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ABSTRACT

In this paper we give a practical and e�cient output-sensitive algorithm for con-

structing the display of a polyhedral terrain. It runs in O((d + n) log2 n) time and uses

O(n�(n)) space, where d is the size of the �nal display, and �(n) is a (very slowly grow-

ing) functional inverse of Ackermann's function. Our implementation is especially simple

and practical, because we try to take full advantage of the speci�c geometrical properties

of the terrain. The asymptotic speed of our algorithm has been improved upon theoret-

ically by other authors, but at the cost of higher space usage and/or high overhead and

complicated code. Our main data structure maintains an implicit representation of the

convex hull of a set of points that can be dynamically updated in O(log2 n) time. It is

especially simple and fast in our application since there are no rebalancing operations

required in the tree.

Keywords: display, hidden-line elimination, polyhedral terrain, output-sensitive, convex

hull.

1. Introduction

A large number of scenes in graphics applications can be modeled e�ciently and

e�ectively by polyhedral terrains. A terrain is a three-dimensional closed polyhe-

dron having the property that, for each location (x; y) in the plane, the values z for

which (x; y; z) is on the polyhedron form either the empty set, a single point, or a

closed interval.

Reif and Sen recently did pioneering work on the generation of displays of

terrains.1 They gave an O((d+n) log2 n)-time and O(n�(n) log n+d)-space output-

sensitive algorithm for the hidden-line elimination of an n-edge terrain whose dis-

�An earlier version of this work appeared in the Proceedings of the 1992 Symposium on The-
oretical Aspects of Computer Science (STACS '92), Paris, France, February 1992, published in
Lecture Notes in Computer Science, 577, Springer-Verlag, Berlin, 135{146.

yElectronic mail can be addressed to franco@cs.brown.edu.
zElectronic mail can be addressed to jsv@cs.brown.edu.
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play consists of d segments. (The notation �(n) denotes a functional inverse

of Ackermann's function.) Their technique resorts to general-purpose primitives

such as ray shooting and is therefore ponderous and not immediately likely to

lead to practical implementation. They also showed that dynamic fractional cas-

cading techniques can further reduce their theoretical time and space bounds to

O((d+n) log n log logn) time and O(n�(n)+d), respectively. Katz, Overmars, and

Sharir more recently developed an elegant algorithm that improved the time bound

to O((n�(n) + d) logn) time, but still used O(n�(n) logn) space.2

Output-sensitive algorithms have the advantage that their running time depends

upon the complexity d of the �nal display. In the worst case, d can be �(n2), but

in real-life scenes it is typically less.

The purpose of this paper is essentially methodological, since it shows how to

take advantage of the speci�c nature of the objects involved in order to get a very

simple and, therefore, practical algorithm, with the same asymptotic time com-

plexity as that of Reif and Sen's original algorithm, and using less space than both

algorithms mentioned above. Our emphasis rests on the viewpoint that the analysis

of asymptotic performance does not exhaust the objectives of algorithmic design,

and that simplicity and ease of implementation are equally important criteria.

In the next section we de�ne the display problem for terrains and discuss useful

geometrical features of terrains. In Section 3, we describe our main data structure.

It can be viewed as an e�cient implicit representation of the lower convex hull of a

semidynamic set of points (by which we mean that the universe of points is known

beforehand). In Section 4 we give the O((d + n) log2 n)-time algorithm for terrain

display, based upon a O(log2 n)-time algorithm for dynamically maintaining the

implicit representation of the lower hull.

In Section 5 we describe the following result of independent interest: If we remove

the semidynamic assumption, we can replace our semidynamic data structure with

a more general balanced tree and get an alternative dynamic data structure for the

lower convex hull that is simpler than the one proposed in (Ref. 3). Our new data

structure uses only one balanced tree, as opposed to the linear number of balanced

trees required by Overmars and van Leeuwen. The representation of the lower hull

is implicit rather than explicit, but it can support all the applications described by

Overmars and van Leeuwen with the same performance guarantees.

2. Preliminaries

Let R be a planar subdivision in the (x; y) plane de�ned by n vertices. We

assume for simplicity and with essentially no loss of generality that R has a unique

unbounded region. For each open bounded region (simple polygon) r of R, we

have an a�ne function fr(x; y) de�ned for all (x; y) in region r; for the unbounded

region r� we have fr�(x; y) = 0.

A polyhedral terrain (or simply terrain) � is a polyhedron given by the following

function z(x; y) de�ned on the interiors
S
r2R r of all the regions of R of the plane:

z(x; y) = fr(x; y); where (x; y) 2 r:
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As stated, z is a function de�ned only in the interiors of the regions of R. We

extend the de�nition of z to the edges of R, so that if edge e is shared by regions r0

and r00, then for each point u of e, we de�ne the following z-coordinate interval:

z(u) =
h
minffr0(u); fr00(u)g; maxffr0(u); fr00(u)g

i
: (1)

Frequently, for each point u of e, we have fr0(u) = fr00(u); however, in general, the

polyhedron de�ned by the terrain � can have as many as 2n vertices. Each vertical

line intersects � in a single connected domain, either a point or an interval.

Let v0 = (x0; y0; z0) be the observation point of the viewer and let n =

(nx; ny; nz) be the normal to the display plane P . Informally, the observer's eye is

placed at v0 and points in direction n; the terrain can be imagined as being pro-

jected onto P . Without loss of generality, we let nx = 0, and we assume that the

planar subdivision R is regular ,4 in that R admits a complete ordered set � = f�1,

�2, . . . , �pg of separators in the (x; y) plane monotone with respect to the x-axis.

In particular, we assume that no edge of R is perpendicular to the x axis. Let

pmin x and pmax x be the unique two points of the boundary of R that have the

minimum and maximum x values, respectively. Each edge in R is contained in at

least one monotone separator �j . Each separator �j is a monotone chain of edges

of R that starts at pmin x and ends at pmax x . By \monotone," we mean that any

line perpendicular to the x axis intersects �j at most once. According to standard

convention, if i < j then a line perpendicular to the x-axis and intersecting both

�i and �j intersects �i closer to y = y0 than it intersects �j . The number p of

separators is O(n).

The set of separators � naturally induces a complete set of three-dimensional

polygonal chains �0 = f�01, �
0

2, . . . , �
0

qg of � , which are ordered so that whenever two

polygonal chains �0i; �
0

j 2 �0, for i < j, have points ui 2 �0i, uj 2 �0j that project to

the same point in the (x; y) plane, we have z(ui) � z(uj) (cf. (1)). We let �j denote

the central projection of �0j 2 �0 to the display plane P , and we de�ne � = f�1, �2,

. . . , �qg. For e�ciency of representation, we eliminate from each polygonal chain �j
those edges that appear in an earlier polygonal chain �i, for i < j.

As in (Ref. 1), the construction of the display of the terrain � is done incremen-

tally, by successively processing the polygonal chain of �, starting from �1 closest

to the observation point and proceeding away to �q . The construction maintains

in the display plane P an x-monotone polygonal chain �, called the silhouette, that

separates the \clear" from the \opaque."

Speci�cally let �j be the currently processed polygonal chain of �. The advanc-

ing mechanism of the construction intersects �j with �. The portion of �j lying

below � is eliminated; the portion of � lying below �j is reported (as part of the

display). The upper envelope of �j and � forms the new updated silhouette �:

� := sup(�; �j);

where sup will also denote a function that implements the silhouette update.

Our approach makes use of several interesting geometric features of the silhou-

ette:
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� The silhouette is an x-monotone chain (in the display plane P ) consisting

of lower-convex subchains separated by vertices that are the display-images

of original vertices of the terrain. By \lower-convex," we mean that the sub-

chains are counterclockwise from left to right, or equivalently, the line segment

between two points on a subchain lies above the subchain.

� Each of the lower-convex subchains introduced above contains at most N

segments, where N = O(n) is the number of edges of � , since each edge

contributes at most one segment to each convex chain.

� The worst-case total number of edges of the silhouette is �(n�(n)), where

�(n) is a functional inverse of Ackermann's function, which follows by the

well-known results on the one-sided envelope of a collection of segments.5;6;7

� A chain �j is a concatenation of edges and gaps. (Gaps correspond to edges

appearing in previously handled chains.) Thus each time the left extreme p0 of

an edge of �j belongs to the display (that is, it lies above �), then the abscissa

of p0 is the left extreme of the range of some leaf of T .

3. Silhouette Data Structure

The data structure we use to store the silhouette � is an implicit recursive

representation of the lower convex hull of the vertices of �. From now on, whenever

we refer to a point, segment, edge, terrain, etc., we refer to their projections in the

display plane P . Since the absciss� of the vertices of � are known a priori, we order

them and denote by X their ordered set. We store them as leaves in a contracted

binary tree (CBT),8;9 which we call T . We recall here for the reader's convenience

that the nodes in a CBT T , which we call the active nodes, are a subset of the

nodes of a \skeletal" balanced binary tree T �, whose leaves correspond 1{1 to the

members of a �xed ordered universe X (which in our case is the set of absciss� of

the vertices). For simplicity we assume that jX j is a power of 2. More formally, the

active nodes are de�ned as follows:

(i) The root is always active.

(ii) A leaf is active if it is stored in T and otherwise it is inactive.

(iii) Any internal nonroot node is active if both of its subtrees contain active nodes.

The number of nodes in the CBT T is clearly bounded by twice the number

of leaves in T . The CBT has depth at most log jX j and no update ever involves

rebalancing since the skeletal tree T � has depth log jX j. Insertions and deletions in T

can be done in constant time, when a pointer is given to the element's neighbor;

otherwise they require O(log jX j) time. Moreover, adjacent leaves and adjacent

nodes in symmetric order are accessible from one another in constant time. For

more details, the reader is referred to (Ref. 9).

We store the silhouette in the following manner: Our universe X is an ordered

multiset of absciss�, one per vertex of � . (If k > 1 vertices have the same abscissa,

we order the k copies of the abscissa according to the following ordering of the

corresponding vertices: the vertices whose edges have � to their left are ordered

from top to bottom, and are followed by the vertices whose edges have � to their
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right, ordered from bottom to top.) Let f�1, �2, . . .�pg, p � n, be the active leaves

of the CBT T , each corresponding to a vertex of � appearing in the silhouette � in

left-to-right order. With a slight abuse of notation, we use �j to represent both the

leaf in the CBT and the vertex in � it corresponds to. With each �j , we associate

a secondary structure S�j (to be discussed below) that stores the convex subchain,

denoted �(�j), terminating at the vertex �j on the right. Each leaf �j , for j � 2,

identi�es an interval range(�j), de�ned to be [x(�j�1); x(�j )]. The range of an

internal node is de�ned to be the union of the ranges of its leaves.

In each internal node w of T we store two additional items:

(i) We store a segment called the bridge (denoted bridge(w)), which is the com-

mon supporting segment of the lower convex hulls of the portions of the sil-

houette corresponding to the left and right subtrees of w, respectively. (A

lower convex hull of a set of points P in the plane is the convex hull of

P [ f(0;+1)g.) If the supporting segment is not well de�ned (because the

concatenation of the nonvertical portions of the two convex hulls is convex),

we make the convention that bridge(w) is the �rst segment of the right con-

vex hull. For example, in Figure 1, the bridge spanning the convex subchains

�(�17) and �(�20) is the �rst segment ` in �(�20)'s convex subchain.

(ii) We store the abscissa rightmost(w) of the rightmost vertex of the subtree

rooted at w.

An example of T is pictured in Figure 1a.

The rest of this section describes the general organization of each secondary

data structure S�j , which stores the convex subchain �(�j) of � that terminates

at �j . The internal vertices of �(�j) are not vertices of � , but rather they are

de�ned implicitly by intersections of polygonal chains in �. Fortunately we can

represent �(�j) in such a way that it can itself be stored e�ciently in a CBT (which

always requires a �xed universe). We denote the CBT by S�j .

We set the universe of CBT S�j to be the set A of edges in � ordered according

to their slope. The convex subchain �(�j) is represented by the edges of A that

form it. More speci�cally, let ei1 , ei2 , . . . , eit , where eik = (pk�1; pk), be the edges

of � that contain the segments of �(�j). The marked leaves of the CBT S�j are

ei1 , ei2 , . . . , eit . Edge eik represents the vertex pk of �(�j), and p0 is represented

implicitly; for 1 � k < t, pk is the intersection of eik and eik+1 , and pt = �j .

We associate the root of each CBT S�j with the leaf �j of the CBT T . We

denote the resulting \combined" tree by bT . Because �(�j) is a convex subchain, all
the bridges in the recursive decomposition of �(�j) (based on the structure of the

CBT S�j ) are simply segments in �(�j) and thus do not need to be stored explicitly.

The bridge bridge(w) for an internal node w in S�j is the segment whose leaf (edge)

in S�j is the symmetric-order successor of w in S�j , which can be found in constant

time. A typical CBT S�j is pictured in Figure 1b.

4. Dynamic Update of the Silhouette

The dynamic update of the silhouette � caused by processing polygonal chain �j
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Figure 1: (a) The current silhouette � consists of the non-bold solid lines, which
comprise the top border of the �gure. The lower convex hull of � consists of the
segments d, b, a, m. The two subhulls whose bridging (by segment a) gives the
full hull are pictured in bold lines. All the bridges in the recursive decomposition
of the full hull are indicated by dashed lines, except for bridge `, which is also a
segment of the silhouette. (b) The combined tree data structure bT consists of the
upper CBT T and the lower CBTs S�1 , S�2 , . . . . Upper CBT T stores the vertices
of the silhouette � that are display-images of vertices of the terrain � . Each internal
node w in the diagram is labeled by the segment bridge(w). For simplicity, the only
lower CBT pictured is S�7 , which stores �7's convex subchain ei1 , ei2 , ei3 , ei4 .
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consists of three tasks:

Task 1. Computation of the intersections of � and �j . We de�ne an intersection

of � and �j to be a changeover point in which �j changes from being on or

above � on one side of the intersection to being strictly below � on the other

side.

Task 2. Dynamic update of the display: We output to the display the portions

of � lying below sup(�; �j).

Task 3. Dynamic update of the data structure bT : We remove from bT the portions

of � lying on or below �j , and we insert into bT the portions of �j lying on or

above �.

The three tasks can be implemented concurrently left-to-right on �j and �. Tasks

1 and 2 are handled in Section 4.1 in O(d0+n0 log2 n) time, where n0 is the number

of edges of �j and d0 is the number of segments output to the display during the

processing of �j . In Section 4.2 we show that bT can be updated in O((d0+1) log2 n)

time. The size of the data structure is bounded by the size of the largest silhouette

ever encountered, which is O(n�(n)). This gives us our main theorem:

Theorem 1 Hidden-line elimination for terrains can be done without the need for

balanced-tree data structures in O((d+n) log2 n) time and in O(n�(n)) space, where

d is the number of segments in the resulting display, and �(n) is a (very slowly

growing) functional inverse of Ackermann's function.

4.1. Computation of the Intersections and Dynamic Update of the Display

We do Tasks 1 and 2 by handling �j edge-by-edge from left to right, as indicated

in the following loop. Let e = (p0; p00) denote the current edge of �j being processed,

starting with the point p 2 e. That is, segment e0 = (p; p00) is the portion of e

currently being processed. We distinguish two cases:

(i) p and the portion of e0 immediately to its right are on or above �. In this case

we march along the silhouette � until either we �nd an intersection q of e0

with � or we reach the abscissa of p00 (in which case we set q := p00) (Task 1).

The portion of � lying below (p; q) is reported as appearing in the display

(Task 2). The above loop continues with p := q.

(ii) The portion of e0 immediately to the right of p is below �. In this case the

display does not change in a neighborhood of p (Task 2), and we have to

search for the leftmost intersection q of e0 with �; if none exists, we set q :=

p00 (Task 1). The loop then continues with p := q.

The search for q begins with the node w of T that has the smallest level

(leaves of T have level 0) among those whose range contains that of e0. We

use the segment bridge(w) and test it against the line line(e0) containing e0.

We denote the line containing bridge(w) by line(bridge(w)). We distinguish

three cases, as illustrated in Figure 2:

(a) bridge(w) does not extend below line(e0). If line(bridge(w)) intersects

line(e0) to the right (respectively, left) of bridge(w), then w's left sub-

7



Figure 2: The di�erent cases in the recursive search for the �rst intersection between
edge segment e0 and the silhouette �.

tree (respectively, right subtree) can be excluded from the search. (See

Figure 2a.)

Justi�cation: If, for example, line(bridge(w)) intersects line(e0) to the

right of bridge(w), then all vertices of � pertaining to the left child of w

are con�ned to the shaded region in Figure 2a obtained by intersecting

the closed halfplane above line(bridge(w)) and the closed halfplane to

the left of the vertical line x = x(rightmost(left child (w))). Clearly none

of this region's edges can intersect e0.

(b) bridge(w) lies entirely below line(e0). In this case, w's right subtree can

be excluded from the search. (See Figure 2b.)

Justi�cation: By assumption, the part of e0 immediately to the right

of p is below �. Since � contains the left endpoint of bridge(w), which

is below line(e0), there must be an intersection between line(e0) and the

portion of � pertaining to w's left child.

(c) bridge(w) lies partly on or above line(e0) and partly below line(e0). In

this case, there is certainly at least one intersection of e0 with �, but

we may not know which subtree of w contains the portion of � having

the �rst intersection with e0, as in Figure 2c. The search is continued

in the left subtree, in accordance with the left-to-right update policy. If

no intersection is found in the left subtree, processing continues with the

right subtree. The search for q halts whenever an intersection is found.

Finding the intersections of �j with � and the dynamic update of the display in

Case (i) requires O(n0 + d0) time, where n0 is the number of edges of �j and d0 is

the number of segments output to the display during the processing of �j .

We now show that the time required for Case (ii) is O(n0 log2 n). If e0 does not

intersect �, we traverse a path from node w to a leaf of bT , each time under Case (a)
or Case (b) spending constant time at each node, for a total of O(logn) time.

8



Figure 3: (a) The silhouette before the processing of �j = e1, e2, . . . , e4. (b) The
silhouette after the processing.

Suppose instead that e0 intersects �. We consider a path in bT from w to the leaf

pertaining to the segment containing the intersection q. In the worst case, each node

on this path is a right child and at each such node we launch an unsuccessful search

through the left sibling as speci�ed by Case (c). Clearly there are O(logn) nodes

from which such unsuccessful searches can be taken, each search taking O(logn)

time, before q is found.

4.2. Dynamic Update of bT
In the algorithm in Section 4.1 for computing intersections between the polygonal

chain �j being processed and the silhouette �, the polygonal chain �j alternates

between being on or above � and being below �. The dynamic update of the

combined CBT data structure bT (Task 3) is concerned with the portion of �j that

lies on or above � (which corresponds to Case 1 of Tasks 1 and 2, described in

Section 4.1).

Let p denote the last processed intersection point of �j with �. Immediately

after p, �j is on or above �. Let e1, e2, . . . , ek, with ei = (pi�1; pi), denote a

maximal subchain of �j such that p 2 e1, p 6= p0, and edges e2, . . . , ek�1 lie

completely on or above �, as illustrated in Figure 3a for the case k = 4. Let �left be

the �rst vertex of � whose convex subchain �(�left ) intersects e1 at p, and let �right
be the last vertex of � whose convex subchain �(�right ) intersects ek as close to p

along �j as possible. We modify T by deleting the leaf �left and inserting the leaves

p1, p2, . . . pk�1. The convex subchain �(pi), for 2 � i � k � 1, is initialized to

contain the singleton edge ei. These updates to bT require O(k) time. The convex

subchain �(p1) is initialized to contain the edges of �(�left ) up to its intersection
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with e1, followed by the portion of e1 after the intersection. Similarly, in the convex

subchain �(�right ), the initial portion, up to the intersection with ek, is deleted and

replaced with the portion of ek up to the intersection. If k = 1, then �(�right )

in addition stores the initial part of �(�left ) up to its intersection with e1. This is

illustrated in Figure 3b. These updates involve splits of the CBTs S�left and S�right ,

which, if k = 1, are spliced together; this can be done easily in O(logn) time. The

total time for this process is thus O(logn+ k).

We mark the leaves p1, . . . , pk�1, �right for later processing. The next portion

of the polygonal chain �j , starting with the intersection of ek and �(�right ), lies

below the silhouette � and is processed as in Case (ii) in Section 4.1, seeking the

subsequent intersection of �j and �. The portion of �j that remains after Case (ii)

is again on or above �, so we repeat the above process.

After the above processing of the polygonal chain �j is completed, there may be

several marked leaves in the CBT T . They represent the vertices of � whose convex

subchains were created or modi�ed as a result of processing �j . In the remainder

of the dynamic update, we perform a postorder traversal of the portion of T that

lies above the marked leaves, in order to update the bridges stored in those nodes.

At each internal node w in T lying on a rootward path from each of the marked

leaves (on the way up in the postorder traversal), we compute in O(logn) time the

updated bridge segment bridge(w) for node w by processing the bridge information

in the nodes below w in T , as follows: We initialize ` and r to be the left and right

children of w. We use line(bridge(`)) and line(bridge(r)) to denote the straight

lines containing the segments bridge(`) and bridge(r). Let � denote the rightmost

leaf rightmost(`) in the subtree rooted at `. We carry out the procedure below

until ` and r are each leaves in bT . The resulting ` and r are made the endpoints of

bridge(w).

As long as ` and r are both internal nodes of bT , we repeatedly do the actions

corresponding to the following two cases:

(i) Some portion of bridge(r) (respectively, bridge(`)) lies below line(bridge(`))

(respectively, line(bridge(r))). We set ` to be `'s left child (respectively, we

set r to be r's right child). (See Figure 4a.)

Justi�cation: If, for example, some portion of bridge(r) lies below

line(bridge(`)), then all vertices of � pertaining to the right child of ` are

con�ned to the shaded region pictured in Figure 4a, obtained by intersecting

the closed halfplane above line(bridge(`)) and the strip delimited by the two

vertical lines x = x(left extreme of bridge(`)) and x = x(�). Clearly none of

this region's vertices can support bridge(w).

(ii) Both bridge(`) and bridge(r) lie on or above the line extension of the other.

We denote by int(line(bridge(`)); �) and int(line(bridge(r)); �), respectively,

the ordinates of the intersections of line(bridge(`)) and of line(bridge(r)) with

the vertical line x = x(�).

(a) If int(line(bridge(`)); �) � int(line(bridge(r)); �), then we set ` to be `'s

right child. (See Figure 4b.)

(b) If int(line(bridge(`)); �) � int(line(bridge(r)); �), then we set r to be r's
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Figure 4: Recursive descent needed to determine bridge(w) for a node w in bT .
The bridges for the left child ` and the right child r of w are shown. (a) The left
anchor point for bridge(w) must be in `'s left subtree. (b) The left anchor point for
bridge(w) must be in `'s right subtree.

left child. (This case is symmetric to Case (a).)

Justi�cation: Since we are negating Case 1, the wedge formed by

line(bridge(`)) and line(bridge(r)) is lower-convex. Thus if, for exam-

ple, we have int(line(bridge(`)); �) � int(line(bridge(r)); �), then the ver-

tices of � pertaining to the left child of ` are con�ned to the shaded re-

gion pictured in Figure 4b, obtained by intersecting the closed halfplane

above line(bridge(`)) and the closed halfplane to the left of the vertical line

x = x(right extreme of bridge(`)). None of this region's vertices can support

bridge(w).

When this loop terminates, either ` or r is a leaf in the combined CBT bT . We

repeatedly do the following step until ` and r are both leaves: If ` (respectively, r)

is a leaf and lies on or below line(bridge(r)) (respectively, line(bridge(`))), then we

set r to be r's right child (respectively, ` to be `'s left child); otherwise we set r to

be r's left child (respectively, ` to be `'s right child).

At this point, both ` and r are leaves of bT . We set bridge(w) to be the segment

whose endpoints are represented by the leaves ` and r.

The time to compute each bridge by the above procedure requires O(logn) time.

The number of bridges to be updated as a result of processing �j is O(n0 logn),

where n0 is the number of edges in �j . Thus the time required for all the bridge

updates caused by �j is O(n
0 log2 n). Theorem 1 follows by summing the running

times needed for the three tasks in the processing of �j .
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5. Dynamic Representation of the Convex Hull

In this section we describe how to use our lower convex hull data structure

of Sections 3 and 4 in a variety of dynamic applications described by Overmars

and van Leeuwen.3 In these applications the universe of points is not necessarily

known in advance, so we use a balanced tree instead of a CBT to implement L.

The points S stored in L are ordered from left to right, and those with the same

abscissa are ordered from top to bottom. There is no need for the secondary data

structures that we described in Sections 3 and 4; all the points of S are stored as

leaves of L. The resulting data structure makes use of a single balanced tree L as

opposed to the data structure of (Ref. 3), which uses a linear number of balanced

trees; there, each node in the tree has a secondary data structure represented by a

balanced tree.

The following theorem shows that the dynamic applications given by Overmars

van Leeuwen3 can be implemented within the same time and space bounds using

our data structure L for the lower convex hull.

Theorem 2 Our lower convex hull data structure L and the symmetrically de�ned

upper convex hull data structure U support the following operations:

(i) A set of n points in the plane can be \peeled" in O(n log2 n) time.

(ii) The convex layers of a set of n points in the plane can be determined in

O(n log2 n) time.

(iii) A connecting spiral of a set of n points in the plane can be determined in

O(n log2 n) time.

(iv) A set of points in the plane can be maintained at the cost of O(log2 n) time

per insertion or deletion so that the query \does p lie on the convex hull of

the set of points?" can be answered in O(logn) time.

(v) Two sets A and B of points in the plane can be maintained at the cost of

O(log2 n) time per insertion or deletion so separability can be determined in

constant time.

The following theorem is useful for determining the convex layers:

Theorem 3 Using our lower convex hull data structure L, the lower convex hull

of a set of points S = fp1, p2, . . . png can be output in O(h log n
h
) time, where h is

the current size of the lower convex hull of S.

Let x1 (bridge(w)) and x2 (bridge(w)) denote the left and right abscissae, respec-

tively, of segment bridge(w). We prove Theorem 3 by giving the pseudocode that

outputs the lower convex hull of the points in left-to-right order. Let �1 and �n

denote the absciss� of the leftmost and rightmost points; in case of a tie, we choose

the bottommost point. The printing of the lower hull is done via the procedure call

print hull (root of L; �1; �n). In the following pseudocode, w is a node of L, and

left and right are absciss� satisfying left � right .
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print hull (w; left ; right);

begin

if left < x1 (bridge(w)) then

print hull (left child (w); left ; x1 (bridge(w)));

if [x1 (bridge(w)); x2 (bridge(w))] � [left ; right ] then

Output bridge(w);

if x2 (bridge(w)) < right then

print hull (left child (w); x2 (bridge(w)); right )

end;

The running time is bounded by the path length to the nodes in the tree where the

segments of the lower convex hull are stored as bridges. If there are h segments

on the lower hull, we can show by convexity arguments that the path length is

O(h log n
h
). The justi�cation for the pseudocode is given in the following lemma:

Lemma 1 The segment bridge(w) belongs to the lower convex hull of the set of

points S represented in L if and only if

�
x1 (bridge(w)); x2 (bridge(w))

� \ �
x1 (bridge(v)); x2 (bridge(v))

�
= ; (2)

for each ancestor v of w in L.

Proof. (=)) Suppose that bridge(w) = (pleft ; pright) is part of the lower convex

hull. Then the lower hull lies in the halfplane H+(w) on or above line(bridge(w)).

For any ancestor v of w, all the points stored in the subtree of L rooted at v, includ-

ing the endpoints of bridge(w), are contained in H+(v). Therefore, line(bridge(v))

intersects the vertical line x = x(pleft ) (respectively, x = x(pright )) at point qleft (re-

spectively, qright) at or below pleft (respectively, pright). If bridge(w) and bridge(v)

are colinear, condition (2) must hold, since the bridges can intersect only at their

endpoints. Otherwise if the bridges are not colinear and condition (2) does not hold,

then the segment (qleft ; qright ) contains a point of bridge(v) not in H+(w), which

contradicts the assumption that bridge(w) belongs to the lower convex hull.

((=) Suppose that bridge(w) = (pleft ; pright) does not belong to the lower convex

hull. Then there is a point p 2 S not in H+(w). By de�nition of bridge, p cannot lie

directly under bridge(w), but must be either to the left or the right of the vertical

strip spanned by bridge(w). Without loss of generality, let us assume that (1) p 2 S

is to the right of such strip, (2) p is not in H+(w), and (3) p is the leftmost point

in S satisfying (1) and (2). Let v be the lowest common ancestor in L of the leaves

for pright , pleft and p. By the de�nition of bridge(w), it follows that node w is in

the left subtree of v and the leaf for p is in the right subtree of v. This implies

that the left endpoint q of bridge(v) precedes p in S. Assume, for a contradiction,

that x(pright ) � x(q). By de�nition of p, there is no point in S between pright

and p that is below line(bridge(w)). Since q is either between pright and p in S or

else on or directly above pright , we have q 2 H+(w). Since both q and p are in

H+(v), while q 2 H+(w) and p 62 H+(w), it follows that line(bridge(v)) intersects

line(bridge(w)) at or to the right of pright in S, and thus pleft 62 H+(v), which
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contradicts the de�nition of bridge(v). Therefore, we must have x(q) < x(pright ),

and condition (2) is violated. 2

The rest of this section is devoted to proving Theorem 2. The �rst application

of peeling can be implemented easily by observing that the bridge stored at the root

of L must be on the lower convex hull. Hence we can \peel" o� the two endpoints

of the bridge, dynamically update L in O(log2 n) time, and continue until no points

remain.

For the second application, we need to peel o� an entire layer before updating L

and U . Theorem 3 can be invoked to output the ith layer in O(hi logn) time, where

hi is the size of the ith layer, and
P

i hi = n. Deleting the points in a layer takes

O(log2 n) time per point, resulting in a total time bound of O(n log2 n).

The third application can be done in a similar way, except that after each layer

is removed, the last point on the previous layer is left temporarily in L and U . The

�rst segment on the convex hull starting at that point, which is the desired spiral

segment that connects the previous layer to the next, can be found by executing the

procedure for Theorem 3 up until the �rst segment is output, which takes O(logn)

time.

In the fourth application, we can determine whether a point p lies on the convex

hull in O(log n) time by traversing L and U from the leaf for p upward to their

respective roots. By Lemma 1, the point p is on the lower (respectively, upper)

convex hull if and only if every bridge in L (respectively, in U) encountered either

contains p or has an x-range to the left or right of x(p).

For the last application, we use lower and upper convex hull data structures

for each of the sets A and B. We can separate A and B if and only if one of the

sets has a lower convex hull that does not intersect the upper convex hull of the

other. For simplicity let us consider whether the lower convex hull of A (including

its interior) intersects the upper convex hull of B (including its interior); the other

case is symmetrical. We store the lower convex hull of A in data structure LA and

the upper convex hull of B in data structure UB .

Let a and b denote the roots of LA and UB . We carry out the actions corre-

sponding to the following cases repeatedly until either it is determined that there

is or isn't an intersection or else either a or b is a leaf. If a is a leaf, for example,

a corresponds to a single segment, and we test whether a's endpoints are on or

inside the upper convex hull of B using a procedure like that used for the previous

application. We leave the justi�cation to the reader.

(i) The vertical strip lying on or directly above bridge(a) intersects the vertical

strip lying on or directly below bridge(b). In this case there is an intersection.

(ii) bridge(a) is on or below line(bridge(b)) or bridge(b) is on or above

line(bridge(a)). If bridge(a) is to the left (respectively, right) of bridge(b),

then we set a to be a's right (respectively, left) child and b to be b's left

(respectively, right) child.

(iii) Cases (i) and (ii) do not hold.

(a) If bridge(a) and bridge(b) are parallel, there can be no intersection.
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(b) If int(line(bridge(a)); line(bridge(b))) is to the right (respectively, left)

of bridge(a), then we set a to be a's right (respectively, left) child.

(c) If int(line(bridge(a)); line(bridge(b))) is to the right (respectively, left)

of bridge(b), then we set b to be b's right (respectively, left) child.

In each iteration we descend one level in LA or UB . Thus we can determine sepa-

rability in O(log n) time.
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