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1 Introduction

Input/Output communication (I/O) between primary and secondary memory is a major
bottleneck in many important computations. The I/O bottleneck is especially troublesome
when parallel processors are used. Of particular importance is the problem of external
sorting, in which the records to be sorted are too numerous to fit in internal memory and
instead are kept in secondary storage, typically made up of one or more magnetic disks.
Data are usually transferred in units of blocks , which may consist of several kilobytes. Block
transfer is motivated by the fact that the seek time is usually much longer than the time
needed for transmitting a single record of data once the disk read/write head is positioned.
An increasingly popular way to get further speedup is to use many disk drives working in
parallel [CLG, GHK, GiS].

Initial work in the use of parallel block transfer for sorting was done by Aggarwal and
Vitter [AgV]. In their model, they considered the parameters

N = # records in the file

M = # records that can fit in internal memory

B = # records per block (or track)

D = # blocks transferred per I/O (# of disks)

where M < N , and 1 ≤ DB ≤ M/8. In each I/O, D blocks of B records each can be
transferred simultaneously, as illustrated in Figure 1. The notions of “block” and “track”
are used interchangeably in this model for ease of exposition; a track on one of the disks
corresponds to one location where a single block of records is stored. This notion differs from
actual hardware, in which a track on disk is usually divided into multiple blocks, but such
considerations are easy to deal with effectively. For simplicity in this paper, we also adopt
the block-track correspondence.

The above model generalized the initial work on I/O of Floyd [Flo] and Hong and
Kung [HoK]. Aggarwal and Vitter proved that the average-case and worst-case number of
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Figure 1: A simple D-parallel two-level memory model.
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Their lower bound is based solely on routing arguments, except for the minor case in which
M and B are extremely small, in which case the comparison model is used. They gave two
algorithms, a modified merge sort and a distribution sort, that each achieved the optimal
I/O bounds.

Vitter and Shriver considered a more realistic parallel disk model , in which the secondary
storage is partitioned into D physically distinct disk drives [ViS], as in Figure 2. Each
head of a multi-head drive can count as a distinct disk in this definition, as long as each
could operate independently of the other heads on the drive. In each I/O operation, each
of the D disks can simultaneously transfer one block of B records. Thus, D blocks can be
transferred per I/O, as in the [AgV] model, but only if no two blocks access the same disk.
This assumption is very reasonable in light of the way real systems are constructed.

Our measure of performance in this paper is the number of parallel I/Os required. The
model also applies to the case in which the D disks are controlled by a P CPUs each with
enough internal memory to store M/P records; the P CPUs are connected by a network
that allows some basic operations (like sorting of the M records in the internal memories)
to be performed quickly in parallel. The bottleneck can be expected to be the I/O when P
is large enough.

Disk striping is a commonly-used technique in which the D disks are synchronized, so
that each of the D blocks accessed during an I/O is located at the same relative position
on its disk. This technique effectively transforms the D disks into a single disk with larger
block size B′ = DB. Merge sort combined with disk striping is deterministic, but when D is
large the number of I/Os used can be much larger than optimal, by a multiplicative factor
of log(M/B).

In distribution sort, the algorithm partitions the set to be sorted into S sets of approx-
imately equal size called buckets. Each bucket consists of consecutive records in the total

1We use the notation log x to denote the quantity max{1, log
2
x}.
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sorted list. The algorithm makes a pass over the data, separating the records into their
respective buckets, and then sorts each bucket recursively. Finally, the buckets are con-
catenated to form a totally sorted list. Since at any level in the recursion the sets have
approximately equal size, a total of O(logS N) passes are required, each of which accesses
O(N) records to achieve a running time of O(N logS N). The difficulty in implementing a
version of distribution sort that works on a set of D parallel disks is making sure that each
of the buckets can be read efficiently in parallel.

Vitter and Shriver presented a randomized version of distribution sort using two comple-
mentary partitioning techniques [ViS]. Their algorithm meets the I/O lower bound (1) for
the more lenient model of [AgV], and thus the algorithm is optimal. Randomization is used
to distribute each of the buckets evenly over the D disks so that they can be read efficiently
with parallel read operations. They posed as an open problem the question of whether there
is an optimal algorithm that is deterministic. That question was answered in the affirma-
tive by Nodine and Vitter using an algorithm called Greed Sort [NoVb]. That algorithm
was based on merge sort, and did not seem applicable to finding an optimal deterministic
algorithm for parallel memory hierarchies.

In this paper we describe Balance Sort, the first known optimal and deterministic sorting
algorithm based on distribution sort. Our main result is that Balance Sort is optimal for
parallel disk sorting in terms of the number of I/O steps.

Theorem 1 Balance Sort sorts N records in the parallel disk model in O(N log N) internal
processing time and with

O

(

N

DB

log(N/B)

log(M/B)

)

I/Os, which are optimal. The lower bounds apply to both the average and the worst case. The
I/O lower bound does not require the use of the comparison model of computation, except for
the case when M and B are extremely small with respect to N , namely, when B log(M/B) =
o(log(N/B)). The internal processing lower bound uses the comparison model.

Balance Sort provides a more practical and yet deterministic alternative to the optimal
randomized algorithm of Vitter and Shriver [ViS]. Previously there was one known optimal
deterministic method for parallel disk sorting, called Greed Sort [NoVb], but Balance Sort
has several important advantages over Greed Sort:

1. Balance Sort can be used as the basis of optimal deterministic algorithms for all defined
parallel memory hierarchies, as described in the companion paper [NoVa]. By contrast,
Greed Sort is based on merge sort, which does not lend itself to efficient implementation
in memory hierarchies.

2. Balance Sort has smaller constants embedded in the big-oh notation.

3. Balance Sort can be implemented using only striped writes. This restriction is im-
portant in practical parallel disk systems, where striped writes may be required for
maintaining redundancy information to make recovery possible in the event of a disk
failure [CLG, Sch].
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Subsequently to our work, Aggarwal and Plaxton [AgP] developed another optimal de-
terministic external sorting algorithm. Their algorithm is based on the hypercube sorting
method of Cypher and Plaxton [CyP] which has higher constant factors. Barve, Grove, and
Vitter [BGV] developed a practical sorting method based on merge sort, which does prob-
ably better than disk striping even for moderate values of D. The algorithm, however, is
not theoretically optimal for some values of N , D, and B. This algorithm was improved by
Barve and Vitter [BaV].

Section 2 describes how to balance the buckets in O(N/DB) parallel I/Os in such a way
that each bucket can be read efficiently in parallel at a later stage in the recursion. The
balancing subroutine is the heart of the overall sorting algorithm. Section 3 describes how
to apply the balancing algorithm in such a way as to achieve optimal parallel sorting time.
Section 5 explains the significance of this algorithm.

2 How to Balance

For simplicity, we assume that the N keys are distinct; this assumption is realizable by
appending to each key the record’s initial location. Distribution sort is a sorting paradigm
that chooses S − 1 partitioning elements that partition the file to be sorted into S ranges of
values called buckets. The file is processed and the buckets are formed, and then the buckets
are sorted recursively. The sorted buckets are concatenated in the right order to produce a
completely sorted file. For example, if we want to sort checks from a bank statement, and
the checks fall in the range 350–399, we might choose for our partitioning elements the values
360, 370, 380, and 390. We then partition the checks into stacks (buckets). Once each stack
is sorted, we then put the sorted 350s first, followed by the sorted 360s, etc., and the checks
are fully sorted.

In this paper we describe a new algorithm called Balance Sort that is based on the
distribution sort paradigm. In Balance Sort, we find S−1 partitioning elements that partition
the file into S nearly equal-sized blocks. We read D records into memory in parallel, partition
them, and write them back to the disks in parallel. We read, partition, and write the next D
records, and so on, until the whole file has been partitioned into buckets. The crucial problem
we address is how to minimize the number of parallel reads that we will need during the
next level of recursion to re-read each bucket. The heart of Balance Sort is a novel Balance
routine that guarantees that each bucket is spread evenly among the disks. In this section,
we describe the Balance routine. In the next section, we describe how to use Balance to
achieve the optimal number of I/Os. For simplicity of exposition, we assume that each block
stores only one record; that is, the block size is B = 1. We show in Section 3.2 how to
accommodate arbitrary block sizes.

Let xbd be the number of records written to disk d from bucket b during the partition
process; we call the S × D matrix X = (xbd) the histogram matrix. The number of parallel
reads required to read bucket b into internal memory during the next level of recursion is
rb = max1≤d≤D{xbd}. Our goal is to minimize the sum

∑

1≤b≤S

rb.

We process the file one track at a time (all of the disks are synchronized for reading) and
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Algorithm 1 [Simple Balance(P )]

{ P contains the partition elements }
{ Initialize }
for b := 1 to S

for d := 1 to D
xbd := 0
ybd := 0

{ Process the file }
for t := 1 to dN/De

read D records in parallel into array T in internal memory from track t
{ Compute the matching matrix Z }
for i := 1 to D

τ [i] := Bucket(T [i], P )
for d := 1 to D

zi,d := yτ [i],d

find a permutation π of T that is a min-cost matching of matching matrix Z
for d := 1 to D

increment xτ [π(d)],d

increment yτ [π(d)],d

decrement any row of Y that has no zeros
write out T in the permuted order

write out the location matrix L

use a greedy strategy that attempts to minimize the increase of this sum. We compute an
S ×D matrix Y , called the skew matrix, that measures how unbalanced each bucket is. We
define

ybd = xbd − xmin
b , where xmin

b = min
1≤d≤D

{xbd}.

Intuitively, the skew matrix element ybd indicates how many more records of bucket b will be
on disk d after all the records in the bucket that reside on some other disk have been read.
We call ybd the skew of bucket b on disk d.

In Algorithm 1, we try to minimize the elements of the skew matrix by computing a min-
cost bipartite matching between blocks and disks. In particular, a block from bucket b will
have cost ybd to be assigned to disk d. We assume that the procedure Bucket(a, P ) returns
the number of the bucket to which a belongs, based on the set of partitioning elements
P . Algorithm 1 is an on-line algorithm in that it makes its decisions about where to place
elements based only on the records it has already seen (as codified in the arrays X and Y ).
The CPU time complexity of finding a permutation for the min-cost matching is O(D3),
since Z is a D × D matrix.

It should be noted that after the first level of recursion, there is no longer any guarantee
that all buckets will occupy successive tracks on a disk. This difficulty is easily overcome by
keeping another D × S matrix L such that lbd is the last track with a block from bucket b
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on disk d. We augment each block with a pointer to the next block to read on that disk
for the same bucket. (This pointer actually points backwards to the most recently written
track for the bucket on that disk.) At the end, we are left with an S × D matrix giving the
locations where the next level of recursion must begin processing. We refer to this matrix
as the location matrix, L. Thus, starting from the final configuration of L, we can read the
bucket backwards, using only a constant amount of overhead in each block.

There is an obvious fact about the disk sums in the histogram matrix X:

Lemma 1 The column sums xd =
∑

1≤b≤S xbd in the histogram matrix X are all equal.

Proof : By definition,
∑

b xbd is the number of tracks written on disk d. Since we are reading
and writing whole tracks at a time, the sum must be constant over all disks.

It is not necessary from an algorithmic standpoint to have a skew matrix Y , since the
min-cost matching will give exactly the same results if it consists of rows from the histogram
matrix X. However, the skew matrix gives some insight into how unbalanced the buckets
are. Assigning a bucket b to a disk d for which ybd is zero is a good thing; it will never
increase the number of reads required to process the entire bucket beyond the minimum
needed. Alternatively, if we assign a bucket b to a disk d for which ybd is larger than ybd′ for
all other disks d′, we increase the total number of reads needed to process the bucket beyond
the number of reads that are strictly needed. By doing a min-cost matching, we attempt to
spread the records of each bucket evenly over the D disks simultaneously. The skew matrix
has some useful properties, as evidenced by the following simple lemmas:

Lemma 2 Every bucket b contains at least one 0 in the skew matrix Y .

Proof : By definition of the skew matrix, those disks d for which xbd = min1≤d≤D {xbd} will
have ybd = 0.

Lemma 3 In the skew matrix Y , we have ybd ≥ 0 for all 1 ≤ b ≤ S and 1 ≤ d ≤ D.

Proof : By definition of the skew matrix, we subtract from each row of the histogram ma-
trix X the minimum value for each row.

Lemma 4 The column sums yd =
∑

1≤b≤S ybd in the skew matrix Y are all equal.

Proof : This lemma is a simple consequence of Lemma 1 and the fact that forming the
skew matrix from the histogram matrix subtracts the same number from each disk for each
bucket.

Before we proceed, we need a little information about how the skew matrix evolves as a
function of the number of tracks processed.

Definition 1 Let Y be a skew matrix and let Y ′ be the same skew matrix after the next
track has been processed using the min-cost matching to assign buckets to disks, and after
any rows without zeroes have been decremented by 1. If y′

bd > ybd then we say that bucket b
has been promoted on disk d.
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Lemma 5 At most one bucket is promoted on any given disk on any track. Furthermore,
that bucket can increase its skew by at most 1 on the disk.

Proof : Exactly one bucket has its value in the histogram matrix incremented by 1 for the
given disk, and hence it is the only one whose value can increase in the skew matrix column
for that disk. Since the value in the histogram matrix is incremented by 1, the maximum
possible increase in its skew is also 1.

The following lemma about changes to the skew matrix is pivotal in proving the optimal
behavior of our algorithm.

Lemma 6 Assume that the largest element of skew matrix Y is max and that some min-
cost matching for a matching matrix composed of rows of Y results in a skew matrix Y ′ for
which several buckets have a skew of max + 1. Then all the buckets that attain the larger
skew in y′ must have a skew of max in Y on every disk for which the skew in y ′ is max+1.

Proof : Assume that bucket b reaches a skew of max + 1 on disk d and bucket b′ reaches a
skew of max + 1 on disk d′. Then in the partial matching, we have

d d′

b max i
b′ j max

where underlines indicate that the elements are part of a min-cost matching. Hence, it must
be the case that i + j ≥ 2max. Since no element of Y is greater than max, it follows that
i = j = max. Since this fact is true for every pair of buckets that achieve a new maximum
skew, the result follows.

The upshot of Lemma 6 is that if several buckets are promoted to a new maximum
skew value, there must have been a “block of maxes” in the matching matrix. That is, the
matching matrix must in part (up to permutations of the rows and columns) have looked
like this:

max max . . . max
max max . . . max

...
...

. . .
...

max max . . . max

The difficulty with Algorithm 1 is that, although there is much empirical evidence to
suggest that it is always within a factor of 2 of the optimal number of I/Os for reading
all the buckets back in, it has been difficult to prove this conjecture in the general case.
Intuitively, the algorithm tries to spread the buckets among the disks that in a way that
conflicts least with what has been previously placed. If it can be shown that the maximum
skew grows sufficiently slowly (for example, that it takes at least a quadratic number of
tracks to attain any given skew value) or that the maximum skew is bounded linearly by
the number of buckets available, then it would be possible to show that Algorithm 1 could
obtain optimal results for balancing.

Our alternative and provably optimal algorithm that we propose instead makes use of
two key ideas:
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1. We rebalance occasionally if the min-cost operation skews the balance too badly.

2. We only need to use some (preferably large) constant fraction of the disks efficiently.

The point behind rebalancing is that when some bucket b gets too skewed, that is, when
xbd − xbd′ > c for some disks d and d′, where c > 0 is the skew threshold, we can read a
block from bucket b on disk d and write it to disk d′. In fact, any number of buckets (up to
bD/2c) can be rebalanced in a single parallel I/O operation, as long as the swaps all take
place on distinct disks.

Saying that we need to use only some constant fraction α of the disks efficiently for any
given bucket means that the number of tracks needed to read that bucket will expand by
a factor of only about 1/α above the optimal. Our algorithm, given in Algorithm 2, uses
α = 1

2
. In addition to keeping a histogram matrix X, the algorithm keeps an auxiliary

matrix A to ensure that, after processing each track, no bucket is too far out of balance.
Specifically, if mb is the median number of blocks that bucket b has on all the disks (i.e., mb

is the median of xb1, . . . , xbD),2 we define

abd := max{0, xbd − mb}.

Invariant 1 about A below will guarantee that Xbd ≤ mb + 1 for all 1 ≤ d ≤ D.
The parts of Algorithm 2 that differ from Algorithm 1 are underlined. Algorithm 2

requires two subroutines to complete its work: ComputeAux and Rebalance, given in Algo-
rithms 3 and 4, respectively. We define these routines so as to maintain two invariants on
the matrix A at step (1) in the algorithm:

Invariant 1 A is a binary matrix; that is, all of its elements are either 0 or 1.

Invariant 2 Every row of A contains at least dD/2e 0s (or equivalently, every row contains
no more than bD/2c 1s).

It is easy to see that Invariant 2 is maintained, since the smallest dD/2e elements all
become 0, by our definition of the median.

To show Invariant 1, it is necessary to understand a bit more about how the min-cost
matching affects the auxiliary matrix and how effective the Rebalance subroutine is. We use
induction to show that the invariant is maintained. Auxiliary matrix A is initially binary
(all 0s).

We will prove some lemmas that assume the invariant holds at line (1) of Algorithm 2 and
show what happens to A at later points in the iteration. After this, we show some lemmas
needed to demonstrate that Rebalance is able to remove any 2s introduced as a result of the
min-cost matching. Finally, Theorem 2 establishes that Invariant 1 holds.

Lemma 7 The only entries of the auxiliary matrix A that can be larger at line (3) of Algo-
rithm 2 than they were at line (1) of the same iteration are those matched in the min-cost
matching. Furthermore, any element of A that increases can increase by only 1.

2We use the convention that the median is always the dD/2eth smallest element, rather than the conven-
tion in statistics that it is the average of the two middle elements when D is even.
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Algorithm 2 [Balance(P, T )]

{ P contains the partition elements; T says where the first block is on each disk. }
{ Initialize }
for b := 1 to S

for d := 1 to D
xbd := 0
abd := 0

{ Process the file }
for t := 1 to dN/De

read D records in parallel into array M em in internal memory from track t
{ Compute the matching matrix Z }
for i := 1 to D

τ [i] := bucket(M em[i], P )
for d := 1 to D

(1) zi,d := aτ [i],d

find a permutation π of M em that is a min-cost matching with matching matrix Z
write out M em in the permuted order
for d := 1 to D

increment xτ [π(d)],d

(2) A := ComputeAux(X) { X is the histogram matrix. }
(3) if there is a 2 in A
(4) Rebalance(A,X)
(5) A := ComputeAux(X)
(6) write out the location matrix L

Algorithm 3 [ComputeAux(X) returns A]

for b := 1 to S
m := median of xb1, . . . , xbD (the dD/2eth smallest element)
for d := 1 to D

abd := max(0, xbd − m)

Proof : The elements of X not involved in the min-cost matching are the same at line (3)
as they were at line (1), so the crux of the proof is to show that the call to ComputeAux in
line (2) maintains this property of A. Since the median for a bucket either stays the same
or increases as a result of the matching, the difference between any element not matched
and the median either stays the same or decreases. The elements of A involved in the
match increase by only 1, and since the median does not decrease, the difference between
the matched elements and the median can increase by at most 1.
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Algorithm 4 [Rebalance(A,X)]

{ The array R tells us which bucket to read from each disk }
{ The array W tells us on which disk to write the block }
for d := 1 to D

rd := 0
wd := 0

{ Create a bipartite matching problem }
U := {d | abd = 2 for some b ∈ 1, . . . , S}
V := {1, . . . , D} − U
E := ∅
for i := 1 to |U |

d := Ui

(1) b := (unique) bucket such that abd = 2
rd := b
for j := 1 to |V |

d′ := Vj

if abd′ = 0
E := E ∪ (d, d′)

{ We will swap a pair of blocks for every edge in the following match }
(2) find a maximum bipartite matching on the graph G = (U ∪ V,E)

for each match (d, d′)
wd := d′

{ Update X to reflect the swap }
xbd := xbd − 1
xbd′ := xbd′ + 1

read the last block of bucket rd on disk d if rd 6= 0
write the block read from disk d onto disk wd if rd 6= 0

We now show that lemmas similar to Lemmas 5 and 6 for skew matrices also hold for
the auxiliary matrix.

Lemma 8 Assuming that the auxiliary matrix A is binary at line (1) of Algorithm 2, at
most one bucket will have a 2 in A for any given disk at line (3) during the same iteration.
No buckets will have any elements in A larger than 2.

Proof : By Lemma 7, only those elements involved in a match can increase and even then,
only by 1. Since A is binary prior to the match, the largest element will be no greater than 2
at line (3). Furthermore, by definition of the match, exactly one element of X is incremented
on each disk; that element is the only one that can become a 2 for that disk.

Lemma 9 Assume that the auxiliary matrix A is binary at line (1) of Algorithm 2 and let
D be the set of disks having a 2 in A at line (3) during the same iteration. Then every bucket
that has a 2 in A at line (3) must have had a 1 in A for every disk in D back in line (1)
during the same iteration.
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Proof : The argument used in the proof of Lemma 6 works here as well, except that in this
case, max = 1 and some of the 2s may revert to 1s during the call to ComputeAux at line (2)
of the algorithm, if the median for that bucket happens to increase.

The call to ComputeAux at line (2) guarantees that every bucket in A at line (3) of
Algorithm 2 has at least dD/2e 0s. We need one more fact about A before we can complete
our analysis of the Rebalance routine.

Lemma 10 Assuming that the auxiliary matrix A is binary at line (1) of Algorithm 2, at
most bD/2c disks will have 2s in A at line (3) on the same iteration.

Proof : By Lemma 9, a necessary condition for the introduction of 2s on k different disks
is to have a “block of 1s” in the matching matrix Z. But each bucket has at least dD/2e
zeroes, which means that the maximum width of the block of 1s is bD/2c.

Now that we know the structure of the auxiliary matrix A at the call to Rebalance
at line (4) of Algorithm 2, we need to show some facts about the Rebalance subroutine.
Lemma 8 implies that the bucket at line (1) of Algorithm 4 is unique.

Lemma 11 Assuming that the auxiliary matrix A is binary at line (1) of Algorithm 2, the
maximum matching at line (2) of Algorithm 4 will include all vertices in U .

Proof : By Lemma 10, we have |U | ≤ bD/2c. Each vertex in U has at least dD/2e outgoing
edges. Each edge that is chosen for the matching can invalidate at most one possible edge
for every other vertex of U . Since the minimum number of edges coming out of any vertex
in U exceeds |U |, then the simple greedy algorithm (namely, choosing the first edge for the
first vertex of U , the first remaining edge for the second vertex of U , and so on) produces a
matching that includes all the vertices of U .

At long last, we are ready to prove that Invariant 1 holds.

Theorem 2 The auxiliary matrix A is a binary matrix at line (1) of Algorithm 2.

Proof : The proof proceeds by induction on the number of tracks processed. Before any
tracks have been processed, it is trivially true, since all the elements of A are 0.

Assume that the invariant holds at the beginning of an iteration. We now show that
the invariant will hold at the end of the iteration, and thus at the beginning of the next
iteration. If there is no 2 in A at line (3) of Algorithm 2, then the invariant is clearly
maintained. Assume that abd = 2 at line (3) of Algorithm 2. We know from Lemma 11 that
the vertex corresponding to disk d in U will be matched to some disk d′ for which abd′ = 0.
The rebalancing algorithm will read the last block of bucket b on disk d and write it to
disk d′. This operation guarantees that the call to ComputeAux in line (5) of Algorithm 2
will result in abd ≤ 1 and abd′ ≤ 1, since the median element cannot be on disk d, and so
there is no chance of lowering the median. By Lemma 11, in a single parallel I/O operation
we can simultaneously rebalance all of the 2s that appeared in A . Thus, A is binary at the
end of the loop and does not change before line (1) at the next iteration (or at the end of
the algorithm, if this was the last iteration).
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The following theorem tells how well each bucket is balanced.

Theorem 3 The number of I/Os needed to read any bucket b during the next level of recur-
sion of Balance Sort will be no more than a factor of about 2 above the optimal.

Proof : Let mb denote the median element in bucket b. By Invariant 1, which is also main-
tained at termination of the algorithm, the number of tracks needed to read bucket b is no
more than mb + 1. Bucket b has at least dD/2emb elements in it, so it requires at least

⌈

dD/2emb

D

⌉

≥
⌈

mb

2

⌉

tracks to read it. Thus, we are a factor of at most

mb + 1

dmb/2e
≈ 2

from the optimal.

Algorithm 2 assumes that it reads D blocks on every track, whereas the previous phase
does not guarantee that every track up to the last is fully utilized. Adjusting the algorithm
for partial tracks is simple: if no block is available to be read on some disk d, we pretend
that we read from a dummy bucket 0. Bucket 0 has the characteristic that x0d = 0 for all
1 ≤ d ≤ D, so in particular, its row of the matching matrix contains all 0s. The part of the
algorithm that increments the values of X should ignore bucket 0.

Step (6) requires writing a set of cardinality DS, which can be done in S/B parallel
writes.

We can now bound the total number of parallel I/Os needed for balancing N records
into S buckets:

Theorem 4 A phase of Balance requires no more than about 2N/DB parallel reads and
about 4N/DB + S parallel writes.

Proof : We know from Theorem 3 that the N records we are processing occupy about 2N/DB
tracks. Each of these tracks can give rise to at most one parallel read and two parallel writes:
one read and write for the original assignment to disks according to the min-cost matching,
and at most one parallel write in rebalancing. Those blocks that require rebalancing do not
need to be written in the first parallel write. The extra S parallel writes are for writing the
location matrix L.

Subsequently to our work, an alternative definition of the auxiliary matrix was proposed,
although without the development of a full sorting algorithm. It has a similar effect of
making each bucket balanced within a factor of 2; the term abh is defined to be 1 when the
number of blocks per bucket is more than twice the desired evenly-balanced number [Gro].
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Algorithm 5 [Balance Sort(N, T )]

if N ≤ M
(1) Read the whole bucket into memory

Sort internally
(2) Write the bucket out again

else

S := min{b2
√

M/Bc, b2N/Mc}
(3) P := ComputePartitionElements(S)

{ The T array gives the starting tracks on each disk. }
(4) Balance(P, T )

for b := 1 to S
(5) T := Read bth row of L { Written in Balance }

Nb := number of elements in bucket b
(6) Balance Sort(Nb, T )
(7) Append sorted bucket to output area

3 The Full Sorting Algorithm

In this section we describe how to fit the balancing algorithm into an optimal algorithm
for sorting, which we call Balance Sort. We assume that the Balance routine has been
modified to return the starting (ending) blocks of each bucket on each disk, as described
in the previous section. Algorithm 5 gives the actual algorithm. We assume for simplicity
without loss of generality that N,M and B are powers of 2 and that

√
M/B is an integer.

The Balance routine has up until now assumed that B = 1. In Subsection 3.2, we describe
how to handle the general case B ≥ 1.

The correctness of the algorithm is easy to establish, since the bottom level of recursion
by definition produces a sorted list, and each level thereafter concatenates sorted lists in the
right order. In this algorithm, we will let S = min{b2

√
M/Bc, b2N/Mc} in order to produce

optimal performance, as shown in Section 4.

The next few subsections establish the proof of Theorem 1, that Balance Sort uses an
optimal number of I/Os. The lower bounds on the number of I/Os needed to sort follows
from [AgV], where the same lower bound was established for a more powerful (but less
realistic) model. The lower bound is based only on routing concerns and does not assume a
comparison model of computation, except in a pathological case. The well-known Ω(N log N)
lower bound for internal processing does assume the comparison model of computation.

3.1 Finding the partition elements

The following procedure for finding the partition elements is based on that of [ViS], and is
presented in Algorithm 6. The algorithm is deterministic.

Lemma 12 Algorithm 6 finds S − 1 partition elements such that, for any bucket b, the
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number of elements in that bucket Nb obeys the constraint

N

2S
≤ Nb ≤

3N

2S
.

Proof : We constructed M′
i to consist of every bS/8cth record. Thus, each element of M′

i

represents exactly bS/8c elements that are less than or equal to it but larger than the previous
element of M′

i. So the element bj defined as the jN/(bS/8cSth element of M′ has at least

jN

bS/8cS bS/8c = j
N

S

elements less than or equal to it. But it could have more, since each of the other dN/Me− 1
memoryloads could have up to bS/8c − 1 records less than or equal to bj. So bj has at most
jN/S + z records less than or equal to it, where

z = (dN/Me − 1) (bS/8c − 1) .

The largest a bucket could be is if the previous partition element has rank jN/S and the
next has rank (j + 1)N/S + z, giving it a size of N/S + z. Similarly, the smallest a bucket
could be is N/S − z. So to prove the lemma, we need to demonstrate that

z = (dN/Me − 1) (bS/8c − 1) ≤ N

2S
.

Since N > M , we can divide by dN/Me − 1. We thus need to show that

S2 − S((S mod 8) − 1) ≤ 4N

dN/Me − 1
,

where we have expanded bS/8c in terms of the modulo function. This inequality is clearly
satisfied if we can show that

S2 ≤ 4N

dN/Me − 1
.

But we know that S ≤ 2
√

M/B so S2 ≤ 4M/B. The lemma will be proved if we show that

4M

B
≤ 4N

dN/Me − 1
.

We expand the ceiling

⌈

N

M

⌉

=
N

M
− M mod N

M
+ 1 − [M | N ],

where the notation

[M | N ] =

{

1 if M divides N
0 otherwise.

So
4N

dN/Me − 1
=

4M

1 − 1
N

((M mod N) + M [M | N ])
.
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Algorithm 6 [ComputePartitionElts(S) returns P ]

for each memoryload of records Mi (1 ≤ i ≤ dN/Me)
Read Mi into memory
Sort internally
Construct M′

i to consist of every bS/8cth record
Write M′

i

M′ := M′
1 ∪ · · · ∪M′

dN/Me

for j := 1 to S − 1
bj := Select(M′, 4Nj/S2)

return({bj})

Now (M mod N) + M [M | N ] = M if M | N and is at most M − 1 if M mod N 6= 0. Thus,

1

N
((M mod N) + M [M | N ]) < 1,

since M < N . Therefore, the fraction is defined and exceeds 4M . Putting the two halves
together, we have that

4M

B
≤ 4M <

4M

dN/Me − 1
,

which completes the proof of the lemma.

Algorithm 6 was analyzed in [ViS] and shown to take O(N/DB) parallel I/O operations
which, as we will see in the analysis, is sufficient for achieving optimal performance.

The procedure for finding the partitioning elements uses as a subroutine Algorithm 7,
which computes the kth smallest of n elements in O(n/DB) I/Os. It does this task by
recursively subdividing about an element that is guaranteed to be close to the median.

3.2 Dealing with larger blocks

There has until now been no description of how the algorithm collects the records into blocks.
The modifications to do this take place in the Balance routine (Algorithm 2). Algorithm 8
shows the modified Balance routine. The number of I/Os performed is not affected; the
changes only affect the amount of memory needed.

At the point in the loop where D records are read from disk in parallel into array M em,
we read whole blocks, and repack into blocks containing only records that belong in the
same bucket. Whenever we have D full blocks, we go into the normal process of min-cost
matching and rebalancing if necessary. At the end, we also use the min-cost and rebalancing
method to output the partially full blocks.

There can be no more than S partially filled blocks, and consequently the amount of
space needed before we find D completely filled blocks is never more than (S + D)B. We
thus can show the following theorem:

Theorem 5 The amount of space needed for buffering and collecting into buckets will never
exceed M as long as M ≥ 8DB.
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Algorithm 7 [Select(S, k)]

t := d|S|/Me
for i := 1 to t

Read M elements in parallel (from dM/DBe tracks, the last possibly partial)
Sort internally
Ri := the median element

if t = 1
return(kth element)

s := the median of R1, . . . , Rt using algorithm from [BFP]
Partition into two sets S1 and S2 such that S1 < s and S2 ≥ s
k1 := |S1|
k2 := |S2|
if k ≤ k1

return(Select(S1, k))
else

return(Select(S2, k − k1))

Proof : As shown above, the amount of space needed for collecting into blocks is no more
than (S +D)B. In addition, we need space DB for the input buffer. Thus, the total amount
of storage needed for buffering and collecting into blocks will never exceed SB + 2DB. But

S ≤
√

M/B throughout the algorithm and by hypothesis, M ≥ 8DB, so the amount of
space needed is no more than

SB + 2DB ≤
√

MB + 2DB

≤
√

MDB + 2DB

≤
√

M
M

8
+ 2

M

8
< M

4 Analysis

In this section, we prove Theorem 1 that Balance Sort is optimal with respect to the number
of parallel I/O steps and number of disk blocks in the parallel disk model.

4.1 I/O performance of the sorting algorithm

We have numbered each of the steps of Algorithm 5 that can cause an I/O operation. Let
T (N) denote the number of I/O steps needed for sorting N records. Steps (1) and (2) occur
only at the innermost level of recursion. From Theorem 3, the bucket will take no more than
3N/DB reads and writes.

16



Algorithm 8 [Balance With Blocks(P )]

{ Initialize }
for b := 1 to S

for d := 1 to D
xbd := 0
abd := 0

{ Process the file }
for t := 1 to dN/DBe

read D blocks in parallel into input array
Gather records into blocks that each represent only one bucket
if there are at least D full blocks or t = dN/De

if there are at least D full blocks
Define array M em to comprise D full blocks

else
Define array M em to be any D blocks that need writing

{ Compute the matching matrix Z }
for i := 1 to D

τ [i] := bucket(M em[i])
for d := 1 to D

zi,d := aτ [i],d

find a permutation π of M em that is a min-cost matching with matching matrix Z
write out M em in the permuted order
for d := 1 to D

increment xτ [π(d)],d

A := ComputeAux(X)
if there is a 2 in A

Rebalance(A,X)
A := ComputeAux(X)

write out the location matrix L

Step (3), as mentioned, has been shown by [ViS] to require only O(N/DB) I/Os, regard-
less of whether S = 2

√
M/B or S = 2N/M . Step (4), as shown in Theorem 4, requires no

more than 6N/DB I/Os. Step (5) can be done in a single parallel read, since the cardinality
of the set is only D, for a total of S reads. The number of I/Os for step (6) is

∑

1≤b≤S

T (Nb),

where Nb is the number of elements in bucket b. Let Nb = N/S + ∆b, where |∆b| ≤ N/(2S)
and

∑

1≤b≤S ∆b = 0. Finally, step (7) can read the bucket in no more than 3Nb/DB I/Os
and write it in no more than Nb/DB I/Os, for a total (over all buckets) of 4N/DB I/Os.
Recalling that S ≤ 2N/M and that M ≥ 2DB, we see that S ≤ N/DB, so we can fold any
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terms with S into an overall O(N/(DB)) term. This analysis gives us the recurrence

T (N) =































3N

DB
if N ≤ M

∑

1≤b≤S

T
(

N

S
+ ∆b

)

+ O
(

N

DB

)

if N > M

By the definition of S, we have

S =



























⌊

2N

M

⌋

if N ≤ M3/2

√
B







2

√

M

B







 if N ≥ M3/2

√
B

Let us consider the case N ≤ M 3/2/
√

B. We get the recurrence

T (N) =
∑

1≤b≤S

T
(

M

2
+ ∆b

)

+ O
(

N

DB

)

,

where |∆b| ≤ M/4. In particular, each bucket has size at most 3M/4, and so we can sort it
internally. Thus,

T (N) =
1

DB

∑

1≤b≤S

(

M

2
+ ∆b

)

+ O
(

N

DB

)

= O
(

N

DB

)

,

since M > DB.
When N ≥ M 3/2/

√
B, we demonstrate by induction below that

T (N) ≤ α
N

DB

log(N/B)

log(M/B)
,

where α is some positive constant of proportionality. The base case clearly satisfies the
constraint. Thus we need to show that

∑

1≤b≤S

T
(

N

S
+ ∆b

)

+ γ
N

DB
≤ α

N

DB

log(N/B)

log(M/B)
,

where γ is an upper bound of the constant of proportionality assumed by the “big Oh” in
the recurrence. By the induction hypothesis, the left-hand side is bounded by

∑

1≤b≤S

α
(

N

SDB
+

∆b

DB

)

log(N/SB) + log(1 + ∆b/(N/S))

log(M/B)
+ γ

N

DB
.

Since |∆b|/(N/S) ≤ 1/2, and log(1 + x) < x whenever x < 1, this quantity is no more than

∑

1≤b≤S

α
(

N

SDB
+

∆b

DB

)

log(N/SB) + ∆b/(N/S)

log(M/B)
+ γ

N

DB
.
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By splitting the sum into individual terms and using the fact that
∑

0≤b≤S ∆b = 0, we get

α
N

DB

log(N/SB)

log(M/B)
+

αS

NDB log(M/B)

∑

1≤b≤S

∆b
2 + γ

N

DB
.

Since |∆b| ≤ N/2S, we can bound the above by

α
N

DB

log(N/SB)

log(M/B)
+

αS

NDB log(M/B)
S
(

N

2S

)2

+ γ
N

DB

= α
N

DB

log(N/B)

log(M/B)
− α

N

DB

log S − 1/4

log(M/B)
+ γ

N

DB
,

where we have removed the S from the log(N/SB) and rearranged. Since S ≥ 2
√

M/B − 1,
the above does not exceed

α
N

DB

log(N/B)

log(M/B)
− α

N

DB

log(2
√

M/B − 1) − 1/4

log(M/B)
+ γ

N

DB
.

Now M/B > 1, so if we replace the “ − 1” above with “ −
√

M/B”, the value will increase
to

α
N

DB

log(N/B)

log(M/B)
− α

N

DB

log(
√

M/B) − 1/4

log(M/B)
+ γ

N

DB

= α
N

DB

log(N/B)

log(M/B)
− α

N

DB

(

1

2
− 1

4 log(M/B)

)

+ γ
N

DB
.

The bound is thus proved as long as

γ
N

BD
− α

N

BD

(

1

2
− 1

4 log(M/B)

)

≤ 0

or

γ ≤
(

1

2
− 1

4 log(M/B)

)

α.

Since the coefficient of α is always between 1/2 and 1/4, if we choose α > 4γ, the induction
condition is held independently of M and B. Thus,

T (N) = O

(

N

DB

log(N/B)

log(M/B)

)

,

which completes the proof of Theorem 1.

4.2 Memory usage of the sorting algorithm

We still need to show that we do not exceed the memory requirements of the computer. The
algorithm maintains three S × D arrays: L, A, and X.

Theorem 6 For any 0 < β < 1/2, the amount of primary memory space needed for the
data structures of the sorting algorithm is O(M 1/2+β) = o(M).
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Proof : In either range of S, it is easy to show that the space required is no more than
2
√

M/BD. At first glance, it seems if D = Ω(M) and B = 1 that we will require Ω(M 3/2)
storage space in primary memory, which is clearly impossible. However, we can use a partial
disk striping method throughout the course of the algorithm, as described in [NoVb]. If D
does not grow as fast as M 1/2, then the memory cannot be exceeded. Assume that D grows
faster than Mβ, where 0 < β < 1/2. We can cluster our D disks into clusters of D′ = Mβ

clusters of B′ = BD/D′ disks synchronized together. Each of the D′ clusters acts like a
logical disk with block size B ′. Thus, the number of primary storage locations we need is at
most

D′
√

M/B′ ≤ Mβ
√

M/B′ = O(M 1/2+β).

The expression for the number of I/Os remains the same, namely,

k
N

D′B′

log N
B′

log M
B′

= O

(

N

DB

log N
B

log M
B

)

.

5 Conclusions

In this paper, we have described a new algorithm called Balance Sort for sorting on parallel
disk subsystems. This algorithm has the following advantages over the previously known
optimal deterministic algorithm, Greed Sort [NoVb]:

1. The new algorithm is also applicable to parallel processors and to parallel memory
hierarchies, as described in the companion paper [NoVa].

2. The hidden constants in the big-oh notation are small. The problem with the Greed
Sort algorithm is that it uses Columnsort [Lei] as a subroutine, which introduces at
least an additional factor of 4 into the constant of proportionality.

3. The algorithm can operate using only striped write operations. Some parallel disk sub-
systems, such as Thinking Machine’s Data Vault, impose this requirement so that they
can maintain error checking and redundancy information to give acceptable levels of
reliability when dealing with many disks, each of which has an independent probability
of failure. It is unclear how to adapt Greed Sort to use only striped writes.

A promising approach to balancing that the authors first considered is to do a greedy bal-
ance via min-cost matching on the placement matrix. We conjecture that such an approach
results in globally balanced buckets.

There is still a significant hurdle to overcome before Balance Sort can be used to do
sorting optimally in terms of internal processing time on parallel processors and in terms of
time on parallel memory hierarchies. In the models that we consider in the companion paper
[NoVa], there is a requirement that the internal processing must be doable in O((N/P ) log P )
parallel time in order to achieve optimal performance, when P CPUs are used. The min-cost
matching in the Balance routine is operating on a 0-1 matrix, and therefore the full power
of min-cost matching is not required; indeed, maximum matching on the complement of
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the matching matrix will do the job. The proof that the “block of 1s” is present does not
depend upon maximum matching, but only that the matching is maximal. Likewise, it is
not hard to show that any maximal matching in the Rebalance routine is also a maximum
matching. Thus, we can use maximal matching in both the Balance and Rebalance rou-
tines. Unfortunately, the best known deterministic parallel time for maximal matching is
O(log3 n) for a problem of size n and with n processors [IsS], which is not good enough to
get optimal performance on the parallel memory hierarchies with effective logarithmic cost
functions. The interesting and elegant adjustments necessary to obtain optimal performance
on P processors are the subject of the companion paper [NoVa]. The sorting algorithm in
the companion paper [NoVa] for the D ≥ 1, P ≥ 1 disk model gives an alternate optimal
algorithm for the P = 1 model we consider in this paper.

The two distribution sort methods Balance Sort and Greed Sort perform write operations
in complete stripes, which make it easy to write parity information for use in error correc-
tion and recovery. But since the blocks written in each stripe typically belong to multiple
buckets, the buckets themselves will not be striped on the disks, and we must use the disks
independently during read operations. In the write phase, each bucket must therefore keep
track of the last block written to each disk so that the blocks for the bucket can be linked
together.

An orthogonal approach investigated more recently (since the appearance of this work in
conferences) is to stripe the contents of each bucket across the disks so that read operations
can be done in a striped manner. A summary of some approaches along those lines and the
issues that arise are described in the survey article [Vit].
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