
Computation of the Axial View of a Set
of lsothetic Palrallelepipeds

FRANC0 P. PREPARATA
University of Illinois
JEFFREY SCOTT VITTER
Brown University
and
MARIETTE YVINEC
LIENS, URA CNRS 1327, hole Normale Supirrieure, Paris

We present a new technique to display a scene of three-dimensional isothetic parallelepipeds
(3D-rectangles), viewed from infinity along one of the coordinate axes (axial view). In this situation,
there always exists a topological sorting of the 3D-rectangles based on the relation of occlusion (a
dominance relation). The arising total order is used to generate the axial view, where the two-
dimensional view of each 3D-rectangle is incrementally added, starting from the closest 3D-rectangle.
The proposed scene-sensitiue algorithm runs in time O(N logzN + d log N), where N is the number
of 3D-rectangles and d is the number of edges of the display. This improves over the previously best
known technique based on the same approach.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling-curue, surface, solid, and object representations; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism

General Terms: Algorithms, De:dgn

Additional Key Words and Phrases: Amortized analysis, axial view, computational geometry,
contracted binary trees, hidden line elimination, scene sensitive, segment trees

1. INTRODUCTION

Generating two-dimensional display of a three-dimensional scene is one of the
central problems in computer graphics. It has obvious applications in picture
processing, animation, flight simulation, and so on (see [ll]). The objective is to

The work of F. P. Preparata was supported by NSF grant CCR-8906469. The work of J. S. Vitter
was supported in part by NSF research grant DCR-8403613, NSF Presidential Young Investigator
Award CCR-8846714, and a Guggenheim Fellowship.
Authors’ current addresses: F. P. Preparata, Coordinated Science Laboratory, University of Illinois,
1101 West Springfield Avenue, Urbana, IL 61801; J. S. Vitter, Department of Computer Science,
Brown University, Box 1910, Providence, RI 02912; M. Yvinec, LIENS, URA CNRS 1327, Ecole
Normale Superieure, 45 rue d’U:lm, 75230 Paris, France.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0730-0301/90/0700-0278 $01.50

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990, Pages 278-300.

Computation of the Axial View l 279

produce a display acceptable to a human user, that is, a (possibly) perspective
view of the scene where the hidden portions of the objects have been eliminated.

Hidden-line elimination is thus a fundamental component of any solution to
the above-described display task. It is also desirable to produce a solution in
terms of the object space [20], that is, of the geometric descriptions of the scene
objects, which is therefore independent of the particular rendering device. The-
oretical investigations of this problem have recently intensified ([2, 4, 5, 7-10,
12, 14, 16, 18-20, 22]), and can be categorized, respectively, according to two
eminently distinct approaches, referred to here as “intersection-sensitive” and
“scene-sensitive.” The two approaches can be contrasted as follows. Let A and B
be two objects in three-dimensional space, and let A’ and B ’ be their respective
displays. The intersection-sensitive approach computes the intersection of these
displays A ’ and B ‘, determines which portions are hidden from the observer and
erases them, and finally creates the scene by forming the union of the modified
displays. The scene-sensitive approach requires the knowledge of the relative
order of the two objects with respect to the observer; the scene is created by first
displaying the closer object and then intersecting the display of the farther object
with it, without visiting the occluded portions.

Notice that the scene, as a planarly-embedded planar graph, is always a
subgraph of the union of the displays of the objects; therefore, an efficient scene-
sensitive approach could be substantially more efficient than any intersection-
sensitive approach, in most cases.

Of course, scene-sensitive techniques are based on an ordering of the objects
of the scene according to a relation of occlusion, called dominance in [9] and
hereafter. If object A occludes (a portion or all of) object B for the observer, then
A is said to dominate B. Since objects are processed according to this ordering,
such methodology is also known as the priority approach to hidden-line elim-
ination. It was pioneered in [7] and analyzed for its mathematical structure
in [22].

In general, even the existence of such an ordering for a given set of objects and
an arbitrary viewpoint is not known. With the restriction to convex objects,
Guibas and Yao [9] have shown that in two dimensions that such an ordering
always exists for a given direction (that is, a viewpoint at infinity). On the other
hand, this property does not hold in three dimensions; they exhibit a three-object
configuration for which the relation of dominance is not acyclic. To apply this
approach, it may be therefore necessary to split some objects of the collection in
order to force acyclicity in the ordering relation.

In this paper, the scene considered consists of N isothetic parallelepipeds
(called 3D-rectangles hereafter), and our goal is the construction of their axial
view, that is, the view from infinity along a coordinate axis. In such a view, the
display of each individual 3D-rectangle is an isothetic 2D-rectangle and, there-
fore, the dominance relation is always acyclic. Thus, our problem is analogous to
the problem of displaying a sequence of overlapping “windows,” as in a window-
based user interface or graphics system, where the windows are two-dimensional
isothetic rectangles parallel to the X, y-plane, but with different z-coordinates.
In this case the parallelepipeds have zero depth, so that the dominance relation
on the set of windows is trivially acyclic.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

280 - F. P. Preparata et al.

A scene-sensitive approach to this problem was recently proposed by Giiting
and Ottmann [7]. They showed that the display of N parallelepipeds can be
constructed in time O((N + d)log’N), where d is the complexity of the scene
(rather than the complexity of the underlying intersection problem). Guting and
Ottmann make a judicious and clever use of data structures, such as segment
trees and range trees (s#ee, e.g., [El). However, these powerful data structures
are used in their “general-purpose” ability to handle arbitrary collections of
segments and points. By exploiting the particular natures of such sets and of the
problem, we show in thins paper that the axial view of N isothetic parallelepipeds
can be obtained in time O(N logzN + d log N), thereby significantly improving
the Guting-Ottmann result. The algorithm uses a new data structure, called the
contracted binary tree or CBT for short. The CBT can be thought of as a kind of
semidynamic finger tree, designed to maintain a dynamic list of items drawn
from a finite totally ordered set known in advance. The whole algorithm is easy
to implement and fast in practice; the complexity lies in its analysis, not in its
implementation.

Another algorithm sol.ving the same problem was recently proposed indepen-
dently by M. Bern [l]. This algorithm uses a totally different approach, also
based on space sweeps and the use of dynamic data structures. But whereas our
method involves a space sweep orthogonal to the display plane, Bern’s approach
uses a plane sweep of the display plane itself. In its basic version, Bern’s method
achieves the same time bound O(N log2N + d log N) as our solution. Its running
time can be reduced to O(N log N log log N + d log N) using the dynamic
fractional cascading technique of Mehlhorn and Naher [6].

2. THE LINE DRAWING ALGORITHM

Let us denote by N the cardinality of a set 9’ of 3D-rectangles. We wish to
display the axial view of this set on the screen, bearing in mind that each
parallelepiped is opaque and that hidden parts are not to be displayed. Our
algorithm runs in O(N log2N + d log N) time, where d is the complexity of the
final display.

In the axial view, the point of view is the point at infinity of one of the
coordinate axes. In this case, each 3D-rectangle is displayed as a 2D-rectangle
(isothetic). An example of such type view is shown in Figure 1.

The approach is analo,gous to that of Guting-Ottmann [7], but it significantly
departs from it in the implementation of the data structures. The line-drawing
algorithm processes one rectangle at a time, closest rectangle first. Initially, the
display is empty and the first rectangle is trivially added. In the general step,
the display plane is partitioned into two portions, the opaque portion 9, consist-
ing of the union of the heretofore processed rectangles, and its complement F,
the transparent portion. If r denotes the 2D-rectangle to be currently processed,
we must add to the display the visible parts of r (namely, r n F) and update the
opaque portion to be r U FT.

A crucial role is playecl by the boundary of the opaque portion 53, referred to
as the silhouette (of 9-T). The silhouette is represented as a collection of directed
polygons, as shown in Figure 2. The orientation on each polygon is chosen so

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Computation of the Axial View l 281

Fig. 1. Axial view of a set of parallelepipeds (a set of rectangles). 1 I

-
Fig. 2. An oriented silhouette.

that the interior of 9 lies to the left of each edge. The silhouette is conveniently
decomposed into the external silhouette, consisting of the set of the anticlockwise
directed polygons of the silhouette, and the internal silhouette, the relative
complement of the external silhouette.

2.1 The Data Structure

To obtain an efficient implementation of the construction of r n F and of
r U 9, special attention must be given to the data structure. Since we are dealing
with isothetic rectangles, the use of segment trees-and related constructs-is
natura1.l Our main data structure, which is designed to store the edges of the

1 Point trees and segment trees are used throughout this paper, and a brief view of their structure
and mechanisms is given in Appendix A.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

282 - F. P. Preparata et al.

current silhouette, is still referred to as a segment tree for simplicity, although it
is moderately more complex than the conventional one; we use two such struc-
tures, 7, for the horizontal segments and 7J, for the vertical segments. Since the
utilizations of 9X and 7y are identical, we consider here just yZ. Here and in the
following, each rectangle r of the set 9 to be displayed is specified by the
coordinates (x1 (r), yb (r)) of its lower-left corner and the coordinates (x,(r), yt (r))
of its upper-right corner. Furthermore, let X be the set (xl(r), x,(r): r E 9) and
Y be the set (y*(r), y,(r): r E 91. For the sake of simplicity of presentation and
with no loss of generality, we assume that the rectangles are in general position,
which means that the coordinates of sets X and Y are all distinct. The degenerate
cases can be handled easily.

Segment tree 7, has as its primary skeletal structure a segment tree built on
the set X. All (horizontal) segments recorded at a given node V in ~7, are stored-
ordered by increasing ordinate-in a secondary data structure L!?(V), which is a
dictionary realized as a contracted binary tree, described below. (The use of the
contracted binary tree instead of a height-balanced tree is the essential difference
between our scheme and that of Overmars [131. Indeed, whereas the conventional
height-balanced tree has t:he capability of handling an arbitrary set of real-valued
coordinates, the contracted binary tree capitalizes on the fact that the set of
coordinates is entirely known beforehand and can be standardized.)

A contracted binary tree (CBT for short) is a tree structure specially designed
to maintain a dynamic list of elements that are known to belong to a finite totally
ordered set, called the universe, which is given a priori. Anticipating the particular
use we shall make of such. a data structure, we let Y denote the universe and y
its generic element. We also assume without loss of generality that the cardinality
of Y is ZN, where N is a. power of 2. In a simple O(N log N)-time pass, we
can map each element in Y to its rank (an integer between 0 and 2N - 1)
in the totally ordered set Y, so, from now on, we assume that Y is the set
lo, 1, * * * , 2N - 11. The following lemma summarizes the properties of the CBT:

LEMMA 1. The CBT uses space proportional to the size n of the list it stores and
does not require any rebalancing. It can support the operations of MEMBER(y)
and INSERT(y) in O(log N) time, where N is the size of the universe, and if we
are given a pointer to y’s leaf node we can perform DELETE(y) and can find y’s
predecessor and successor in the CBT in constant time. In addition, INSERT(y)
can be done in constant tim.e if we are given a neighboring element of y in the CBT
or if we are given y’s companion nodes, which we define below.

The CBT is best described in terms of its underlying shadow structure, which
is not actually implemented, but is useful to consider for the purposes of
exposition (see Figure 3). The shadow structure is a complete (balanced) binary
tree with 2N nodes. The leaves, ordered from left to right in the usual way, are
mapped to the key elements (0, 1, . . . , 2N - 1) of the universe Y. Each leaf has
a label which is the binary representation of the corresponding key. Each internal
node is labelled with the common prefix of all its descendants (the root being
labelled with the empty word). Each leaf is in one of two states: occupied if the
corresponding key belongs to the list implemented by the CBT; unoccupied

ACM Transactions on Graphics, Vel. 9, No. 3, July 1990.

Computation of the Axial View 283

Fig. 3. A contracted binary tree and its underlying shadow structure. The active nodes are
represented by black circles. The PARENT, RIGHT, and LEFT links are shown as heavy
lines, and the NEXT and PREV pointers are shown as dashed lines. The companion nodes v
and u for the insertion of the new leafy are also shown.

otherwise. The nodes of the shadow structure present in the CBT are called
active. Active nodes are defined recursively as follows:

(1) The root is (always) active.
(2) A leaf is active if occupied.
(3) An internal node is active if both of its subtrees contain active nodes.

Let us denote by 1 v 1 the label of node v. The extension 1 v I* of a label 1 v 1 is
the integer obtained by appending a 0 and a run of 1s to the right of 1 v 1 to
obtain a binary string of the same length as the labels of the leaves; we also use
the notation v1 5 * v2 to denote 1 v1 I* 5 1 up 1 *.

Now we describe the CBT formed on the set of active nodes. If there is only
one active leaf, we are done, so let us consider the case when there are at least
two active leaves. The parent of a node u in the CBT is its lowest active ancestor
in the shadow structure. For each node, child-to-parent pointers are bidirectional
and are denoted by LEFT, RIGHT, and PARENT. Note that if S, and S, are
two subsets of the universe with S, C Sz, then each node of the CBT for S1
appears in the CBT for S2. Each node also has two additional pointers, called
NEXT and PREV, which point to its successor and predecessor in an in-order
traversal of the CBT. For the first and last nodes encountered in the in-order
traversal, PREV and NEXT are, respectively, set to nil. (Some space can,
however, be saved: the NEXT pointer of a node is not needed when the node is
an active leaf and a left child in the CBT, and similarly PREV is not needed
when the node is an active leaf and a right child.) It is immediate that, using the
pointers NEXT and PREV, an ordered traversal of the leaves takes constant
time per leaf visited. For reasons that will become clear soon, we must also keep
track of the smallest and largest members of Y currently in the CBT, which we
denote by smallest and largest; smallest and largest are both set to nil when no
leaf is active.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

284 l F. P. Preparata. et al.

Since the nodes in a root-to-leaf path in the CBT are a subset of the nodes in
an analogous path in the shadow binary tree, it follows that the depth of the
CBT is at most log N + 1. Let y denote an integer in the range [0, 2N). The
operation MEMBER(y) consists of tracing a path in the CBT from the root to a
leaf. The labelling at each node along the path is used to guide the search, at a
constant time per travers’ed node.

We now consider the Iproblem of inserting an element y into the CBT. By
tracing a path from the root we identify the companion nodes of y, which we call
v and u. Node v is defined as the CBT node corresponding to the lowest ancestor
of y in the shadow structure that is active in the CBT before the insertion of y.
If y is to the left of v, then u is defined to be v’s lowest ancestor in the CBT such
that v is in U’S right subtree; similarly, if y is to the right of v, then u is defined
to be v’s lowest ancestor in the CBT such that v is in u’s left subtree. The
important point is that, given v and u, we can determine in constant time the
smallest and largest leaves in v’s subtree each time they are needed to update
the NEXT and PREV fields. Note that, since the root is always active, v is
always defined, while u may not exist; in such case u is set to nil. The algorithm
INSERT given in Figure 4 inserts y in constant time into a nonempty CBT, once
its companion nodes v and u have been located. (We make the reasonable
assumption that the common prefix of the labels of two nodes can be computed
in constant time; formal justification of this appears in [3].)

We can also insert y in constant time if we are given an element y’ in Y that
immediately precedes or follows y. We can use the companion-node-based inser-
tion algorithm as a subroutine. Given y’, we can find y’s companion v in constant
time by following a NEXT or PREV pointer. In the cases in the above algorithm
where the second companion node u is also needed, we can also find u easily in
constant time. (Note that it is not always possible to find u in constant time, but
u is only needed in those cases where it is easy to compute.) The deletion of a
leafy in the CBT is an even simpler operation, also executable in constant time
if a pointer to y’s leaf is given. The algorithms for these two operations are given
in Appendix B.

We now return to the data structure describing the edges of the current
silhouette. To each node V of the primary segment tree .7x we append a CBT,
devoted to store, as an ordered list, the set Y(V) of ordinates of horizontal
segments recorded at node V. We denote the CBT appended to node V by 9(V).
Clearly, set Y(V) is a subset of the set of coordinates Y = (yb(r), y,(r): r E 9]
and] Y(V)1 5 2N.

A (horizontal) segment s = [q, y; x2, y)” is inserted into the segment tree 7,
by creating an entry for :< in the CBT 9(V) of each node V of 7x allocated
for s. In each of those CIBTs, the entry for s is a leaf labelled by the binary
representation (y] of y. The leaf also includes three pointers: two of the pointers
are used to link the successive fragments of s in the segment tree 7, into a
doubly-linked list, and the third one points to an entry corresponding to the

‘Consistent with our definition of the proper intervals of segment trees, we use [pl; pz) or, more
explicitly, [xl, y; ~2, y) to denote the segment s whose left and right endpoints are, respectively, the
points p1 with coordinates (x1, y) and p2 with coordinates (x2, y).

ACM Transactions on Graphics, Vol. 3, No. 3, July 1990.

Computation of the Axial View 285

algorithm INSERT(lyl, u, u, foot);
{ This procedure inserts a new element into a CBT, given its companion nodes.
The variable root is a pointer to the root of the CBT,
Iy(is the binary label of the new leaf to be inserted,
u and v are pointers to the companion nodes,
y is a pointer to the new leaf,
20 is a pointer to the new internal node created by the insertion, and
PREFIX is a function that returns the common prefix of the labels of its arguments.
The “linear order” alluded to below refers the order induced by the pointer NEXT. }
begin
create a leaf y;
LABEL(y) := 1~1;
if y <* v then

if LEFT(v) = nil then begin { v coincides with the root }
make y the left child V;
establish the linear order nil, y, v;
smallest := y;
if RIGHT(v) = nil then largest := y { y is the only active leaf }
end

else begin
create an internal node W;
LABEL(w) := PREFZX(y, LEFT(v));
if y I* w then begin

y becomes the left child of W;
the left child of v becomes the right child of W;
w becomes the left child of v;
if u = nil then begin

establish the linear order y, W, smallest;
smallest := y
end

else insert y and w in the hear order U, y, W, NEXT(u)
end

else symmetrically
end

else symmetrically
end

Fig. 4. Algorithm INSERT.

segment s in an edge list 9. The edge list 9 is a list of edges of
the current silhouette in which we maintain, for each segment s, the coordinates
(x1, y) and (x2, y) of its endpoints. In the conventional insertion operation,
each of the log N fragments of a segment s is inserted into the appropriate CBT
in O(log N) time using the standard algorithm, which leads to a total cost of
O(log’N) time per segment insertion.

We now introduce an alternative way of inserting a segment into the segment
tree S,, called guided insertion. Specifically, we say that s is inserted into 7,
using s’ as a guide, when 7, already contains a segment s’, so that (horizontal)
segments s and s’ span exactly the same horizontal interval and their ordinates
are adjacent in all their allocation nodes. Since all fragments of s’ are linked in
S,, we can insert s in O(log N) time as follows. First, we locate the leftmost
fragment of s’ in 7, (at a cost of O(log N)) and insert next to it in constant time

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

286 l F. P. Preparata et al.

(using the CBT insertion algorithm described earlier) the corresponding fragment
of s. We then proceed in constant time to the next fragment of s’ and insert next
to it in constant time the corresponding fragment of s. This is repeated until the
O(log N) fragments of s are inserted, for a total of O(log N) time.

Besides the segment trees .YX and 97, designed to store the edges of the current
silhouette, we need an ad.ditional structure to store the vertices of the silhouette.
This additional structure, called a point tree and denoted pax, is in some sense
dual to the segment tree Yz. Structure 9x is a binary tree built on the set
]xl(r), x,(r): r E 9). Rather than storing segments like .Yz, the point tree 9%
stores points. Specifically, for each vertex p = (x, y) of the current silhouette, an
entry is stored in the leaf of 9, that corresponds to abscissa x, as well as in each
ancestor of this leaf in .Yz. We say that p is recorded at these nodes, and that
these nodes are allocated for p. At each node V of zYD,, we attach a CBT X(V) to
store the set of the vertices recorded at V, ordered according to increasing
ordinate y. More precisely, as the silhouette may have several vertices with the
same ordinate, a leaf u of the CBT X(V), labelled with the ordinate y, points to
a simple list of points p = (x, y) whose ordinate is y and whose abscissa x belongs
to the interval [B(V), E(‘V)) of primary node V. Notice that each CBT associated
with a leaf of the primary structure is the usual CBT with only one point per
leaf v.

Each horizontal edge e = [x’, y; x”, y) in the silhouette has two endpoints
p’ = (x’, y) andp” = (:c”, y) stored in Ydx. Each point p = (x, y) appears in
log N secondary structures Z(V), specifically, those pertaining to the primary
nodes V allocated for p. Clearly, for d segments there are 2d endpoints and
2d log N entries in pX. Each entry for a point p = (x, y) includes a pointer to
the corresponding edge e in the list 9 and a pair of pointers PLl and PL2 that
link (bidirectionally) the CBT entries for p in the nodes allocated for p.

In addition, the structure includes a collection of pointers (RLINK, LLINK,
and PLINK) that link (in a tree-like fashion) equally labelled nodes in different
CBTs. Since the set of points recorded at a primary node W of 9% is a subset of
those recorded at the parent W’ of W, then for each node w in the CBT 30 W),
there is a node w ’ with the same label in the CBT Z(W’), and we establish the
following pointers:

PLINK(w) = w’;
RLINK(w’) = w, if W is the right child of W’;
LLINK(u ‘) = w, if W is the left child of W’.

Undefined pointers are set to the value nil as usual.
During the execution of the algorithm, vertices are in turn inserted into the

structure 9x and deleted from it, and the following lemma is used in the analysis
of the algorithm:

LEMMA 2. The insertion of a point p = (x, y) into the point tree 9,, and its
deletion from it, can each be performed in O(log N) time, where N is the size of
the basis of .A?‘~.

PROOF. We first consider the simpler operation of deleting a point p = (x, y).
In O(log N) time, we identify the leaf V of the primary structure corresponding
ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Computation of the Axial View 287

to the abscissa x of p, and we locate p in the CBT X(V), since there is only one
point per leaf in that CBT. Subsequently, we use the pointers PLI to locate all
the occurrences of p in the point tree PDx; each of them can be deleted in constant
time.

The insertion of a point p = (x, y) is more subtle. We begin with the root
of the point tree as the current node W, and we insert p into X(W) in time
O(log N). As a byproduct of this operation, we also determine the companion
nodes u and u of y in X(W). Let W’ be the child of the current node W that is
to be allocated for p. Assume that W’ is the left child (respectively, the right
child) of W. The following procedure is used to find the two companions of y in
3?(W’): We walk in X(W) upward from u toward the root until we find a node
w such that LLINK(w) # nil (respectively, RLINK(w) # nil). Node LLINK(w)
(respectively, RLINK(w)) is then the first companion node u’ of y in 2?(W’).
The other companion node u’ can be found by an upward walk from u.

Given the companion nodes u’ and u’ of y in 9(W’), we can insert p into
Z(W) with a constant amount of additional work using the CBT insertion
algorithm described earlier. We then reset W := W’, v := v’, and u := u’, and
we repeat the above process until p is inserted into all its allocation nodes in the
point tree. The total time used can be seen to be O(log N) by the following
argument. Each time we traverse a CBT, we walk upward. In terms of the shadow
structure, the nodes traversed follow an upward path. The height of shadow
structure is log N + 1, thus at most O(log N) time is expended in the traversals.
The actual insertions take constant time each, once the companion nodes are
found, so the total time is O(log N). q

2.2 The Line Drawing Algorithm

We now describe the line drawing algorithm. The silhouette is initialized as
empty and the rectangles are processed in the order closest-rectangle-first. For
each rectangle r, the five steps described below are performed in sequence. The
first two steps generate the contribution of the rectangle r to the display, while
the next steps update the silhouette. Each of the first four steps is applied
uniformly to the four edges st, s,, sb, and s1 of rectangle r. For simplicity, we
confine our description to how the horizontal top edge st is processed.

Step 1. Intersect the rectangle r with the current silhouette. When processing
the current rectangle r, we must first determine the intersection of r with the
silhouette of F. We do that as follows. Let st = [Q, yt; 3c,, yt) be the top horizontal
side of the rectangle. In the segment tree S,, we visit each node that contains
the ordinate yt. For each such node V, the list P(V) contains a sequence of
vertical segments that the segment st may intersect. In each CBT P(V), we
locate the first vertical segment whose abscissa is L x1, and extract the sublist of
segments whose abscissa is 5 x,.

For each of the O(log N) visited nodes, we obtain one such list. These lists are
then merged according to a straightforward binary tournament. This yields a
single left-to-right ordered list L, of vertical edges of the silhouette intersected
by st.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

288 l F. P. Preparata et al.

x/

(4

x/

(b)

Fig. 5. The contribution of the top horizontal side st of the rectangle r to the display:
(a) the left extreme of s, is internal to the current silhouette; (b) the left extreme of .st is
external to the current silhouette.

Step 2. Generate the contribution of rectangle r to the display. To correctly
draw the visible portions of edge st of r, we have to determine if a fixed extreme
of segment st (say, its left extreme p = (Q, y,)) is internal or external to the
silhouette. This is readily accomplished with the aid of the list L, obtained in
Step 1. If L, is the empty ;set or if the leftmost term of L, is downward-directed,
then p is external; otherwise p is internal. (Note that the orientation of a segment
is given by the order of its two endpoints in the oriented silhouette 9.)

We can now generate the visible portions of st. Let m,, m2, . . . , mk be the
sequence of the abscissae of the intersections of st with the members of L,.
If p is internal to the silhouette, we add to the display the set of segments
F(s,) = [ml, yt; m2, y,), [m3, yt; m4, y,), . . .; otherwise we generate F(s,) =
1x1, yt; ml, YA [m, YG m, Y,), . . . (refer to Figure 5).

Step 3. Insert, into the segment trees of the silhouette, the segments contributed
by rectangle r. Each segment of the set F(s,) must be inserted into 9, which is
straightforward to do, and into the segment tree YZ. This latter part is done as
follows:

Case 1. If segment s of F(.st) to be inserted contains a vertex of the rectangle r,
then we perform a conventional insertion of s. Otherwise, segment s is
delimited by two vertical edges of the silhouette successive in the list L,.
Let el = [pl; p;) and e2 = [p2; p;) be these two edges. We then distinguish
the following remaining cases (refer to Figure 6).

Case 2. If at least one of the two segments [pl; p2) or [pi; pi) is horizontal and
belongs to the current silhouette (which can be tested in O(log N) time
by searching these segments in the CBT of one of their allocation nodes),
then we insert s using this edge of 9 as a guide (see Figures 6a
and 6b).

Case 3. If neither [pl; pz:l nor [pi; pl) can be used as a guide, we insert s
conventionally (see Figure 6~).

Remark. When inserting the segments of set F(sb) (respectively, F(sJ) con-
tributed by the third edge Jib (respectively, the fourth edge sl) of the rectangle r,
before testing for cases 2 and 3, we first check to see if the four endpoints pl, p;,
p2, pi of el and e2 are outside the rectangle r (see Figure 6d). If that is the case,
ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

(4

Computation of the Axial View 289

(b) (cl (4

Fig. 6. Insertion of the segments contributed by the top horizontal side of a rectangle.

Fig. 7. The sequences of silhouette
intersected by the top horizontal edge
rectangle r.

I I I e e e
I 2 3 4

there is a segment s’ of F(s,) (respectively, F(s,)) with the same span as s that
can be used as a guide for the insertion of s.

Step 4. Update the silhouette segments cut by rectangle r. We consider the
sequence of vertical silhouette segments eI, ez, . . . , e, from list L, that are
intersected by the top side st of current rectangle r (see Figure 7). For each such
segment we must remove from S, the portion occluded by r and keep the visible
portion. For each ei = [xi, y,!; xi, yr), 1 I i 5 m, the allocation nodes in S, for ci
are of three types:

(1) The initial nodes that are allocated for the occluded portions of ei. The
entries for ci in these nodes will be removed.

(2) Possibly one node V whose associated interval properly contains yt (that is,
B(V) < yt < E(V), where [B(V), E(V)) denotes the interval associated
with V). Let el denote the visible portion [xi, yt; xi, E(V)) of ei corresponding
to node V. The entry for ci in -E”(V) will be removed, and entries inserted
into all the allocation nodes of [y,, E(V)). These nodes are referred to as the
splinter nodes for el . With a slight abuse of notation, we refer to the allocation
nodes of the interval [y,, 2N) as the splinter nodes for yt.

(3) The remaining nodes, which correspond to visible portions of ci. The entries
of ci in those nodes remain untouched.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

290 - F. P. Preparata et al.

algorithm UPDATE,
bcgiu
for each splinter node IV do (Initialize the pointer guide(W))

guide(I4’) := pointer to the leaf j of L(W) such that
LABEL(j) < z(< LABEL(NEXT(j)) ;

for i = 1 to m do begin { Process each intersected segment }
{ Insert the appropriate fragments of e: into the splinter nodes for e: }
for each splinter node W of e: do begin

if guide(IV) is the predecessor of e: in L(W) then
Insert e: in L(W) using guide(W) as a subguide

else insert e: in L(kY) conventionally ;
guide(W) ‘= pointer to the entry for e: in L(IV)
end;

{ Update the guide pointer in the remaining splinter norles for ei)
for each node W a!located to the visible portion of ei clo

if IV is a splinter node for y then
guide(W) := pointer to the entry for ei in L(lV)

end
end

Fig. 8. Algorithm UPDATE.

Since the successive fragments of each segment stored in the segment tree are
linked, the deletion of the entries in subcases 1 and 2 is easy and can be done in
time O(log N) for each intersected segment ei.

More difficult is the insertion of the new entries in subcase 2, above. The
algorithm below uses a modification of the idea of guided insertion, which we
introduced in the last section. We say that fragment t is inserted into a CBT
using t’ as a subguide when we are given a pointer to a node t’ that is a neighbor
fragment of t in the CBT. Since we are given a pointer to t’ and do not have to
search for it, the total process takes constant time using the CBT insertion
algorithm described in the last section. The algorithm UPDATE given in
Figure 8 initializes and maintains a pointer called guide (W) in the CBT for each
splinter node W, and tries to use it whenever possible as a subguide for the
insertion of the splinter fragments of the ei .

Step 5. Remove the ea!ges of the silhouette internal to rectangle r. To complete
the update of the silhouette, we have to remove from the data structure the edges
that have become internal to r. To identify those edges we use the point tree L?‘~,
described in Section 2.1.

Tree PX is searched as follows. Given the current rectangle r = [x1, x,) x

[yb, y,), we visit the nodes in 9x that would be allocated for [x1, x,) if gax were a
segment tree. In time 0(logzN + K), we determine the k vertices of the silhouette
contained in the interior of r. Any such vertex p ’ = (x ‘, y) is the extreme of an
edge e whose other extreme is denoted p”. Vertex p ’ is processed as follows:

-If both points p ’ and ipN are inside rectangle r, then edge e is deleted from the
appropriate segment tree YX or YY, and both points p ’ andp” are deleted from
point tree .PX.

-If only p’ is inside r, then edge e has already been updated at Step 4, and we
simply update the point tree pX by deleting point p’ and inserting the new
point p, the intersection point of e with the boundary of r.

ACM Transactions on Graphics, Vd. 9, No. 3, July 1990.

Computation of the Axial View 291

Over the course of execution of the algorithm, there are at most cl edges deleted
from S, and at most d insertions or deletions in 9,. A deletion of an edge from
7, can be performed in time O(log N), since the successive fragments of the edge
are linked in the data structure. From Lemma 2, the insertion or deletion of a
point p = (x, y) in the point tree can be performed in O(log N) time, thus giving
a O(d log N) time bound for Step 5.

3. AMORTIZED ANALYSIS

In this section we show that the algorithm given in the last section constructs
the axial view of a scene of N isothetic 3D-rectangles in O(N logzN + d log N)
time, where d is the complexity of the display (that is, the number of edges of
the display considered as an isothetic planarly embedded planar graph).

In the previous section we have already shown that the contribution of Step 5
to the overall running time is O(d log N). The cost of Step 2 is obviously
O(N + J) and the analysis of Step 1 is straightforward. Indeed, the determination
of the intersection of the top horizontal side st of the rectangle r with the current
silhouette is performed in time O(log2N + f), where f is the number of intersected
segments, and the merging of the O(log N) lists of intersected segments is
performed in time O(f log log N). Since f is the number of segments contributed
by st to the display, the global cost of Step 1 in the execution of the algorithm is
O(N log2N + d log log N).

Let us now concentrate on the analysis of Step 3. We still assume that the
segments to be inserted are horizontal segments; a quite symmetrical argument
will work for the insertions of vertical segments. Each conventional insertion of
a segment is performed in time O(log2N), while a guided insertion is performed
in time O(log N). There are at most 4N conventional insertions of segments
having as endpoint a vertex of the current rectangle; thus, the total cost for
Case 1 in the whole computation is O(N log2N). There are at most d guided
insertions corresponding to Case 2, so that the total cost for these cases
is O(d log N).

We now show that conventional insertions of Case 3 occur O(N) times. Let
el = [pl; pi) and e2 = [p2; pi) be the edges of the silhouette bounding the
segment s that is to be inserted. First, we dispose of the subcase where el and e2
belong to different connected components of the current silhouette. In this case
the two components will be spliced by the insertion of rectangle r. This reduces
the total number of components by 1, and this can happen at most N - 1 times
(see Figure 9a).

Let us consider next the more typical case, where el and e2 belong to the same
connected component of the silhouette. Our proof is based upon a charging
argument. For this purpose we need to make a distinction between the true
uertices of the silhouette (which are also vertices of the original input rectangles)
and the pseudovertices (which arise from the intersection of rectangle edges).

Suppose at first that segments el and e2 have endpoints inside r (at most one
endpoint per edge). Say that p1 is inside r. If p1 is a true vertex, then we charge
the O(log2N) cost of conventional insertion of s to pl. If p1 is a pseudovertex,
then either there is at least one true vertex p inside r (and we charge the
0 (log2N) cost of conventional insertion of s top) or else p2 is also a pseudovertex
and [pl; p2) is a silhouette edge. The former case is illustrated in Figure 9b. The

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

292 l F. P. Preparata et al.

P’

P’
/-

1

e
1

i/ii

‘1.

2
Y,,

s
,---- .------
I I

I
I

pl
p2

i' I c
I

If I
I - - a - - - - - ._ - - - - -’

(4

/‘/ -------~---.
I Pi

P; -

s

i

r---- ..__--
I
I

\

t
II Y

\‘\

\
I
I

8 e 1
1 2 : 1

-em- ---- -m--J
I

p,
/

l-r/ p2 /
‘Lx,,,/

(cl

P’ ’
/“---‘\p. J- \

/ e,rL ’ s e2 \

I ,--p’ --

1 1-P

I i

i ” j 1

i

:’ -----~~~~~~~~~I i

\,

p2

/ . ..-..-.. -.----

(b)

t
UP

S
-m-m --w-s

I
I
I

V

fri

I

8
I

1 2 I
1

L------m- m-m-2

t&am

Cd)

Fig. 9. The different cases for conventional insertion of a segment s into the data structure.

latter case has already been handled by Case 2: we perform a guided insertion
of s in O(log N) time. Note that each time we charge a true vertex, the vertex is
covered by rectangle r and is removed from the silhouette; thus, each true vertex
is charged at most once for this subcase.

In the remaining subcase, where the four endpoints of el and e2 are outside r,
both the top and bottom. horizontal sides of r intersect el and e2, and we are in
one of the following situations (see Figures 9c and 9d):

(1) The rectangle r delimits a hole within the opaque portion ST of the plane.
We distinguish two subcases:

(1.1) The hole is a rectangle. This case is actually part of Case 2, in which
we perform a guided insertion using the existing parallel edge [pi; pl)
of the si1houett.e as a guide for the insertion of s.

(1.2) The hole is not a rectangle (see Figure 9c). In this case, the boundary
of the hole contains at least one true vertex, and we charge the cost of
the conventional insertion to any such true vertex. Each true vertex
can be charged at most once for this subcase.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Computation of the Axial View 293

(2) The rectangle r splits an existing hole into two parts and creates two new
holes. We again distinguish two subcases:

(2.1) One of the new holes is a rectangle and, analogously to (1.1) above,
we are in fact in an instance of Case 2, where a guided insertion is
performed.

(2.2) Each new hole contains at least one true vertex. This is the interesting
case. (Note that neither edge [pl; pZ) nor [pi; p6) can be part of the
silhouette, since otherwise we would be in Case 2.) Let us denote
the endpoints of segment s to be inserted by (x1, yt) and (xX, y,), with
x1 < x2. We define the two true vertices tup and tdown for s as follows
(see Figure 9d): tup is the true vertex along the silhouette above s
whose abscissa belongs to [x1, x2] and that has the smallest ordinate
v&E > yt; tdown is the true vertex along the silhouette below s whose
abscissa belongs to [q, xZ] and that has the largest ordinate value < yt.

LEMMA 3. In situation 2.2 above, true vertices tUP and tdown exist and are well
defined.

PROOF. There can be no ties (vertices with the same ordinate value) in the
definitions of tup and tdow,,, since the rectangles are in general position. (And even
if there were a tie, a winner could be chosen arbitrarily.) The existence of tup and
tdown follows from a simple case analysis. 0

We charge the cost of the conventional insertion to tup (and we say that tup is
“upward charged”) if tup has not already been “upward charged” for the insertion
of another horizontal segment. Otherwise, we charge the cost to tdown (and we
say that &own is “downward charged”) if tdown has not already been “downward
charged” for the insertion of another horizontal segment. The following lemma
shows that either tUP or tdown will always be available for charging, thus completing
the analysis of Step 3.

LEMMA 4. In the subcase discussed above, either tUP has not yet been upward
charged or tdown has not yet been downward charged.

PROOF. Suppose that true vertex p is tdown and is downward charged for the
insertion of segment s at a given stage of the execution of the algorithm. Suppose
also that p has the role of tdown for the later insertion of another segment s ‘. We
show that the vertex p’ designated as tu,, for s’ has not yet been upward charged
(see Figure 10). From the definition of tdown, s ’ must have a lesser ordinate value
than s. It follows that p’ lies along the silhouette (immediately prior to the
insertion of s ’) between s and s ‘. (Note that if p ’ did not exist, s could have been
used as a guide for the insertion of s ’ .) We claim that p ’ has not yet been upward
charged. By the definition of tup, there can be no other segments inserted along
the silhouette between p ’ and s ‘. Thus, the only way in which p ’ could have
been upward charged previously is during the prior insertion of some segment s”
below s ‘. But S” must also be below p, or else p would not be tdown for the
insertions of s and s ‘. This contradicts the fact that p ’ is tup for sN, since p has
lower ordinate value than p’. The proof for the other case, showing that tdown is

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

294 * F. P. Preparata et al.

Fig. 10. The true vertices charged for

uw uided insertions.

available for being downward charged when tup has already been upward charged,
is symmetrical. Cl

Thus, during the execution of the algorithm, there are O(N) conventional
insertions and O(d) guided insertions performed in Step 3, and the total cost of
this step is O(N log2N + d log N).

The rest of this section is devoted to the analysis of Step 4. Step 4 updates the
segments intersected by the current rectangle r. It involves two processes. The
first process deletes from the data structure the occluded fragments of each
intersected segment ei. For each intersected segment, the deletion of the first
occluded fragment is done in O(log N) time. Deletion of the succeeding ones
takes only constant time per deleted fragment, since the successive fragments of
a given segment are linked. together in the data structure. Thus, the total cost
for deletions in Step 4 is Oi(d log N).

The second process updates in the data structure the visible portion of each
intersected segment ei, i = 1, . . . , m, and is confined to nodes contained in the
subtree of a single allocation node V for ci. The visible portion of ei corresponding
to V is called e[. For brevity, we confine our analysis to the update of vertical
segments intersected by th.e top horizontal side of the current rectangle. The
analyses for the other cases are similar.

It is appropriate at this point to review the relevant properties of splinter
nodes. The splinter nodes for e\ (whose lower ordinate is yt) are the allocation
nodes of the segment [y,, E:(V)), where V is the allocation node of ci such that
B (V) 5 yt < E (V). Let U be the leaf whose interval is [yt , yt + 1). By the nature
of the segment tree, these splinter nodes are right children of nodes on the path
from U to V that are not on the path themselves. It follows then that the union
of the splinter nodes for ef , i = 1, . . . , m, is a subset of the splinter nodes for
(ordinate) yt, which are def’ined to be all analogous right children for the path
from U to the root of &. There can be at most log N splinter nodes for yt.

The subroutine UPDAl’E has an initialization step in which a pointer
guide(W) is set at a cost of O(log N) for each of the O(log N) splinter nodes W
for yt, where yt is the ordinate of the top horizontal side of the current rectangle.
This induces a total cost of 0(N log2N) over the whole execution of the algorithm.

Each intersected segment ei is then processed, in turn, as follows. The splinter
fragments of e,! are inserted into the data structure using the pointers guide(W)
ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Computation of the Axial View

pan of
odew

(a) (b)

Fig. 11. Divider fragments.

as subguides whenever possible. The O(log N) nodes W allocated to the visible
portion of ei are visited, and whenever W is a splinter node, guide(W) is updated
to point to the entry for ei in W’s CBT. The subguided fragment insertion, as
well as the update of the pointer’s guide(W), is performed in constant time for
each visited node and contributes O(d log N) to the overall cost of the algorithm.

Insertion of a splinter fragment without a subguide is performed conventionally
at a cost of O(log N) time. We are left with the problem of counting the number
of nonsubguided insertions of splinter fragments during the algorithm. To do
that, we use the following charging argument.

The pointer guide(W) is not a valid subguide for the insertion of e[into the
splinter node W if the CBT _E”(W) contains a vertical fragment whose abscissa
is between the abscissa of guide (W) and el . We call such a vertical fragment a
diuider. Divider fragments belong to segments recorded at node W that do not
intersect the current rectangle r and whose abscissae are greater than xl, the
abscissa of the leftmost edge of r.

Let s(W) be the rightmost divider fragment between guide(W) and e! (W) in
the CBT P(W). If the bottom endpoint of the edge containing s(W) is a true
vertex p’ (as in Figure lla), then the O(log N) cost for the insertion of fragment
e((W) is charged to p’. Otherwise, the edge containing s(W) is cut by the top
side of some rectangle r’ (as in Figure llb), and we charge the O(log N) cost
to r’.

The lemma below completes the analysis. It shows that there are O(N log N)
charges for nonsubguided insertions, thus giving us the desired O(N logzN)
bound.

LEMMA 5. Each true vertex p’ and each rectangle r’ can be charged for the
nonsubguided insertion of a splinter fragment at most log N times over the
course of the algorithm, that is, at most once for each of the splinter nodes for y’,
where y ’ is, respectively, the ordinate of p ’ or the ordinate of the top horizontal side
of r’.

PROOF. For brevity, we restrict ourselves to the case where the bottommost
endpoint of the segment containing s(W) is a true vertex p’ = (x’, y’). (The
proof of the other case, in which rectangle r’ is charged, is similar.)

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

296 - F. P. Preparata et al.

Let vertex p’ be charged at one of the splinter nodes for y ’ when inserting e,! ,
produced by the intersection of ci with the topmost side of rectangle r (whose
ordinate is y,). Let W be the splinter node in question, and let s(W) be the
rightmost divider fragment (note that x’ is the abscissa of s(IV)). Since W is a
right child in S,, yt belongs to the proper range of the parent of W.

Suppose now, for a contradiction, that later p ’ is charged, with the same divider
s(W), for the insertion of splinter fragment e’ (W), produced by the intersection
of some edge e with the topmost side of some rectangle r” with ordinate y”. For
this to happen, e must intersect r” but not r; otherwise, e would already be
inserted in P(W). However, we note the following facts:

(1) The abscissa x(e) of e is contained in the x-range of r. This follows because
3cl C x(s(W)) (by the definition of guide(W)), x(s(W)) < x(e), trivially, and
x(e) C x(ci), since s(W) is the divider.

(2) Since e ’ (W) is a splinter fragment of e ‘, it follows that e spans W’s range
[B(W), E(W)), but is not recorded at W. Thus, e spans the range of the
parent of W in YY.

We noted earlier that yt belongs to the proper range of W’s parent, and hence
by Fact 2, yt is contained in the vertical span of e. Combining this with Fact 1,
we obtain that e intersects r, a contradiction. •i

The description of the data structure in Section 2, and the preceding analysis,
leads to the following theorem:

THEOREM 1. Let d be the number of segments in the axial view of a scene of
N isothetic rectangles. The above algorithm constructs this axial view in time
O(N log2N + d log N) using storage O(N log N).

4. CONCLUSION AND OPEN QUESTIONS

We have shown that the axial view of a scene of N isothetic 3D-rectangles can
be computed in time O(N logzN + d log N), thereby improving, in a particular
case, the result of Guting and Ottmann [7]. As it is presented, our algorithm
actually solves the hidden line problem for such a scene, but it can be extended
to solve the hidden surface problem without much difficulty. One of our future
goals will be to explore the extensibility of the proposed technique to more
general views, that is, to perspective views from an arbitrary viewpoint, finite or
at infinity. This objective, however, involves resolving the difficult question of
the cyclicity of the dominance relation in three dimensions. In fact, since our
scene-sensitive approach to hidden-line elimination is of the “priority” type, it is
essential to order the objects consistently with the dominance relation. As noted
in the Introduction, this relation is in general not acyclic when the scene is
viewed from an arbitrary viewpoint. In such a general case, in order to attain the
desired acyclicity, it may be necessary to appropriately split some parallelepipeds
into two or more parts. This approach would raise, among others, the following
interesting questions:

-1s there an o (N’)-time algorithm to determine whether the dominance relation
of a set of N 3D-rectangles is acyclic?

ACM Transactions on Graphics, Vol 9, No. 3, July 1990.

Computation of the Axial View 297

-Cycles can be eliminated by splitting selected 3D-rectangles. Is the problem of
finding a minimum number of splits to achieve acyclicity A+?‘-complete?

It must be observed, however, that in the practically very important case where
the projections of the parallelepipeds on a plane are disjoint, the dominance
relation becomes two-dimensional and is therefore acyclic. This is the case, for
example, for a set of parallelepipeds resting on a ground plane.

If we implement the segment and point tree algorithms of [7] using the
dynamic fractional cascading technique of [6], we get an algorithm whose
running time is O((N + d)log n log log n). The same running time can also
be achieved using the data structure of van Emde Boas [21]. Recently, an algo-
rithm was independently proposed with the same O(N logzN + d log N) time
bound as our solution, but using a totally different approach, involving plane-
sweep and balanced tree techniques [l]. Its running time can be reduced to
0 (N log N log log N + d log N) by using dynamic fractional cascading. For small
d, the running times for the two uses of dynamic fractional cascading given above
are asymptotically less than the running time of the algorithm we have presented,
although, for practical purposes, dynamic fractional cascading has a very high
overhead. For many cases of interest, the value of d is superlinear (perhaps
O(N’)), and the term involving d dominates. In such cases, our algorithm and
the ones in [l] have comparable asymptotic behavior.

APPENDIX A. Segment and Point Trees3

The segment tree is a semidynamic data structure designed to handle intervals
on the real line whose extremes belong to a fixed set of N abscissae. Since the
set of abscissae is fixed, the segment tree is a static structure with respect to the
abscissae (that is, one that does not support insertions or deletions of abscissae);
in addition, the abscissae can be normalized by replacing each of them by its
rank in their left-to-right order. Without loss of generality, we may consider
these abscissae as integers in the range [0, N - 11.

The segment tree is rooted binary tree. Given integers 1 and r with 1 < r,
the segment tree T(Z, r) is recursively built as follows: it consists of a root u
with two parameters B(u) = 1 and E(u) = r, and, if r - 1> 1, of a left subtree
T(1, L@(u) + E(u))/24 and a right subtree T(L(B(u) + E(u))/24 r). The
parameters B(u) and E(u) define the interval [B(u), E(u)) C [L, r) associated
with the node u.

We can establish that T(1, r) is balanced and has depth rlog,(l - r)l. The
segment tree T(1, r) is designed to store intervals whose extremes belong to
(I, -a*, r], in a dynamic fashion (that is, supporting insertions and deletions).
Specifically, for r - 1> 3, an arbitrary interval [b, e), with integers b < e, will be
partitioned into a collection of at most rlog,(l - r)l + Llog,(l - r)J - 2 standard
intervals of T(I, r). The segmentation of interval [b, e) is completely specified by
the operation that inserts [b, e) into Z’, that is, by a call of the procedure
INSERT(b, e; root(T)) given in Figure 12.

3 Part of this section is closely patterned after the presentation given in [15].

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

298 . F. P. Preparata et al.

procedure ZNSERT(b, e, v)
begin if (b 5 B(v)) and (E(v) 5 e) then allocate [b, e] to v

else b,egin
if b .: [(B(v) + E(v))/21 then ZNSERT(b, e, LYON(v));
if [(B(v) + E(v))/21 < e then ZNSERT(b, e, RSON(v))

end
end

Fig. 12. Procedure INSERT.

procedure ZNSERTAFTER(lab, 6, root)
{ lab is the label of the new element to be inserted,
g’ is a pointer to the preceding element,
root is a pointer to the root of the CBT.
This procedure finds the companion node u of lab, and the companion node u when it is needed,
and then calls the procedure ZNSERT(lab, u, u, root). }
begin

v := NEXT(d);
if (u = nil) then ZNSERqlab, PREV(d),nil, root)
else if (y I* u) then

if (g’ is a left child) then ZNSERTjlab, u, nil, root)
else ZNSERT(lab, PREV(y’), NEXT(d), root)

else ZNSERTBEFORE(lab, NEXT(v), root)
end

Fig. 13. Procedure ZNSERTAFTER.

The nodes of T to which the fragments segmentation of [b, e) have been
assigned are said to be sallocated to [b, e), and the segment [b, e) is said to be
recorded at those nodes. Perfectly symmetrical to INSERT is the DELETE
operation.

Normally, a segment tree is used to store a collection of segments whose
extremes are among the given N abscissae. In this case each node u of T(1, r)
will have a secondary structure storing the fragments of segments recorded at v.
A typical search operation applied to such trees is the determination of all
segments intersected by a given vertical line x = c. This corresponds to specifying
a root-to-leaf path in Y’(l, r) and retrieving all segments in the secondary
structures of the node of this path.

In this paper, we reserve the denomination of segment tree to a segment tree
designed to store segments and queried along a path (a “point”). Conversely, we
call point tree a segment tree designed to store points and searched according to
a segment. In a point tree each node u stores all points that have the n-coordinate,
for instance, within the interval [B(u), E(v)). The search for the points that
have the x-coordinate within a given range is then performed by inspecting all
the allocation nodes for the query range.

APPENDIX B. Procedures for CBT Insertion and Deletion
The interacting procedu.res INSERTAFTER and INSERTBEFORE insert, in
constant time, a new element y into a CBT. Procedure INSERTAFTER(Zab, y ‘,
root), given in Figure 13, inserts a new element labelled lab just after a given

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Computation of the Axial View l 299

procedure DELETE(y, root)
begin
if y = smallest then smallest := NEXT(NEXT(y));
if y = largest then largest := PREV(PREV(y));
if y <t PARENT(y) then {y is a left child }

begin
u := PARENT(y);
if v = mot then LEFT(v) := nil
else begin

if IJ It PARENT(v) then LEPT(PARENT(v)) := RZGZZT(v)
else RZGHT(PARENT(v)) := RIGHT(v);
establish the linear order PREV(y), NEXT(v)
end

end
else { y is a right child } symmetrically
end

Fig. 14. Procedure DELETE.

element pointed to by y’ in the CBT rooted at root. The procedure INSERTBE-
FORE(lab, y’, root) which inserts a leaf labelled lab just before the leaf pointed
to by y’ is symmetrical to INSERTAFTER, and its description is therefore
omitted. The procedure DELETE, given in Figure 14, deletes in constant time
the leaf pointed to by y from the CBT rooted at root.

REFERENCES

1. BERN, M. Hidden surface removal for rectangles. In Proceedings of the 4th ACM Symposium
on Computational Geometry (Urbana, Ill., June 1988), ACM, New York, 1988,183-195.

2. DBVAI, F. Quadratic bounds for hidden line elimination. In Proceedings of the 2nd ACM
Symposium on Computational Geometry (Yorktown Heights, N.Y., 1986). ACM, New York, 1986,
269-275.

3. EDELSBRUNNER, H., GUIBAS, L. J., AND STOLFI, J. Optimal point location in a monotone
subdivision. SIAM J. Comput. 15, 2 (1986), 317-340.

4. EDELSBRUNNER, H., OVERMARS, M. H., AND WOOD, D. Graphics in flatland. In Advances
in Computing Research. Vol. 1: Computational Geometry, F. P. Preparata, Ed., JAI Press,
Greenwich, Conn., 1983, 35-39.

5. FUCHS, H., KEDEM, M., AND NAYLOR, B. F. On visible surface generation by a priori tree
structures. Comput. Gr. 14 (1980), 124-133.

6. FRIES, O., MEHLHORN, K., AND NAHER, S. Dynamisation of geometric data structures. In
Proceedings of the 1st ACM Symposium on Computational Geometry (Baltimore, Md., 1985).
ACM, New York, 1985, 168-176.

7. GCTTING, R. H., AND OTTMANN, T. H. New algorithms for special cases of the hidden line
elimination problem. Comput. Vision, Gr. Image Process. 40 (1987), 188-204.

8. GOODRICH, M. T. A polygonal approach to hidden-line elimination. In Proceedings of the 25th
Allerton Conference on Communication, Control, and Computing (Allerton, Ill., Oct. 1987).
University of Illinois Press, 1987.

9. GUIBAS, L. J., AND YAO, F. F. Translating a set of rectangles. In Aduances in Computing
Research, Vol. 1: Computational Geometry, F. P. Preparata, Ed., JAI Press, Greenwich, Conn.,
1983,61-77.

10. MCKENNA, M. Worst-case optimal hidden-surface removal. ACM Trans. Gr. 6, 1 (Jan. 1987),
19-28.

11. NEWMAN, W. M., AND SPROULL, R. E. Principles of Interactive Computer Graphics, 2nd ed.
McGraw-Hill, New York, 1979.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

300 l F. P. Preparata et al.

12. NURMI, 0. A fast line sweep algorithm for hidden line elimination. BIT 25 (1985), 466-472.
13. OVERMARS, M. H. Rang<? searching in a set of line segments. In Proceedings of the 1st ACM

Symposium on Compututional Geometry (Baltimore, Md., 1985). ACM, New York, 1985,177-185.
14. OTTMANN, T., AND WIDMAYER, P. Solving visibility problems by using skeleton structures. In

Proceedings of the 11th &mposium on Mathematical Foundations of Computer Science (Prague,
Czechoslovakia). Lecture Notes in Computer Science, 176, Springer-Verlag. 1984, 459-470.

15. PREPARATA, F. P., AND SH:AMOS, M. I. Computational Geometry. Springer, New York, 1985.
16. REIF, J. H., AND SEN, S. An efficient output-sensitive hidden surface removal algorithm and

its parallelization. In Proceedings of the 4th ACM Symposium on Computational Geometry
(Urbana, Ill., June 1988), ACM, New York, 1988,193-200.

17. SCHUMACKER, R. A., BRAI\ID, B., GIGILLAND, M., AND SHARP, M. Study for applying computer-
generated images to visual simulation. Tech. Rep. TR AFHL-TR-69-14, USAF Human Resources
Lab., 1969.

18. SCHMITT, A. Time and space bounds for hidden line and hidden surface computation. In
Proceedings of Eurographics ‘81. North-Holland, Amsterdam, 1981, 43-56.

19. SECHREST, S., AND GREENBERG, D. P. A visibility polygon reconstruction algorithm. ACM
Trans. Gr. 1, 1 (1982), 25-42.

20. SUTHERLAND, I. E., SPROULL, R. F., AND SCHUMACKER, R. A. A characterization of ten hidden-
surface algorithms. ACM Comput. Suru. 6, 1 (1974), l-25.

21. VAN EMDE BOAS, P., KAAS, R., AND ZILJSTRA, E. Design and implementation of an efficient
priority queue. Math. Syst. Theor. 10 (1977), 99-127.

22. YAO, F. F. On the priority approach to hidden surface algorithm. In Proceedings of the 21st
IEEE Symposium on Foundations of Computer Science (Syracuse, N.Y., 1980). IEEE, New York,
1980,301-307.

Received May 1988; revised April 1989; accepted April 1989

Editor: Leo J. Guibas

ACM Transactions on Graphics, Vcl. 9, No. 3, July 1990.

