
Categorical Range Maxima Queries∗

Manish Patil
Louisiana State University,

USA
mpatil@csc.lsu.edu

Sharma V. Thankachan
University of Waterloo,

Canada
thanks@uwaterloo.ca

Rahul Shah
Louisiana State University,

USA
rahul@csc.lsu.edu

Yakov Nekrich
University of Waterloo,

Canada
yakov.nekrich@gmail.com

Jeffrey Scott Vitter
The University of Kansas,

USA
jsv@ku.edu

ABSTRACT
Given an array A[1...n] of n distinct elements from the set
{1, 2, ..., n} a range maximum query RMQ(a, b) returns the
highest element in A[a...b] along with its position. In this
paper, we study a generalization of this classical problem
called Categorical Range Maxima Query (CRMQ) problem,
in which each element A[i] in the array has an associated
category (color) given by C[i] ∈ [σ]. A query then asks to
report each distinct color c appearing in C[a...b] along with
the highest element (and its position) in A[a...b] with color c.
Let pc denote the position of the highest element in A[a...b]
with color c. We investigate two variants of this problem: a
threshold version and a top-k version. In threshold version,
we only need to output the colors with A[pc] more than the
input threshold τ , whereas top-k variant asks for k colors
with the highest A[pc] values.

In the word RAM model, we achieve linear space struc-
ture along with O(k) query time, that can report colors in
sorted order of A[·]. In external memory, we present a data
structure that answers queries in optimal O(1+ k

B
) I/O’s us-

ing almost-linear O(n log∗ n) space, as well as a linear space
data structure with O(log∗ n+ k

B
) query I/Os. Here k rep-

resents the output size, log∗ n is the iterated logarithm of
n and B is the block size. CRMQ has applications to doc-
ument retrieval and categorical range reporting – giving a
one-shot framework to obtain improved results in both these
problems. Our results for CRMQ not only improve the ex-
isting best known results for three-sided categorical range
reporting but also overcome the hurdle of maintaining color
uniqueness in the output set.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; Tables; F.2 [ANALYSIS

∗This work is supported in part by National Science Founda-
tion (NSF) Grants CCF–1017623 (R. Shah and J. S. Vitter)
and CCF–1218904 (R. Shah).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Copyright 2014 ACM 978-1-4503-2375-8/14/06 ...$15.00.

OF ALGORITHMS AND PROBLEM COMPLEX-
ITY]: Tradeoffs among Complexity Measures

Keywords
I/O Efficiency, Categorical Queries

1. INTRODUCTION
Given an array A of n elements from a totally ordered set,

a natural question is to ask for the position of a maximum el-
ement between two specified indices a and b. Queries of this
form are known as range maximum queries (RMQ). Con-
sider a sample query: “Give me the highest paid employee
within age group 18 to 22 years”. By arranging all employ-
ees in a age-sorted array with his/her salary as the key, this
query translates into an RMQ problem. Being an important
tool in designing data structures for numerous problems in
string processing and computation geometry, RMQ has been
extensively studied in the literature [5, 4, 10]. There are sev-
eral variants of the problem, the most prominent being the
one where the array is static and known in advance. The
current best known result for such a scenario is by Fischer
and Heun [10], where they present a 2n+ o(n)-bit structure
capable of answering queries in constant time.

However, in many applications, the standard RMQ prob-
lem does not suffice. Consider the generalization of the
above query as a motivating example: “Give me the list of
highest paid employees for different job positions (one per
job position) with age between 18 to 22 years”. This prob-
lem can obviously be solved by maintaining age-sorted array
of employees as before for each designation in the organiza-
tional hierarchy and then issuing a RMQ for all of them.
However, this solution may be very inefficient as the job po-
sitions held by employees within the specified age group can
be only a fraction of all listed positions for the organization.
We call the above problem to be an instance of Categorical
Range Maxima Query (CRMQ). For CRMQ, we assume that
each element in the input array A is assigned a color. The
goal is to preprocess the array and maintain a data struc-
ture, such that given a query range [a, b], one can efficiently
report each distinct color c in the query range along with the
highest element in A[a...b] with color c. Further continuing
the example under consideration, lets say we only need to
output the job positions where the highest paid employee
with that designation earns more than $80,000 per year.
This natural extension of CRMQ called “threshold-CRMQ”
problem is formally defined below.

266

PODS’14, June 22–27, 2014, Snowbird, UT, USA.

Problem 1. [Threshold-CRMQ] Let A[1...n] be an array
of n distinct integers in [1, n] with each element A[i] asso-
ciated with a color C[i] ∈ [σ]. Then, goal is to build a data
structure such that, given a query (a, b, τ), we can report the
triplet (c, pc, A[pc]) for those colors c ∈ [σ] with A[pc] ≥ τ .
Here A[pc] represents the highest element in A[a...b] with
color c. If there does not exist an element in A[a...b] with
color c, then A[pc] = −∞.

Top-k queries are widely popular in database and infor-
mation retrieval systems as they allow end-users to focus on
the most important (top-k) outputs amongst those which
satisfy the query. We study top-k version of CRMQ prob-
lem (top-CRMQ) as well, where the query input consists of
a range [a, b] and an integer k ≤ σ, and we are required to
output only k colors with the highest A[pc] values.

Problem 2. [Top-CRMQ] Let A[1...n] be an array of n
distinct integers in [1, n] with each element A[i] associated
with a color C[i] ∈ [σ]. Then, goal is to build a data structure
such that, given a query (a, b, k), we can report k triplets
(c, pc, A[pc]) for colors c ∈ [σ] with the highest A[pc] values,
where A[pc] represents the highest element in A[a...b] with
color c. If there does not exist an element in A[a...b] with
color c, then A[pc] = −∞.

In this article, we focus on top-CRMQ as our central prob-
lem. We distinguish between the sorted and unsorted version
of this problem. In the sorted version, a triplet (c, pc, A[pc])
is reported before (c′, pc′ , A[pc′]), if A[pc] > A[pc′], whereas
unsorted version do not place any such restrictions. We fo-
cus on sorted version in Word-RAM model and unsorted
version in external memory. Our main results are summa-
rized in following theorems.

Theorem 1. There exists a linear space (in words) and
optimal O(k) time solution for the (sorted) top-CRMQ prob-
lem in Word-RAM model.

Theorem 2. There exists an external memory structure
of O(n log∗ n) space and optimal O(1+ k

B
) query I/Os for the

top-CRMQ problem, where log∗ n is the iterated logarithm of
n and B is the block size.

Theorem 3. There exists an external memory structure
of linear-space and near-optimal O(log∗ n + k

B
) query I/Os

for the top-CRMQ problem, where log∗ n is the iterated log-
arithm of n and B is the block size.

We improve the query I/O bound of the linear space so-
lution in the above theorem by trading off space to achieve
space-time bounds with Inverse Ackermann function. We
summarize the result in following theorem with its proof
deferred to Appendix D.

Theorem 4. The top-CRMQ problem can answered in
near-optimal O(α3 + k

B
) I/Os using an O(nα)-word space

structure, α being the Inverse Ackermann function of n.

Answering Threshold-CRMQ: Data structures for an-
swering top-CRMQ as summarized in theorems above, can
be used for answering the threshold-CRMQ as well. Given a
threshold-CRMQ (a, b, τ), we issue multiple top-CRMQ’s as
follows. Assume, we are using the I/O-optimal structure in
Theorem 2, then we choose Kj = 2jB and issue top-CRMQ
(a, b,Kj) for j = 0, 1, 2, 3, ... until we find the smallest Kj

(say K′) where at least one of the triplet (x, px, A[px]) in the
output set violates the condition A[x] ≥ τ . Then all those
triplets corresponding to the output of top-CRMQ (a, b,K′)
satisfying the condition A[·] ≥ τ can be reported as the final
answers. The number of I/O’s required is O(1+2+4+ ...+
K′/B) = O(1+K′/B) = O(1+k/B), where k is the output
size. If we are using the linear-space structure, we use the
same procedure, with Kj = 2jB log∗ n and the query I/Os
can be bounded by O(log∗ n + (1 + 2 + 4 + ... + k/B)) =
O(log∗ n + k/B). In conclusion, results in Theorem 2 and
Theorem 3 are applicable for threshold-CRMQ as well.

Outline: Section 2 introduces a few existing data structures
for several orthogonal range searching problems and give a
brief summary of the external-memory model [2]. While
CRMQ is an interesting problem in its own right, it is also
closely related to other important problems. In Section 3 we
describe the applications of our results to categorical range
reporting and document retrieval. Section 4- 7 are dedicated
for deriving external memory data structures for the top-
CRMQ problem. We begin by reducing the problem under
consideration to a geometric problem in Section 4. Using
the equivalent geometric formulation, we present a simple
external memory solution for top-CRMQ in Section 5. We
build upon this solution incrementally in Section 6 and 7
to obtain I/O optimal and linear space structures. Inter-
nal memory result for top-CRMQ is discussed in Section 8.
Finally we conclude in Section 9.

2. PRELIMINARIES

2.1 External Memory Model
The external memory (EM) model [2, 27] is a popular

model for analyzing the performance of algorithms when in-
put data set is too large to be accommodated in internal
memory and hence resides on the disk. In EM, the CPU is
connected directly to an internal memory, which is then con-
nected to a much slower disk. The disk is of an unbounded
size and is formatted into disjoint blocks, each of which con-
tains B consecutive words. An I/O operation reads a block
of data from the disk into memory, or conversely, writes a
block of memory information into the disk. Main memory
can accommodate M words and is assumed to have at least
two blocks, i.e., M ≥ 2B. The cost of answering a query is
measured in the number of I/Os performed by the algorithm.

2.2 Three-dimensional Dominance Reporting
Given a set S of n points in three dimensions and query

point q = (q1, q2, q3), the three-dimensional dominance re-
porting asks for all the points s = (x1, x2, x3) ∈ S such that
xi < qi, 1 ≤ i ≤ 3. The best known result for the prob-
lem is by Afshani [1] which achieves linear space along with
optimal O(logB n+ k/B) query I/Os.

2.3 Three-sided Orthogonal Range Reporting
Given a set S of n points in two dimensions, three-sided

orthogonal range reporting asks for all points inside a query
rectangle of the form [x1, x2]×(−∞, y]. The best I/O model
solution to this range reporting problem is due to Arge et
al. [3] which takes linear space and report all the points the
query rectangle in O(logB n + k/B) I/Os. When the two-
dimensional points are on the [n]×[n] grid, Larsen et. al [17]
achieve improved query bound of O(1 + k/B) I/Os.

267

3. APPLICATIONS OF CRMQ

3.1 Categorical Range Reporting Without
Duplicates

In the categorical (or colored) range reporting problem
the set of input points is partitioned into categories and
stored in a data structure; a query asks for categories of
points that belong to the query range. The problem has been
extensively studied in computational geometry and database
communities [14, 12, 6, 20, 16, 23, 17, 18].

In three-sided color reporting, the query asks to report the
set of colors of the points in an input region [a, b]× [τ,+∞).
Without loss of generality, we assume that the points are
in rank-space ‖. The first external memory result for this
problem was given by Nekrich [23]. His results on this prob-
lem were further improved by Larsen and Walderveen [18],
where they presented an O(nh)-word data structure with

O(log(h) n+ k
B
) query cost, k being the output size, 1 ≤ h ≤

log∗ n, log(h) n = log log(h−1) n and log(1) n = log n. Thus
by choosing h = log∗ n, an I/O-optimal structure can be
obtained. On the other-hand, a linear space structure can
be obtained by choosing h = O(1).

The data structures described in [23, 18] have a limitation
that can compromise their usefulness in some situations: the
list of colors in the output set may contain several (yet con-
stant) occurrences of the same color. Eliminating such du-
plicates (in the current settings) needs extra I/Os (sorting
is inevitable in these solutions, which makes these results
less-optimal in terms of query I/Os). In [23], another data
structure that uses linear space and reports every color ex-
actly once is described. Unfortunately, this data structure
needs O((n

B
)ε + k

B
) I/Os to answer a query, where ε is an

arbitrarily small positive constant. This makes the design of
an efficient external data structure that reports every color
exactly once an important open problem, and we provide
the following solution for it.

Theorem 5. A three-sided color reporting query on a set
of n points in rank-space can be answered in O(1+ k

B
) I/Os

using an O(n log∗ n)-word structure, or in O(log∗ n + k
B
)

I/Os using an O(n)-word structure, such that the output set
contains exactly one copy of each answer, where k is the
output size, log∗ n is the iterated logarithm of n and B is
the block size.

Proof. Let P = {(i, yi)|i = 1, 2, 3, ..., n} be the set of
points, then construct the array A, where A[i] = yi and its
color is same as that of (i, yi). Then the output of any three-
sided color reporting query on P with [a, b]× [τ,+∞) as an
input is the same as that of a threshold-CRMQ (a, b, τ) on A.
Thus, we obtain the results summarized in above theorem
using Theorem 2 and Theorem 3.

Consequently, we achieve a smaller (non-optimal) term of
log∗ n in the I/O bound of the linear-space structure com-

pared to the (n
B
)ε or log(O(1)) n terms in the existing solu-

‖By rank-space we assume that the points are in [n] × [n]
grid, and the projections of any two points to any axis is
different. If the points are in a [U]× [U] grid, we can reduce
them to [n]×[n] grid using standard techniques. However the
space will increase by an O(n) words and the query cost by
O(log logB U) I/Os (or O(log logU) time). If the coordinate
values are unbounded, the extra term in space is again O(n),
but in the query cost is O(logB n) I/Os (or O(log n) time).

tions. Further, using standard techniques [23, 18] in con-
junction with results in Theorem 2, Theorem 3, we obtain
following results for (two dimensional) four-sided color re-
porting problem. Although this improves the known results
of the problem [18], the output set may contain multiple (at
most two) copies of the same color.

Theorem 6. A four-sided color reporting query on a set
of n points in an [n] × [n] grid can be answered in O(1 +
k
B
) I/Os using an O(n log n log∗ n)-word structure, or in

O(log∗ n+ k
B
) I/Os using an O(n log n)-word structure. Here

k is the output size, log∗ n is the iterated logarithm of n and
B is the block size.

Hardness of color counting: In a color counting problem,
our task is to simply report the cardinality of the output
set of the corresponding reporting problem. Color count-
ing problems are considered to be much harder than the
reporting counterparts. For example, the best known space-
time trade-off for two-dimensional four-sided color counting
is O(n2 log2 n) words and O(log2 n) time [12, 15]. In [18],
Larsen and Walderveen show that two-dimensional range
counting problem is equivalent to one-dimensional color count-
ing problem. Using a simple extension of their techniques,
we can obtain a similar result for three-sided color counting
problem as summarized below.

Theorem 7. Three-sided color counting problem (in two
dimension) is at least as hard as three-dimensional orthogo-
nal range counting problem.

3.2 Ranked Document Retrieval
Suppose that we want to store a collection D = {d1, d2, ...,

dD} of D documents (strings) of total n characters, so that
for a given query string P all documents containing P can be
reported. This problem can be reduced to one-dimensional
color reporting problem and can be solved optimally [20]. A
more general and arguably the most important query, known
as the top-k document retrieval query asks to find those k
documents inD which are most relevant to P , where k is also
an input parameter. The relevance of a document d w.r.t a
pattern P is captured using a predefined ranking function
w(P, d), which is dependent on the set of occurrences of P in
d. A popular example is the term frequency, where w(P, d) is
the number of occurrences of P in d. This problem has been
studied extensively in string searching community (See [21]
for an excellent survey) and linear-space and optimal query
time internal memory results are known [13, 22]. Whereas
in external memory, the best known linear space index is
given by Shah et al. [25], however the query I/O bound is

O(|P |
B

+ logB n+ log(h) n+ k
B
) I/Os for any constant h ≥ 1.

We show that our solution for top-CRMQ can be used to
obtain the following new result. Please refer to Appendix B
for more details.

Theorem 8. If the ranking function is such that, the rel-
evance of a document w.r.t. a pattern is not more that its
relevance w.r.t. to any prefix of the same pattern, then we
can construct a linear-space structure for answering top-k

document retrieval queries in O(|P |
B

+ logB n+ log∗ B + k
B
)

I/Os, where P is the input pattern.

Although, our results require relevance to be a monotonic
function (less general than the one considered by Shah et
al. [13]), the most popular relevance measures such as term-
frequency, term-proximity, Page-Rank etc. are monotonic.

268

3.3 Sorted Reporting
In this problem we want to report all elements of an array

A in sorted order. Suppose that we want to store an array
A in a data structure such that for any query range [a, b] all
elements A[i], a ≤ i ≤ b, can be reported in sorted order.
Brodal et al. [7] described a linear space data structure that
answers such queries in O(b−a+1) time: moreover their data
structure can be also used to report k highest points in the
range in sorted order. Karpinski and Nekrich [16] considered
the same problem in the color scenario: elements of the array
are also assigned colors. We assume that colors are from an
ordered set; now the query answer must report the k highest
colors that occur in the query range and colors must be
reported in the reverse order. We observe that the optimal
data structure described in Theorem 1 generalizes the result
of [16, 7]. This result is obtained using a new data structure
for sorted three-dimensional dominance queries, which may
be of independent interest. The result is summarized below
(Proof is deferred to Appendix C).

Theorem 9. A given set of n three-dimensional points
can be stored as an O(n)-word data structure that can answer
a three-dimensional dominance reporting query in O(log n+
output) time in Word-RAM model, with outputs reported in
the sorted order of z coordinate.

4. THE FRAMEWORK
For color listing problem i.e., to simply enumerate all dis-

tinct colors in C[a...b], Muthukrishnan [20] proposed the
chaining idea, where each occurrence of a particular color
points to (or chains to) its predecessor of the same color ¶.
Therefore, among all occurrences of a particular color c ∈ [σ]
occurring in C[a...b], only the first ones chain will be point-
ing outside the range [a, b]. Based on this observation, he re-
duced the problem to a (two-dimensional) three-sided range
reporting query, which can be solved optimally using known
structures. We introduce a generalization of this approach
for solving our top-CRMQ problem. Formally, for each po-
sition i ∈ [1, n] in the array A, we define previous and next
pointers as follows:

prev(i) = max{{j ∈ [1, i)|A[j] > A[i], C[j] = C[i]}∪{−∞}}
next(i) = min{{j ∈ (i, n]|A[j] > A[i], C[j] = C[i]}∪{+∞}}

Using these pointers, for each position i ∈ [1, n] in A we
obtain a (weighted) interval-pair with (prev(i), i) as a back-
ward interval, (i, next(i)) as a forward interval, and A[i],
C[i] being the weight and color associated with the interval-
pair respectively. We represent such an interval-pair by a
pentuple (i, A[i], C[i], prev(i), next(i)). The following is a
key observation for the two-sided chaining just introduced.

Lemma 1. For a given range [a, b] and a color c, let Sa,b,c

= {i1, i2, ..., ir} be the (possibly empty) set of all positions
within [a, b] such that C[i1] = C[i2] = ... = C[ir] = c. If
Sa,b,c is not an empty set, then exactly one element pc ∈
Sa,b,c satisfies the following: prev(pc) < a, b < next(pc),
where A[pc] = max{A[i1], A[i2], ..., A[ir]}.

In order to utilize the above lemma for answering top-
CRMQ, we use an O(n)-word structure that can compute a
threshold τk

a,b for a given top-CRMQ (a, b, k) in O(1) time

¶If there is no such predecessor, then points to −∞.

such that size of Outτ = {(c, pc, A[pc]) | c ∈ σ,A[pc] ≥ τk
a,b}

is bounded by k̂ = k+O(k), where A[pc] represents the high-
est element in A[a...b] with color c (see Appendix A for de-
tails). Then, Lemma 1 suggests that if a triplet (c, pc, A[pc])
is an answer for a top-CRMQ, then the pentuple (pc, A[pc],
C[pc], prev(pc), next(pc)) satisfies the following conditions,
and vice versa: pc ∈ [a, b], prev(pc) < a, next(pc) > b and
A[pc] ≥ τk

a,b. Therefore, top-CRMQ can be reduced to a
new problem as defined below.

Problem 3. Store a set I of n interval-pairs of the form
(i, A[i], C[i], prev(i), next(i)) in a data structure, such that
given a query (a, b, k, τk

a,b), we can efficiently report all those

interval-pairs with weight ≥ τk
a,b and its backward, forward

intervals stabbed by a, b respectively. i.e., output the interval-
pairs satisfying the following five constraints:
(1) prev(i) < a (2) a ≤ i
(3) i ≤ b (4) b < next(i) (5) A[i] ≥ τ

Notice that the output set Outτ for the above problem,
is a super set of the output set Outk of our top-CRMQ, be-
cause k̂ ≥ k. Therefore, in order to answer a top-CRMQ, we
first find the triplet (c∗, pc∗ , A[pc∗]) ∈ Outτ using a selection
algorithm such that the number of triplets (c, pc, A[pc]) ∈
Outτ with A[pc∗] ≤ A[pc] is k. This takes only O(k̂/B) =
O(k/B) I/Os [26]. Then, all those triplets in Outτ with
A[pc∗] ≤ A[pc] can be reported as the final outputs. Both
the problems being equivalent, we use the term“top-CRMQ”
to refer to either of these problems. In particular, by top-
CRMQ (a, b, k) we refer to Problem 2 whereas by top-CRMQ
(a, b, k, τk

a,b) we refer to the Problem 3. Moreover, for no-
tational simplicity, input to the Problem 3 is defined as a
quadruple (a, b, k, τ).

5. INTERVAL TREE BASED SOLUTION
In this section, we present a simple interval-tree based

external memory data structure and achieve the result sum-
marized in following lemma.

Lemma 2. A given set I of interval-pairs can be main-
tained as an O(|I|)-space structure such that given a top-
CRMQ (a, b, k, τ), we can report all interval-pairs (i, A[i], C[i],
prev(i), next(i)) ∈ I with i ∈ [a, b], prev(i) < a, next(i) > b
and A[i] ≥ τ using O(log3(|I|/B) + k

B
) I/Os.

We begin by describing a linear space external memory
interval tree (which is not optimal, but is sufficient for our
purpose) and then use it to answer top-CRMQ.

5.1 Linear Space Interval Tree
Given a set I of n intervals of the form (si, ei), where

si and ei represent the start and end points, the output of
an interval stabbing query is the set of intervals stabbed by
a input point q; i.e., we need to output all those intervals
(sj , ej) such that q ∈ [sj , ej]. For simplicity we assume all
start and end points to be distinct; otherwise ties can be
broken arbitrarily.

The proposed interval tree construction begins with build-
ing a balanced binary search tree (BST) of n nodes over all
end points ei of set I. Thus each node u in BST is associ-
ated with a unique end point which we denote as stab(u)∗∗.

∗∗For any given nodes u1 and u2, stab(u1) ≤ stab(u2) if u1

comes before u2 during the in-order traversal of BST.

269

Further each node u is associated with a set of intervals
I(u) = {(si, ei)|stab(u) ∈ [si, ei], stab(v) /∈ [si, ei], where
v is any ancestor of u}. Let size(u) represent the number
of leaves in the subtree of u. We finish the construction by
making each node u with size(u) ≤ B, size(parent(u)) > B,
a leaf node by first setting I(u) = ∪v∈subtree(u)I(v) and
then pruning its subtree. We emphasize that, in this inter-
val tree, for each leaf u, I(u) is bounded by O(B)††. The
size of interval tree can now be bounded as O(n) words since∑

u |I(u)| = |I| = n. To answer a stabbing query, we first
identify the node uq such that value stab(uq) is the prede-
cessor of q. Then any interval stabbed by a query point q
will be associated with one of the O(log(n

B
)) nodes on the

path from the root to node uq . We summarize this property
in the following lemma.

Lemma 3. Given a query point q, we can obtain a set of
O(log(n

B
)) nodes in the proposed linear space interval tree

in O(log(n
B
)) I/Os such that any interval stabbed by q is

associated with one of these nodes.

For query point q and each interval (sj , ej) associated with
any of the O(log(n

B
)) nodes obtained by the above lemma,

either sj ≤ q or q ≤ ej is true. The interval stabbing query
can now be answered by issuing O(log(n

B
)) single-constraint

queries (i.e., check if q ≤ ej in the case one already knows
sj ≤ q, and vice versa) on these nodes. Therefore, Lemma 3
can be rewritten as follows.

Lemma 4. A set I of n intervals can be categorized into
subsets using an interval tree structure, such that an interval
stabbing query (with two constraints) can be decomposed into
O(log(n

B
)) queries with a single constraint.

5.2 Interval Tree within an Interval Tree
Taking a clue from Lemma 4, we aim to decompose top-

CRMQ problem into a set of simpler queries. Intuitively, we
can maintain an interval tree structure with respect to the
backward intervals of all interval-pairs and reduce the origi-
nal problem (which is a five-constraints query) to O(log(n

B
))

four-constraints queries. Each of these four-constraints query
can be further reduced toO(log(n

B
)) three-constraints queries

by employing another interval tree structure with respect to
the forward intervals on a smaller set of interval-pairs. We
elaborate on such an interval-tree-within-an-interval-tree ap-
proach below to achieve the result summarized in Lemma 2.

Data Structure: The proposed data structure consists of
three components described as follows:
• Backward interval tree: This is an interval tree based on

backward intervals of all the interval-pairs in I as de-
scribed earlier in the beginning of this section.

• Forward interval trees: The backward interval tree parti-
tions the set I of interval-pairs into disjoint sets such that
each of the set is associated with some node in the inter-
val tree. Let I(ub) be such a set associated with node
ub in backward interval tree. We maintain an interval
tree at each node ub based on the forward intervals of all
interval-pairs in I(ub).

††For any node u, the total number of intervals assigned to
nodes in its subtree is O(size(u)). This fact follows because
(1) all our start and end points are distinct, and (2) for any
interval assigned to node u, both its start and end points
should be some value associated with one of its descendants.

• Dominance structures: Let I(ub, vf) be the set of the
interval-pairs associated with node vf in forward interval
tree that is in turn associated with node ub in backward
interval tree. For each possible set I(ub, vf) we maintain
data structures for answering the three-dimensional dom-
inance queries [1] listed below.

Q1 : (1) prev(i) < a, (4) b < next(i) and (5) A[i] ≥ τ
Q2 : (2) a ≤ i, (3) i ≤ b and (5) A[i] ≥ τ
Q3 : (2) a ≤ i, (4) b < next(i) and (5) A[i] ≥ τ
Q4 : (1) prev(i) < a, (3) i ≤ b and (5) A[i] ≥ τ

With each of the above three components occupying linear
space total space required for the proposed data structure
can be bounded by O(|I|) words. Space requirement of the
backward interval tree is O(|I|) words (Lemma 3). By the
same argument space requirement of a forward interval tree
associated with node ub of backward interval tree is bounded
by O(|I(ub)|). Thus the total space required for all forward
interval trees is O(|I|) words. Moreover since each interval-
pair belongs to exactly one of the I(ub, vf) set, all dominance
structures collectively occupy linear space as well.

Query Algorithm: We begin by employing the standard
interval tree algorithm (Lemma 3) to identify O(log(|I|/B))
nodes in the backward interval tree such that any interval-
pair that has its backward interval stabbed by a is asso-
ciated with one of these O(log(|I|/B)) nodes. We then
apply the same algorithm to each of the forward interval
tree associated with these O(log(|I|/B)) nodes to obtain
O(log(|I|/B)) nodes in a single forward interval tree and
O(log2(|I|/B)) nodes overall such that any interval-pair that
has its backward interval stabbed by a and forward interval
stabbed by b is associated with one of these O(log2(|I|/B))
nodes. We call these nodes candidate nodes and the set
of interval-pairs associated with these nodes candidate sets.
We now need to further explore only the retrieved candidate
sets to get the desired outputs.

For each candidate node vf belonging to a forward inter-
val tree that in turn is associated with the node ub in the
backward interval tree, let stab(vf) and stab(ub) be the end
points maintained at nodes vf and ub respectively. Then,
each interval-pair in I(ub, vf) is stabbed by stab(ub) and
stab(vf) on its backward and forward interval respectively.
By careful examination of the relative values of a, b, stab(ub)
and stab(vf), we can eliminate two constraints out of five for
top-CRMQ and is one of the crucial observations of our pa-
per. We classify node vf into one the following categories
based on which two constraints are satisfied by the interval-
pairs in set I(ub, vf):

T1 : a ≤ stab(ub) ≤ stab(vf) ≤ b
T2 : stab(ub) ≤ a ≤ b ≤ stab(vf)
T3 : stab(ub) ≤ a ≤ stab(vf) ≤ b
T4 : a ≤ stab(ub) ≤ b ≤ stab(vf)

It can be easily verified that each of these categories lead
to the query types Q1, Q2, Q3, and Q4 respectively on set
I(ub, vf) to obtain the interval-pairs satisfying all five con-
straints required for top-CRMQ problem.

Thus, by first obtaining the candidate nodes and then ap-
plying appropriate three-dimensional dominance query on
each of them all desired outputs can be retrieved. Using
Lemma 3, number of I/Os spent on querying backward in-
terval tree as well as each of the forward interval trees are
bounded by O(log(|I|/B)) I/Os. Therefore all candidate

270

nodes can be obtained by spending O(log2(|I|/B)) I/Os.
Moreover, data structure from [1] used for dominance query
also requires additional O(logB |I|) I/Os. Therefore total
number of I/Os required is O(log2(|I|/B) logB |I|+ k

B
) =

O(log3(|I|/B) + k
B
). This completes the proof of Lemma 2.

6. BOOTSTRAPPING
The I/O bound in Lemma 2 is optimal for the case k ≥

B log3(n/B). In the present section, we bootstrap this re-
sult to optimally answer “special” top-CRMQ. We start by
introducing a blocking scheme that forms the basis of all
subsequent external memory results.

Blocking Scheme: Let blocking factor δj = B(log(j)(n
B
))5

and kj = B(log(j)(n
B
))3 for j = 1, 2, 3, ..., log∗(n

B
). Without

loss of generality, we further assume that both δj and kj are
always rounded to the next highest power of 2 §. We parti-
tion the array A[1...n] into n

δj
disjoint blocks each of size δj

such that block Aj,t = A[(t−1)δj+1...tδj]. Define fj,t to de-
note the left boundary of the block Aj,t. We say that a block
of size δj is δj-block and a blocking boundary of partition-
ing based on δj (i.e., fj,t) is δj-boundary. For consistency,
fix δ0 = n and A0,1 = A[1...n]. Given a range [a, b], let
A[aj ...bj] be the longest span of δj blocks that is completely
within A[a...b]. Suppose query range [a, b] intersects blocks
Aj,l, Aj,l+1, ..., Aj,t then aj = fj,l+1 and bj = fj,t − 1. We
prove the following results in the remainder of this section.

Lemma 5. A top-CRMQ (a, b, k, τ) can be answered in

O(
kμ+1

B
+ k

B
) I/Os using an O(n log∗ n)-space structure if

the span A[a...b] is completely within a δμ-block for μ ∈
[0, log∗(n

B
)].

Lemma 6. A top-CRMQ (a, b, k, τ) can be answered in

O(
kμ+1

B
+ k

B
+ log∗ n) I/Os using an O(n)-space structure

if the span A[a...b] is completely within a δμ-block for μ ∈
[0, log∗(n

B
)].

6.1 Proof of Lemma 5
For each block Aj,t, we maintain a data structure ITj,t

(of size |ITj,t| words) summarized in Lemma 2 ‡. The total
space occupancy is O(

∑
j

∑
t |ITj,t|) = O(n log∗ n) space.

Then the δμ-block containing span A[a...b] i.e., Aμ,t with
t = � a

δμ
� can be queried using structure ITμ,t to obtain the

desired answers in O(log3(
δμ
B
) + k

B
) = O(

kμ+1

B
+ k

B
) I/Os.

6.2 Proof of Lemma 6
The space blowup in Lemma 5 comes from the fact that,

each interval-pair in I is repeated log∗(n
B
) times as a part of

log∗(n
B
) number of IT{·,·}’s. We introduce a categorization

technique based on the blocking scheme described earlier
that avoids this space blowup, though at the cost of (ac-
ceptable) slow-down in query performance. We categorize
the input interval-pairs in set I into log∗(n

B
)+1 types based

on the following rule:

An interval-pair (i, ·, ·, ·, ·) is categorized as type-
j if its both intervals (i.e., backward and forward)
are stabbed by a δj-boundary, but at least one of
them is not stabbed by a δj−1-boundary.

§In order to ensure δj−1 is always divisible by δj
‡ITj,t is the structure in Lemma 2 over the following set of
interval-pairs Ij,t= {(i, ·, ·, ·, ·) ∈ I|i ∈ [(t− 1)δj + 1, tδj]}.

Taking into account the boundary conditions, an interval-
pair is termed as type-1 if its both intervals are stabbed by a
δ1-boundary, whereas for an interval-pair of type-(log∗(n

B
)+

1), none of its intervals is stabbed by any boundary i.e., i and
prev(i)/next(i) are within the same δlog∗(n

B
)-block (which

is of size Θ(B)). Let nj represent the number of type-j
interval-pairs, then n1 + n2 + ...+ nlog∗(n

B
)+1 = n.

We now describe the data structure and query algorithm
to achieve the result in Lemma 6. Intuitively, our idea is
to make separate linear space data structures for interval-
pairs in each type thereby restricting the total space to O(n)
words. However, this requires multiple structures to be
queried incurring an additive log∗(n

B
) term in query I/Os.

Data Structure: We maintain the following substructures.

• For each block Aj,t maintain a structure ITj,t summarized
in Lemma 2 by considering only type-(j+1) and type-(j+
2) interval-pairs. This occupies a total of O(

∑
j(nj+1 +

nj+2)) = O(n) space.
• We create a collection of two-dimensional points by map-

ping each type-j interval-pair (i, A[i], prev(i),
next(i)) to a point (i, A[i]). Then we apply rank space
reduction to these two-dimensional points and maintain
a three-sided range reporting structure TSj by Larsen et
al. [17] on this collection. All those type-j interval pairs
within i ∈ [a, b] and A[i] ≥ τ for any given a, b, and τ
can be answered in optimal I/Os using TSj . Further, we
associate each two-dimensional point with its correspond-
ing interval-pair, so that the interval-pairs correspond-
ing to the points reported by structure from [17] can be
obtained without spending any additional I/Os. More-
over, to be able to query data structure in [17] we need
to map the boundary points (a and b) and the thresh-
old τ to rank space. This can be achieved in constant
time by maintaining two bit vectors (along with rank-
select structure [24]) of length n. Total space required for
this component is bounded by O(nj) words + O(n) bits
= O(nj +

n
log n

) words. Thus over all space corresponding

to j = 0, 1, 2, ..., log∗(n
B
) + 1 is O(n) words.

• We also maintain a list A′ of all interval pairs (i, ·, ·, ·, ·) in
the ascending order of i. Space occupancy is O(n) words.

As each of the components described above occupies O(n)
words the overall space requirement is linear.

Query Algorithm : As before, let Aμ,t with t = � a
δμ

� be

the δμ-block containing A[a...b]. Then we query ITμ,t by

spending O(
kμ+1

B
+ k

B
) I/Os. However, this will give only

the outputs of type (μ+ 1) and (μ+ 2). It remains to show
how to retrieve the outputs of type-h, for h ≤ μ or h ≥ μ+3.

We first demonstrate how type-h outputs with h ≤ μ
are retrieved when span A[a...b] is known to be completely
within a δμ block i.e., Aμ,t. We note that any type-h link
(i, ·, ·, ·, ·) with h ≤ μ and i falling within the block Aμ,t

(i.e., i ∈ [fμ,t, fμ,t+1 − 1]), both its forward as well as back-
ward intervals are stabbed by δμ-boundaries (fμ,t and fμ,t+1

respectively). Therefore, such an interval-pair implicitly sat-
isfies constraints prev(i) < a, b < next(i). Hence, for h ≤ μ
we only need to take into account the position and weight
constraint of the interval-pair (i.e., i ∈ [a, b] and A[i] ≥ τ)
and all such type-h outputs can be obtained in optimal I/Os
by querying structure TSh. Therefore, overall I/Os required
for retrieving all type-h outputs for h ≤ μ are bounded by
O(μ+ k

B
) = O(log∗(n

B
) + k

B
).

271

Finally all type-h outputs for h ≥ μ+ 3 can be efficiently
retrieved using the following key observation. Any type-
h interval-pair (i, ·, ·, ·, ·), with h ≥ μ + 3 is an output,
only if i falls within a δμ+1-block that contains either a or
b. Otherwise at-least one of two conditions prev(i) < a,
b < next(i) will be violated. Therefore, the number of
candidate interval-pairs in this case is only 2δμ+2, and the
output interval-pairs can be obtained by scanning the two
δμ+2-blocks in A′ to evaluate the five conditions listed in
Observation 1 for each of the candidate. The I/Os required

in this step are bounded by O(
δμ+2

B
) = o(

kμ+1

B
).

Putting together all pieces, the number of I/Os required
to answer a top-CRMQ (a, b, k, τ) with A[a...b] completely

within a δμ-block, can be bounded by O(
kμ+1

B
+ k

B
+log∗ n).

7. THE FINAL DATA STRUCTURES
This section is dedicated to proving Theorem 2 and Theo-

rem 3. Given a top-CRMQ (a, b, k), the structure presented
in Lemma 2 can be maintained in O(n)-space to optimally
handle queries with k = Ω(B log3(n/B)). Otherwise, we find
the parameter π ∈ [1, log∗(n/B)], where kπ+1 < k ≤ kπ (for
consistency, assume klog∗(n/B)+1 = 0). Then we decompose
the original query into following subqueries:

1. top-CRMQ (a, aπ − 1, k, τ)
2. top-CRMQ (aπ, bπ, k)
3. top-CRMQ (bπ + 1, b, k, τ)

Here A[aπ...bπ] represents the longest span of δπ blocks
that is completely within A[a...b]. Let Outi represent the set
of answers corresponding to the above queries for i = 1, 2, 3
(a procedure to obtain them will be described later). Notice
that these are disjoint sets and cardinality of each of them is
O(k). Moreover, ∪3

i=1Outi is a superset of final answers for
the original query (a, b, τ). Therefore, those interval-pairs
(i, A[i], C[i], prev(i), next(i)) ∈ ∪3

i=1Outi with prev(i) < a,
next(i) > b and A[i] ≥ τ can be uniquely reported as the
final answers (the condition i ∈ [a, b] is satisfied implicitly).

It remains to show, how to retrieve the output set for each
of the subqueries efficiently. Both Out1 and Out3 can be ob-
tained in O(kπ+1/B+k/B) = O(1+k/B) I/Os by maintain-
ing an O(n log∗ n)-space structure (refer to Lemma 5). By
querying on the structure described in the following lemma,
Out2 also can be obtained in optimal I/Os. This completes
the proof of Theorem 2.

Lemma 7. There exists an O(n log∗ n)-space structure that
supports a top-CRMQ (α, β,K) in optimal O(1+K/B) I/Os
if A[α...β] is a span of several δπ-blocks and K ≤ kπ for
π ∈ [0, log∗(n

B
)].

Similarly, using the linear space structure in Lemma 6,
both Out1 and Out3 can be obtained in O(kπ+1/B+ k/B+
log∗ n) = O(log∗ n + k/B) I/Os. Combining this with the
following lemma for retrieving Out2, we achieve the result
summarized in Theorem 3.

Lemma 8. There exists an O(n)-space structure that sup-
ports a top-CRMQ (α, β,K) in O(log∗ n + K/B) I/Os if
A[α...β] is a span of several δπ-blocks and K ≤ kπ for π ∈
[0, log∗(n

B
)].

The remaining part of this section is dedicated to prove
these two lemmas i.e., Lemma 7 and 8.

7.1 Proofs of Lemma 7 and Lemma 8
We identify the parameter θ as the smallest i such that,

there exists a δi-boundary in [α, β]. Using θ we decompose
top-CRMQ (α, β,K) further into the following subqueries,
and obtain the desired answers by merging the outputs of
individual subqueries.

• Qleft: top-CRMQ (α, αθ − 1, K)
• Omiddle: top-CRMQ (αθ, βθ, K)
• Qright: top-CRMQ (βθ + 1, β,K)

Here A[αθ ...βθ] represents the longest span of δθ blocks
that is completely within A[α...β]. We now describe the
necessary structure for handling each of these queries, fol-
lowed by the query algorithm.

7.1.1 Answering Qmiddle

Data Structure: Starting from left boundary of each block
Aj,t i.e., fj,t, consider the spans covering 1, 2, 4, 8, ... blocks
of size δj such that it does not cross the first δj−1-boundary
that follows fj,t. We maintain the top-kj answers (i.e., the
corresponding pentuples) for each of these spans explicitly
(in descending order of weight) i.e., we maintain the list
ML(j, t, i) that contains the answers for top-CRMQ with kj
as an input on the span A[fj,t...fj,t+2i − 1] for any 1 ≤ j ≤
log∗(n

B
), 1 ≤ t ≤ n

δj
and i = 0, 1, 2, ..., log(

δj−1

δj
). Overall

space requirement for such a storage isO(
∑

j(
n
δj
)kj log(

δj−1

δj
))

= O(
∑

j
n

log(j)(n
B

)
) = O(n) words.

Query Algorithm: We represent A[αθ...βθ] as union of two
overlapping spans each of which covers 2i δθ-blocks for some
integer i. Let [fθ,l′ , fθ,l′+2i − 1] and [fθ,t′−2i , fθ,t′ − 1] be

the ranges for these overlapping spans such that fθ,l′ = αθ

and fθ,t′ − 1 = βθ. It is evident that any top-K answer

for A[αθ...βθ] should also be in top-K answers of either of
the overlapping spans i.e., it should be present in either
ML(j, l′, i) or ML(j, t′ − 2i, i). Top-K answers (in sorted
order) for these two overlapping spans can be directly re-
trieved from the maintained precomputed answers in O(k

B
)

I/Os. Further, the two lists can be merged to obtain the out-
puts for Qmiddle by a simple scan. However, before merging
we discard any answer belonging to the region of overlap
between two ranges (i.e., span A[fθ,t′−2i ...fθ,l′+2i −1]) from
either of the answer lists to ensure uniqueness of reported
answers. In conclusion, Qmiddle can be answered optimally
using an O(n)-space structure.

7.1.2 Answering Qleft and Qright

I/O-Optimal Structure: For each Aj,t and h < j we main-
tain top-kj answers (in descending order of weight) for the
span bounded by fj,t and the first δh-boundary that fol-
lows fj,t. Similarly, top-kj answers for the span bounded
by fj,t+1 − 1 and the first δh-boundary that precedes it
are maintained. These answers are maintained in two lists
SLr and SLl. The list SLr(j, t, h) and SLl(j, t, h) contains
the answer to top-CRMQ with kj as an input on the span
[fj,t, fh,t′+1 − 1] and [fh,t′ , fj,t+1 − 1] respectively for any
1 ≤ j ≤ log∗(n

B
), 1 ≤ t ≤ n

δj
and h < j with t′ = � t

(δh/δj)
�.

Here t′ is the δh-block that contains the δj-block t. Over-
all space usage for maintaining these inter-level answers can
be bounded by O(

∑
j

n
δj
kj(j − 1)) = O(

∑
j

nj

(log(j)(n
B

))2
) =

O(n log∗ n) words.

272

Desired answers for the top-CRMQ query on desired spans
A[α...αθ − 1] and A[βθ +1...β] are simply the first K entries
in the appropriate lists SLr(π, ·, θ), SLl(π, ·, θ) respectively
and the I/Os needed for retrieving are O(K

B
). Combing this

result along with O(n)-space structure capable of answering
Qmiddle, we prove Lemma 7.

Linear Space Structure: To achieve linear space, we do
the following modification to the data structure just de-
scribed: maintain SLr(j, ·, ·) and SLl(j, ·, ·) only for those

j ≤ φ ≤ log∗(n
B
), where log(φ)(n

B
) ≥ log∗(n

B
) > log(φ+1)(n

B
).

Then space can be bounded by O(n

(log(2)(n
B

))2
+ 2n

(log(3)(n
B

))2
+

3n

(log(4)(n
B

))2
+ ...+ (φ−1)n

(log(φ)(n
B

))2
) = O(n

log∗(n
B

)
) words. In addi-

tion, we maintain all SLr(φ+ 1, ·, φ) and SLl(φ+ 1, ·, φ) as
well occupying O(n

(log(φ+1)(n
B

))2
) = o(n) words. Further, we

also assume the availability of the linear space data struc-
ture described in Lemma 6. Thus overall space is bounded
by O(n)-words. In order to answer a query, we consider the
following cases:

1. If π ≤ φ: Obtain answers from the appropriate SLr(π,
·, θ) and SLl(π, ·, θ) in O(K

B
) I/Os.

2. If π = φ+ 1: Obtain answers from appropriately chosen
lists SLr(φ+1, ·, φ), SLr(φ, ·, θ) and then merge them by
spending O(K

B
) I/Os. Similarly appropriate lists SLl(φ+

1, ·, φ), SLl(φ, ·, θ) can be accessed to obtain the desired
results.

3. If π > φ + 1: We first obtain answers for the span
A[αφ+1...αθ − 1] and A[βθ + 1...βφ+1] from appropriate
SLr and SLl structures in O(K

B
) I/Os. Whereas answers

for A[α...αφ+1 − 1] (resp., A[βφ+1 + 1...β]) can be ob-

tained in O(log3(
δφ+1

B
)+K

B
+log∗(n

B
)) = O(log∗(n

B
)+K

B
)

I/Os as it is completely within a block of size δφ+1 (from
Lemma 6).

Therefore, total number of I/Os required to answer Qleft

and Qright is bounded by O(log∗(n
B
)+K

B
), when linear space

data structure is used. Result summarized in Lemma 8 can
now be obtained by using this structure in addition to O(n)-
space structure for answering Qmiddle.

8. CRMQ IN INTERNAL MEMORY
In this section, we show how to modify our external mem-

ory data structures to achieve the result in Theorem 1. We
again begin with an interval tree based solution and obtain
internal memory version of Lemma 2 by simply substitut-
ing B by 2. i.e., O(n)-word space and O(log3 n + k) query
time. However, outputs are not sorted. Recall that this
result is obtained by querying O(log2 n) three-dimensional
dominance structures. By using our new three-dimensional
dominance structure (Theorem 9) instead of the one by Af-
shani [1], the outputs from each of those three-dimensional
dominance queries can be obtained in sorted order. Fur-
ther, these outputs can be merged to get a complete list of
all answers in sorted order using a heap structure. For our
purpose, we use an atomic heap [11] that can perform all
heap operations in O(1) in Word-RAM model provided the

heap size is logO(1) n. By putting everything together, we
obtain an O(n)-word space and O(log3 n + k) query time
data structure for the sorted version of Problem 2.

We now apply blocking scheme with a single blocking fac-
tor δ1 = log4 n, and maintain the above described interval-
tree based structure over each block A1,t = A[(t − 1)δ1 +

1...tδ1] as IT1,t, taking overall O(n) space. Recall that
δ0 = n and we also maintain IT0,1. Further we maintain, the
structures ML(·, ·, ·) as described in Section 7.1.1 occupying
O(n) word space i.e., from each δ1-boundary f1,t consider
the spans covering 1, 2, 4, 8, ... δ1-blocks and maintain top-
k1 answers (k1 = log3 n) for each of these spans explicitly.
Whenever query input k ≥ log3 n, it can be answered op-
timally using IT0,1. For k < log3 n and the input range
[a, b] completely within a δ1-block, query can be answered
in O(log3 log n+ k) time only using appropriate IT1,t struc-
ture. Otherwise, we can retrieve top-k answers from fringe
spans A[a...a1−1], A[b1...b] and a middle span A[a1...b1−1]
(refer Section 7.1.1, 7.1.2) and merge them to report final
top-k answers with identical query time of O(log3 log n+k).
The non-optimal O(log3 log n)-additive factor is due to the
time for querying the interval tree based structure main-
tained over each δ1 block. Therefore, for improving the case
where k < log3 log n and the query span A[a...b] is com-
pletely within a δ1 blocks, we maintain the following ad-
ditional structure. Given a δ1-block A1,t, for every span
A[f1,t + i, f1,t + i+ 2j − 1] for i ∈ 0, 1, 2, 3, ..., (δ1 − 1) and
j = 0, 1, 2, ..., log δ1, maintain top-(log3 log n) answers (in
sorted order). Instead of explicitly maintaining, an output
element A[r] (or its location r) for a particular span, we sim-
ply encode it as an offset from the left boundary of the span
i.e., r−f1,t+ i in O(log δ1) = O(log log n) bits. Thus overall
space requirement can be bounded by o(n log n) bits. Now
any span A[a...b] with both a as well as b in the same δ1-block
can be partitioned into two overlapping spans A[a...y] and
A[x...b] where a < x ≤ y < b, such that the top-k answers
of these overlapping spans are precomputed and can be re-
trieved in optimal time. Finally, by merging these answers,
we obtain the final output.

9. CONCLUSIONS
In this paper we introduced the problem of colored (cat-

egorical) range maxima that generalizes the fundamental
problem of computing maxima in a query range to the col-
ored scenario. We show that this problem is related to
or generalizes other important problems, such as report-
ing most relevant documents containing a given string and
three-sided categorical range reporting. We provide an op-
timal solution of the colored range maxima problem in in-
ternal memory. Our external memory data structure uses
O(n) space and answers queries in O(log∗ n + k/B) I/Os.
Design of a linear space data structure with constant query
cost or proving a lower bound for this problem remains an
interesting open question.

10. REFERENCES
[1] P. Afshani. On dominance reporting in 3d. In ESA,

pages 41–51, 2008.

[2] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1998.

[3] L. Arge, V. Samoladas, and J. S. Vitter. On
two-dimensional indexability and optimal range search
indexing. In PODS, pages 346–357, 1999.

[4] M. A. Bender, M. Farach-Colton, G. Pemmasani,
S. Skiena, and P. Sumazin. Lowest common ancestors
in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005.

273

[5] O. Berkman and U. Vishkin. Recursive star-tree
parallel data structure. SICOMP, 22(2):221–242, 1993.

[6] P. Bozanis, N. Kitsios, C. Makris, and A. K.
Tsakalidis. New upper bounds for generalized
intersection searching problems. In ICALP, pages
464–474, 1995.

[7] G. S. Brodal, R. Fagerberg, M. Greve, and
A. López-Ortiz. Online sorted range reporting. In
ISAAC, pages 173–182, 2009.

[8] B. Chazelle and H. Edelsbrunner. Linear space data
structures for two types of range search. DCG,
2:113–126, 1987.

[9] P. Ferragina and R. Grossi. The String B-tree: A new
data structure for string searching in external memory
and its application. JACM, 46(2):236–280, 1999.

[10] J. Fischer and V. Heun. A new succinct representation
of RMQ-information and improvements in the
enhanced suffix array. In ESCAPE, pages 459–470,
2007.

[11] M. L. Fredman and D. E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest
paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

[12] P. Gupta, R. Janardan, and M. H. M. Smid. Further
results on generalized intersection searching problems:
counting, reporting, and dynamization. J. Algorithms,
19(2):282–317, 1995.

[13] W.-K. Hon, R. Shah, and J. S. Vitter. Space-efficient
framework for top-k string retrieval problems. In
FOCS, pages 713–722, 2009.

[14] R. Janardan and M. A. Lopez. Generalized
intersection searching problems. IJCGA, 3(1):39–69,
1993.

[15] H. Kaplan, N. Rubin, M. Sharir, and E. Verbin.
Efficient colored orthogonal range counting. SICOMP,
38(3):982–1011, 2008.

[16] M. Karpinski and Y. Nekrich. Top-k color queries for
document retrieval. In SODA, pages 401–411, 2011.

[17] K. G. Larsen and R. Pagh. I/O-efficient data
structures for colored range and prefix reporting. In
SODA, pages 583–592, 2012.

[18] K. G. Larsen and F. van Walderveen. Near-optimal
range reporting structures for categorical data. In
SODA, pages 256–276, 2013.

[19] C. Makris and A. K. Tsakalidis. Algorithms for
three-dimensional dominance searching in linear space.
IPL, 66(6):277–283, 1998.

[20] S. Muthukrishnan. Efficient algorithms for document
retrieval problems. In SODA, pages 657–666, 2002.

[21] G. Navarro. Spaces, trees and colors: The algorithmic
landscape of document retrieval on sequences. In
CoRR abs/304.6023, 2013.

[22] G. Navarro and Y. Nekrich. Top-k document retrieval
in optimal time and linear space. In SODA, 2012.

[23] Y. Nekrich. Space-efficient range reporting for
categorical data. In PODS, pages 113–120, 2012.

[24] R. Raman, V. Raman, and S. S. Rao. Succinct
indexable dictionaries with applications to encoding
k-ary trees, prefix sums and multisets. TALG, 2007.

[25] R. Shah, C. Sheng, S. V. Thankachan, and J. S.
Vitter. Top-k document retrieval in external memory.
In ESA, 2013.

[26] J. F. Sibeyn. External selection. In STACS, pages
291–301, 1999.

[27] J. S. Vitter. Algorithms and data structures for
external memory. Foundations and Trends in
Theoretical Computer Science, 2(4):305–474, 2008.

[28] P. Weiner. Linear pattern matching algorithms. In
SWAT, pages 1–11, 1973.

APPENDIX

A. TOP TO THRESHOLD MAPPING
Data Structure: We partition the array A[1...n] into � n

log2 n
�

disjoint blocks each of size log2 n (possibly except for the
rightmost block). Starting from each blocking boundary,
we consider spans (of length at most n) covering 1, 2, 4, 8, ...
blocks, and for each such span S = A[x, y], we maintain τk

x,y

for k = 1, 2, 4, 8, ..., n. Here τk
x,y ∈ {A[j]|j ∈ [x, y]} with k

as the output size of the threshold-CRMQ (x, y, τk
a,b). This

takes O(n) space. Further, we divide each block into sub-
blocks of size log2 log n, and starting from each sub-block
boundary, we consider spans (of length at most log2 n) cov-
ering 1, 2, 4, 8, ... sub-blocks. Again, for each such span S′ =
[x′, y′], we maintain τk

x′,y′ for k = 1, 2, 4, 8, ...,Θ(log2 n
log2 log n

).

Notice that the explicit storage of τk
x′,y′ ’s (in log n bits per el-

ement) is costly. Therefore, we simply encode its relative po-
sition within that span in lesser number of O(log(log2 n)) =
O(log log n) bits. i.e., total O(n)-space. Finally answers for
the query (a, b, k) where both a, b are completely within a
sub-block can be maintained in o(n) bits using tables.

Query Answering: In order to compute the threshold τk
a,b

corresponding to the input (a, b, k), we get k′ by approxi-

mating k to the next highest power of 2 i.e., k′ = 2�log k�.
Then the input range [a, b] can be partitioned into (at most)
6 spans [a, a′ − 1], [a′, a′′ − 1], [a′′, b′′], [b′′ + 1, b′], [b′ + 1, b]
such that (1) both [a, a′ − 1], [b′ + 1, b] are within a sub-
block, (2) [a′, a′′ − 1], [b′′ + 1, b′] are covered by spans of
sub-blocks and (3) [a′′, b′′] is covered by two possibly over-

lapping spans of blocks. The τk′
{·,·} for each of these spans

can be retrieved in constant time and we choose the max-
imum among them as our threshold τk

a,b. It can be easily

verified that k̂ ≤ 6k′ < 12k and k̂ ≥ min(k, dcol), where
dcol denotes the number of distinct colors in C[a...b].

B. TOP-k DOCUMENT RETRIEVAL
In this problem, we are given a set of D string documents

{d1, d2, ..., dD} of total length n. We need to index these
documents so as to answer the query (P, k) that requires us
to output k documents with the highest w(P, dj). The rele-
vance w(P, dj) depends only on the set of occurrences of P in
dj i.e., Occ(P, dj) and the document itself. Whenever a rel-
evance measure satisfies the monotonicity property (either
w(P, dj) is always ≤ w(P ′, dj) or it is always ≥ w(P ′, dj),
where P ′ is a prefix of P), top-k string retrieval problem can
be reduced to top-CRMQ

First, construct a generalized suffix tree [28] of the doc-
ument collection. Then we mark nodes with document-ids
as follows: a leaf node � is marked with document dj if the
suffix represented by � belongs to dj . An internal node u is
marked with dj if it is the lowest common ancestor of two
leaves marked with dj . Notice that a node can be marked

274

with multiple documents. For each node u (with pre-order
rank rank(u)) and each of its marked documents dj , we
define a triplet (rank(u), w(path(u), dj), dj), where path(u)
represents the concatenation of edge labels on the path from
root to u. Let (xi, yi, dci) represents the i-th triplet, where
xi ≤ xi+1, then we construct A and C as follows: A[i] = yi
and C[i] = ci ∈ [1, D]. The top-k documents corresponding
to the query (P, k) are same as the output colors for top-
CRMQ (a, b, k), where [a, b] represents the maximal range
such that for all triplets (xi, ·, ·) with i ∈ [a, b], the node
with pre-order rank xi is in the subtree of uP . Here uP

represents the locus of P , the node closest to root with P
as a prefix of path(uP). Using a String B-tree [9] and some
auxiliary structures occupying O(n)-word space over all, we

can compute uP in O(logB n+ |P |
B

) I/Os.

C. PROOF OF THEOREM 9
Our data structure is based on the same approach as in [8,

19]. But we will also need additional ideas to output points
in sorted order.

We associate sets of points P (v) with nodes v of a binary
tree T . Let maxxy(S) denote those points of a set S whose
projections on the xy-plane are maximal. We set S(wr) = S
for the root wr of T . In every node v starting with the root,
we store set P (v) = maxxy S(v). Then, we divide all points
from S(v) \ P (v) into two equal parts according to their z-
coordinates and associate them with children vl, vr of v. In
other words, points from S(v) \P (v) are distributed among
S(vl) and S(vr) so that (1) pl.z < pr.z for any pl ∈ S(vl)
and pr ∈ S(vr), (2) |S(vr)| ≤ |S(vl)| ≤ |S(vr)|+ 1. Finally,
we recursively apply the same procedure to S(vl) and S(vr).

For every node v, we keep all points of P (v) sorted by their
x-coordinates in an array A(v). We also maintain a data
structure from [7] that supports sorted reporting queries on
A(v): for any query interval [a, b], D(v) reports all points p ∈
A[i], such that a ≤ i ≤ b and p.z ≥ c, sorted in decreasing
order of their z-coordinates. As described in [7], D(v) uses
O(|P (v)|) space and answers queries in O(k+1) time, where
k is the number of reported points. We also store structures
Dx(v) and Dy(v) that enable us to answer predecessor and
successor queries on x- and y-coordinates of points in P (v).

Using D(v), Dx(v), and Dy(v), we can answer a sorted
dominance query Q = [a,+∞]× [b,+∞]× [c,+∞] on P (v).
Since P (v) contains maximal points with respect to their
x- and y-coordinates, all p1, p2 ∈ P (v) have the following
property: if p1.x > p2.x, then p1.y < p2.y. That is, y-
coordinates of points in P (v) decrease monotonously with
increasing x-coordinates. Let pl be the point in P (v) with
the smallest x-coordinate, such that pl.x ≥ a; let pr be
the point in P ((v) with the smallest y-coordinate, such that
pr.y ≥ b. Let il and ir denote the x-ranks‡‡ of pl and pr
respectively. All points p stored in A[il...ir] and only those
points satisfy p.x ≥ a and p.y ≥ b. Hence, we can answer
a query Q on P (v) by reporting all points in A[il...ir] in
decreasing order of their z-coordinates until all points p,
p.z ≥ c, are output.

The same sorted dominance query on S is answered as
follows. Let Πq denote the search path for c in T . We report
all points p ∈ P (v) for all nodes v ∈ Πq. For every node u
that is a right sibling of v ∈ Πq, we must report relevant

‡‡The x-rank of a point p in a set P is the number of points
p′ ∈ P such that p′.x ≤ p.x.

points stored in u and its descendants. First, we answer
the dominance queries on P (u); if at least one point was
reported, we visit both children of u and recursively process
both children of u. Let L(u) denote the list of points in
P (u) ∩Q sorted by their z-coordinates. The union of L(u)
for all visited nodes u contains all points in S∩Q: all points
p, p.z ≥ c, are stored in nodes v ∈ Πq or in right siblings of
nodes v ∈ Πq and their descendants. Our procedure visits
all nodes v ∈ Πq and their right siblings; our procedure
also visits all descendants of the right siblings that contain
at least one point p ∈ Q, as can be concluded from the
following observation.

Observation 1. Suppose that u is the right sibling of
some node v ∈ Πq or a descendant of the right sibling of
some v ∈ Πq. If P (u) ∩ Q = ∅, then P (w) ∩ Q = ∅ for all
descendants w of u.

Every list L(u) is generated in O(|L(u)| + 1) time: using
fractional cascading, we can find indices il and ir in any
visited node u in constant time. When il and ir are known,
data structure D(u) reports all points p ∈ A(u), p.z ≥ c
in O(|L(u)| + 1) time. The total number of nodes u for
which lists L(u) were generated is bounded by O(log n+ k).
Hence, the total time needed to generate all lists L(u) is
O(log n + k). It remains to show how to merge all L(u) so
that the output is sorted by z-coordinates. We will say that
a node u is situated to the right of a node v if u and v are
stored in respectively the right and the left subtrees of their
lowest common ancestor.

Observation 2. If pu.z > pw.z for some pu ∈ P (u) and
pw ∈ P (w), then u is an ancestor of w or u is situated to
the right of w in T .

Let V denote the set of all visited nodes. Since the height
of T is O(log n), we can use sweepline approach for sorting
points in the query range: we maintain the current path Πc,
and report points stored in P (u), u ∈ Πc, in sorted order.
Suppose that we work with the current path Πc at some
time. Then this means that all nodes u ∈ V to the right
of Πc were already processed and points from lists L(u) are
already in sorted order. To initialize the path Πc, we start
at the root and move down the tree until a leaf is reached
or the currently visited node u has no child ui ∈ V . In
every visited node u, we move to its right child ur if ur ∈ V ;
otherwise, we move to its left child ul. Thus Πc is initialized
to the rightmost path that consists of nodes u ∈ V .

We extract the first point (i.e., the point with the highest
z-coordinate) from every L(u), u ∈ Πc, and insert them
into a priority queue Q. The following steps are repeated
until all points in all L(u), u ∈ V , are sorted. We extract
the highest point p from Q and add it to the sorted list of
points. If the list L(u), such that p ∈ L(u), is not empty, we
extract the next point p′ from L(u) and add it to Q. When
some list L(w), w ∈ Πc, becomes empty, we might need to
update the path Πc. If L(w) is empty and w is the lowest
node in Πc, we remove w from Πc. If w is the right child of
its parent and its left sibling v is in V , we also append new
nodes to Πc. This is done by traversing a downward path
that starts in v. In every visited node u, starting with v, we
add u to Πc and move down the tree if at least one child of
u is in V ; if both children of u are in V , we always select
the right child. For every new node u in Πc, we extract the
highest point p ∈ L(u) and add it to Q. Otherwise, if w has

275

no left sibling or the left sibling of w is not in Πc, then we
move up in the tree and consecutively examine all ancestors
w′ of w starting with the parent. If L(w′) for an ancestor
w′ of w is empty, we remove w′ from Πc. If w′ has a left
sibling w′′ ∈ V , we append the rightmost path starting at
w′′ to Πc as described above. Otherwise, we examine the
ancestors of w′ until a node u, L(u) �= ∅, is reached. When
Πc and Q are empty, we have generated the sorted list of
all points in S ∩ Q. Correctness of our procedure follows
from Observation 2. Suppose that a point p1 ∈ L(u1) was
reported before p2 ∈ L(u2), then either (1) u1 is to the right
of u2, or (2) u1 is an ancestor of u2, or (3) u2 is ancestor
of u1. In the case (1) p1.z ≤ p2.z by Observation 2. In the
case (2) u1 is an ancestor of u2. If p1 was reported before u2

was inserted into Πc, then p1.z ≥ p3.z for some p3 ∈ L(u3),
where u3 is to the right of u2. Hence, p1.z ≥ p3.z ≥ p2.z.
If p1 was reported after u2 had been included into Πc, then
it follows from the description that p1.z ≥ p2.z. Case (3) is
identical with the second part of case (2).

We implementQ using the atomic heap data structure [11];
Since Q contains O(log n) elements, all operations on Q can
be supported in O(1) time. By keeping the depths of all
non-empty nodes u ∈ Πc in another atomic heap, we can de-
termine whether there are non-empty nodes u′ ∈ Πc below
a given node u in O(1) time. Thus we can sort all points p ∈
L(v), v ∈ V , by their z-coordinates in O(|V |+∑

v∈V |L(v)|)
time. This completes the proof of Theorem 9.

D. PROOF OF THEOREM 4
To achieve the result in Theorem 4 we once again rely on

the blocking scheme and interval-pair categorization intro-
duced in the Section 6. We begin by partitioning the in-
put range [a, b] into disjoint spans as described in Section 7
and investigate each of them independently: A[aθ...bθ] as
middle span, A[aπ...aθ − 1] and A[bθ + 1...bπ] as side spans
and A[a...aπ − 1], A[bπ + 1...b] as fringe spans. Recall that
kπ+1 < k ≤ kπ, both a and b are within a single δθ−1-block
but belong to two distinct δθ-blocks and θ ≤ π. With struc-
ture described in Section 7.1.1 capable of querying the mid-
dle span within the desired space-time complexity, we focus
on fringe and side spans below. We the following notation

in this section: log∗
0

(·) = log(·), log∗h(·) is the number of

times function log∗
h−1

(·) must be iteratively applied before
the result is less than or equal to 2 for h ≥ 1 and α(·) is the
minimum h, where log∗

h

(·) ≤ 2. We use α to denote α(n)
for simplicity i.e., α is the Inverse Ackermann function of n.

D.1 Handling Fringe Spans
A close look at the Lemma 6 reveals that the additive

log∗(n
B
) factor in query I/Os is due to the necessity to ac-

cess as many three-sided range reporting structures. Recall
that each such structure TSj was built by only considering
the type-j interval-pairs. Intuitively, additional three-sided
range reporting structures TSi,j can be maintained over a
collection of type-m interval-pairs for m = i, i+1, ..., j trad-
ing off space for better query performance.

To formalize this intuition we begin by proving follow-
ing lemma that summarizes the way to group the interval-
pairs of different types so as to build a collective three-sided
range reporting structure over them. We extend the nota-
tion used for blocking factor δj as below for the purpose of
this subsection: δj(n) = B(log(j)(n

B
))5 and we use δj for

δj(n) simplicity. By choosing h = α in the lemma, we can
obtain a set U(n, α) such that each element of S(n, α) =
{δ1, δ2, ..., δlog∗(n

B
)} belongs to at most α sets in U(n, α).

We now simply maintain a collective three-sided structure
for each element Ue in U(n, α) considering all type-j interval-
pairs such that δj ∈ Ue. The overall space requirement of
such storage can be bounded by O(nα). Moreover the total
number of three-sided structures we need to access in query
algorithm of Lemma 6 is now bounded by 2α2 log(δπ

B
) =

Θ(α2(
kπ+1

B
)1/3) = O(α2(k

B
)1/3). Thus the query I/Os can

be bounded by O(α2(k
B
)1/3 + k

B
).

Lemma 9. Given a set S(n, h) = {δ1, δ2, ..., δx} such that

log(x)(n
B
) ≥ log∗

h

(n
B
) > log(x+1)(n

B
), we can obtain a set

U(n, h) with each of its element being a subset of S(n, h)
satisfying following conditions:

• any element of S(n, h) belongs to at the most h+1 sets
in U(n, h)

• set Qx = {δ1, δ2, ..., δx} can be expressed as a union of
h sets in U(n, h)

• any set Qμ = {δ1, δ2, ..., δμ} with μ < x can be expressed

as a union of P (n, h, μ) ≤ 2h2 log(
δμ(n)

B
) sets in U(n, h)

Proof. For the base case with h = 1 we have δx ≥
B(log∗ n

B
) > δx+1. Then construct U(n, 1) = {{δ1}, {δ2}, ...,

{δx−1}, {δ1, δ2, ..., δx}}. Clearly the first and second state-
ments in the Lemma are true. For any μ ≤ x−1, the set Qx

can be expressed as a union of μ sets in U(n, h), where μ can

be upper bounded by log(
δμ(n)

B
) ≤ P (1) in this case. This is

because μ ≤ log∗(n
B
) < δx

B
≤ log(

δμ(n)

B
) for any μ ≤ x − 1.

We now assume that the desired U(n, h) can be obtained for
h = 1, 2, ..., m and show how U(n,m + 1) can be obtained
for S(n,m+ 1).

We use an important property expressed by equality δj+1 =

δ1(δj) to obtain U(n,m+ 1). Let log(φ1)(n
B
) ≥ log∗

m

(n
B
) >

log(φ1+1)(n
B
) then S(n,m) = {δ1, δ2, ..., δφ1}. Further we

define φ2, φ3, ..., φr with log(φj)(n
B
) ≥ log∗

m

log∗
m

...j times

...(n
B
) > log(φj+1)(n

B
) for j = 1, 2, 3, ..., r, and log(φr)(n

B
) ≥

log(x
′)(n

B
) ≥ log∗

m+1

(n
B
) > log(x

′+1)(n
B
) > log(φr+1)(n

B
).

Then S(n,m+ 1) can be written as follows:

S(n,m+ 1) = {δ1, δ2, ..., δx′}
= {δ1, ..., δφ1} ∪ {δφ1+1, ..., δφ2} ∪ {δφ2+1, ..., δφ3}
∪ ... ∪ {δφr+1, ..., δx′}
= {δ1(n), δ2(n), ...} ∪ {δ1(δφ1), δ2(δφ1), ...}
∪ {δ1(δφ2), δ2(δφ2), ...} ∪ ... ∪ {δ1(δφr), δ2(δφr), ...}
= S(n,m) ∪ S(δφ1 ,m) ∪ S(δφ2 ,m) ∪ ... ∪ S′(δφr ,m)

Note that the last set S′(δφr , m) = {δ ≥ B log∗
m+1

(n/B)|
δ ∈ S(δφr ,m)}. After constructing U(·, m) for each of the
S(·, m) in the above equation (using our recursive method
for h = m case), we obtain U(n,m+1) = U(n,m)∪U(δφ1 ,m)
∪U(δφ2 ,m) ∪ ... ∪ U ′(δφr ,m) ∪ {δφ1 , ..., δx′}.

It can be easily verified that each element in S(n,m+ 1)
belongs to at the most m + 2 sets in U(n,m + 1) thus
proving the first statement in Lemma. The second state-
ment also verifiable since Qx′ can be expressed as a union of
S(n,m) and {δφ1 , ..., δx′} ∈ U(n,m+1), where S(n,m) can
in-turn be expressed as a union of m + 1 sets in U(n,m) ∈
U(n,m + 1). Finally the remaining case, where μ < x′ can
be proved as follows: let φj + 1 ≤ μ ≤ φj+1, the set Qμ

276

can be expressed as S(n,m) ∪ S(δφ1 ,m) ∪ S(δφ2 ,m) ∪ ... ∪
S(δφj ,m)∪{δφj+1, ..., δμ}. As each S(.,m) can be expressed
as the union of m sets in U(n,m+1), S(n,m)∪S(δφ1 ,m)∪
S(δφ2 ,m) ∪ ... ∪ S(δφj ,m) can be expressed as a union of

(j + 1)m sets in U(n,m + 1). Moreover j ≤ log∗
m+1

(n
B
) ≤

log(
δμ(n)

B
) for all μ < x′, therefore (j + 1)m ≤ (log(

δμ(n)

B
) +

1)m. The remaining elements in Qμ, i.e., {δφj+1, ..., δμ} can
be represented as the union of P (δφj ,m, μ−φj) ≤ P (n,m, μ)
sets in U(δφj ,m). By putting every thing together, P (n,m+

1, μ) ≤ P (n,m, μ) +m log(
δμ(n)

B
) +m ≤ 2(m + 1)2 log(

δμ
B
).

This completes the proof.

D.2 Handling Side Spans
We demonstrate the proposed data structures for the span

A[aπ...aθ−1] below and note that the span A[bθ+1...bπ] can
handled in a symmetric way. We take a different approach
for handling the side spans and instead of obtaining the top-
k answers for the query (aπ, aθ − 1, k) as before, we instead
choose to retrieve only those outputs from set Output(a, b, k)
of size k which belong to the span A[aπ...aθ − 1]. This
can be achieved by using the index summarized in following
lemma. By choosing h = α, we obtain linear space index
with O(α logB k + k

B
) query I/Os.

Lemma 10. There exists an S(n, h) = O(n/ log∗
h

(n/B))
space data structure for answering the following query in

T (n, h)+O(k
′

B
) I/Os where T (n, h) = T (n, h−1)+O(logB k):

Given a top-k categorical maxima query (a, b, k) retrieve the
k′ ≤ k outputs in the set Output(a, b, k) which belong to the
span A[adn...aup − 1] such that a ≤ adn ≤ aup − 1 ≤ b,

log∗h(n
B
) ≤ log(dn)(n

B
) < log(up)(n

B
) and k ≤ kdn < kup.

Proof. Before moving to the proof recall that, if query
range [a, b] intersects blocks Aj,l, Aj,l+1, ..., Aj,t then aj =
fj,l+1. We now prove the above result using induction. The
base case for h = 1 can be proved as follows: for each Aj,t

with j ≤ φ ≤ log∗(n
B
), log(φ)(n

B
) ≥ log∗(n

B
) > log(φ+1)(n

B
)

and i < j we maintain top-kj answers for the span bounded
by fj,t and the first δi-boundary that follows fj,t. Instead of
maintaining these kj answers as a single list SL(j, t, i) as be-
fore, we view it as a collection of multiple lists SL(j, t, i, kj)
storing top-kj answers for kj = 1, 2, 4, ...kj and maintain
a three-dimensional dominance structure for each of these
lists over the prev(.), next(.) and weight(.) fields. Thus
S(n, 1) can be bounded by O(n

(log(2)(n
B

))2
+ 2n

(log(3)(n
B

))2
+

3n

(log(4)(n
B

))2
+ ... + (φ−1)n

(log(φ)(n
B

))2
) = O(n

log∗(n
B

)
) words. In or-

der to answer a query, we use the dominance structure corre-

sponding to the list SL(dn, t, up, k) with t = �adn

δdn
� and k ≤

k < 2k. Note that an answer from any list SL(dn, t, up, .) be-
longs to the span A[adn...aup−1]. Then such an answer only
needs to satisfy the conditions prev(.) < a, b < next(.) and
A[.] ≥ τk

a,b to be reported as an output for the query (a, b, k).

Total query I/Os needed can bounded by O(logB k+ k′
B
) and

T (n, 1) = O(logB k).
Next we prove the result for h = m+1 assuming the claim

to be true for all previous cases (i.e., h = 1, 2, ..., m). Let

r be such that log∗
m

log∗
m

... r times ...(n
B
) ≥ log∗m+1

(n
B
) >

log∗m log∗m ... (r+1) times ...(n
B
). Then for j = 1, 2, 3, ..., r−

1, define φj as follows: log(φj)(n
B
) ≥ log∗

m

log∗
m

... j times

...(n
B
) > log(φj+1)(n

B
). Where as φr is defined as the largest

integer (say g) with log∗
m

(log(φr)(n
B
)) ≥ log∗

m+1

(n
B
). Note

that for j = 1, 2, 3, ..., r−2, log∗
m

(log(φj)(n
B
)) = log(φj+1)(n

B
).

We consider the following two cases:

Case 1. δφx+1 < δdn < δup ≤ δφx : To answer a query in this
scenario, we simply maintain the structure S(.,m) for each
Aφj ,t occupying overall space of O(n

log(φ1)(n
B

)
+ n

log(φ2)(n
B

)
+

... + n

log∗m log(φr)(n
B

)
) = O(n

log∗m+1
(n
B

)
) words. Since both

adn and aup belong to the same δx-block in this case, query
can be answered using the structure maintained over the
points in that δφx -block in T (δx,m) ≤ T (n,m) time.

Case 2. δφx+1 < δdn ≤ δφx ≤ δy+1 < δup ≤ δy: We main-
tain two components described below.

• For each Aφj,t and i < j for j = 1, 2, 3, .., r, we maintain
top-kφj answers for the span bounded by fφj ,t and the
first δφi -boundary that follows it. Again these kφj answers
are maintained as a collection of three-dimensional dom-
inance structures over the multiple lists SL(φj , t, φi, kφj)

for kφj = 1, 2, 4, ..., kφj . The overall space (in words) of
this component can be bounded as follows: O(n

log(φ2)(n
B

)

+ 2n

log(φ3)(n
B

)
+...+ (r−1)n

log(φr)(n
B

)
) = O(n

log∗m+1
(n
B

)
). Here note

that r ≤ log∗
m+1

(n
B
) and log(φr)(n

B
) = Ω((log∗m+1

(n
B
))2).

• Consider a blocking factor δz in our blocking scheme such
that δφj+1 < δz < δφj . Then for each δz-boundary i.e.,
fz,t we maintain top-kz answers for the span bounded by
fz,t and the first δφj -boundary that follows it. Once again
it is in the form of three-dimensional dominance structures
over the lists sl(z, t, φj , kz) for kz = 1, 2, 4, ..., kz occupy-
ing O(n

(log(z)(n
B

))2
) space. Such pre-computed answers are

stored for each δz, where log
(z)(n

B
) ≥ log∗m+1

(n
B
). There-

fore total space can be bounded by o(n
log∗m+1(n

B
)
).

In order to answer the query, we partition that span A[adn

...aup − 1] into three disjoint spans and answer each of them
separately as discussed below.

• The first span is bounded by adn and the first δφx -boundary
that follows it. By slight abuse of notation let such a δφx -
boundary be denoted by aφx . Recall that δφx+1 < δdn ≤
δφx . Hence the desired answers can be obtained by query-
ing dominance structure on the list sl(dn, t, φx, k) with

t = �adn

δdn
� and k ≤ k < 2k by spending O(logB k + k′′

B
).

• To get the outputs for the query (a, b, k) in the span
A[aφx ...aφy+1 − 1] we need to query appropriate SL list
(three-dimensional dominance structure associated with
it). Here aφy+1 represents the first δφy+1-boundary that

follows aφx and number of I/Os required for querying SL

are bounded by O(logB k + k′′′
B

).

• The remaining span for the range aφy+1, aup falls into the
case 1 studied earlier as the range will be completely con-
tained in a δφy -block. Therefore I/Os needed in this case

are given by T (n,m) + k′′′′
B

.

We note that k′ = k′′+k′′′+k′′′′ and total query I/Os are

bounded by T (n,m)+O(logB k+ k′
B
). Putting all the pieces

together, S(n,m + 1) = O(n

log∗m+1
(n
B

)
) and T (n,m + 1) =

T (n,m) +O(logB k) = O(m logB k).

By putting every thing together, we obtain anO(nα)-word

data structure with O(α2(k
B
)1/3+α logB α+ k

B
) = O(α3+ k

B
)

query I/Os. This completes the proof of Theorem 4.

277

