
Optimal Deterministic Sorting

on Parallel Processors

and Parallel Memory Hierarchies ∗

Mark H. Nodine†

Intrinsity, Inc.
11612 Bee Caves Rd., Bldg. II

Austin, TX 78738
U.S.A.

Jeffrey Scott Vitter‡

Department of Computer Science
Purdue University

West Lafayette, IN 47907–2107
U.S.A.

Abstract

We present a practical deterministic load balancing strategy for distribution sort
that is applicable to parallel disks and parallel memory hierarchies with both single and
parallel processors. The simplest application of the strategy is an optimal deterministic
algorithm called Balance Sort for external sorting on multiple disks with a single CPU,
as described in the companion paper. However, the internal processing of Balance
Sort does not seem parallelizable. In this paper, we develop an elegant variation that
achieves full parallel speedup. The algorithms so derived are optimal for all parallel
memory hierarchies with any type of a PRAM base-level interconnection and are either
optimal or best-known for a hypercube interconnection. We show how to achieve
optimal internal processing time as well as optimal number of I/Os in parallel two-
level memories.

Keywords: Memory hierarchies, parallel sorting, load balancing, distribution sort, in-
put/output complexity.

AMS subject classification: 68P10 (Theory of data: searching and sorting).

∗An earlier and shortened version of this work appeared in [NoVc].
†Part of this research was done while the author was at Brown University, supported in part by an IBM

Graduate Fellowship, by NSF research grants CCR–9007851 and IRI–9116451, and by Army Research Office
grant DAAL03–91–G–0035. E-mail address: nodine@intrinsity·com.

‡Part of this research was done while the author was at Brown University. Support was provided in part by
Army Research Office grant DAAL03–91–G–0035 and by National Science Foundation grants EIA–9870734
and CCR–0082986. E-mail address: jsv@purdue.edu.

2

1 Introduction

Large-scale computer systems contain many levels of memory—ranging from very small but
very fast registers, to successively larger but slower memories, such as multiple levels of cache,
primary memory, magnetic disks, and archival storage. It is often the case that the overall
performance of an algorithm depends more on the characteristics of the memory hierarchy
than upon those of the CPU, since the limiting factor in CPU utilization may be the ability
of the memory hierarchy to supply the processor with the needed data. In this paper, we
investigate the capabilities of parallel memory hierarchies for the sorting problem.

Conceptually, the simplest large-scale parallel memory is the two-level memory with
multiple disks, known as the parallel disk model [ViSa]. Figure ??a shows the uniprocessor
(P = 1) parallel disk model with D > 1 disks. A more general model we consider in
this paper, in which the internal processing is done on P ≥ 1 interconnected processors, is
shown in Figure ??b for the special case P = D. The interconnections we consider are the
hypercube and the Exclusive-Read/Exclusive-Write (EREW) PRAM.

In a single I/O, each of the D disks can simultaneously transfer a block of B records. Our
two measures of performance are the number of I/Os and the amount of internal processing
done. The Balance Sort algorithm of the companion paper [NoVa] is optimal in terms of the
number of I/Os, but does not allow fast internal processing in parallel.

We also consider parallel multilevel hierarchical memory models, based on three sequen-
tial hierarchical models. The Hierarchical Memory Model (HMM) proposed by Aggarwal et
al. [AAC] is depicted in Figure ??a. In the HMMf(x) model, access to memory location x
takes f(x) time. Figure ??a suggests the HMMdlog xe model, where each layer in the hierarchy
is twice as large as the previous layer. Accesses to records in the first layer take one time
unit; in general each record in the nth layer takes n time units to access. We consider all
“well-behaved” cost functions f(x), by which we mean that f(2x) ≤ c f(x) for all x. Typical
examples are f(x) = log x and f(x) = xα, for α > 0.1

An elaboration of HMM is the Block Transfer (BT) model of Aggarwal et al. [ACSa],
depicted schematically in Figure ??b. Like HMM, it has a cost function f(x) to access a
single record, but in addition it incorporates the notion of block transfer by allowing access
to the previous ` records in unit time per record; that is, the `+1 locations x, x−1, . . . , x−`
can be accessed at cost f(x) + `. In Figure ??b, the f(x) cost corresponds to injecting the
“needle”; pushing in or pulling out additional items once the first item has been pushed or
pulled takes only one time unit per item.

An alternative block-oriented memory hierarchy is the Uniform Memory Hierarchy
(UMH) of Alpern et al. [ACF], depicted in Figure ??c. UMH has several additional
parameters:

ρ = expansion factor between levels

α = # of base memory locations

b(`) = bandwidth function

In particular, the `th level of the hierarchy contains αρ` blocks, each holding ρ` records, for a
total of αρ2` records in the `th level. Additionally, between level ` and level `+1 is a bus with

1We use the notation log x to denote the quantity max{1, log
2
x}.

Internal memory

CPU

D6 744444 844444

Internal
memory

CPU

D6 7444444 8444444

Internal
memory

Internal
memory

CPU CPU

Interconnection
network

(a) (b)

 L L

Figure 1: (a) The parallel disk model. Each of the D disks can simultaneously transfer
B records to and from internal memory in a single I/O. The internal memory can store
M ≥ 4DB records. (b) Multiprocessor generalization of the I/O model in (a), in which
each of the P = D internal processors controls one disk and has an internal memory of size
M/P . The P processors are connected by some interconnection network topology such as a
hypercube or an EREW PRAM and their memories collectively have size M .

a bandwidth b(`), so that a block on level ` can be transferred to or from level ` + 1 in time
ρ`/b(`). The base memory level is level 0. A novel feature of the UMH model is that all the
buses can be active simultaneously, allowing for a kind of controlled data parallelism. The
restriction that allows only one bus to be active at a time is called the Sequential UMH or
SUMH model. A less restrictive model that we proposed earlier [ViN] and which corresponds
closely to currently used programming constructs, is the Restricted UMH or RUMH model,
in which several buses are allowed to be active simultaneously if they are cooperating on a
single logical block move operation.

As with two-level hierarchies, multilevel hierarchies can be parallelized, as shown in
Figure ??. The base memory levels of the H hierarchies are attached to H interconnected
processors. We assume that the hierarchies are all of the same kind and all have the same
parameters. The parallel hierarchical models for HMM, BT, UMH, SUMH, and RUMH, are
respectively denoted as P-HMM, P-BT, P-UMH, P-SUMH, and P-RUMH.

In this paper, we present practical and optimal deterministic algorithms for sorting on
parallel multilevel memory hierarchies. We use an elegant modification of the Balance Sort

2

CPU CPUCPU

(a) (b) (c)

l}

Figure 2: Multilevel hierarchy models. (a) The HMM model. (b) The BT model. (c) The
UMH model.

approach in the companion paper [NoVa], which may in fact be preferable to the original
Balance Sort on the multiple-disk two-level model. Our main results are in the next section.
We give an optimal algorithm for sorting on D ≥ 1 disks and P ≥ 1 processors. Optimality
is in terms of both the number of I/Os and the internal processing time. We also give
optimal sorting algorithms for the P-HMM and P-BT parallel memory hierarchies. The
same technique can also be applied to the randomized algorithms for P-UMH, P-SUMH and
P-RUMH [ViN] to get corresponding deterministic algorithms. In Section ??, we give an
algorithm that is optimal for all the parallel multi-level hierarchies. In Section ??, we show
how to alter the algorithm to deal with parallelism of CPUs in the parallel disk model. The
resultant algorithm is very practical and is recommended as the sorting method of choice for
parallel disks. Our conclusions are in Section ??.

2 Main Results

In this section, we present our main results. The elegant load balancing approach we describe
in the next section gives us optimal deterministic algorithms for all the models we consider. In
particular we get deterministic (as well as more practical) versions of the optimal randomized
algorithms of [ViSa], [ViSb] and [ViN]. We also improve upon the deterministic Greed Sort
algorithm in [NoVb], which is known to be optimal only for the parallel disk models and not
for hierarchical memories. Greed Sort requires both independent reads and writes, whereas
this algorithm works with striped writes, which is advantageous for error correction. The
lower bounds are proved in [ViSb] (Theorems ?? and ??) and [AgV] (Theorem ??).

3

ÒNetworkÓ

H

CPU CPU CPU

Figure 3: Parallel multilevel memory hierarchies. The H hierarchies (of any of the types
listed in Figure ??) have their base levels connected by H interconnected processors.

Theorem 1 In the P-HMM model with an EREW PRAM interconnection, the time T (N)
for sorting N elements is

Θ

(

N

H
log

N

H
log

(

log N

log H

)

+
N

H
log N

)

if f(x) = log x;

Θ

(

(

N

H

)α+1

+
N

H
log N

)

if f(x) = xα, α > 0.

On a hypercube interconnection, the P-HMM time T (N) for sorting N elements is

O

(

N

H
log

N

H
log

(

log N

log H

)

+
N

H

log N

log H
T (H)

)

if f(x) = log x;

Θ

(

(

N

H

)α+1

+
N

H

log N

log H
T (H)

)

if f(x) = xα, α > 0,

where T (H) = O(log H (log log H)2) is the time needed to sort H items on an H-processor
hypercube. The upper bounds are given by a deterministic algorithm based on Balance Sort.
The lower bounds for the PRAM interconnection hold for any type of PRAM. The lower
bounds for the f(x) = xα case require the comparison model of computation.

The current best deterministic bound for T (H) on a hypercube comes from [CyP]. In
the hypercube case for f(x) = log x, the term in the sorting time involving T (H) is thus

4

possibly nonoptimal by an O((log log H)2) factor; however, the algorithm is optimal when
N is large (N > H (log H)log log H

) or small (N = O(H)). Note that if we are allowed to use
a randomized sorting algorithm as a subroutine to sort in time T (H) = log H, then our
algorithm is optimal for hypercubes.

Theorem 2 In the P-BT model with an EREW PRAM, the time T (N) for sorting N ele-
ments is

Θ
(

N

H
log N

)

if f(x) = log x;

Θ
(

N

H
log N

)

if f(x) = xα, 0 < α < 1;

Θ
(

N

H

(

log2 N

H
+ log N

))

if f(x) = xα, α = 1;

Θ

(

(

N

H

)α

+
N

H
log N

)

if f(x) = xα, α > 1.

The corresponding bounds T (N) for a hypercube interconnection of the P-BT memory hier-
archies are

O

(

N log N

H log H
T (H)

)

if f(x) = log x;

O

(

N log N

H log H
T (H)

)

if f(x) = xα, 0 < α < 1;

Θ

(

N

H

(

log2 N

H
+

log N

log H
T (H)

))

if f(x) = xα, α = 1;

Θ

(

(

N

H

)α

+
N log N

H log H
T (H)

)

if f(x) = xα, α > 1,

where T (H) = O(log H (log log H)2) is the time needed to sort H items on an H-processor hy-
percube. The upper bounds are given by a deterministic algorithm based on Balance Sort. The
lower bounds for the PRAM interconnection hold for any type of PRAM. The (N/H) log N
terms in the lower bounds require the comparison model of computation.

Our techniques can also be used to transform the randomized P-UMH algorithms of [ViN]
into deterministic ones with our PRAM interconnection. In this paper, however, we concen-
trate on the P-HMM and P-BT models.

Theorem 3 The number of I/Os needed for sorting N records in the parallel disk model is

Θ

(

N

DB

log(N/B)

log(M/B)

)

.

The upper bound is given by a deterministic algorithm based on Balance Sort, which also
achieves simultaneously optimal Θ((N/P) log N) internal processing time with an EREW
PRAM interconnection when log M = O(log(M/B)). The same running time can be achieved

5

Algorithm 1 [Sort(N, T)]

if N ≤ 3H
n := dN/He
for m := 1 to n

(1) Read H locations to the base level (last read may be partial)
Sort internally

(2) Write back out again
(3) Do binary merge sort of the ≤ 3 sorted lists

else
(4) E := ComputePartitionElements(S)

{ The T array says what location to start with on each hierarchy }
(5) Initialize X,L
(6) Balance(T)

for b := 1 to S
(7) T := Read bth row of L {set in Balance}

Nb := number of elements in bucket b
(8) Sort(Nb, T)
(9) Append sorted bucket to output area

on a CRCW PRAM interconnection if P ≤ M log min{M/B, log M}/ log M . When the
interconnection is a hypercube, the internal processing time is the number of I/Os times the
time to partition DB elements among

√
M/B sorted partition elements on a P -processor

hypercube. The lower bounds apply to both the average case and the worst case. The I/O
lower bound does not require the use of the comparison model of computation, except for the
case when M and B are extremely small with respect to N , namely, when B log(M/B) =
o(log(N/B)). The internal processing lower bound uses the comparison model.

3 Parallel Memory Hierarchies

This section describes the deterministic algorithm that serves as the basis for the upper
bounds in Theorems ?? and ??. Subsection ?? gives the overall sorting algorithm. Our
sorting algorithm is in the spirit of the Balance Sort algorithm given in the companion
paper, but with several important modifications needed to cope with hierarchies and the
inherent parallelism at the base level. We put these changes in perspective in Subsection ??
and discuss the reasons and ramifications of the changes. In Subsection ??, we analyze the
algorithm for the P-HMM model. Subsection ?? covers the P-BT model.

3.1 The sorting algorithm

For simplicity we assume without loss of generality that the N keys are distinct; this assump-
tion is easily realizable by appending to each key the record’s initial location. Algorithm ??
is the top-level description of our sorting algorithm for parallel memory hierarchies. We also
assume without loss of generality that the records have been augmented with a pointer so

6

that each record can point to the next record in the same bucket on the same hierarchy.2 The
algorithm is a version of distribution sort (sometimes called bucket sort). It sorts a set of
elements by choosing S−1 partitioning elements of approximately evenly-spaced rank in the
set and using them to partition the data into S disjoint ranges, or buckets. The individual
buckets are then sorted recursively and concatenated to form a completely sorted list.

The difficult part of the algorithm is the load balancing done by the routine Balance,
which makes sure that the buckets are (approximately) evenly distributed among the hierar-
chies during partitioning. In order for the balancing to occur in optimal deterministic time,
it is necessary to do partial striping of the hierarchies, so that we will have only H ′ log-
ical hierarchies with logical blocks of size B = H/H ′. We number the logical hierarchies
0, . . . , H ′ − 1. The value of H ′ we use is H ′ =

√
H. We must not use full striping because it

will not give optimal results when N becomes less than about H2. In this case, the optimal
algorithm takes only a constant number of further levels of recursion, whereas full striping
will take Ω(log log(N/H)) levels of recursion.

A number of parameters in each level of the algorithm merit explanation:

N = # of elements to sort

T = array of H ′ elements pointing to the starting block on each logical hierarchy

S = # buckets = (# of partition elements) + 1

E = “global” array of S − 1 partition elements

X = “global” S × H ′ histogram matrix (described later)

A = “global” S × H ′ auxiliary matrix (described later)

L = “global” S × H ′ location matrix (described later)

Some of these parameters are “global” and accessed by the subroutine Balance. We use
“global” in quotes, because there is actually a distinct copy of each variable for each level of
recursion. They can be thought of as allocated by the Sort routine in local storage and then
passed by reference to the routines that need to access them. We should make a remark
about storage of these “global” arrays. We assume throughout that each array will be stored
at the lowest level in which it fits and that accesses to all elements of the array have the same
cost. We are justified in this assumption because of the well-behaved cost function f(x), as
defined in Section ??. The alert reader will notice that we often will be storing more than
one matrix at the same level. Since the level is chosen so that each individual matrix (barely)
fits in the level, that level would not have enough space for all of the matrices combined. As
long as we limit ourselves to a constant number of matrices inhabiting the same level (which
we do), we will only be overlooking a constant factor in the cost. Taking these liberties
simplifies the analysis considerably without doing damage to the integrity of our results.

The correctness of Algorithm ?? is easy to establish, since the bottom level of recursion
by definition produces a sorted list and each level thereafter concatenates sorted lists in the
right order. To get optimal performance, we determine the number S of buckets differently
depending upon which hierarchical model we are using. Algorithm ?? gives the routine for
computing the S−1 partition elements, based on [AAC, ViSb]. It works by recursively sort-
ing sets of size dN/Ge and choosing every blog Ncth element. The approximate partition

2This modification does not affect the asymptotic overall running time, since it increases the space
requirements by only a constant factor and we have a well-behaved cost function.

7

Algorithm 2 [ComputePartitionElements(S)]

Partition into G groups G1, . . . ,GG of at most dN/Ge elements
for g := 1 to G

(1) Sort Gg recursively
(2) Set aside every blog Ncth element of Gg into C
(3) Sort C using binary merge sort with hierarchy striping

for b := 1 to S − 1
(4) eb := the bbN/ ((S − 1)blog Nc)cth smallest element of C

elements are selected from this subset. The specific value of G used in the algorithm is depen-
dent upon which hierarchical memory model is being used. Although the array E = {ej}
is listed as being returned from the routine, it is too large to fit into the base memory level,
and is therefore implemented as a “global” variable. We show the following technical lemma,
which leads to an analysis of the effectiveness of the approximate partitioning elements in
dividing the records into nearly equal-sized buckets.

Lemma 1 Assume that all keys are distinct. For any p, if we choose every pth element
from the subsets in line (2) of Algorithm ??, the amount of “slop” in the size of the buckets
produced is less than pG; that is, for every bucket b, the number Nb of elements in bucket b
satisfies

N

S
− pG < Nb <

N

S
+ pG.

Proof : We collect a set C of bN/pc elements by choosing every pth element from each of the
G sorted subsets. We then sort C into increasing order. Let ck denote the kth (smallest)
element of C. We set the bth partition element to be cbbqc, where q = N/((S − 1)p). The
minimum rank of cbbqc in the original set is bbqcp, since each of the bbqc elements in C less
than or equal to cbbqc represents p elements in the original set. The maximum rank of cbbqc in
the original set occurs if each of the other G−1 subsets has p−1 elements not in C that are
less than cbbqc followed by an element in C greater than cbbqc. Thus, the amount of “slop”
does not exceed (G − 1)(p − 1).

Corollary 1 If we use p = blog Nc and choose G such that Gblog Nc ≤ N/S, then we get
0 < Nb < 2N/S for any bucket b, where Nb is the size of bucket b, so that the buckets are
roughly equally sized.

Following the call to ComputePartitionElements, the original set of N records is left as
G sorted subsets of approximately N/G records each. This fact is crucially important in
allowing for partial hierarchy striping, as described in the next subsections. Algorithm ??
gives the Balance routine for balancing the buckets among the H ′ logical hierarchies. Balance
works as follows, successively track by track: A parallel read is done from the current subset
of the G sorted subsets in order to get a full track of records. (Some records may have been
left from the previous iteration.) These records are partitioned into buckets by merging them
with the partition elements, and the contents of the buckets from the track are formed into
logical blocks. Each logical block resides on some logical hierarchy. The logical blocks that

8

Algorithm 3 [Balance(T)]

v := H ′

A := 0
while there are unprocessed elements

(1) Read next v logical blocks
(2) Partition the records into buckets (in parallel)
(3) Collect buckets into logical blocks of size H/H ′

(all elements of any block are from the same bucket)
{ Rebalance writes some logical blocks, returns # of blocks written }

(4) v := Rebalance()
(5) Update the internal pointers of the logical blocks and location matrix L
(6) Collect unprocessed logical blocks to allow room for next v logical blocks in

the next iteration

do not overly unbalance their respective buckets, meaning that they do not introduce a 2
into the auxiliary matrix (described below), are written to higher levels of their respective
logical hierarchies. Those logical blocks that do unbalance their buckets are sent to the
Rebalance subroutine. As the records are partitioned and distributed, the histogram matrix
X = {xbh} records how the buckets are distributed among the hierarchies; in particular, xbh

is the number of logical blocks of bucket b on logical hierarchy h. Updating the histogram
matrix on line (4) simply means that if logical hierarchy h is assigned a logical block from
bucket b, then we increment xbh by 1.

The location matrix L = {lbh} tells what location was written last on each logical hierarchy
for each bucket. We do not assume that the logical blocks are at the same location on each
logical hierarchy; however, we assume that the records all come from the same level. The
locations of the first track on each hierarchy are gotten from the array T . Since T has
only H ′ elements and we have H hierarchies, the first value in T refers to the first H/H ′

consecutive hierarchies, the second value in T to the second H/H ′ hierarchies, and so on.
Subsequent tracks are read by following pointers present within each hierarchy; these pointers
are set during the previous level of recursion. The first level of recursion reads the tracks in
order in a round-robin fashion.

The auxiliary matrix A = {abh} determines if the placement becomes too badly skewed.
Specifically, if mb is the median number of logical blocks that bucket b has on all the logical
hierarchies (i.e., mb is the median of xb1, . . . , xbH′),3 we compute in the ComputeAux routine
(Algorithm ??)

abh := max{0, xbh − mb}.
(ComputeAux is listed as returning a matrix A, but since this matrix is larger than will
fit into the base memory level, it is another “global” variable.) This definition forces the
important invariant:

Invariant 1 At least dH ′/2e entries of every row of the auxiliary matrix A are 0s.

3We use the convention that the median is always the dD/2eth smallest element, rather than the conven-
tion in statistics that it is the average of the two middle elements if D is even.

9

The Balance routine (and its subroutine Rebalance) maintains good balance by guaran-
teeing that there are at most bH ′/2c 1s in the auxiliary matrix A, and that the remaining
entries must be 0s. If a block is to be written to a virtual hierarchy for which the corre-
sponding entry in A is 1, it is considered to be “unprocessed” and is held in memory to be
processed with the next track. The net result is that the auxiliary matrix A contains only
0s and 1s:

Invariant 2 After each track is processed, the auxiliary matrix A is binary; that is, all of
its entries are either 0 or 1. Hence xbh ≤ mb + 1 for all 1 ≤ h ≤ H ′, where mb is the
median entry on row b of A.

Invariant 2, coupled with the definition of median, proves the following theorem that the
buckets are balanced. The proof is the same as that of Theorem 3 in the companion paper.

Theorem 4 Any bucket b will take no more than a factor of 2 above the optimal number of
tracks to read.

In order to assign the records to buckets in line (2) of Algorithm ??, we merge the elements
in the base memory level with H consecutive partition elements. We pick as the first of the
H partition elements the one that separates the last bucket seen during the preceding track
from the one that follows it (for the first track, we use the first H partition elements). The
final locations of the partition elements serve to demarcate the buckets.

Collecting the buckets into logical blocks in line (3) of Algorithm ?? is surprisingly easy.
We choose a value of G such that the initial sorts of size dN/Ge put together within each
run an average of at least H/H ′ records for the S buckets. One possible issue is that there
may be internal fragmentation due to the fact that the number of elements within a given
bucket is likely not an exact multiple of the logical block size. However, we lose no more
than a factor of 2 due to internal fragmentation of the blocks, as shown in the next lemma.

Lemma 2 If a set containing k distinct values has N ≥ kB elements, then it can be broken
into no more than 2dN/Be blocks of B elements such that each block contains all the same
value.

Proof : Write out as many complete blocks all containing the same value as possible. Then
write out partially filled blocks containing all the same value. The number of partially filled
blocks is at most k. By supposition, k ≤ bN/Bc. There are no more than dN/Be completely
filled blocks. So the total number of blocks will not exceed

⌈

N

B

⌉

+
⌊

N

B

⌋

≤ 2
⌈

N

B

⌉

.

We will apply this lemma using k = S and B = H/H ′. Because of internal fragmentation,
processing v logical input blocks results in processing up to 2v logical blocks all containing
the same value; lines (4) to (6) are executed once for each set of v logical blocks. We will
not consider this issue further for hierarchies as it results in at most a factor of two in the
running time.

10

Algorithm 4 [ComputeAux(X)]

for b := 1 to S
mb := median (bH ′/2cth smallest) element of xb1, . . . , xbH′

for h := 1 to H ′ in parallel
abh := max{0, xbh − mb}

Algorithm 5 [Rebalance returns number of logical blocks written v]

{ Create a matching matrix M }
for h := 0 to H ′ − 1 in parallel

b := the bucket on logical hierarchy h
(1) bh := b

for h′ := 0 to H ′ − 1 in parallel
(2) M [h, h′] := abh′

{ Find a cyclic shift that minimizes the diagonal sum. }
for h := 0 to H ′ − 1 in parallel

(3) sh = 0
for h′ := 0 to H ′ − 1 in parallel

h′′ = (h + h′) mod H ′

(4) sh := sh + M [h′, h′′]
(5) h := value of h′ for which sh′ is minimized
(6) route logical blocks using cyclic shift of the logical hierarchies

for h′ := 0 to H ′ − 1 in parallel
h′′ = (h + h′) mod H ′

(7) if M [h′, h′′] = 0
(8) write the logical block to logical hierarchy h′′

(9) b := bh′

(10) xbh′′ := xbh′′ + 1
(11) A = ComputeAux(X)

return H ′ − sh

After the rebalancing, Step (6) of Algorithm ?? routes any unprocessed logical blocks
into a contiguous region that does not overlap with any of the next v logical hierarchies to
be read. This operation takes time O(log H) by monotone routing [Lei, Section 3.4.3].

Algorithm ?? assumes that it always has v logical blocks available (until the end), whereas
the previous phase does not guarantee that every track up to the last is fully used. Adjusting
the algorithm for partial tracks is simple: if no logical block is available to be read on some
hierarchy h, we pretend that we read from a dummy bucket 0. Bucket 0 will be have the
characteristic that x0h = 0 for all 1 ≤ h ≤ H ′, so in particular, that row of the matching
matrix will be all zeroes. The part of the algorithm that increments the values of X should
ignore bucket 0.

11

Algorithm ?? gives a Rebalance subroutine significantly different from the sequential-
based balance technique in the companion paper. The Rebalance subroutine is based on the
simple observation that if we only write a logical block of bucket b to a logical hierarchy h
for which abh = 0, then the auxiliary matrix A remains a binary matrix, i.e., a matrix in
which all elements are 0 or 1. We set up a mapping that writes at least half the logical blocks
simultaneously in a single parallel memory reference to logical hierarchies for which A has a
0 for that block.

The mapping used by subroutine Rebalance is computed by considering H ′−1 very simple
potential mappings (specifically, cyclic shifts) and choosing on Line (5) the one that works
the best. The matrix M allows for computing the potential mappings and is constructed as

mhh′ = abh′ ,

where b is the bucket represented by the block read from logical hierarchy h. Figure ?? gives
an example of the balancing process. In this figure, H ′ = 4 and we are processing Track t
on the “Before” side of the diagram. We read in blocks that must be assigned to Buckets 1,
2, 3, and 2, respectively. The figure shows the relevant portion of the histogram matrix X
and the auxiliary matrix A. We form matching matrix M by taking rows from the auxiliary
matrix for the buckets read from each virtual hierarchy (depicted as a “disk” in the figure)
in track t. We look for a diagonal in M with a minimal sum; one such diagonal is marked.
We rearrange the blocks according to the selected matching of M and move to the “After”
side of the diagram. We write each block whose entry in the matching matrix M was 0,
updating X and A to reflect the new counts. The block containing Bucket 1 that was read
from Disk 1 has a non-zero entry in the matching matrix M ; accordingly, we consider that
block to be unprocessed this round and do not write it to the output when we write the
other blocks. The unprocessed block will be considered to be part of the next track (in other
words, we will only read the next three blocks for Track t + 1).

Line (4) of Algorithm ??, in which the value of sh is computed as a linear sum, can
be computed using a parallel prefix operation in O(log H ′) time using H ′ processors. Since
H = O ((H ′)2), we can compute all the sh values simultaneously in O(log H) time using
H ′ × H ′ = H processors. Similarly, the value of h on Line (5) of Algorithm ?? can be
computed in O(log H) time using parallel prefix. Line (6) of Algorithm ?? is a cyclic shift
and is accomplished in O(log H) time by two monotone routing operations, the first of
which handles those records that do not “wrap around” and the second those that do “wrap
around”. Line (8) is a parallel memory reference.

In the following lemmas, we prove that Algorithm ?? leaves A as a binary matrix and
that it writes at least half of the H ′ virtual blocks.

Lemma 3 Assume the auxiliary matrix A is binary. Suppose we write a logical block cor-
responding to a bucket b that has abh = 0 to logical hierarchy h. If we update X to reflect
the change and call ComputeAux to compute the new auxiliary matrix A′ after the operation,
then the resulting A′ is binary.

Proof : Since abh was 0 and xbh is incremented by only 1, a′
bh can be at most 1. No other

element of A′ can be larger than its corresponding element of A, although some elements in
row b may be smaller if incrementing xbh causes it to become the new median element of

12

Disk 1 Disk 2 Disk 3 Disk 4

Before After

Disk 1 Disk 2 Disk 3 Disk 4

Bucket 2 Bucket 1 Bucket 4 Bucket 3

…… … …

Bucket 3 Bucket 4 Bucket 5 Bucket 1

Bucket 1 Bucket 2 Bucket 3 Bucket 2’

Bucket 2 Bucket 1 Bucket 4 Bucket 3

…… … …

Bucket 3 Bucket 4 Bucket 5 Bucket 1

Bucket 2’ Bucket 1 Bucket 2 Bucket 3

Track 1

Track t–1

Track t

Histogram Matrix (X):

25 25 24 22

…… … …
22 25 24 24

Bucket 1

Bucket 2

Bucket 3

16 19 18 19

Auxiliary Matrix (A):

1 1 0 0

…… … …

0 1 0 0

Bucket 1

Bucket 2

Bucket 3

0 1 0 1

Matching Matrix (M):

1 1 0 0

0 1 0 0

Bucket 1

Bucket 2

Bucket 3

0 1 0 1

Bucket 2’ 0 1 0 1

25 25 24 22

…… … …

22 25 24 24 25

16 17 19 18 19 19

1 1 0 0

…… … …

0 1 0 1

0 0 0 0

Unprocessed block

Figure 4: An example of balancing blocks for Track t.

row b. Since all elements of A were assumed to be binary and since ComputeAux can never
produce negative values, A′ must also be binary.

Lemma 4 Assume that Rebalance is called while auxiliary matrix A is binary. Then Rebal-
ance writes at least dH ′/2e blocks.

Proof : This lemma is equivalent to saying that for the value of h chosen on Line (5) of
Algorithm ??, at least dH ′/2e values of the set {M [h′, (h + h′) mod H ′] | 0 ≤ h′ ≤ H ′ − 1}
are 0. By Invariant 1, at least dH ′/2e of the entries in each row of M are 0. We consider H ′

possible mappings. The average number z of 0s among the mappings is at least dH ′/2e since

13

the mappings use each element of M once. The best mapping must have a number z of 0s
that is at least the average z; since z must be an integer, it follows that z ≥ dH ′/2e. Since
one logical block is written for each 0 in the matching, Rebalance writes at least dH ′/2e
blocks.

3.2 Differences from Balance Sort

Before we plunge into the analysis of the modified Balance Sort algorithm on the various
hierarchies, we want to point out the important ways in which the Balance Sort algorithm
of the companion paper needed to be changed:

1. The Balance routine no longer does a min-cost matching to specify an initial placement
of the blocks. No initial matching is done at all. All of the work in making sure that
the records are balanced evenly among the hierarchies is now done by the subroutine
Rebalance. The min-cost matching was removed since it was simply too costly to use
it in parallel.

2. The Rebalance subroutine now overlaps the input and output hierarchies in each I/O.
In Balance Sort, the “block of 1s” ensures, in terms of the auxiliary matrix A, that no
bucket that has a 2 on some disk can have a 0 on any other disk that has a 2 on it;
consequently the disks can be safely partitioned into those that have 2s and those that
potentially have 0s. Since there is no “block of 1s” in the modified Balance routine, any
hierarchy except the one on which the 2 occurs is a possible candidate for rebalancing.

3. The ComputePartitionElements subroutine is used to accomplish partial striping on
the hierarchies. The partial striping makes the number of processors large relative to
the size of the matchings so that the Rebalance algorithm can evaluate O(H ′) potential
mappings in O(log H ′) time.

3.3 Analysis of P-HMM

We do the analysis of the sorting algorithm using general cost function f(x) and then compute
the specific bounds for specific cost functions. In the P-HMM model, we choose

G =

⌊
√

N√
2 log NH1/4

⌋

if 2N log N > H3/2;

⌊

N

H

⌋

if 2N log N ≤ H3/2;

(1)

S =

⌊
√

2N√
log NH1/4

⌋

if 2N log N > H3/2;

⌊

2N

H

⌋

if 2N log N ≤ H3/2.

(2)

In the following lemmas, we show that the logical blocking can be done and that the buckets
are approximately the same size.

14

Lemma 5 With the above values of G and S, the average number of elements per bucket
per sorted run created by ComputePartitionElements is at least H/H ′ =

√
H and at least

log N .

Proof : The average number of elements per bucket per run is N/SG. Since S ≤√
2N/

√
log NH1/4 and G ≤

√
N/

√
2 log NH1/4, we have N/SG ≥

√
H log N .

Corollary 2 With the above values of G and S, the condition needed for Corollary ?? is
satisfied and the buckets created are approximately the same size.

In order to avoid clutter in the recurrences we develop and analyze, we will take some
liberties and occasionally neglect the floor or ceiling terms needed to insure that various
quantities are integers. The asymptotics of the solutions do not change.

The recurrence for P-HMM is derived in Table ??. We assume throughout that a data
structure of size s has an access cost of f(s/H). The analysis of Algorithm ?? is critically
dependent upon the fact that the algorithm works in parallel. In particular, it assumes that
the hth columns of A and M and the elements sh and bh are all stored on logical hierarchy h,
so that their accesses can occur in parallel. In the analysis of Algorithm ??, P (H) is the
amount of time needed to do a parallel prefix operation on H elements and Rc(H) is the
time needed for routing a cyclic permutation.

In Algorithm ??, it is possible to assume that the number of iterations of the loop
is O(N/H) because of Theorem ??. There is a trick used to obtain the running time of
assigning records to buckets at line (2) of Algorithm ??. The records have already been
sorted into G sorted runs Gi of size dN/Ge by ComputePartitionElements. To assign the
records to buckets, we merge each sorted run Gi with the S partitioning elements, and hence
we use the S partition elements G times. The evaluation of ComputeAux at line (11) of
Algorithm ?? can be done incrementally in the given time.

The recurrence from Table ?? reduces to

T (N) = GT
(

N

G

)

+
∑

b

T (Nb) + O
(

N

H

(

f
(

N

H

)

+ P (H) + Rc(H)
))

, (3)

for the case N > 2H, where P (H) is the time needed to do a parallel prefix operation on H
items and Rc(H) is the time needed to route a cyclic permutation. For both the hypercube
and any type of PRAM, P (H) = O(log H). We have Rc(H) = O(1) on a PRAM and
Rc(H) = O(log H) on a hypercube.

Now let us consider the case N = O(H). The following lemma about merging helps
establish the sorting bound in this case.

Lemma 6 Two sorted lists whose length totals N can be merged in P-HMM in time
O((N/H)(f(N/H) + log H)).

Proof : We always keep r1 = bH/2c records from list 1 and r2 = dH/2e records from list 2
in the base memory level, until one of the lists runs out of records. We start by reading the
first r1 records of list 1 and r2 records of list 2. This operation requires two parallel reads,
since the elements reside on hierarchies 1, . . . , r1 and 1, . . . , r2, respectively. Between the two
reads, it is necessary to shift the items from list 1 by r2 processors to make room in the base

15

memory level for the items from list 2; this shift operation takes O(log H) time by monotone
routing.

We need to add a field to each record keeping track of which list it originated from.
We also keep track of which is the next hierarchy to read for each of the lists and which
hierarchy is the first to write with our output elements. At each step, we merge the two
lists in the base memory locations, shift so that the record with the smallest key is on the
next hierarchy to write, and write out the bH/2c records with the smallest keys. We update
which hierarchy will be the next to write and count how many records from each list have
been written, say, t1 records from list 1 and t2 records from list 2. We then read in t1 records
from list 1 and t2 records from list 2, with appropriate shifts before each read, and update
the pointers to the next hierarchy to read for each list. Since at each step we have at least
the next bH/2c records from each list, we can always output the next bH/2c records for the
merged list. We require 3N/bH/2c read/write operations to process the N records, each of
which takes time f(N/H). We also need O(log H) time for merging and shifting between
read/write operations, yielding a total time that is O((N/H)(f(N/H) + log H)).

Using the fact that T (H) ≥ log H, we can now establish the base case of the recurrence.

Corollary 3 When N = O(H), the amount of time needed to sort N records is O(T (H)).

Before we derive the general solution to recurrence (??), we need a technical lemma to
help us deal with the summation in the recurrence.

Lemma 7 Let T (N) be a function that grows at least linearly and let
∑

1≤b≤S Nb = N and
0 ≤ Nb ≤ 2N/S, for 1 ≤ b ≤ S. Then

∑

1≤b≤S

T (Nb) ≤
S

2

(

T
(

2N

S

)

+ T (0)
)

. (4)

Proof : By the convexity of our function,
∑

b T (Nb) is maximized if Nb = 0 for exactly
half the values of b and Nb = 2N/S for the other half. This observation gives the desired
result.

Plugging Equation (??) into recurrence (??) with T (0) = 0 yields

T (N) ≤ GT
(

N

G

)

+
S

2
T
(

2N

S

)

+ O
(

N

H

(

f
(

N

H

)

+ log H
))

. (5)

For the case H < N and 2N log N ≤ H3/2, one iteration of the recurrence suffices to
reduce the recursive subproblems to be of size at most H. By (??) we get

T (N) = O
(

N

H

(

T (H) + f
(

N

H

)

+ log H
))

. (6)

Now let us consider the case 2N log N > H3/2. If we plug into (??) the values of G and S
from (??) and (??), we get

T (N) ≤
√

2N√
log NH1/4

T
(

√

2N log NH1/4
)

+ O
(

N

H

(

f
(

N

H

)

+ log H
))

. (7)

16

Let N(i) be the argument of T after i applications of recurrence (??). In other words, we
have N(0) = N , N(1) =

√
2N log N H1/4, and so on. By repeatedly applying the recurrence

s times (which we refer to as “unwinding”), we get

T (N) = O

N

H

∑

0≤i<s

2i f

(

N(i)

H

)

+
N

H

(

2s+1 − 1
)

log H

+
2sN

N(s)

T (N(s)), (8)

where for 1 ≤ i ≤ s we have log N(i) ≤ log N and

N(i) ≤ 2(log N)
√

H

(

N

2(log N)
√

H

)1/2i

. (9)

The number of times we unwind recurrence (??) is chosen so that the resulting argument N(s)

in (??) satisfies 2N(s) log N(s) ≤ H3/2. Since N(s) log N(s) < N(s)
2, the condition is satisfied if

N(s)
2 ≤ H3/2/2, which by (??) happens when

s =

log

log
(

N/2(log N)
√

H
)

log H − 6 − 4 log log N

+ 2. (10)

The following lemma establishes the formulas for the case f(x) = log x in Theorem ??:

Lemma 8 When f(x) = log x, the algorithm sorts in deterministic time

T (N) = O

(

N

H

(

log
N

H
log

(

log N

log H

)

+
log N

log H
T (H)

))

.

Proof : The formula for 2N log N ≤ H3/2 follows directly from (??). When 2N log N > H3/2,
we can plug f(x) = log x into Equation (??) and use (??) for T (N(s)), where s is given by (??).
By the fact that T (H) ≥ log H, we get the desired bound.

A similar proof establishes the solutions for the f(x) = xα case in Theorem ??:

Lemma 9 When f(x) = xα, the algorithm sorts in deterministic time

T (N) =
(

N

H

)α+1

+
N log N

H log H
T (H).

On a hypercube, the best known value of T (H) is O(log H log log H) if precomputation
is allowed and O(log H (log log H)2) with no precomputation [CyP]. On an EREW-PRAM,
we have T (H) = O(log H) [Col].

Lemmas ?? and ?? complete the proof for the upper bounds of Theorem ??. The lower
bounds for all the terms not involving T (H) were shown in [ViSb]. In fact, we can go even
farther for the P-HMM model and show that the algorithm is uniformly optimal for any
“well-behaved” cost functions f(x) on any interconnection that has T (H) = O(log H).

Theorem 5 The algorithm given above is optimal for all well-behaved cost functions f(x)
for any interconnection that has T (H) = O(log H).

17

Proof : This lower bound proof is essentially that of Theorem 6 in [ViSb] for their randomized
algorithm. Let TM,H(N) denote the average number of I/O steps the sorting algorithm does
with respect to an internal memory of size M ≥ H, where in a single I/O step we allow each
of the H hierarchies to simultaneously move a record between internal memory and external
memory. This model is equivalent to using the cost function

f(x) =

{

1 if x > M/H;
0 otherwise.

and not counting the time for parallel prefix and routing on the network. We are viewing the
algorithm only from the standpoint of I/O for the lower bound, and thus the matching time
does not get counted. When N > M and 2N log N > H3/2, we get from (??) the recurrence

TM,H(N) ≤
√

N√
log NH1/4

TM,H

(

√

2N log NH1/4
)

+
∑

1≤b≤S

TM,H(Nb) + O
(

N

H

)

,

where
∑

1≤b≤S Nb = N and Nb < 2N/S for all 1 ≤ b ≤ S. When M < N and 2N log N ≤
H3/2, we get TM,H = O(N/H). By the same kind of derivation above, we can show that this
recurrence satisfies

TM,H = O

(

N

H

log N

log M

)

. (11)

Aggarwal and Vitter showed a lower bound for the problem of sorting with internal
memory size M and no blocking or parallelism of

TM = Ω

(

N log N

log M
− M

)

,

where the “−M” term allows up to M items to be present initially in the internal memory.
At best we can achieve a speed-up of a factor of H by using H disks in parallel, so dividing
TM by H gives a lower bound on the I/O complexity with H disks. Equation (??) is thus
within an additive term of O(M/H) of this optimal I/O bound. At the base memory level,
in which M = H, we load in O(N log N/(H log H)) memory loads, each of which takes
O(log H) communication time for matching or sorting. Hence, the amount of time used in
the base memory level by the algorithm is O((N/H) log N).

Let us define

δf
(

M

H

)

= f
(

M + 1

H

)

− f
(

M

H

)

.

The total time above the optimal can be found by adding the amount of time used in the
base memory level of the algorithm to the amount used incrementally for every memory size
between H and N . More specifically, the amount of time spent above the optimal is

O

N

H
log N +

∑

H≤M<N

M

H
δf
(

M

H

)

= O

N

H
log N +

N

H
f
(

N

H

)

− f(1) − 1

H

∑

H≤M<N

f
(

M + 1

H

)

= O
(

N

H
log N +

N

H
f
(

N

H

))

. (12)

18

The sum at the end of the first line has been expanded and rearranged to produce the second
line, and the sum at the end of the second line contains fewer than N items each of which
has value no greater than f(N/H). The first term in (??) is the lower bound resulting
from using a comparison-based sorting algorithm. The second term in (??) is the minimum
amount of time needed to read all of the elements into the base memory level at least once,
assuming that the cost function f(x) is well-behaved. It follows that the sorting algorithm
is optimal.

3.4 Analysis of P-BT

Our algorithm for the P-BT model is similar to that for the P-HMM model. The only
difference is that in Algorithm ?? we need to add another step right after Step (6) to
reposition all the buckets into consecutive locations on each logical memory hierarchy. This
repositioning is done on a logical-hierarchy-by-logical-hierarchy basis, using the generalized
matrix transposition algorithm given in [ACSa].

We concentrate in this section on the cost function f(x) = xα, where 0 < α < 1. We
choose

G =

min

{

N1−α

H1/4
,
N

H

}

if N > H2;

min

{
√

N√
2H1/4

,
H

H

}

if N ≤ H2;

S =

min

{

Nα

H1/4 log N
,
2N

H

}

if N > H2;

min

{
√

N√
2H1/4

,
2N

H

}

if N ≤ H2.

(Note that the quantities defined above may be non-integral. The actual values of G and S
are the truncated values of these quantities. But as noted in the last section, we ignore this
distinction in order to avoid cluttering the asymptotic analysis.)

We show that the logical blocking can be done and that the buckets are approximately
the same size in the following lemmas.

Lemma 10 With the above values of G and S, the average number of elements per bucket
per sorted run created by ComputePartitionElements is at least H/H ′ =

√
H.

Lemma 11 With the above values of G and S, the condition for Corollary ?? is satisfied,
and the buckets are approximately the same size.

We need to make one more change to the algorithm for BT hierarchies, but one that is
hard to write explicitly. Aggarwal et al. [ACSa] gave an algorithm for the “touch” problem,
in which n consecutive records stored at the lowest possible level in the hierarchies must
pass through the base memory level in linear order on each hierarchy. Their algorithm takes
time O(n log log n) for 0 < α < 1. In our sorting algorithm, all the data structures are
processed in linear order throughout our algorithm, due to the sorted runs of size N/G

19

created while finding the partitioning elements. This gives us the same recurrence as for the
P-HMM model, but with an effective cost function f(x) = log log xα = O(log log x). The
limiting step in the algorithm for P-BT is the need for repositioning the buckets, which can
be done using the cited algorithm [ACSa] in time O ((N/H)(log log(N/H))4). So the overall
recurrence is

T (N) = GT
(

N

G

)

+
∑

b

T (Nb) + O

(

N

H

(

(

log log
N

H

)4

+ T (H)

)

+
GS

H
log log

S

H

)

, (13)

for the case N > 2H, where T (H) is the time needed to sort H items on H processors.
The term (GS/H) log log(S/H) comes from the repeated mergings of the partition ele-

ments with the sorted runs Gi during the process of partitioning the file into buckets. The
case N < 2H is the same as for P-HMM.

Solving the recurrence as in Lemma ?? gives the following time bound, which completes
the proof of Theorem ??.

Lemma 12 The given algorithm sorts in the P-BT model, with f(x) = xα, for 0 < α < 1,
using time

T (N) = O

(

N log N

H log H
T (H)

)

.

4 Parallel Disks with Parallel Processors

In this section, we present a version of Balance Sort for the parallel disk model. In the parallel
disk model, we have D disks, each capable of simultaneously transferring in a single I/O a
block of B records to or from the internal memory, which can hold up to M ≥ 4DB records.
The internal memory is partitioned into P ≤ M local memories belonging to P processors
connected by an EREW-PRAM interconnection network. Our algorithm is optimal in terms
of the number of parallel disk I/Os to within a constant factor that we evaluate and also in
terms of the internal processing time, assuming that log M = O(log(M/B)). If log(M/B) =
o(log M), we require a concurrent read/concurrent write (CRCW) PRAM interconnection
to attain the internal processing bounds.

The algorithm for the parallel disk model is shown in Algorithm ??. It is similar to that
used for the P-HMM model, with the following changes:

1. In Algorithm ??, we use N ≤ M rather than N ≤ 3H as the termination condition for
the recursion in Algorithm ??.

2. We call the Balance Disks algorithm given in Algorithm ?? instead of the Balance
routine given in Algorithm ??. This algorithm has a different mechanism for handling
internal fragmentation from that of Algorithm ??.

3. The parameter we call D (the number of disks) is similar to the parameter we called H
for parallel memory hierarchies; however, the number P of CPUs may be different from
the number D of disks. We likewise use a partial striping of D′ =

√
D tracks.

4. We use a different method for computing the partitioning elements, given in Algo-
rithm ?? (this method was described in [ViSa]).

20

Algorithm 6 [Sort Disks(N, T)]

if N ≤ M
(1) Read N locations

Sort internally
(2) Write N locations

else
(3) E := ComputePartitionElements(S)

{ The T array says what location to start with on each hierarchy }
Initialize X,L,A

(4) Balance Disks(T)
for b := 1 to S

(5) T := Read bth row of L {set in Balance}
Nb := number of elements in bucket b

(6) Sort Disks(Nb, T)
(7) Append sorted bucket to output area

Algorithm 7 [Balance Disks(T)]

while there remain elements to process
(1) read data to fill memoryload (some data may still be in memory)
(2) assign all M records to buckets
(3) group each bucket together (sort using bucket number as key)
(4) for each consecutive D′ logical blocks of values in parallel
(5) Call Rebalance on full logical blocks (or all logical blocks if the last time

through)

Algorithm 8 [ComputePartitionElements(S)]

for each memoryload of records Mi(1 ≤ i ≤ N/M)
(1) Read Mi into memory

Sort internally
Construct M′

i to consist of every (S − 1)/2th record
(2) Write M′

i

M′ := M′
1 ∪ · · · ∪M′

N/M

for j := 1 to S − 1
(3) ej := Select(M′, 2Nj/(S − 1)2)

5. We let S =
√

M/B.

6. The Rebalance routine operates only on the first D′ full logical blocks.

The procedure for finding the partitioning elements uses as a subroutine Algorithm ??,

21

Algorithm 9 [Select(S0, k)]

t := d|S0|/Me
for i := 1 to t

(1) Read M elements in parallel (dM/DBe tracks; the last may be partial)
Sort internally
Ri := the median element

if t = 1
return(kth element)

s := the median of R1, . . . , Rt using algorithm from [BFP]
Partition S0 into two sets S1 and S2 such that S1 < s and S2 ≥ s
k1 := |S1|
k2 := |S2|
if k ≤ k1

(2) Select(S1, k)
else

(3) Select(S2, k − k1)

which computes the kth smallest of n elements in O(n/DB) I/Os. It does this by recursively
subdividing about an element that is guaranteed to be close to the median.

We start by showing the correctness of the overall sorting algorithm. The general proof
of correctness for distribution sort applies, except that we must show that we can group into
logical blocks on our logical disks. If this grouping is not possible, the matching will not
correctly distribute records into buckets, and the sorting algorithm will fail. In particular,
line (5) of Algorithm ?? may not have any full logical blocks to write. We show in Lemma ??
that at least half the logical blocks are full for any memoryload.

Lemma 13 At least half the logical blocks at line (5) of Algorithm ?? are full for any mem-
oryload.

Proof : There are a total of M/(B
√

D) logical blocks per memoryload, of which at most S
are only partially full. Thus, the fraction of partially full blocks is at most

S

M/(B
√

D)
=

√

M
B

M
B
√

D

=

√

DB

M
≤
√

DB

4DB
=

1

2

since M ≥ 4DB. The remaining half of the logical blocks must be full.

In order to show bounds on I/O and internal processing time, we need to show that the
routine for computing the partition elements produces buckets that have nearly the same
size. We reapply Lemma ??, except this time we have p = (S − 1)/2. Substituting in G

and S, we get a slop that is less than
√

M/BN/2M . The ratio between the slop and the
average number of elements per bucket is 1/(2B) ≤ 1/2. Thus, we have for any bucket b,

N

2S
< Nb <

3N

2S
.

22

4.1 I/O Bounds

The “big oh” I/O bound is easy to show for the new algorithm. The A, X, L, and E matrices
all reside in the internal memory, so there is no I/O cost to access them. A “memoryload” is
the collection of O(M) records that fit into memory. We can read and write a memoryload
using full parallelism using O(M/DB) I/Os. Since there are overall dN/Me memoryloads,
we find that the number of I/Os done per call to Balance Disks is O(N/DB). Vitter and
Shriver showed that the partition elements can also be computed using O(N/DB) I/Os
[ViSa]. Thus, we get the recurrence

T (N) =

S T
(

N

S

)

+ O
(

N

DB

)

if N > M ;

O
(

N

DB

)

if N ≤ M ,

which has solution

T (N) = O
(

N

DB
logS

N

M

)

= O

(

N

DB

log(N/B)

log(M/B)

)

.

This bound is the same as that shown to be optimal for the parallel disk model [AgV].
In fact, we can go beyond the standard analysis to determine the constant of propor-

tionality hidden by the “big oh”. Let α be the factor that represents the ratio between the
worst-case time for reading N records and the best-case time, so that reading N records
takes at most αdN/DBe reads. (We showed in Lemma ?? that α = 2.) Then we derive our
recurrences in Table ??. In this table, we let Ri(N) and Wi(N) be the total number of reads
and writes done by Algorithm i when processing N records, respectively.

Line (5) of Algorithm ?? has no I/Os since the L array fits entirely within internal
memory. Line (7) of Algorithm ?? also requires no I/Os since we can arrange things so that
Line (2) of Algorithm ?? always writes to the next locations in the output area.

We can solve the recurrences in Table ?? in reverse order.

W??(N) = 0;

R??(N) =

⌈

N

DB

⌉

+ R??(N)
(⌈

N

2

⌉)

N > M ;

⌈

N

DB

⌉

N ≤ M ;

= 2
⌈

N

DB

⌉

+ O(log N).

where the O(log N) term adds up all the round-ups in the recursive arguments. Algo-
rithms ?? and ?? are not recursive, so they can be computed directly:

W??(N) ≤ N√
BMD

≤ N

2BD3/2
;

R??(N) < (α + 1)
⌈

N

DB

⌉

+ O

log
N

√

M/B

 ;

23

W??(N) =
⌈

N

DB

⌉

;

R??(N) = α
⌈

N

DB

⌉

.

So the final recurrence is

W??(N) =

⌈

N

DB

⌉

+
N

2BD3/2
+ S · W??(N)

(⌈

N

S

⌉)

N > M ;

⌈

N

DB

⌉

N ≤ M ;

R??(N) =

(2α + 1)
⌈

N

DB

⌉

+ S · R??(N)
(⌈

N

S

⌉)

N > M ;

α
⌈

N

DB

⌉

N ≤ M.

We can get an exact solution to this recurrence by noting that

F (N) =

kN + S · F
(⌈

N

S

⌉)

N > M ;

F (M) N ≤ M ;

has solution

F (N) = kN

(

log N/M

log S

)

+ F (M) + o

(

N
log N/M

log S

)

.

So

W??(N) ≤
⌈

N

DB

⌉

(

1 +
1

2
√

D

)(

log N/M

log S

)

+
⌈

N

DB

⌉

+ o

(

N

DB

log N/M

log S

)

= 2

(

1 +
1

2
√

D

)

⌈

N

DB

⌉

(

log N/B

log M/B

)

+ o

(

N

DB

log N/B

log M/B

)

;

R??(N) = 2(2α + 1)
⌈

N

DB

⌉

(

log N/B

log M/B

)

+ o

(

N

DB

log N/B

log M/B

)

.

Since α = 2, we are within the following factors of optimal in the leading terms:

Read 10
Write 2 + 2√

D

Total 6 + 1√
D

This constant factor can be further reduced by choosing different values for S. If we use

S =
(

M

B

)β

for any 0 < β < 1, the same big-oh complexity is achieved. As β → 1, the factors approach
half of those listed above, so that in the limit that β → 1 and D → ∞, the overall factor is
within 3 of optimal.

24

4.2 Processing Time

We devote the remainder of this section to showing that the algorithm operates
with optimal internal processing time as long as the number of processors P ≤
M log min{M/B, log M}/ log M . If log M is not O(log(M/B)), we assume a CRCW in-
terconnection. The optimal internal processing time (assuming comparison-based sorting) is
Ω((N/P) log N). The crux of the matter is in showing that we can use the given number of
processors efficiently in all aspects of the sorting algorithm.

Algorithm ?? for finding the partition elements does a total of O(N/DB) I/Os. Since the
data are always processed in terms of memoryloads, this corresponds to O(N/M) memory-
loads. Each of the memoryloads can be processed in time O((M/P) log M) for any number
of processors P ≤ M , giving a total time O((N/P) log M) = O((N/P) log N).

The remainder of the non-recursive internal computation time occurs in the routine
Balance Disks. We assume that the CPUs are inactive during I/O, so there is no CPU time
charged during step (1) of Algorithm ??.

Steps (2) and (3) of Algorithm ?? are easy to analyze in terms of processing time needed
per memoryload. The next two lemmas state these bounds.

Lemma 14 Step (2) of Algorithm ?? can be done in time O((M/P) log(M/B)) for each
memoryload for any P ≤ M .

Proof : Assign M/P records to each processor. Each processor can then do a binary
search on the

√
M/B partition elements for each of its records, giving a total time of

O((M/P) log(M/B)).

Lemma 15 Step (3) of Algorithm ?? can be done in time O((M/P) log(M/B)) for each
memoryload if log M = O(log(M/B)) or if P ≤ M log min{M/B, log M}/ log M .

Proof : To group the records within each bucket together, we sort the records in internal
memory. If log M = O(log(M/B)) then we can sort the M records using Cole’s EREW
PRAM parallel merge sort algorithm [Col] in time (M/P) log M = O((M/P) log(M/B)) for
any P ≤ M .

Otherwise, instead of sorting using the keys contained in the records, we sort using the
bucket number as the key. We start by considering only P ≥ M/ log M . We make use of
a deterministic algorithm by Rajasekaran and Reif that appears as Lemma 3.1 in [RaR].
Their algorithm sorts n elements in the range 1, . . . , log n in time O(log n) using n/ log n
processors, but requires a CRCW PRAM. We need to consider two cases:

Case 1: M/B ≤ log M . In this case, we let n = M . The key values range from 1 to√
M/B < M/B ≤ log M , so we can apply the Rajasekaran-Reif algorithm directly to

sort in time O(log M) = O((M/P) log(M/B)) with M/ log M processors; we have that
many processors available.

Case 2: M/B > log M . We still let n = M , but this time
√

M/B may be larger
than log M . What we do is a radix sort using the Rajasekaran-Reif algorithm as a

25

subroutine, sorting log log M bits at a time. Thus, we need O(log(M/B)/ log log M)
applications of the algorithm, for time

O

(

log M
log(M/B)

log log M

)

= O
(

M

P
log

M

B

)

whenever

P <
M log log M

log M
< M

log(M/B)

log M
.

If P < M/ log M , then we can attain the same bound by multitasking P ′ = M/ log M logical
processors onto the P real processors.

In order to show that loop (4) of Algorithm ?? can be parallelized efficiently, we need to
understand more precisely what we mean by “in parallel” on line (4). We are dividing the
memoryload into tracks, where each track consists of D consecutive blocks of values. We
make the observation that if any track consists entirely of elements from the same bucket, it
is not necessary for that track to update the histogram matrix X or recompute the portion of
the auxiliary matrix A that needs to be updated by changing X for that bucket. We assume
that A is updated incrementally, only modifying those rows that were actually affected by
the given track. We thus arrive at the following crucial lemma.

Lemma 16 At most two tracks need to access values of any specific row of matrices A or X
during a memoryload.

Proof : We use here the fact that the records have been sorted according to their bucket
numbers. So any pair of consecutive tracks can have only one bucket in common. Thus, if
we ignore any track that consists entirely of elements from the same bucket, the lemma is
established.

We can thus parallelize this operation by casting out any tracks that consist of all the same
bucket, renumbering the tracks, and then doing all the odd-numbered tracks followed by all
the even-numbered tracks. The odd/even tracks are guaranteed not to interfere with one
another since they access disjoint rows of A and X. This crucial fact leads to the following
lemma.

Lemma 17 Loop (4) of Algorithm ?? can be done in time O((M/P) log(M/B)) for any
P ≤ M .

Proof : As shown in Lemma ??, at most two tracks need to access any row of X or A. We
have two repetitions of at most M/2DB tracks. We need to update an element of X for
each of the M/DB′ logical blocks, which can be done completely in parallel for any number
of processors up to M/D′B. The total amount of time updating X is

TX =

O

(

M log D

PB
√

D

)

if P ≤ M log DB
√

D;

O(1) if P > M log DB
√

D.

In both cases, the time is O((M/P) log(M/B)) for any P ≤ M .
We can do the ComputeAux routine by the following two steps:

26

1. Sort S sets of D′ numbers in parallel to pick the median element.

2. Update all the SD′ elements of the auxiliary matrix A.

The sorts take time

TA1 =

O

1

P

√

M

B

√
D

log D
log

√
D

log D

 if P ≤
√

M

B

√
D

log D
;

O

(

log

√
D

log D

)

if P >

√

M

B

√
D

log D
.

In both cases, the time is O((M/P) log(M/B)) for any P ≤ M . The update time is

TA2 =

O

1

P

√

M

B

√
D

log D

 if P ≤
√

M

B

√
D

log D
;

O(1) if P >

√

M

B

√
D

log D
.

Again, the time is O((M/P) log(M/B)) for any P ≤ M if M ≥ D/(B log2 D), which is true
since D/ log2 D < 2D for all D ≥ 2.

Finally, we can accomplish the rebalancing by the following steps:

1. Set up M/DB matching problems, each of which has size D′ × D′.

2. Solve the M/DB matching problems.

3. Do M/DB sets of swaps.

The set-up time can be done in parallel time

TR1 =

O

(

M

PB log2 D

)

if P ≤ M

B log2 D
;

O(1) if P >
M

B log2 D
.

Each matching problem can use up to D processors to achieve time O(log D). The matching
takes time

TR2 =

O

(

M log D

PBD

)

if P ≤ M

B
;

O(log D) if P >
M

B
.

Both of these steps take O((M/P) log(M/B)) time, for any P ≤ M . The swaps involve
moving up to M items, but no internal processing time other than touching them, for a
time of O(M/P). Each individual step thus meets the time bound proposed by the lemma,
establishing its validity.

27

Finally, we are ready to complete the proof of our main result for disk sorting, The-
orem ??. We established the I/O bound above. To show that the CPU time is op-
timal, we need to show that it takes a total of O((N/P) log N) time. We have shown
that each memoryload can be processed using time O((M/P) log(M/B)) whenever either
P ≤ M log min{M/B, log M}/ log M or log M = O(log M/B). The number of memoryloads
we need to process the file is O((N/M) log(N/B)/ log(M/B)). Therefore, the total time is

O

((

N

M

log(N/B)

log(M/B)

)

(

M

P
log(M/B)

)

)

= O
(

N

P
(log N − log B)

)

= O
(

N

P
(log N)

)

as desired.

5 Conclusions

In this paper, we have described the first known deterministic algorithm for sorting opti-
mally using parallel hierarchical memories. This algorithm improves upon the randomized
algorithms of Vitter and Shriver [ViSa, ViSb] and the deterministic disk algorithm of Nodine
and Vitter [NoVb]. The algorithm applies to P-HMM, P-BT, and the parallel variants of
the UMH models. In the parallel disk model with parallel CPUs, our algorithm is simul-
taneously optimal in terms of both the number of I/Os and the internal processing time.
The algorithms do not require non-striped writes, which is a useful feature when the disk
subsystem requires only striped writes so that it can do its error checking and correcting
protocols.

Our algorithms are both theoretically efficient and practical in terms of constant factors,
and we expect our balance technique to be quite useful as large-scale parallel memories are
built, not only for sorting but also for other load-balancing applications on parallel disks
and parallel memory hierarchies. Although we have presented a deterministic algorithm, the
randomized algorithm resulting from the randomized matching is even simpler to implement
in practice.

As pointed out in the conclusions of the companion paper [NoVa], Balance Sort performs
write operations in complete stripes, which makes it easy to write parity information for use
in error correction and recovery. However, the blocks written in each stripe typically belong
to multiple buckets, the buckets themselves will not be striped on the disks, and we must
use the disks independently during read operations. In the write phase, each bucket must
therefore keep track of the last block written to each disk so that the blocks for the bucket can
be linked together. An orthogonal approach investigated more recently (since the appearance
of this work in conferences) is to stripe the contents of each bucket across the disks so that
read operations can be done in a striped manner. A summary of some approaches along
those lines and the issues that arise are described in the survey article [Vit].

6 References

[AAC] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra & Marc Snir, “A Model for

28

Hierarchical Memory,” Proceedings of 19th Annual ACM Symposium on Theory of
Computing , New York, NY (May 1987).

[ACSa] Alok Aggarwal, Ashok K. Chandra & Marc Snir, “Hierarchical Memory with Block
Transfer,” Proceedings of 28th Annual IEEE Symposium on Foundations of Com-
puter Science, Los Angeles, CA (October 1987).

[AgV] Alok Aggarwal & Jeffrey Scott Vitter, “The Input/Output Complexity of Sorting
and Related Problems,” Communications of the ACM 31 (September 1988), 1116–
1127.

[ACF] Bowen Alpern, Larry Carter, Ephraim Feig & T. Selker, “The Uniform Memory
Hierarchy Model of Computation,” Algorithmica 12 (1994), 72–109.

[BFP] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest & Robert E.
Tarjan, “Time Bounds for Selection,” J. Computer and System Sciences 7 (1973),
448–461.

[Col] Richard Cole, “Parallel Merge Sort,” SIAM J. Computing 17 (August 1988), 770–
785.

[CyP] Robert E. Cypher & C. Greg Plaxton, “Deterministic Sorting in Nearly Logarithmic
Time on the Hypercube and Related Computers,” Journal of Computer and System
Sciences 47 (1993), 501–548.

[Lei] F. Thomson Leighton, in Introduction to Parallel Algorithms and Architectures ,
Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[NoVa] Mark H. Nodine & Jeffrey Scott Vitter, “Optimal Deterministic Sorting on Parallel
Disks,” submitted for publication.

[NoVb] Mark H. Nodine & Jeffrey Scott Vitter, “Greed Sort: Optimal Deterministic Sorting
on Parallel Disks,” Journal of the Association for Computing Machinery 42 (1995),
919–933.

[NoVc] Mark H. Nodine & Jeffrey Scott Vitter, “Deterministic Distribution Sort in Shared
and Distributed Memory Multiprocessors (extended abstract),” Proceedings of the
5th ACM Symposium on Parallel Algorithms and Architectures , Velen, Germany
(June 1993).

[RaR] Sanguthevar Rajasekaran & John H. Reif, “Optimal and Sublogarithmic Time Ran-
domized Parallel Sorting Algorithms,” SIAM J. Computing 18 (1989), 594–607.

[Vit] Jeffrey Scott Vitter, “External Memory Algorithms and Data Structures: Dealing
with Massive Data,” ACM Computing Surveys (June 2001), also appears in updated
form at http://www.cs.purdue.edu/homes/jsv/Papers/Vit.IO survey.pdf, 2007.

[ViN] Jeffrey Scott Vitter & Mark H. Nodine, “Large-Scale Sorting in Uniform Memory
Hierarchies,” Journal of Parallel and Distributed Computing (January 1993), also
appears in shortened form in “Large-Scale Sorting in Parallel Memories,” Proc. 3rd
Annual ACM Symposium on Parallel Algorithms and Architectures, Hilton Head,
SC (July 1991), 29–39.

[ViSa] Jeffrey Scott Vitter & Elizabeth A. M. Shriver, “Algorithms for Parallel Memory
I: Two-Level Memories,” Algorithmica 12 (1994), 110–147.

[ViSb] Jeffrey Scott Vitter & Elizabeth A. M. Shriver, “Algorithms for Parallel Memory
II: Hierarchical Multilevel Memories,” Algorithmica 12 (1994), 148–169.

29

Alg. Line Repeats Time/repeat Total time

?? 1,9 2 f
(

H′

H

)

2f
(

H′

H

)

2 1 f
(

SH′

H

)

+ f
(

(H′)2

H

)

f
(

SH′

H

)

+ f
(

(H′)2

H

)

3,4,5 2 2f
(

H′−1
H

)

+ P (H ′) 4f
(

H′−1
H

)

+ 2P (H ′)

6 1 Rc(H) Rc(H)

7 1 2f
(

(H′)2

H

)

2f
(

(H′)2

H

)

8 1 f
(

N
H

)

f
(

N
H

)

10 1 2f
(

SH′

H

)

2f
(

SH′

H

)

11 1 (H′)2

H
f
(

SH′

H

)

(H′)2

H
f
(

SH′

H

)

Total C?? = O
(

(H′)2

H
f
(

SH′

H

)

+ P (H ′) + Rc(H) + f
(

N
H

))

?? 1 O
(

N
H

)

f
(

N
H

)

N
H

f
(

N
H

)

2 1 see text GS
H

f
(

S
H

)

4 O
(

N
H

)

C??
N
H

C??

5 O
(

N
H

)

f
(

SH′

H

)

N
H

f
(

SH′

H

)

Total C?? = O
(

N
H

(

f
(

N
H

)

+ f
(

SH′

H

)

+ C??

)

+ GS
H

f
(

S
H

))

?? 1 G T
(

N
G

)

GT
(

N
G

)

2 G N
GH log N

f
(

log N
H

)

N
H log N

f
(

log N
H

)

3 1 log N log log N
H

f
(

log N
H

)

log N log log N
H

f
(

log N
H

)

4 1 S
H

(

f
(

S
H

)

+ f
(

log N
H

))

S
H

(

f
(

S
H

)

+ f
(

log N
H

))

Total C?? = GT
(

N
G

)

+
(

N
H log N

+ log N log log N
H

+ S
H

)

f
(

log N
H

)

+ S
H

f
(

S
H

)

?? 4 1 C?? C??

5 2 SH′

H
f
(

SH′

H

)

2SH′

H
f
(

SH′

H

)

6 1 C?? C??

7 S f
(

SH′

H

)

Sf
(

SH′

H

)

8 S T (Nb)
∑

b T (Nb)

9 S Nb

H
f
(

N
H

)

N
H

f
(

N
H

)

Total T (N) =
∑

b T (Nb) + C?? + O
(

C?? +
(

SH′

H
+ S

)

f
(

SH′

H

)

+ N
H

f
(

N
H

))

Table 1: Derivation of the recurrence for P-HMMf(x).

30

Alg. Line Reads Writes

?? 1 αdN/DBe 0
2 0 dN/DBe
3 R??(N) W??(N)
4 R??(N) W??(N)
5 0 0
6 SR??(dN/Se) SW??(dN/Se)
7 0 0

?? 1 αdN/DBe 0
5 0 dN/DBe

?? 1 αdN/DBe 0

2 0 < N/(
√

BMD)

3 <
(√

M/B/2
)

R??

(

N/
√

M/B
)

0

?? 1 dN/DBe 0
2,3 R??(N/2) 0

Table 2: Derivation of the recurrence for disk I/Os.

31

