 
red-pebbled. We start by showing that we can consider only 
pebblings that red-pebble the generations in order. 

Lemma 1: Let us consider a pebbling game in which an 
initial configuration of S < m red pebbles is given, and only 
rules 1 and 4 are allowed for pebbling moves (that is, no 1/0 
operations are allowed). Then there is pebbling for maximizing 
the number of computations in the lattice such that all red 
pebbles are placed on nodes in earlier generations before any 
are placed on nodes in later generations. 

Proof: Let R be the set of vertices pebbled by some 
pebbling starting from an initial configuration K of S - 1 
red pebbles. We do not need to consider configurations of S 
red pebbles, since the first operation in such a configuration 
will always be an application of rule 1, giving a configuration 
of S - 1 red pebbles. We show that there is a schedule that 
pebbles earlier generations before later ones that results in 
all the vertices in R being pebbled. Let g + 1 be the first 
generation containing some node in R. For S < m, there is 
a pebble on some vertex on generation g that contributes to 
the placing of exactly one pebble on generation g + 1, say on 
vertex w. Apply rule 4 to place a red pebble on w and apply 
rule 1 to remove the pebble from vertex ‘U. Since the pebble on 
vertex ‘U was used only in computing w, removing the pebble 
from there does not decrease the number of possible vertices 
that can be pebbled. Moreover, we can consider this as a new 
starting configuration K‘ with a new set R‘ = R - {w}, since 
again at most S - 1 pebbles are on the graph. Continuing in 
this way guarantees that all the vertices in R eventually have 
a red pebble on them. Since this can be done for any pebbling, 
then in particular any pebbling that maximizes the number of 
nodes pebbled can be redone in an order that pebbles earlier 

Next, we show that we can group the inputs into phases, 
suffering at most a penalty of requiring twice as many red- 
pebbles. 

generations before later ones. 
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Lemma 2: Any red-blue S-pebbling P with T input op- 
erations can be simulated by some 2s-pebbling P' of the 

perimeter of a cluster of S pebbles is at least 4&?, at most 
half of which can be along the edge of the lattice, so we have 

following type. 
a) P' can be divided into phases such that in each phase, 

all inputs are done consecutively at the beginning of the 
phase. 

b) P' has [T/S1 phases, each containing at most S input 
operations. 

c) The individual input operations in P' are a subsequence 
of those in P.  

Proof: This can be proved by an easy simulation of the 
original pebbling. Let I I  , . . . , IT be the inputs in pebbling 
P. We transform P into P' by moving I k S + 2 ; " ,  I k s + s  

to follow immediately after I k S + 1 ,  for k = 1 . . .  rT/S1, 
eliminating those inputs that would be to a location that already 
has a red pebble on it. We then maintain the invariant that at 
the beginning of each phase k in P', the same nodes in the 
computation graph have red pebbles on them as in P just prior 
to doing 4 s .  This can be done inductively. It is initially true 
since no nodes have red pebbles on them in either pebbling. 
Assume that P and P' are in the same configuration just prior 
to doing I k , S .  Then P' must have r < S pebbles on the graph, 
so it has at least S available to do all the inputs for the phase. 
After doing the inputs, P and P' both have S - r pebbles 
left, so P' can exactly simulate P with the exception that it 
need not put a red pebble on any vertex already containing 
one. At the end of the phase, P' removes red pebbles from all 
vertices not covered with red pebbles by P, and the induction 

4 
Finally, we show how many nodes in the lattice can be 

red-pebbled using only internal computations. 
Lemma 3: The maximum number of nodes in the lattice 

that can be pebbled with S red pebbles using rule 4 alone is 
(s3I2 - ~ ) / 2 ,  assuming s < m. 

Proof: Let us consider any schedule that maximizes the 
number of nodes pebbled using rule 4 only. By Lemma 1 
we can assume that the schedule proceeds generation by 
generation, for generations 0 ,1 , .  . . , g - 1. Each generation 
will be pebbled in parallel. Let A; 2 0 be the number of red 
pebbles moved while pebbling generation i + 1 from genera- 
tion i ,  and let B; > 0 be the number of red pebbles "left 
behind" on generation a. We have 

hypothesis is maintained. This proves Lemma 2. 

Bi = S, (2) 
O < i < g - l  

since each red pebble must eventually be left behind, or more 
moves would be possible. The term Ai is maximized if all 
S pebbles are on generation i at some point in the schedule, 
arranged in a square in a corner of the lattice. The fact that 
S 5 m means that the square can touch at most one corner. 
If this is the case, then A; will be exactly (a - 1)2. Thus, 
for any value of i we have 

A; 5 (a- l)2. (3) 

Likewise, the border of each cluster of pebbles must be left 
behind unless the border is at the edge of the lattice. The 

Bi > 2 a .  (4) 

We can get an upper bound on xi Ai, the number of nodes 
pebbled, by maximizing xi Ai subject to constraints (2), (3), 
and (4), where A; and Bi are allowed to be real nonnegative 
numbers. Thus, E; Ai is strictly bounded by a hypothetical 
case with A; = (a- 1)2 for SIB; = S/(2(&?- 1)) values 
of i .  This gives us the bound Ci Ai 5 (S3I2 - S) /2, which 

We are now ready to prove our main lower bound result. 
Theorem 1: For lattice computations with g 2 2, in which 

proves the lemma. 4 

there are S < m bits of on-chip storage, we have 

1 
$2- Jzs' 

Proof: Lemma 2 showed that every S-pebbling strategy 
with T I/O's can be simulated efficiently by a 2s-pebbling of 
roughly T I S  phases in which at most S inputs occur at the 
beginning of each phase. We use Lemmas 1 and 3 to bound the 
number of internal computations that can be done on the lattice 
during one phase. Since we know how many nodes there are 
in the lattice that must be red-pebbled, we get a lower bound 
on the number of inputs required. 

From Lemma 3, the maximum number of internal compu- 
tations that can be done without I/O using 2 s  red pebbles 
is 

( 2 ~ ) ~ ' ~  - 2s 
2 

Since a total of gm2 lattice elements must be red-pebbled, the 
number of phases is at least 

Here, we have used the facts that m > S and g 2 2. Since 
each S-pebbling of the lattice with T I/O's has a corresponding 
2s-pebbling with [T/S1 phases, every S-pebbling must have 
at least S(G - 1) input operations. Thus, from formula (1) 
defining the I/O overhead, the number of input operations is 
at least 

leading to the result. 4 
In particular, in an array of n2 processors, each of which 

has Q bits of storage, the 1/0 overhead is at least 

( 5 )  

What happens if we insist that we want to see the results of the 
calculation after every generation? This corresponding lower 
bound is easy to determine. 

Lemma 4: The I/O overhead to compute one generation of 
a lattice computation and look at the results is at least 2. 
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Proof: In this case, the computation graph consists of 
only two layers, each with m2 cells. Clearly it will take 
a minimum of m2 inputs to red-pebble the inputs and a 
minimum of m2 outputs to blue-pebble the outputs, once they 
have been red-pebbled. Thus, we have 

as claimed. 
So any lattice computation in which we wish to examine all 

the cells at each generation will have an I/O overhead 4 2 2 ,  
Fig. 1. Interprocessor communication. 

- 
regardless of the number of generations computed, assuming 
no values are retained on the chip between generations. The 

do not have to be examined at each generation. VLSI chips 

Thus, the limited-size architecture has an I/O overhead at most 

not useful because it ignores problems larger than n x n, 
bound in (6) is clearly than that of where the cells 2.83 times the optimal. In practice, of course, this scheme is 

to do lattice computations seem to be best suited for studying 
the asymptotic behavior of initial configurations. B. Array Sweep Architecture 

In this architecture, described by Toffoli [lo], the complete 

111. ARCHITECTURAL APPROACHES 

In this section, we present and analyze four parallel VLSI 
architectures for lattice computations. Each one uses a two- 
dimensional processor grid. The limited-size architecture at- 
tempts to keep the entire problem in the processor array. 
The various sweep architectures permit the processor array 
to sweep over portions of a much larger problem. In the case 
of the sweep architectures, the I/O overhead is computed for 
the “steady-state” case, that is, assuming that the problem size 
is large with respect to the number of processors. 

A. Limited-Size Architecture 

The most straightforward approach to simulating a lattice 
computation is to assume there exists a one-to-one corre- 
spondence between processors and cells. For this we use 
n2 processors arranged in an n x n square mesh, each 
communicating directly with eight neighbors, as shown in 
Fig. 1. Only computations of size m x m, with m 5 n, can be 
considered, as there are no provisions for saving intermediate 
results. Each processor requires one storage location to hold 
its current state. The algorithm used is 

1) Input m x m problem. 
2) Compute for G generations. 
3) Output results. 

It should be noted that, although the problem initially fits 
entirely within the array of processors, there is no guarantee 
that it will continue to do so as G’ + 00. Conservatively, we 
must take G = [(n - m)/2] .  After this point, we are forced 
to stop and output the results, since we can no longer be sure 
that we will get the same result as would be obtained in an 
infinite grid. A short deviation using (1) shows that the 1/0 
overhead for this architecture is 

.~ 

lattice computation is stored in an m x m grid of memory 
cells. The processor array repetitively loads n x n subproblems, 
updates states by a single generation, and writes results back to 
their original off-chip locations. In this manner, the processors 
wind their way through the problem space, tessellating the 
computation as demonstrated in Fig. 2. The algorithm for this 
architecture is: 

1) For each subproblem in tessellation, do steps 2-4. 
2) Input n x n subproblem. 
3) Compute for one generation. 
4) Output results. 
Here the I/O overhead is found to be 

$as = 2 + 4n-1 + 4n-2 

Because the array sweep architecture outputs each state at 
every generation, (6) correctly predicts that 4 2 2. A slight 
improvement over this is possible by observing that the 
rightmost two columns of a given computation become the 
leftmost two columns in the next computation; these values 
need not be written to memory as they will always be reread 
immediately. With this change the 1/0 overhead is reduced to 

gmas = 2 + 2 n - I .  

C.  n f 2-Generation Sweep Architecture 

The array sweep architecture computes only a single gen- 
eration for each subproblem before moving on to the next. 
This policy seems wasteful when 1/0 overhead is a primary 
concern. Why not compute multiple generations once a given 
subproblem has been loaded? The potential pitfall here is that 
states at the memory-processor border are not updated as they 
should be. As the computation progresses, these incorrect val- 
ues propagate their effect inward. Eventually, after (n  - 1)/2 

gls  = 2mn-2 + 0 ( ~ 2 ~ - 3 ) .  generations, only the centermost cell is correct (assuming n is 
odd). Nevertheless, we can proceed by saving this one valid 
value and loading a new subproblem. Fortunately, this last 
step is greatly simplified if each processor stores an additional 
bit, its original state. These values are left-shifted one position 
before beginning the next computation, so that only n + 2 

With a = 1, the lower bound from (5) tells us that 

1 

Jz $ > -K1. 
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Fig. 2. Tessellating the problem space. Fig. 3. Multigeneration sweep architecture. 

new values need be input along the array's right border. In 
this architecture, we no longer tessellate the problem space, but 
truly sweep it. The n/2-generation sweep architecture employs 
the following algorithm: 

asymptotic expression becomes invalid when g approaches 
n/2 .  

We can adopt a different approach and compute the value of 
g that minimizes the expression for I/O overhead. By setting 
the partial derivative of .J, with respect to g equal to zero, we 
get 

1) For each row in problem space, do steps 2-5. 

3) Left-shift original states one position, input n + 2 new 

4) Compute for (n  - 1 ) / 2  generations. 

2) For each column in problem space, do steps 3-5. 

values. 

5) Output result from centermost processor. 
The 1/0 overhead can be computed as of which the negative root gives the minimum. Thus, 

Thus, this architecture is slightly better than the original array 
sweep architecture, but not as good as the modified version. 

D. Multigeneration Sweep Architecture 

The previous two schemes are, in fact, the extreme cases in 
a spectrum of architectures. It is possible to work anywhere 
between the array sweep architecture and the n/2-generation 
sweep architecture, as shown in Fig. 3. Processor requirements 
in this case are the same as those in the n/2-generation sweep 
architecture, except for the need to output a IC x IC matrix of 
results. The algorithm is changed slightly so that the array 
computes only (n  - k ) / 2  + 1 generations in step 4. 

Toffoli and Margolus mention this technique under the name 
"scooping," but do not analyze it from the standpoint of I/O 
efficiency [7], [lo]. 

1/0 overhead for this architecture is easiest to derive in terms 
of k ,  but can be related to g since 

The tilde superscript is to indicate that this quantity is always 
an integer multiple of an irrational number and is therefore 
always nonintegral. What we want is the discrete minimum 
for (7). We show in Section IV that taking the nearest integer 
of (8) gives the discrete minimum: 

Thus, we can calculate the asymptotic 1/0 overhead by noting 
that 

so 

$ J ~ ~ ~  = (6 + 4&)n-l+ O ( n - 2 ) .  

IC = n - 2(g - 1). The pebbling bound in this case (assuming cy = 2 )  is 

1 111 > -n-l. 
2 

Thus, this architecture is asymptotically optimal and falls 
within a factor of about 23 of the best possible 1/0 overhead. 

The equation is 

2(n - g + 2) 
g(n - 29 + 2) ' (7) 

If the asymptotics are done directly from this equation for 1/0 
overhead, one gets the unrealistic idea that the I/O overhead 
can become arbitrarily good if the number of generations 
computed goes to infinity. This is not only unreasonable, since 
at most Ln/2] generations can be validly computed, but it 
also seems to contradict the finding for the n/2-generation 
sweep architecture, which has a constant I/O overhead. The 
discrepancy is that the approximation used in generating the 

+mgs = 

Iv. PROOF OF VALIDITY OF DISCRETE 
MINIMIZATION FORMULA 

In the Section 111, we found that the I/O overhead for the 
multigeneration sweep architecture was 

2(n - g + 2 )  
= g ( n  - 2g + 2) .  
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From (S), we have the value of g that minimizes $: 
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where 

Jz <=1- - .  
2 

Let R(z) be the rounding function, defined by 

R(z) = Lz + 1/21. (9) 

We want to prove the assertion that taking the nearest integer 
function of gmin provides an integer value at which the 
minimum occurs, in other words 

This formula could produce the wrong result if the fractional 
part of (n  + 2)< falls in some “window of vulnerability” 
around 1/2, so that the actual discrete minimum occurs at one 
integer value, but R rounds to the other integer value. The 
basic idea behind the proof of validity of (10) is to compute 
the window of vulnerability and then show that there is no 
smallest value of n for which the fractional part falls within 
that window. 

A. The Stern-Brocot Tree 

The proofs of the theorem depend heavily on the properties 
of the Stern-Brocot (S-B) tree [3]. This section explains how 
the tree is derived and gives the properties it has that are 
important to the proof. 

The S-B tree starts with the fractions 0/1 and 1/0 and derives 
the next level by inserting between every pair of fractions m/n 
and m’/n/ the fraction (m + m’)/(n + n’). Fig. 4 shows the 
top part of the tree. The fractions that evaluate to 0 and cc 
are not really part of the tree; they are merely seeds to get the 
tree started. The S-B tree has several important properties: 

1) All fractions that appear in the tree are in reduced form. 
2) All reduced-form fractions appear in the tree. 
3) If the fractions are read from the tree by inorder tra- 

versal, they are in ascending order. 
4) We can treat the S-B tree as a binary search tree. If 

“L” means go down the left branch of the tree and 
“R” means go down the right branch, then all real 
numbers can be mapped to a unique element of the 
regular language [LR]”. For rational numbers, that 
is those that can be given a finite representation, the 
unique infinite representation is the finite part followed 
by RL”. The element of [LR]” so generated is called 
the S-B expansion of a number. 

5) If b is an irrational number, then the fractions generated 
in its S-B expansion are the simplest rational approxima- 
tions to b in the sense that if mln is an approximation 
to b, there exists an S-B expansion m’/n’ such that 
m’ 5 m, n’ 5 n, and m’/n’ is between m/n and b. 

1 I /\ 2 

/\ 
/i\ /+\ 
4 2 2 4  
3 3 2 1  

Fig. 4. Top of the Stern-Brocot tree. 

B. The Lemmas 

These are the lemmas which lead up to the main theorem 
of this section. The first lemma establishes that $ ( n , g )  is 
asymmetric about its minimum. 

Lemma 5: Let h(n, 6) be the symmetric difference of $(n, g) 
about its minimum for S > 0, that is, 

h(n. 6) = $(n, Qmin(n)  + 6) - $(n, imin(n) - 6). 

Then h(n ,S)  > 0 for all integer n > 0 and 0 < S 5 1/2. 
Proof: This is mostly a matter of algebra. We find that 

h(n,S) = 
16S3 

We can set the partial derivative with respect to S equal to 0 
to find the minima and maxima. When we do this, we find a 
double root at zero, two imaginary roots, and roots at 

6& = ztL4%(2 4 - a) (n  + 2) x f0 .243(n + a) ,  

of which we take the positive root, since we are only interested 
in S > 0. S+ > 1/2 for all n > 0. It also represents a maximum 
in the curve, since 

. (n + E -76142(n + 2)-3 

which is negative for all n > 0. Since for all n > 0, h(n, 0) = 
0 and the first local extremum in the curve is a maximum at 
h(n,S) with S > 1/2, we conclude that h(n,S) > 0 for all 

Now we can show that the nearest integer can only produce 
an incorrect result if the fractional part of (n  is slightly greater 
than 1/2 for some n. 

Lemma 6: Formula (10) for gmin can only produce an 
incorrect result if Frac(<n) = 1/2 + E, for some E > 0. 

Proof: Fig. 5 shows the behavior of $ about its minimum 
for m < gmin < m + 1. If $(n,g) were exactly symmetric 
about its minimum, then R(gmin(n)) would always produce 
the discrete minimum of $(n,g) ,  where R is as defined 
in (9). From Lemma 5, we know that $(n, &in + 6) > 
$(n,gmin - S), so that if the minimum falls at a fractional 

0 < s 5 1/2. 
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m m+ 112 m+ 1 

g -  

Fig. 5. Behavior of q, near its minimum. 

part that is 112 + E ,  +(n, m)  may be less than $(n,  m + 1 ) .  

Thus, there are “windows of vulnerability” if the fractional 
part of En is slightly larger than 112. The next lemma shows 
how large these windows of vulnerability are. 

Lemma 7: If m is any integer, then (10) will produce the 
wrong result if 

No similar problem exists if E < 0. 

1 1 
2 2 m + - < j m i n ( n )  < m + - + ~ ( m ) ,  

for some n, where 

Proof: A window of vulnerability exists when jmin(n) 
falls between m + 112 and the point such that $ ( n , m )  = 
+(n, m + 1)  for some integer m and n. Given a value of m, 
we determine n from the equation 

1 
2 gmin(n) = (n  + 2 ) 1 =  m + - + E ,  

or equivalently 

The windows of vulnerability thus start out small and shrink 
asymptotically to zero. 

Now, we adopt a different tack to find out which multiples 
of E could possibly have fractional parts that fall within the 
windows of vulnerability. The next lemma gives the S-B 
expansion of 1. 

Lemma 8: The S-B expansion for E is L(LLRR)”. 
Proof: It is clear that the expansion begins with L, 

since < < 1. Let those fractions that would underestimate 
1 according to the expansion above (those with an “R’ 
in their next digit) be denoted by m k / n k  and those that 
would overestimate < be denoted by p k l q k .  We can derive 
expressions for m k ,  n k ,  p k ,  and q k  by using recurrence 
relations (see Fig. 6). For example, the recurrence for m k  and 
n k  when k is odd is given by the simultaneous recurrence 

m1= 1; 

nl = 4; 
n k  = 3 n k - 2  + 4qk+i;  

p2 = 1; 
pk = 2mk-3 + 3 P k - 2 ;  

q 2  = 3; 

mk 3 m k - 2  + 4pk+l; 

q k  2nk-3 + 3 q k - 2 .  

From this recurrence, we can get generating functions for m k  

and n k  when k is odd: 

% 3 + Z  
modd(Z)  = m k Z k  = 

z4 - 6z2 + 1 ’ 
k odd 

which yield 

2 k - 1  

for k 2 1; 
The condition $(n. m) = $(n, m + 1) leads to 

n2 + 2n(1 -  2m) + 2m(m - 3 )  = 0. 

Plugging in the value of n from (12) gives + (4 - 3 h )  (1 - h)2k-2), for k 2 1. 

( 2 m + 1 ) ~ - 1 = 0 .  
Similarly, we get 

The values of E solving this equation are 
m 2 k  = 1 ((4 + 3 h )  (1 + h)2k-2 

’ n 2 k  = l ( ( 7 + 5 \ / ? )  (1+h)2k-2 

1 4 
E(m) = (h - 1) (*d4m2 + 4m + 2 - (2m + I ) ) .  

+ (4 - 3fi) (1 - J”)~~-~), for IC 2 1; 
The negative root is negative for all m > 0, so the positive 
root must be the correct one. 

It is instructive to do the asymptotics on ~ ( m )  to see how 2 
large the windows of vulnerability are. A simple derivation 
reveals that 

+ (7 - 5 h )  (1 - h)2k-z), for IC 2 1. 
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1 - 1 

4 \  

2 

- 
3 / :o 

Fig. 6.  Stern-Brocot expansion of 1 - &/Z. The table at the left indicates 
which subscript of which variables corresponds to each fraction of the tree. 
For example, p 2 / q 2  = 1/3 

which is the fractional part of [ n k .  It is straightforward to 
show that 

k 
A 2 k - 1  = ( 3  - 2 d )  , for IC 2 1; 

AZk=[ 3 - 2 J "  , f o r k 2 1 .  ( > k  

Since these quantities are always positive, m k / n k  always 
underestimates [. Similarly, it can be shown that p k / q k  always 
overestimates E .  Thus, these fractions must constitute the S-B 

The next lemma tells about the convergence properties of 

Lemma 9: The fractions m k  / n k  converge monotonically 

Proof: It should be noted that monotonic convergence is 
not an automatic property of S-B expansions of numbers. Let 
A,+ be as in (14). Let 61, be defined by 6 k  = E - m k / n k .  Then 
6k = A,/?%,. w e  get 

62k-1 
62 k 

expansion of E .  

m k / n k .  

to [. 

- 

- (7+ 5 J z )  (1 + a y 1  + (7 - 5 J z )  ( 1  - a),,-, 
- 

( 1  + + (7  - 5 4  ( 1  - a),,-, 
This ratio converges rapidly to 3 + 2 a  FZ 5.282 and is always 
greater than 5.28. Similarly, 

This ratio also converges rapidly to 3 + 2a and is always 
greater than 5.28. Since these ratios are both greater than one, 

We want the set of numbers bk for which the fractional part 
b,t& approaches 112 from the top more closely than n[ for any 
other n < bk. It is easy to see from the generating functions 
that when k is odd, m k  is odd and n k  is even. If we define 

these fractions converge monotonically. 

Ak = Erik - mk, then 

n 2 k - 1  m 2 k - 2  - 1 1 A 2 k - 1  = - + -  

where the two fractions on the left-hand side are integers and 
A2k-1 gets exponentially small. Thus, the series of numbers 

S T  - 2 2 2 

n2k-1 = ((4 + 3 h )  ( 3  + 2 q k - l  + (4 - 3J" )  4 
bk = - 

2 

would seem to be a good candidate for the numbers we are 
seeking. The next lemma proves that this is actually the case. 

Lemma IO: Let us define 

X(n) = Frac(6n - 1 / 2 ) ,  (16) 

so that X(n) is the amount by which the fractional part of [ n  
exceeds 112 (or a value greater than 1 / 2  if the fractional part 
does not exceed 1 / 2 ) .  The values of bk  defined in (15) have 
the property that 

Proof: Assume that there exists an n < bk such that 
x(n)  < ~ ( b k ) .  By definition, there exists an m such that 

1 
2 

Doubling this equation leads to 

<n - m = - + X ( n ) .  

[ ( a n )  - ( 2 m  + 1) = 2 ~ ( n ) .  

Thus, the fraction ( 2 m  + 1 ) / 2 n  is a rational approximation 
that underestimates E .  By property 5 of the S-B tree, there 
must be an underestimator to [ in its S-B expansion, mjlnj, 
with nj 5 2 n ,  that is at least as good as ( 2 m  + 1 ) / 2 n .  Also, 
2 n  < 2bk  = n 2 k - 1 ,  so that j < 2k - 1. But now we have two 
fractions in the S-B expansion of E ,  of which the one with the 
smaller index approximates [ better. This is a contradiction to 
Lemma 9. Thus, the assumption that there was such a value 

The only remaining fact needed to prove the theorem is 
that X(bk)  2 & ( m ( b k ) )  for all I C ,  where m(n) is defined by 

of n was incorrect, and the lemma is proved. 

m(n) = LEnJ. 
Lemma 11: We have X(bk)  = & ( m ( b k ) ) .  

Proof: We know that 
1 k 

X ( b k )  = a2k-1 = - (3  - 2 h )  . 
2 2 

We also know from Lemma 10 that 

D 

Plugging into ( l l ) ,  we get 

( / ( 1 +  ,>4k-2 + 2 + (1 - ,),,-, 
- ( 1  + ,)2k-1 - ( 1  - 
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The item in the square root is a perfect square, so 

~ ( m ( b k ) )  = 

consider the following probabilistic argument about whether 
the discrete minimum equation is true for all values of n: We (a - 1) ((1 + a)”-’ - (1 - &)2k-1  assume that in any interval m to m + 1, there is a probability 
of ~ ( m )  that a multiple of E falls within the &-window. If we 
define 

1 

- (1 + a)2k-1 - (1 - a y )  
1 k 

= - (3 - 2 d 5 )  
2 

A =  1 ( h - l ) ,  
16 

, the probability that all of the &-windows is missed is, from The expressions for ~ ( b k )  and ~ ( m ( b k ) )  are thus equal. 
(13) 

C. The Theorem 

We are now ready to prove the theorem. 
Theorem 2: The formula for gmin above gives an integer 

value that minimizes +(g, n).  
Proof: The values of gmin comprise all the multiples 

of an irrational number, [. The nearest integer function R 
will give the wrong answer only if the fractional part of that 
multiple of E is sufficiently close to 1 /2  that R will round it one 
way, but the minimum would occur by rounding it the other. 
Lemma 6 shows that, for positive n, this will only happen if 
the fractional part is slightly larger than 1/2. If we let m = 
LEn] then Lemma 7 computes the window of vulnerability 
~ ( m ) ,  that is, the maximum amount by which the fractional 
part of a failing value of En can exceed 112. This window of 
vulnerability is a monotonically decreasing function of m. Let 
N be the set of all n for which R(jmin(n)) # gmin(n). Then 
if N # 0, it has a smallest element n’. Define x(n)  as in (16). 
For any n” < n’, ~ ( n ’ )  < ~ ( n ” )  since otherwise En” would 
fall within its larger window of vulnerability, contradicting the 
assumption that n’ is the smallest failing multiple. So we need 
consider only those values of n such that x(n) is smaller than 
for any preceding value. Lemma 10 proved the explicit form 
of those numbers b k .  Finally, Lemma 11 demonstrated that 
each b k  falls exactly at the edge of a window of vulnerability, 
which means that 

$ ( b k  - 2,gmin(bk - 2)) = 11,(bk - 2,grnin(bk - 2) - I), 

so that rounding to either side produces a minimum. This , concludes the proof of the theorem. 

D. The Significance of this Result 

Proving an exact closed form for the optimal number of 
generations to compute is not strictly necessary to show 
that the architecture meets the lower bound asymptotically to 
within a constant factor. However, from a practical standpoint, 
it is nice to have a closed-form formula that tells how 
many generations to compute for a particular value of n. 
Furthermore, the fact that there exists a closed-form equation 
is quite unexpected, as we hope to show in this subsection. 
The technique of using a Stern-Brocot tree to prove such an 
exact result is novel. 

It is known that the set of fractional parts of all multiples of 
any irrational number p is dense on the unit interval (0, l), 
which is to say that given any 0 < y < 1 and E > 
0, there exists an integer n such that the fractional part 
of pn is within E of y. It turns out that the fractional 
parts are uniformly distributed along the unit interval. Let us 

Pr{everywhere correct} 5 n (1 - 2Xm-l + Amp2). 
m l l  

Taking logs, we get 

log(Pr{everywhere correct}) 

5 log(1- 2Xm-l+ Am?) 

5 (-2m-’+ Am-2) = -W. 

m > l  

m21 

Therefore, we find that Pr{everywhere correct} = 0. 
So it seems that the fact the discrete minimization formula 

is everywhere correct is a bit of a surprise: even though the 
fractional parts of the multiples of E are uniformly distributed 
on the unit interval, the probabilistic argument is not valid 
because the fractional parts of the multiples of [ do not 
approach 1/2 from the top until the €-window has shrunk 
just enough to be missed. 

V. CONCLUSIONS 
In this paper, we discussed 1/0 overhead 11, as a measure of 

merit for parallel VLSI architectures for lattice computations. 
We derived theoretic lower bounds on 11, based on the red-blue 
pebbling game. We presented and analyzed four potential 
architectures showing that one, the multigeneration sweep 
architecture, was optimal in terms of 11, within a small constant 
factor. Finally, we proved the discrete minimization formula 
that results in the optimal performance of the multigeneration 
sweep architecture. 

Do the asymptotic differences exhibited in this paper have 
any practical significance? Table I indicates values of 11, for 
three of our schemes. The multigeneration sweep architecture 
is noticeably superior even when n is relatively small. A value 
of 31 is achievable with current technology, resulting in an 
improvement of almost a factor of 6 in 1/0 performance; using 
wafer technology, a chip with 1002 processors is conceivable, 
in which case there is more than a factor of 18 improvement 
in the 1/0 overhead of the multigeneration sweep architecture 
over the normal sweep architecture. 

It is interesting to note that when n is larger than about 6, 
the 1/0 performance of the array sweep architecture proposed 
by other researchers is almost independent of n. In a problem 
like this, for which the limiting factor is I/O, we have the 
undesirable result that packing more processors onto a chip 
does not help much. 

We conclude that a VLSI implementation of a two- 
dimensional lattice computation does not need to be severely 
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TABLE I 
IiO OVERHEAD FOR VARIOUS ARCHITEC~URES 

n - 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
21 
31 

101 
1001 - 

genera tion 

w - 
4 
3 
2.67 
2 
1.67 
1 .5 
1.33 
1.17 
1.07 
1 
0.9 
0.51 
0.35 
0.11 
0.01 - 

restricted by its U0 performance so long as viewing the 
results after each generation is unnecessary. In this case, 
the increased complexity of designing a chip to use the 
multigeneration sweep architecture may be more than offset 
by its 1/0 efficiency. 

An interesting extension to this work currently being inves- 
tigated is the I/O overhead associated with simulating neural 
net computations. 
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