Neurocomputing 397 (2020) 114-126

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Feature reduction based on semantic similarity for graph classification = g

Zhigang Sun?, Hongwei Huo®* Jun Huan®, Jeffrey Scott Vitter®

aSchool of Computer Science and Technology, Xidian University, Xi'an 710071, China
b StylingAl Inc, Beijing 100094, China

Check for
updates

¢Department of Computer & Information Science, the University of Mississippi, MS 38677-1848, USA

ARTICLE INFO ABSTRACT

Article history:

Received 16 March 2019

Revised 18 December 2019
Accepted 7 February 2020
Available online 14 February 2020

Communicated by Prof. Sanguineti Marcello

Keywords:

Graph classification
Feature reduction
Neural language model
Semantic similarity

classification methods.

Classification and recognition of graph data are crucial problems in many fields, such as bioinformatics,
chemoinformatics and data mining. In graph kernel-based classification methods, the similarity among
substructures is not fully considered; in addition, poorly discriminative substructures will affect the graph
classification accuracy. To improve the graph classification accuracy, we propose a feature reduction al-
gorithm based on semantic similarity for graph classification in this paper. In the algorithm, we first
learn vector representations of subtree patterns using neural language models and then merge semanti-
cally similar subtree patterns into a new feature. We then provide a new feature discrimination score to
select highly discriminative features. Comprehensive experiments on real datasets demonstrate that the
proposed algorithm achieves a significant improvement in classification accuracy over compared graph

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Graph is a general data structure that is widely used to model
complex objects and dependency relationships among them. Graph
classification has been an important task in graph data mining,
and it has various applications in areas such as cheminformatics,
bioinformatics and society network analysis [19,26,28]. In chem-
informatics, predicting the toxicity and bioactivity of compounds
is a classic example of graph classification, where compounds are
represented as graphs.

In most of the existing graph classification methods
[3,4,10,14,21,23,38,39,41], graphs are first decomposed into sub-
structures, such as subtrees and frequent subgraphs [37]; and
then are represented as graph feature vectors via graph embed-
ding or calculating the occurrence of substructures; finally, graph
feature vectors are used to train conventional classifiers, such as
SVM [5,7], ELM [15,16] and DNN [20]. Recently, there are also
some neural language models-based algorithms for learning the
vector representations of graphs, such as node2vec [13], graph2vec
[24], and S2S-N2N-PP [34].

Graph kernels are classic graph similarity measures in graph
classification. Graph Kkernels decompose graphs into atomic
substructures, such as graphlets, walks, shortest paths, subtree

* Corresponding author.
E-mail addresses: szung@163.com (Z. Sun), hwhuo@mail xidian.edu.cn (H. Huo),
lukej.huan@yahoo.com (J. Huan), jsv@OleMiss.edu (J.S. Vitter).

https://doi.org/10.1016/j.neucom.2020.02.047
0925-2312/© 2020 Elsevier B.V. All rights reserved.

patterns and k-discs [1,8,17,18,29,31,33], and they define the sim-
ilarity of two graphs as the number of their common substructure
pairs. In the graphlet kernel [29], a graphlet is an induced and
non-isomorphic subgraph of five vertices or less in general. In the
shortest path kernel [17], graphs are decomposed into a series
of triples including the labels of two vertices and the length of
the shortest path between the two vertices. The random walk
kernel [1] randomly walks on two graphs and counts the number
of matching walks. The Weisfeiler-Lehman (WL) subtree ker-
nel [31] decomposes a graph into a series of subtree patterns. The
graph wavelet alignment kernel [33] obtains multiscale features
of each vertex of a graph using discrete wavelet functions, and
defines the similarity of two graphs as the sum of kernels of every
pair of aligned vertices from the graphs. Costa et al. [8] proposed
neighborhood subgraph pairwise distance kernel (NSPDK). NSPDK
defined the similarity of two graphs as the number of common k-
disc pairs within given distance. Kriege et al. [18] gave a theoretical
evaluation to the expressivity of graph kernels based on property
testing framework [25]. Kriege et al. found that several estab-
lished graph kernels cannot distinguish graph properties, such as
connectivity, planarity, bipartieness or triangle freeness, and then
proposed k-disc graph kernel which can distinguish connectivity,
planarity and triangle freeness. However, there are some literatures
[31,38] that demonstrated the validity of existing graph kernels.
However, graph kernel-based classification methods have two
limitations: (1) graph kernels regard substructures of graphs as
atomic structures and do not fully consider the similarity among
substructures; (2) the feature matrix of a graph dataset is very

https://doi.org/10.1016/j.neucom.2020.02.047
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.047&domain=pdf
mailto:szung@163.com
mailto:hwhuo@mail.xidian.edu.cn
mailto:lukej.huan@yahoo.com
mailto:jsv@OleMiss.edu
https://doi.org/10.1016/j.neucom.2020.02.047

Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126 115

sparse, and substructures with low discrimination have an effect
on the graph classification accuracy. To overcome these limitations,
Yanardag et al. [38] proposed Deep graph kernels based on neural
language models. In the Deep graph kernels, neural language
models are used to learn vector representations of substructures,
and the similarity of substructures is defined according to the
vector representations of the substructures. subgraph2vec [23] is
another method that was proposed to learn vector representations
of rooted subgraphs using neural language models. Compared with
the Deep graph kernels, for each vertex v in a graph, subgraph2vec
viewed subgraphs rooted at neighbors of v as the context informa-
tion of the subgraph rooted at v. Yu et al. [39] proposed a sparse
graph feature selection method for graph classification. Consid-
ering the sparsity of the feature matrix of a graph dataset, they
used LASSO to select key features. Ma et al. [21] proposed a graph
classification method based on graph dataset reconstruction and
kernel feature reduction. They first reconstructed the graph dataset
by deleting subgraphs with a low discrimination score from the
graph dataset, and then they used kernel discriminant analysis
to reduce the dimension of features. Smalter et al. [32] proposed
a pattern-based highly discriminative patterns mining method
for chemical compound classification. To reduce the gap between
graph feature selection and classifier training, Pan et al. [27] pro-
posed a regularized loss minimization subgraph selection method.
This method integrated feature generation, feature selection and
graph classifier training into a unified framework and determined
the number of selected features by minimizing the loss. How-
ever, the above methods only attempt to solve one of the two
limitations.

To overcome the two above limitations, we propose a graph
feature reduction method based on semantic similarity for graph
classification in this paper. The main contributions of this paper
include the following:

(1) We propose a new corpus building method for subtree pat-
terns occurring in a graph dataset. Then we learn vector
representations for subtree patterns using neural language
models so that semantically similar subtree patterns can be
mapped to near positions in the vector space.

(2) We divide the subtree patterns into blocks according to the
Euclidean distances between vector representations of the
subtree patterns and the origin, and we apply AP clustering
to each block to merge semantically similar subtree patterns
in each cluster. In addition, we design a feature discrimina-
tion score based on feature occurrence to select highly dis-
criminative features.

(3) We train an FRS_KELM graph classifier using the highly
discriminative features. Comprehensive experiments on real
datasets show that the proposed graph classification method
achieves a significant improvement in classification accuracy
over compared graph classification methods.

The remainder of this paper is organized as follows. In
Section 2, we introduce the problem definition and neural lan-
guage models. In Section 3, we describe the subtree pattern merg-
ing method based on semantic similarity and the feature selection
method based on feature discrimination score in detail. Then, we
present the overall graph classification method. Comprehensive ex-
perimental studies are shown in Section 4. We provide concluding
remarks in Section 5.

2. Preliminaries

In this section, we provide formal definitions of subtree pat-
tern and corpus, and then we introduce neural language models.
Here, we focus on undirected vertex-labeled simple graphs, where

each vertex of the graphs has a discrete label. Specifically, a vertex-
labeled simple graph g can be denoted as a four-tuple (Vg, Eg, Xg,
A), where Vg is the set of vertices, EgCVy x Vg is the set of edges,
Xg is the set of vertex labels, and A is the mapping function from
a vertex to its label.

2.1. Problem definition

The WL subtree graph kernel is a fast graph kernel based on
WL test of isomorphism. This graph kernel decomposes graphs into
subtree patterns and defines the similarity of two graphs as the
number of their common subtree pattern pairs.

Definition 1 (Subtree Pattern). Consider a graph g = (Vg, Eg, Zg, A)
and a vertex v € Vg. Let N(v) be the set of neighbor vertices adja-
cent to v. The i-hop subtree pattern rooted at v, i > 0, denoted as
P;(v), is recursively defined as an i-level tree: it is the root node
v for i = 0; otherwise it is a tree rooted at v, and has |N(v)| sub-
trees, whose jth subtree is an (i — 1)-hop subtree pattern rooted
at the jth entry of N(v) for 1 < j < |[N(v)|. The feature multi-
set of g consisting of all i-hop subtree patterns can be defined as

i@ = Uyey, RW).

Each iteration of the WL subtree kernel [31] maps a graph into
a label multiset, where each label in the multiset corresponds to
a subtree pattern of the graph. Given a graph g, the label multi-
set generated at the ith iteration of the WL subtree kernel exactly
equals fi(g). Therefore, we use the WL subtree kernel to obtain the
subtree pattern multiset of a graph.

Given a graph dataset G = {gq, 8>, ..., 8} and a graph g € G. Let
F:(g) be the feature multiset of g consisting of all subtree patterns
from 0-hop to t-hop occurring in g, namely, F(g) = U1!=0 fi(g). We
define the set of i-hop feature multisets of G consisting of the i-hop
feature multisets of all graphs in G as F;(G) = {fi(g;) | 1 <j <n},
and the set of F;(G) for 0 <i < t as 7(G) = {F;(G) | 0 <i <t}.

We have the following observations on the subtree patterns
that occur in a graph dataset G: subtree patterns occurring in one
graph rarely occur in other graphs. The number of subtree patterns
is proportional to the product of the number of vertices in G and
the number of WL iterations. We can transform a subtree pattern
into another by changing some vertex labels.

Definition 2 (Feature Occurrence). Given a training graph dataset
G and its label set Y, where Y ={y{,y,,...,¥n} is the set of
the class labels of graph g e G with [distinct class labels,
and the set of graphs with the ith label is denoted as G;.
Let F:(G;) be the feature set of G;; then, the occurrence of
a feature ft in F(G;) can be defined as CNT(ft, F:(G;)) =
Yo X (gecntsj@er; G CMECft, fi(8)), where cnt(ft.fi(g)) is the
number of occurrence of ft in f;(g).

Example 1. In Fig. 1, we present an example of labeled graphs and
their subtree patterns. Fig. 1(a) and (b) are two labeled graphs g;
and g,, respectively, where the number in each vertex is its vertex
label. Fig. 1(c) and (d) are the 0-hop and 1-hop subtree patterns of
g7 and g, respectively, where the number under a subtree pattern
is its occurrence in the graph. As shown in the figures, subtree pat-
tern 6 can be transformed into subtree pattern 8 by only changing
its root node’s label.

Definition 3 (Graph Classification Problem). Given a training
graph dataset G and its label set Y, the goal of graph classifica-
tion is to learn a graph classifier using G and Y such that given a
set of testing graphs without class labels, the graph classifier can
predict the class labels of these graphs. We use graph classification
accuracy ACC to measure the graph classifier, defined as follows:

#predictions that are correct

ACC = -
#graphs in the tested graph dataset

116 Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126

3 3 3
O——O® O—0——~0B
(@) g1 () g:

0-hop 1-hop
4 5 6

AR C N O R ©
OJOXO)
® 066 OO
1 1 2 1 1 2
(c) subtree patterns in g, and their occurrences

0-hop 1-hop
1 2 3 6 7

8 9
® 66 ® ® ONNO)
@OOOOO®OO®
1 1 3 2 1 1 1

(d) subtree patterns in g, and their occurrences

Fig. 1. Labeled graphs g; and g, and their subtree patterns and occurrences.

Definition 4 (Corpus). Given a graph dataset G = {g1,£,...,8n},
a corpus Cp; built for F;(G) can be defined as a tuple (£2;, S;). Here
2; is a vocabulary that is the set of distinct subtree patterns in
fi(g) for fi(g) € F;(G), and §; is a set of word (subtree pattern) se-
quences generated from F;(G), where the jth word sequence is a
permutation of subtree patterns in fi(g;).

2.2. Neural language model

Given a corpus Cp = (£2,S), neural language models learn the
continuous vector of each word w in €2 using the context informa-
tion of w, where the context of w is defined as a fixed number of
words preceding and following w in word sequences of S. In this
section, we introduce the following two neural language models:
Continuous Bag-of-Words model and Skip-gram model [22].

Continuous Bag-of-Words (CBOW). CBOW model aims to pre-
dict the current word according to the context of the word. Given a
word sequence s € S, where s = [wy, Wo, ..., wr]. Let Wr_p, ..., W;_q
and Wg,q, ..., Wryn be the context of word we. The goal of CBOW
model is to maximize the following log-likelihood by mapping
each word in © to a continuous vector:

r
ZIOEP(WﬂWt—n, ooy W1, Wegt, o, Weyn)
t=1

exp(Pw) @' (w))
S exp@(wo)-o (wp)
Here ®(w) and ®’(w) are the input vector and output vector of
word w. ®(w;) is the average vector of the input vectors of wy's
context words.

Skip-gram model. In contrast to CBOW model, the Skim-gram
model aims to predict context words according to the current
word. Given a word sequence s € S, where s =[wq, Wy, ..., wr],
the goal of Skip-gram model is to maximize the following log-
likelihood by mapping each word in 2 to a continuous vector:

where p(We|We_n, ..., Wi 1, Wy, ..., Wegn) =

T
Z log p(Ween, -, Weet, Weyt, -, Wean [We)

t=1

where p(We—n, ..., We_1, Weyq, .
exp(P(we)-®' (W,)

> exp(@wp)- @' ()

oy Wegn|we) = [T n<j<n,jzo

3. Methods

In this section, we describe the method of learning vector rep-
resentations for subtree patterns in Section 3.1, and then we in-
troduce two feature reduction methods: subtree pattern merging
based on semantic similarity and graph feature selection based
on discrimination score in Sections 3.2 and 3.3, respectively. We
present the overall graph classification method using reduced
graph features in Section 3.4.

3.1. Learning vector representations for subtree patterns

To learn the vector representations of subtree patterns in a
graph dataset G, we build corpora for subtree patterns in G, and
then we use neural language models to learn continuous vector
representations of subtree patterns in this section.

3.1.1. Building corpus for subtree patterns

Given a graph g ¢ G, the i-th WL subtree iteration on g gener-
ates a feature multiset f;(g) that consists of all i-hop subtree pat-
terns occurring in g. If we view a subtree pattern as a word, then
subtree patterns in fi(g) can be viewed as co-occurring words. By
concatenating all subtree patterns in f;(g), we can generate a word
sequence in which a word and its context have a co-occurring re-
lationship. For any two subtree pattern multisets fj(g) and fi(g), if
i # j, then fi(g) N fj(g) = @, which means that subtree patterns
generated from different WL iterations do not have a co-occurring
relationship. Therefore, in contrast to the corpus building method
in Deep WL kernel [38], which concatenates all subtree patterns in
Fi(g) to form a word sequence and builds only one corpus for G,
we build a corpus set for G, where each corpus corresponds to a
feature set F;(G). For example, if the total number of WL iterations
on G is t, then we build a corpus set Cps = {Cpy.Cp1...., Cp;} for
G, where Cp; is the corpus built for subtree patterns generated on
the i-th WL subtree iteration on G.

Given a graph dataset G and the number of WL subtree itera-
tions t, the procedure of building a corpus set Cps for G is shown
in Algorithm 1. The algorithm iterates t + 1 times. In the i-th it-
eration, we obtain the feature set F;(G) for G using WL subtree
iteration in line 3; we then build a corpus Cp; by calling procedure
buildCp() in line 4.

In procedure buildCp, we build a corpus Cp = (£2,S) for a given
feature set F;(G). 2 consists of all distinct subtree patterns in f;(g)
for f;(g) € F;(G), as shown in line 2. In the iteration of lines 3-7,

Algorithm 1: BuildCorpus(G, t).

1Cps <~ @

2fori<0Ototdo

3 get F;(G) of G using WL subtree iteration
4 | Cp; < buildCp(F;(G))

5 | Cps < CpsuU{Cp;}

6 return Cps

procedure buildCp(F;(G))
S« o
Q « the set of distinct subtree patterns occurring in F;(G)
for each feature multiset f;(g) in F;(G) do
S« g
sort st; € f;(g) to form the ascending order list L
concatenate elements in L into a sentence s
S« Sulis}

Cp < (R,5)
9 return Cp

NSO s W N =

-

Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126 117

we build the word sequence set S. For each f;(g) € F;(G), we build
a word sequence s. In line 5, we sort the elements of f;(g) to form
an ascending order list L according to their Id; then, in line 6, we
concatenate the elements of L into s.

Example 2. For a graph dataset G consisting of g; and g, in
Fig. 1, when the number of WL iterations is 1, we can build
a corpus set Cps = {Cpg,Cp,} for G, where Cpy = (£20.Sg), R =
{1,2,3}, So=1{{1,2,3,3},{1,2,3,3,3}}, and Cp; = (21,51), 1 =
{4,5,6,7,8,9}, S1 = {{4,5,6,6},{6,6,7,8,9}}.

3.1.2. Learning vector representations using neural language models

Given the corpus set Cps generated by Algorithm 1. We use the
following two neural language models realized in the Gensim li-
brary [30]: namely, CBOW model and Skip-gram model to learn
d-dimensional vector representations of subtree patterns. For each
corpus Cp; = (£2;,S;) in Cps, we can obtain a matrix ®; of size
|€2;| x d by training CBOW model or Skip-gram model on S;. The j-
th row of ®; is the vector representation of the j-th subtree pattern
st; in €;, denoted as ®;(st;). We can view the vector representa-
tion of a subtree pattern as a point in vector space. If two subtree
patterns st; € 2; and sty e €2; are semantically similar, then their
vector representations ®;(st;) and ®;(st) will be located at near
positions in vector space. Here semantic similarity of two subtree
patterns means that they have similar contexts.

3.2. Clustering and merging semantically similar subtree patterns

Because the vector representations of semantically similar
subtree patterns are mapped to near positions in vector space, we
can use the Euclidean distance between subtree patterns’ vector
representations to measure the similarity of subtree patterns.
Considering the similarity among subtree patterns, we cluster
subtree patterns using AP clustering [12], and then we merge the
subtree patterns in each cluster into a new feature.

3.2.1. Clustering subtree patterns

To guarantee good time performance, we divide subtree pat-
terns in the vocabulary of a corpus into blocks, and then we ap-
ply AP clustering on each block. The time complexity of one AP
clustering iteration is proportional to the square of the number of
subtree patterns to be clustered. Since the total number of subtree
patterns for a corpus is proportional to the number of vertices in
the associated graph dataset, if we directly apply AP clustering to
all subtree patterns without dividing the blocks, it would be too
time consuming for a large graph dataset.

We divide and cluster subtree patterns as follows: given a cor-
pus Cp; = (£2;, S;) of graph dataset G, we sort the subtree patterns
in €; in ascending order according to the Euclidean distance be-
tween their vector representations and the origin; then, we divide
the sorted subtree patterns into blocks of size B = log2 N, where
N = |Q2;|. We then apply AP clustering to each block to make simi-
lar subtree patterns in the same clusters. The time complexity of
one AP clustering iteration on a subtree pattern block is O(B?%);
thus the total time complexity of clustering all subtree patterns in
Q; is B2(N/B) = O(NB) = O(N log2 N), which is lower than the time
complexity O(N?) of applying AP clustering to €2;, where N is the
number of subtree patterns in €2; and N/B is the number of subtree
pattern blocks.

In the following, we introduce the similarity matrix M and pref-
erence parameter pref used in AP clustering. Given a subtree pat-
tern block of €2;, the similarity matrix M can be defined as a matrix
of size B x B, where M = —||®;(st;) — ®;(sty) 2. Here, st; is the j-
th subtree pattern in the block, ®;(st;) is the vector representation
of stj, and [|®;(st;) — ®;(sty)|l, is the Euclidean distance between
®y(st;) and D;(sty).

A
Y
_ N O
S Di(stig)
P Cop——
B fstr) "\ \
o /'/ % \
[@fsts)| @st)) Pilsts) \
| [. \ |
i i . i | X"
‘ \ @lsta) | Plsts)
\ / (p(sb}
\ ~_ | ~ //
\\\ Dists)

Fig. 2. Illustration of clustering subtree patterns.

In AP clustering, the parameter pref for a data point to be clus-
tered is the preference degree that this data point is chosen as an
exemplar. This parameter influences the number of clusters in AP
clustering. Given the similarity matrix M of a subtree pattern block,
to control the number of clusters in the AP clustering result, we
define pref for all subtree patterns as follows:

pref = min(M) + B(av(M) — min(M))

where 0 < 8 < 1, min(M) is the minimum value of M, and av(M)
is the average value of M.

Example 3. Given a graph dataset G, let Q; = {sty,st, ..., styp} be
the vocabulary of the corpus Cp; built for F;(G). The 2-dimensional
vector representations @;(st;) of st; for 1 < j < 10 are shown as
points in Fig. 2. The clustering subtree patterns for block size B=5
is as follows: We first sort subtree patterns in €2; in ascending or-
der according to the Euclidean distance between their vector rep-
resentations and the origin (0, 0) to obtain the sorted sequence
[sts, sty, St3, Stq, Sty, Stg, Stg, Stg, St7, St;p]. We then divide the sorted
sequence into 2 subtree pattern blocks of size B sequentially and
then apply AP clustering to each block. The clustering result on the
first block contains 4 clusters: C; = {stq, st3}, C; = {sto}, C3 = {st4},
and C4 = {st5}. The clustering result on the second block contains 5
clusters: Cs5 = {stg}, G5 = {st7}, C; = {stg}, Cg = {stg}, Cog = {St1p}.

3.2.2. Merging semantically similar subtree patterns

We merge subtree patterns in each cluster into a new feature.
Given two graphs g; and g, suppose that there are two subtree
patterns st; and st, that meet the following conditions: (1) st; and
st, are generated from g; and g,, respectively, and (2) st; and st
locate in the same cluster. Since st; and st, are similar, st; and
sty have some contributions to the similarity of g; and g,. If we
view subtree patterns as atomic structures, then the contribution
of st; and st, to the similarity of g; and g, is zero. All subtree
patterns in a cluster can be treated as the same feature to some
degree; thus we merge subtree patterns in a cluster into a new
feature to improve the graph classification accuracy. Suppose that
there are N’ clusters in AP clustering {C;, Gy, ..., Cy}; then the total
number of merged features is N’, where the ith merged feature is
a summary of subtree patterns in the ith cluster C;. The occurrence
of the ith merged feature in a graph g is Zsteq cnt(st, F(g)).

Algorithm 2 presents the procedure for merging subtree pat-
terns, where G is a graph dataset, F;(G) is the i-hop feature set of
G, B is the size of subtree pattern blocks, 8 is a clustering param-
eter and fn is the initial Id of merged features. The workflow of
Algorithm 2 is as follows: we call buildMR() in line 1 to obtain the
merging rules of subtree patterns in F;(G), and we call merge() in
line 2 to merge subtree patterns in F;(G).

118 Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126

Algorithm 2: FeatureMerge(F;(G), B, 8, fn).
1 R < buildMR(F;(G), fn)

2 F/(G) < merge(F;(G). R)

3 return F}(G)

procedure buildMR(F;(G), fn)

1R« o

2 Cp; < buildCp(F;(G))

3 learn ®; for Cp; using neural language models

4 sort st; € §2; to form the ascending orderlist L according to
the distance between ®;(st;) and the origin

5 divide L into blocks of size B

6 for each block b do

7 compute similarity matrix M of block b
8 pref < min(M) + 8 x (av(M) — min(M))
9 | Cs < APClustering(b, M, pref)
10 for each cluster c in Cs do
n r < (c, fn)
12 R < RU{r}
13 fn<~ fn+1
14 return R
procedure merge(F;(G), R)
1]F;(G) g
2 for each graph f;(g) in F;(G) do
3 fl@ <o

4 for each merging rule r in R do

5 insert Y ... cnt(st, fi(g))features with Id r.fn into
L fi(®

6 | Fi(G) <« F(G)U{f(®}

7 return F;(G)

g1 3 0 2 3 0 0 1 0 4 1
g2 1 1 3 1 1 3 0 1 1 2
g3 4 1 3 2 3 3 2 1 2 3
(a) Feature vectors of g1, g2, and g3
i o s i s fo fi fs Jo
g1 5 0] 3 0 0 1 0 4 1
g2 4 1 1 1 3 0 1 1 2
g3 7 1 2 3 3 2 1 2 3

(b)Features vectors after subtree patterns merging

Fig. 3. Illustration of merging subtree patterns.

In procedure buildMR, we obtain the set of merging rules of
subtree patterns for a given feature set F;(G). we divide distinct
subtree patterns occurring in F;(G) into blocks in lines 2-5. For
each iteration of lines 6-13, we obtain the merging rules of sub-
tree patterns in each block, where a merging rule (c, fin) means
that subtree patterns in the cluster ¢ are merged into a new
feature with Id fn.

In procedure merge, we convert F;(G) into a feature set F(G) by
merging subtree patterns in fj(g) for fj(g) € F;(G). In the iteration
of lines 4-5, we obtain f/(g) by merging subtree patterns in fi(g)
according to merging rules R.

Example 4. Given the subtree pattern clustering result
{C1,Gy,...,Co} shown in Example 3 and the occurrence of
subtree patterns in g;, g, and g3z shown in Fig. 3(a). The merging
of subtree patterns is described as follows: the subtree patterns
in each cluster are merged into a feature, where subtree patterns
in C; are merged into a feature denoted as f; for 1 < i < 9; the

number of occurrences of f; in a graph is the sum of the occur-
rences of subtree patterns in C; occurring in the graph. The feature
vectors of these graphs after merging subtree patterns is shown
in Fig. 3(b). For example, since C; = {stq, st3} and the occurrences
of st; and st; in g; are 3 and 2, respectively, so the number of
occurrence of feature f; in gy is 5.

For each feature set F;(G) € F:(G), we convert F;(G) into a new
feature set F;(G) by merging similar subtree patterns using Algo-
rithm 2. Thus, we can convert F;(G) into a new feature set 7/(G),
where F/(G) = {F/(G) | 0 <i <t}, Fi(G) = {fi'(2) | g€ G} and f/(g)
is the merged feature multiset of f;(g).

3.2.3. Influence of merging similar subtree patterns on graph
classification

After we apply AP to subtree patterns, each cluster consists of
similar subtree patterns. Whether two subtree patterns are in the
same cluster depends on the similarity of their vector representa-
tions learned from neural language models. We merge subtree pat-
terns in a cluster into a feature. Merging similar subtree patterns
could increase the separability of a graph data set.

Under the RBF kernel [6] metrics, the similarity of the two
graphs g and q is defined as

_lv-o)?
RBF(V,Q) =e™ 22
where V=WV, ...,Vy) and Q=1(Q1,Q,...,Q4) are d-
dimensional feature vectors of g and ¢, and ||V-QJ?=
Zﬁzl Vg — Qk)z, and o is a free parameter.

Suppose there exists a cluster composed of subtree pat-
terns st; and st;. We merge st; and st; into a feature. V and Q are
transformed into (d — 1)-dimensional feature vectors V' and Q/,
respectively, where

Vi ifl<k<iori+1<k<j
Vi=1Vi+V; ifk=i
Vi ifj<k<d-1.

Similarly, we can define Q, as that of V. Then, we have

d-1
IV -QI? =3 vy -Q)°

k=1

d-1
= > V-Q)P+ v -Q)?
k=1nk#i
d-1
= Y -Q)’+((Vi+V) - (Q+Q))?
k=1Ak#i
d-1
= > W-Q)’+Vi—-Q)+ (V- Q)
k=1Ak#i

+2(Vi-Q)(V; - Q)

d
= (Vi—Q)* +2(V; - Q) (V; - Q)

k=1
=[IV-Ql*+2(Vi - Q)(V; - Q))
After merging, the similarity of graphs g and q is

_vo2
RBF(V',Q") = e 2?

IV-QII2+20%-0)V;~Q))
=e 22z

_ Iv-q|? _ %i-w-e)
=€ 22 xe o2

| =0)v;-Q))

RBF(V,Q) x e o?

Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126 119

The change of the similarity of graphs g and q after merging is
determined by the occurrences of st; and stj in V and Q.

(=) ;-Q))

If (Vi > QiAV; < Q) or (V; < QiAV; > Q;), then e o2 >
1. So the similarity of g and q increases after merging, which is
consistent with the fact that subtree patterns merging can reduce
the difference of g and q on occurrences of st; and st; in this case.

Vi-Q)v;-Q))

If V;=Q; or V; =Qj, then e o2 = 1. So the similarity
of g and q does not change after merging, which is consistent with
the fact that subtree patterns merging has no impact on the differ-
ence of g and g on occurrences of st; and st; in this case.

B (V,'—Q,')(Vj—Qj)

If (Vi > QiAV; > Q) or (V; < QiAV; < Q)), then e o2 <
1. So the similarity of g and q decreases after merging, which is
consistent with the fact that subtree patterns merging can enlarge
the difference of g and q on occurrences of st; and st; in this case.

Thus it can be seen that the feature vectors of graphs after
merging are more accurate for representing graphs. This could in-
crease the separability among graphs and result in an improve-
ment on graph classification accuracy.

We use an example below to discuss the influence of occurring
frequency of st; and st; on distance changes among graphs after
subtree patterns merging.

Example 5. Fig. 3 gives an example of merging subtree patterns.
Fig. 3(a) shows the 10-dimensional feature vectors of graphs g;, g
and g3. Fig. 3(b) shows the resulting 9-dimensional feature vectors
after subtree pattern merging, where st; and st; are merged into a
feature f;.

As can be seen in Fig. 3, before merging st; and st3, the sim-
ilarity of g; and g, is efr}%, the similarity of g; and g3 is ele%,
and the similarity of g, and g3 is e_%. After merging st; and sts,
the similarity of g; and g, is efz%, which is larger than that before
merging. The similarity of g; and g3 is ef%, which is smaller than

that before merging. The similarity of g, and g3 is 67;%, which is
the same as that before merging.

From the changes of similarity among g;, g, and g3, we can
see that the feature vectors after merging are more accurate for
representing these graphs.

3.3. Selecting highly discriminative features

To improve the graph classification accuracy, we need to se-
lect highly discriminative features for graph classification. In graph
classification, not all the features have equivalent contributions to
the graph classification. Some features have similar occurrence in
each class of the graphs. Since these features are poorly discrim-
inative, which would affect the graph classification accuracy, we
treat them as noises and filter them out.

Definition 5 (Highly Discriminative Feature). Given a training
graph dataset G and its label set Y, where Y has [distinct class
labels in total and the set of graphs with the ith label is denoted
as G;, a highly discriminative feature of G is a feature occurring
disproportionately in different classes of graphs; that is, a highly
discriminative feature occurs frequently in one class of graphs and
occurs infrequently in the remaining classes of graphs. Given a fea-
ture ft, the discrimination of ft can be measured by its discrimina-
tion measure score(ft); the greater the discrimination score is, the
more discriminative ft will be, where score(ft) can be defined as
follows:

score(ft) = ma)i {abs(

1<i<

CNT (ft,]:t/(Gi)) _ CNT (ft,]-'{(G—Gi))
|Gil |G -G

With the discrimination score of each distinct feature occurring
in F/(G), we can obtain highly discriminative feature set of G via
the following steps. (1) Let U be the set of distinct features occur-
ring in F/(G), and we sort the elements of U in descending order
according to their discrimination scores. (2) For a specified param-
eter &, 0 < @ < 1, we select the top «|U| features from the sorted
U, denoted as D. 3)We update F/(G) by deleting such features ft
from f/(g) that ft f/(g) but ft¢D for g € G and 0 < i < t. Finally,
the updated feature set 7/(G) only includes highly discriminative
features.

After merging semantically similar subtree patterns and select-
ing highly discriminative features, we can represent G as a feature
matrix W of size n x |D|, where W), = Z?:o cnt(Dy, f/(g;)). Here,
n is the number of graphs in G, D is the set of all distinct features
occurring in F](G), and cnt(Dy, f/(g;)) is the occurrence of feature
Dy in the updated f](g;). The jth row of W is denoted as W;, which
is the feature vector of graph g;. The kernel matrix K of G can be
defined as a matrix of n x n, where K;; = h(W;, W) is the kernel
of g; and gy.

3.4. Whole algorithm

Given a training graph dataset G and its label set Y, we pro-
vide the whole algorithm for learning a graph classifier FRS_KELM
in this section. FRS_KELM consists of 4 components: W, R, D and
CKelm, where W is the feature matrix of G, R is the set of subtree
pattern merging rules, D is the set of selected highly discrimina-
tive features, and CKelm is a KELM classifier. KELM [16] uses a ker-
nel function to substitute the hidden layer of ELM, and KELM has
no need for tuning the weights between the input layer and the
hidden layer. In CKelm, the number of hidden nodes is |G| and the
kernel function h can be the linear kernel, RBF kernel or polyno-
mial kernel, among others.

Algorithm 3 presents the procedure for learning FRS_KELM
and predicting class labels for graphs, where T is a set of graphs
without class labels, B is the block size of subtree patterns, 8 is
a parameter used to compute clustering preference in AP clus-
tering, and « is the ratio of selected highly discriminative fea-
tures. The workflow of Algorithm 3 is as follows: we call train
in line 1 to train a graph classifier FRS_KELM; then, for each
graph g in T, we call predict to predict the class label of q in
lines 3-4.

In the train procedure, we learn the FRS_KELM graph classifier
using training dataset G and its label set Y. In line 2, we obtain fea-
ture set F;(G) for G using WL subtree iterations. We then convert
F¢(G) into a merged feature set /(G). In each iteration of the for
loop in line 3, we convert a feature set F;(G) into F;(G) by merging
subtree patterns according to merging rules mr. In lines 8-11, we
update feature set F/(G) by deleting features that are not highly
discriminative features. In lines 12-14, we train a KELM classifier
CKelm using the kernel matrix K of G and the label set Y. The
final FRS_KELM consists of four components: the feature matrix
W, the set of subtree pattern merging rules R, the set of selected
highly discriminative features D and the KELM classifier CKelm in
line 15.

In the predict procedure, we predict the class label of a graph
q. We obtain the feature multiset Fi(q) of q using WL subtree
iterations in line 1. We then convert Fi(q) into a new feature mul-
tiset F/(q) by merging subtree patterns according to FRS_KELM.R
and deleting features not belonging to FRS_KELM.D, respectively,
in lines 2-3. Then, we compute feature vector V and kernel
vector KV for q. V is a vector of size |[FRS_KELM.D|, where V; =
cnt (FRS_KELM.D;, F/(q)); KV is a vector of size |G|, where KV; =
h(V,FRS_KELM.W;) is the kernel of q and g;, in lines 4-5. We
obtain the class label of q using FRS_KELM.CKelm and KV in
line 6.

120 Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126

Algorithm 3: ClassifyGraph(G, Y, T, t, B, B, o).
1 FRS_KELM < train(G.Y,t, B, B)

2 labels < @

3 for each graph ¢q in T do

4 Ib < predict (FRS_KELM, q, t)

5 L labels < labels U {Ib}

return labels

a

procedure train(G,Y,t,B, B)
1 }—[I(G)ez,ReZ
F:(G) « the feature set generated by t WL subtree iterations
on G
3 for each feature set F;(G) in 7 (G) do
4 | mr < buildMR(F;(G), |R])
5 | Fi(G) < merge(F;(G), mr)
6
7

N

F(G) « FL(G) U{F|(G)}
R <~ Rumr

8 U < all distinct features in 7/ (G)

9 sort u; (u; € U) in descending order according to score(u;)
10 D < the top «|U| features of the ordered u;

update F/(G) by deleting features not in D from F/(G)

12 generate feature matrix W of G

13 generate kernel matrix K of G

14 train a KELM CKelm using K and Y

FRS_KELM <« (W, R, D, CKelm)

16 return FRS_KELM

procedure predict (FRS_KELM, g, t)

F(q) < the feature multiset generated by t WL subtree
iterations on q

F/(q) < merge subtree patterns in F(q) according to
FRS_KELM.R

update F/(q) by deleting features not in FRS_KELM.D from
F(q)

generate feature vector V for q

compute kernel vector KV for q

use FRS_KELM.CKelm and KV to predict the label Ib of g
return b

-
=

-
7

N —

w

N o s

4. Experiments
4.1. Dataset

To test the efficacy of the proposed graph classification method,
in the experiments, we use 4 benchmark datasets: NCI1, Mutag,
Enzymes and PTC, which are described in detail in the following.

NCI1 [36] is a dataset of chemical compounds screened for ac-
tivity against non-small-cell lung cancer;

The Mutag [9] dataset includes 188 aromatic and heteroaro-
matic nitro molecular structures; they are classified according to
whether they have a mutagenic effect on salmonella typhimurium.

Enzymes [2] is a dataset of tertiary structures of 600 enzymes
chosen from the BRENDA database, and they are categorized into 6
classes according to their function: EC1, EC2, ..., EC6.

PTC [35] is a dataset recording the carcinogenicity of com-
pounds; according to object species, PTC is further categorized into
4 datasets: PTC_FR, PTC_MR, PTC_FM and PTC_MM.

The general statistical information of each dataset is shown in
Table 1, where |G| denotes the number of graphs in a dataset;
|AV| and |AE| denote the average numbers of vertices and edges
in a dataset, respectively; |C| denotes the number of graph class
labels in a dataset; |P| and |N| denote the numbers of positive and

Table 1

Statistics information of graph datasets.
Dataset |G| |AV] |AE| |Cl |P| IN]|
NCI1 4110 29.9 323 2 2057 2053
Mutag 188 17.7 38.9 2 125 63
Enzymes 600 32.6 61.1 6 - -
PTC_MM 192 25.8 26.2 2 69 123
PTC_MR 196 26.6 27.1 2 70 126
PTC_FM 204 26.0 26.5 2 80 124
PTC_FR 204 26.4 26.9 2 63 141

negative graphs in a dataset, respectively; and ‘-’ indicates that the
dataset does not have the statistical characteristic.

All the experiments are conducted on an HP Z400 PC, with a
2.39 GHz CPU and 12 GB memory.

4.2. Parameter evaluation

In the experiments, when generating feature set %:(G) for G,
we set the total number of WL subtree iterations t =5. We use
CBOW or Skip-gram models to learn vector representations of sub-
tree patterns, where the context length is 5 or 10 and the dimen-
sion of the vector representation is d = 10. During training of the
KELM classifier, the kernel function adopts the RBF kernel, param-
eter C is chosen from {2!} for 2 < i < 8, and parameter o is chosen
from {2} for —4 <i<8.

In the following work, we study the effect of subtree pattern
block size B, clustering parameter 8 and discriminative feature se-
lection ratio o on the graph classification accuracy, where B is cho-
sen from {1000, 2000, 3000}, 8 is chosen from {0,0.1,0.2,..., 1},
and « is chosen from {0.1, 0.2, 0.3, 0.4}. For each parameter com-
bination, we perform 10-fold cross-validation on each dataset. We
repeat the experiments 10 times and report the average accuracy.

Figs. 4-7 present the graph classification accuracy of the pro-
posed method on PTC datasets with varying parameters B, 8 and
o. The experiments show the following. (1) In general, for dif-
ferent combinations of B and B, the classification accuracy for
o = 0.2 or 0.3 is higher than that for « = 0.1 or 0.4. This re-
sult occurs because an « that is too small in discriminative fea-
ture selection would lose some highly discriminative features; in
contrast, an « that is too large would select some poorly dis-
criminative features. (2) For different combinations of 8 and «,
with the increase in block size B, the classification accuracy would
have a significant improvement. This result occurs because a large
B would be capable of eliminating locality in clustering subtree
patterns.

Fig. 8 presents the classification accuracy of the proposed
method on Mutag. Because the number of distinct subtree patterns
occurring in F;(G) for 0 < i < 5 is less than 2000 for Mutag, we
only set B = 1000 or 2000. This figure shows that the classification
accuracy for B = 2000 is higher than that for B = 1000.

Fig. 9 presents the classification accuracy of the proposed
method on NCI1. This figure shows that (1) with varying «, the
classification accuracy for B = 2000 is higher than that for B =
1000 or 3000; (2) given fixed B and B, the classification improves
with increasing o.

Fig. 10 presents the classification accuracy of the proposed
method on Enzymes. This figure shows that (1) with varying o,
the classification accuracy for B = 3000 is higher than that for B =
1000 or 2000; (2) given fixed B and B, the classification improves
with increasing o.

The above experiments show that by adjusting parameters B,
B, and «, a high classification accuracy can always be obtained
on each dataset. The parameter B affects the locality problem
in clustering subtree patterns. In general, a large B is capable of

Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126 121

—=— B=1000
= B=2000 —=— B=2000
704 —=— B=3000 | 4o —=— B=3000
0.0 0.2 04 5 06 038 10 0.0 0.2 0.4 8 0.6 08 1.0

(b) a=0.2

0.0 02 04 8 06 08 10

(d) a=04

Fig. 4. Average classification accuracy with varying parameters on PTC_FR.

—=—B=1000
—=— B=2000
—=— B=3000
0.0 0.2 04 6 06 08 10 0.0 02 0.4 6 06 08 10
(a) a=0.1 (b) a=0.2

0.0 0.2 04 6 06 08 1.0

(¢) a=0.3

0.0 02 0.4 6 06 08 1.0

(d) =04

Fig. 5. Average classification accuracy with varying parameters on PTC_FM.

eliminating the locality problem such that the classification ac-
curacy is improved; however, a large B will increase the time
consumed for clustering subtree patterns. To achieve a tradeoff
between classification accuracy and time performance, we set B
as 1000, 2000 or 3000. A small 8 will increase the number of
clusters in subtree pattern clustering, thus some similar subtree
patterns cannot be clustered into the same cluster; in contrast, a
large B will place dissimilar subtree patterns into a cluster. Be-
cause the distribution of vector representations of subtree patterns
depends on each graph dataset, we tune 8 to a value between 0
and 1 for each dataset. The parameter « determines the number of
selected highly discriminative features. If o is too small, then the
selected features would lose some highly discriminative features;
if o is too large, then the selected features would include some
poorly discriminative features. Thus, we set o as a value between
0.1 and 0.4 for each dataset.

4.3. The selection of clustering methods

In this section we compare the graph classification accuracy
of FRS_KELM with different clustering methods in merging sim-
ilar subtree patterns. DBSCAN [11] is a density-based clustering
method, it views clusters as areas of high density separated by ar-
eas of low density. BIRCH [40] is a hierarchical clustering method.
It builds a Clustering Feature Tree (CF Tree) for the given data.
Then a agglomerative hierarchical clustering algorithm is applied
on CF Tree nodes to obtain the final result. In the experiments, we
use DBSCAN and BIRCH to replace AP clustering in FRS_KELM, and
get FRS_KELM_DBSCAN and FRS_KELM_BIRCH, respectively. Table 2
shows the comparison result of FRS_KELM with different clustering
methods.

Table 2 shows that generally speaking, when applying AP to
cluster subtree patterns, we can obtain better performance on

122 Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126
80 80
K75 S
g g7
< <
70 —=—B=1000 —=—B=1000
—=— B=2000 704 —=—B=2000
—=—B=3000 —=—B=3000
65-1— T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 8 0.6 0.8 1.0
(a) «=0.1 (b) a=0.2
—=—B=1000
0.0 02 04 ;5 06 0.8 10 0.0 02 04 o 06 0.8 10
(c) a=0.3 (d) a=04
Fig. 6. Average classification accuracy with varying parameters on PTC_MM.
80
75
g 75
3 g
< (5]
<
70+ —=— B=1000 —=—B=1000
—=—B=2000 | 7] —=—B=2000
—=—B=3000 —=—B=3000
0.0 0.2 0.4 8 0.6 0.8 1.0 0.0 0.2 04 056 038 10
(a) a=0.1 (b) a=0.2
80 80
754 754
S S
o o
o o
< —=—B=1000| | <
704 2000 70
—=—B=3000
00 02 04 6 06 08 10 00 02 04 . 06 08 10
(¢) =03 (d) =04
Fig. 7. Average classification accuracy with varying parameters on PTC_MR.
Table 2 4.4. Comparison with other methods

Comparison of graph classification accuracy with different clustering methods.

Dataset FRS_KELM FRS_KELM_DBSCAN FRS_KELM_BIRCH
PTC_MM 81.57 + 1.84 65.92 + 1.91 66.15 + 1.64
PTC_MR 79.66 + 1.36 65.92 + 1.91 69.15 + 1.55
PTC_FR 81.72 + 1.28 70.11 £+ 1.11 71.40 + 1.39
PTC_FM 82.89 + 1.28 62.55 + 2.51 62.68 + 1.10
Mutag 91.47 + 1.02 93.19 + 0.76 93.47 + 091
Enzymes 65.45 + 0.91 57.33 £+ 0.82 57.03 + 1.24

graph classification accuracy over that applying DBSCAN or BIRCH.
Specifically, FRS_KELM has a significant advantage on classification
accuracy over FRS_KELM_DBSCAN and FRS_KELM_BIRCH on all but
Mutag dataset. All of the three methods have similar classifica-
tion accuracy on Mutag dataset. The main reason could be that the
distribution of vector representations of subtree patterns on Mutag
is not sensitive to the selected clustering methods.

In this section, we compare the classification accuracy of the
proposed method FRS_KELM with the following graph kernel-
based and neural language model-based methods:

WL Kernel [31]: using WL subtree kernel matrix and SVM to
classify graphs;

Deep WL [38]: using Deep WL subtree kernel matrix and SVM
to classify graphs;

GC_LASSO_ELM [39]: using LASSO to reduce the dimension of
the WL subtree kernel matrix and ELM to classify graphs;

GSR_GK_KDA_ELM [21]: using graph set reconstruction and KDA
to reduce the feature dimension of the WL shortest path kernel
matrix, and then using ELM to classify graphs; GSR_GK_KDA_ELM
only applies to graph datasets with two classes.

FRS_SVM: using our method to merge and select features and
SVM to classify graphs;

Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126

123

92 92
890- 890
< <
884 —e— B=1000 88
—=— B=2000
0.0 0.2 04 o 06 0.8 10 0.0 0.2 0.4 8 0.6 0.8 10
(a) =0.1 (b) a=0.2
924 924
£ §90
990 5t
< 2
884 —e— B=1000 88,
—=— B=2000
0.0 0.2 0.4 . 0.6 0.8 10 0.0 0.2 0.4 ! 0.6 0.8 1.0
(c) a=0.3 (d) a=04
Fig. 8. Average classification accuracy with varying parameters on Mutag.
89 89
—=— B=1000
—=— B=2000
=88+ —=— B=3000 _884
S £
g
87- g7 —=—B=1000
—=— B=2000
—=— B=3000
86— T T T T T 86— T T T T T
0.0 0.2 0.4 B 0.6 0.8 1.0 0.0 0.2 0.4 B 0.6 0.8 1.0
(a) a=0.1 (b) =0.2
89 894
884 _88-
3]
<87 —=—B=1000] | <. |
—=— B=2000
—=— B=3000 —=— B=3000
86-1— T T T T T 86— T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 B 0.6 0.8 1.0
(¢) =03 (d) a=0.4

Fig. 9. Average classification accuracy with varying parameters on NCI1.

node2vec [13] uses CBOW model to learn vector representations
of nodes in a graph; we refer to the average value of all nodes’ vec-
tor representations as the graph’s vector representation by Taheri
et al. [34] and KELM to classify graphs;

graph2vec [24] uses DBOW model to learn the vector represen-
tation of an entire graph and KELM to classify graphs.

For the WL kernel, the number of WL subtree iterations is set
as h = {2, 3, 4, 5}, and the best result on each dataset is given.
For GC_LASSO_ELM, the number of WL subtree iterations is set as
its default value of 5. For the Deep WL kernel, the number of WL
subtree iterations on Mutag, PTC and Enzymes is set as h = {2,
3, 4, 5}; the number of WL subtree iterations on NCI1 is set as h
= {2, 3} because when h > 3, Deep WL kernel throws a memory
error. For GSR_GK_KDA_ELM, the number of WL shortest path iter-
ations on Mutag, PTC and Enzymes is set as its default value of 5;
the number of WL shortest path iterations on NCI1 is set as h =2
because when h > 2, GSR_GK_KDA_ELM throws a memory error.

For FRS_KELM and FRS_SVM, the number of WL subtree itera-
tions is set as 5. The other parameters of each method are set
as their default values. Standard 10-fold cross-validation is used
to obtain the graph classification accuracy of each method. For
SVM-based classification methods, the parameter C for each fold
is independently tuned using training data from that fold. The
experiments are repeated 10 times. The comparison of the average
classification accuracy and standard deviation of each method is
shown in Table 3.

Table 3 shows that the graph classification accuracy of the
proposed methods FRS_KELM and FRS_SVM are better than that
of the other compared methods. FRS_KELM and FRS_SVM have
improvements of at least 5% in classification accuracy over the
compared methods. The improvement of FRS_KELM can be ex-
plained as follows. (1) By merging similar subtree patterns in
each cluster into a new feature, FRS_KELM could be capable of
measuring the similarity among graphs more accurately. (2) By

124 Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126
661
64
g
J62- .
<
—=—B=1000
60 = —=— B=2000
= B=3000
0.0 02 04 8 06 038 10 0.0 0.2 04 o 06 0.8 1.0
(a) a=0.1 (b) =0.2
661
_64
9
o
o
<62
= —=—B=1000
—=— B=2000
60+ —=— B=3000
T T T T T T 58— T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.4 8 0.6 0.8 1.0
(c) a=0.3 (d) a=04
Fig. 10. Average classification accuracy with varying parameters on Enzymes.
Table 3
Comparison of graph classification accuracy.
Dataset PTC_MM PTC_MR PTC_FR PTC_FM Mutag NCI1 Enzymes
FRS_KELM 81.57 + 1.84 79.66 + 1.36 81.72 + 1.20 82.89 + 1.28 91.49 + 1.02 89.18 + 0.14 65.45 + 0.91
FRS_SVM 80.05 + 1.71 78.63 + 2.72 78.60 + 2.25 79.60 + 3.02 88.78 + 1.43 88.77 + 0.14 60.13 £ 1.22
Deep WL 69.21 + 2.00 63.53 + 1.34 69.50 + 2.87 63.65 + 2.41 83.83 + 1.32 84.37 + 0.23 55.31 + 0.80
WL kernel 67.21 + 1.27 63.42 + 2.17 67.95 + 2.13 62.25 + 2.47 83.61 + 2.02 84.67 + 0.26 53.88 + 0.95
GC_LE 71.22 + 1.89 69.39 + 2.37 72.04 + 1.63 68.71 % 3.022 87.56 + 1.56 81.29 + 0.3 46.68 + 0.87
GSR_GKE 73.84 + 2.31 71.84 + 1.86 71.25 + 232 70.60 + 2.81 86.50 + 1.59 79.16 + 0.24 -
node2vec 67.37 + 0.71 64.36 + 0.21 69.16 + 0.26 67.65 + 0.93 84.44 + 0.39 62.47 + 0.23 22.27 + 0.90
graph2vec 70.78 + 1.72 64.35 + 0.30 70.71 + 1.36 70.11 + 0.78 86.17 + 1.27 84.88 + 0.22 31.03 + 1.14
* Where GC_LE stands for GC_LASSO_ELM. GSR_GKE stands for GSR_GK_KDA_ELM.
Table 4. _ - we show the total time of computing the feature matrix or ker-
Comparison of time performance for graph classification (s). nel matrix, reducing or selecting features and one 10-fold cross-
Dataset ~ PTC_.MM PTC_MR PTC_FR PTC_FM Mutag NCI1 Enzymes validation for graph classification. Note that the total time of
FRS_KELM 33.04 87.07 6404 8005 1813 42445 403.50 GSR_QI(_KDA_ELM also includes the time consumed for recon-
FRS_SVM 33.59 4935 9947 4449 1144 70428 92.32 structing graph datasets. On the small datasets, Mutag, Enzymes
Deep WL 4.49 2.66 235 455 4.42 986.22 48.72 and PTC, the time performance of FRS_KELM is worse than that of
\éch I{‘Emﬂ 3-2‘; g-gg 3‘}5 i-;g ;-Zgﬁ j;;'gf ;3:: WL kernel, Deep WL and GC_LASSO_ELM, and it is slightly worse
GSR GKE 1938 1507 2521 2534 139280 513477 - than that of GSR_GK_KDA_ELM. This result occurs because the pro-

* Where GC_LE stands for GC_LASSO_ELM. GSR_GKE stands for GSR_GK_KDA_ELM.

selecting highly discriminative features for graph classification,
FRS_KELM can filter out poorly discriminative features, which
would be noises. By comparison, the WL kernel treats subtree
patterns as atomic structures and uses all subtree patterns to
compute the kernel matrix. Although the Deep WL kernel takes
the similarity among subtree patterns into account, it uses all
subtree patterns to compute the kernel matrix. GC_LASSO_ELM
and GSR_GK_KDA_ELM reduce the dimensions of features, but they
do not consider the similarity among substructures. The random
walks used in node2vec are linear substructures while the subtree
patterns are non-linear substructures. graph2vec uses all subtree
patterns to a given hop to learn representation vector of a graph, it
does not select discriminative features. The classification accuracy
of FRS_KELM is better than that of FRS_SVM, which means that
when using KELM to classify graphs, we can obtain additional
accuracy improvements compared to using SVM.

In Table 4, we present the comparison of the time perfor-
mance of the compared methods. For each compared method,

posed method includes extra AP clustering on subtree patterns,
whose time complexity of one iteration is O(NB), where B is the
block size and N is the number of subtree patterns to be clustered.
This improves the classification accuracy at the cost of extra time
consumption. One solution to this problem is parallel processing
because the clusterings on subtree pattern blocks are independent
tasks that have no need of information interaction during cluster-
ing. On the large dataset, NCI1, the time performance of FRS_KELM
is better than that of the Deep WL kernel and GSR_GK_KDA_ELM.
The main reason can be explained as follows. In Deep WL ker-
nel, the time complexity of computing the kernel matrix is O(N%).
In GSR_GK_KDA_ELM, the time complexity of kernel discriminant
analysis is O(n3), where n is the number of graphs in the training
dataset.

5. Conclusion and discussion

In this paper, we study the problem of graph feature reduction
based on semantic similarity for graph classification. Rather than
taking substructures in graphs as atomic structures, we study the
similarity among subtree patterns in graphs using neural language

Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126 125

models and merge similar subtree patterns into a new feature.
Considering the problem that poorly discriminative features affect
graph classification, we provide a new feature discrimination score
to select highly discriminative features for graph classification.
The experiments show that the proposed method significantly
improves the graph classification accuracy. In the future, we will
attempt to apply our feature reduction method in convolutional
neural networks for graph classification and then decrease the gap
between feature selection and training graph classifier. Further-
more, regarding the time complexity of clustering subtree pattern
blocks, we will attempt to design a more effective subtree pattern
blocking and merging method.

Author contribution

Initial idea of the research was from ZS. ZS, HH, JH and JSV
designed the proposed algorithm. ZS and HH implemented the
proposed algorithm and carried out the experiments. All authors
participated in analysis and manuscript preparation. All authors
read and approved the final version of the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Zhigang Sun: Conceptualization, Data curation, Formal analy-
sis, Methodology, Software, Validation, Writing - review & edit-
ing. Hongwei Huo: Conceptualization, Data curation, Formal anal-
ysis, Funding acquisition, Methodology, Supervision, Software, Val-
idation, Writing - review & editing. Jun Huan: Conceptualization,
Data curation, Formal analysis, Methodology, Validation, Writing -
review & editing. Jeffrey Scott Vitter: Conceptualization, Data cu-
ration, Formal analysis, Funding acquisition, Methodology, Valida-
tion, Writing - review & editing.

Acknowledgments

We thank to anonymous reviewer for their constructive com-
ments. We also thank to Tinghuai Ma for providing some codes
of GSR_GK_KDA_ELM. This work was supported in part by the
National Natural Science Foundation of China grants 61741215
and 61373044, and by the U.S. National Science Foundation grant
CCF-1017623.

References

[1] K.M. Borgwardt, H.P. Kriegel, Shortest-path kernels on graphs, in: Proceedings
of ICDM, 2005, pp. 74-81.

[2] KM. Borgwardt, C.S. Ong, S. Schonauer, S.V.N. Vishwanathan, AJ. Smola,
H.P. Kriegel, Protein function prediction via graph kernels, Bioinformatics 21
(1) (2005) 47-56.

[3] H. Cai, V.W. Zhang, K.C. Chang, A comprehensive survey of graph embedding:
problems, techniques, and applications, IEEE Trans. Knowl. Data Eng. 30 (9)
(2018) 1616-1637.

[4] S. Cao, W. Lu, Q. Xu, Grarep: learning graph representations with global struc-

tural information, in: Proceedings of CIKM, 2015, pp. 891-900.

C.C. Chang, C. Lin, LIBSVM: a library for support vector machines, ACM Trans.

Intell. Syst. Technol. 2 (3) (2011) 1-27.

[6] S. Chen, C.EN. Cowan, PM. Grant, Orthogonal least squares learning algo-
rithm for radial basis function networks, IEEE Trans. Neural Netw. 2 (2) (1991)
302-3009.

[7] C. Cortes, V. Vapnik, Support vector networks, Mach. Learn. 20 (3) (1995)
273-297.

[8] F. Costa, K.D. Grave, Fast neighborhood subgraph pairwise distance kernel, in:
Proceedings of ICML, 2010, pp. 255-262.

(5

[9] AK. Debnath, RLLD. Compadre, G. Debnath, AJ. Shusterman, C. Hansch,
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies and hydrophobicity,
Int. J. Med. Chem. 34 (2) (1991) 786-797.

[10] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks
on graphs with fast localized spectral filtering, in: Proceedings of NIPS, 2016,
pp. 3844-3852.

[11] M. Ester, H.P. Krigegl, J. Sander, X. Xu, A density-based algorithm for discover-
ingclusters in large spatial databases with noise, in: Proceedings of KDD, 1996,
pp. 226-231.

[12] BJ. Frey, D. Dueck, Clustering by passing messages between data points, Sci-
ence 315 (5814) (2007) 972-976.

[13] A. Grover,]. Leskovec, node2vec:scalable feature learning for networks, in: Pro-
ceedings of KDD, 2016, pp. 855-864.

[14] D. Han, Y. Hu, S. Ai, G. Wang, Uncertain graph classification based on extreme
learning machine, Cognit. Comput. 7 (3) (2015) 346-358.

[15] G. Huang, L. Chen, C.K. Siew, Universal approximation using incremental con-
structive feedforward networks with random hidden nodes, IEEE Trans. Neural
Netw. 17 (4) (2006) 879-892.

[16] G. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regres-
sion and multiclass classification, IEEE Trans. Syst. Man Cybern. 42 (2) (2011)
513-529.

[17] H. Kashima, K. Tsuda, A. Inokuchi, Marginalized kernels between labeled
graphs, in: Proceedings of ICML, 2003, pp. 321-328.

[18] N.M. Kriege, C. Morris, A. Rey, C. Sohler, A property testing frameword for
the theoretical expressivity of graph kernels, in: Proceedings of IJCAI, 2018,
pp. 2348-2354.

[19] A. Lavecchia, Machine-learning approaches in drug discovery: methods and ap-
plications, Drug Disc. Today 20 (3) (2015) 318-331.

[20] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436-444.

[21] T. Ma, W. Shao, Y. Hao, J. Cao, Graph classification based on graph set re-
construction and graph kernel feature reduction, Neurocomputing 296 (2018)
33-45.

[22] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word represen-
tations in vector space, arXiv preprint (2013). ArXiv:1301.3781.

[23] A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, S. Saminathan, subgraph2vec:
learning distributed representations of rooted sub-graphs from large graphs,
arXiv preprint (2016). ArXiv:1606.08928.

[24] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liy, S. Jaiswal,
graph2vec: learning distributed representations of graphs, arXiv preprint
(2017). ArXiv:1707.05005.

[25] L. Newman, C. Sohler, Every property of hyperfinite graphs is testable, SIAM J.
Comput. 42 (3) (2013) 1095-1112.

[26] B. Neyshabur, A. Khadem, S. Hashemifar, S.S. Arab, NETAL: a new graph-based
method for global alignment of protein-protein interaction networks, Bioinfor-
matics 29 (13) (2013) 1654-1662.

[27] S. Pan, J. Wu, X. Zhu, G. Long, C. Zhang, Finding the best not the most: reg-
ularized loss minimization subgraph selection for graph classification, Pattern
Recognit. 48 (11) (2015) 3783-3796.

[28] B. Perozzi, A. Rami, S. Skiena, Deepwalk: online learning of social representa-
tions, in: Proceedings of KDD, 2014, pp. 701-710.

[29] N. Przulj, D.G. Corneil, L. Jurisica, Modeling interactome: scale-free or geomet-
ric? Bioinformatics 20 (18) (2004) 3508-3515.

[30] R. Rehurek, P. Sojka, Software framework for topic modelling with large cor-
pora, in: Proceedings of LREC Workshop, 2010, pp. 45-50.

[31] N. Shervashidze, P. Schweitzer, EJ. Leeuwen, K. Mehlborn, K.M. Borg-
wardt,]. Mach, Weisfeiler-lehman graph kernels, Learn. Res. 12 (2011)
2539-2561.

[32] A. Smalter, J. Huan, G. Lushington, Structure-based pattern mining for chemical
compound classification, APBC, poster, 2008.

[33] A. Smalter, J. Huan, G. Lushington, Graph wavelet alignment kernels for drug
virtual screening, J. Bioinf. Comput. Biol. 7 (3) (2009) 473-497.

[34] A. Taheri, K. Gimpel, T. Berger-Wolf, Learning graph representations with re-
current neural network autoencoders, in: Proceedings of KDD Deep Learning
Day, 2018, pp. 1-8.

[35] H. Toivonen, A. Srinivasan, R.D. King, S. Kramer, C. Helma, Statistical evalua-
tion of the predictive toxicology challenge 2000-2001, Bioinformatics 19 (10)
(2003) 1183-1193.

[36] N. Wale, I.A. Watson, G. Karypis, Comparison of descriptor spaces for chemical
compound retrieval and classification, Knowl. Inf. Syst. 14 (3) (2008) 347-375.

[37] X. Yan, J. Han, gspan: graph-based substructure pattern mining, in: Proceed-
ings of ICDM, 2002, pp. 721-724.

[38] P. Yanardag, S.V.N. Vishwanathan, Deep graph kernels, in: Proceedings of
SIGKDD, 2015, pp. 1365-1374.

[39] Y. Yu, Z. Pan, G. Hu, H. Ren, Graph classification based on sparse graph feature
selection and extreme learning machine, Neurocomputing 261 (2017) 20-27.

[40] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering
method for very large databases, in: ACM Sigmod ICMD, 1996, pp. 103-114.

[41] Y. Zhu,]. Yu, H. Cheng, L. Qin, Graph classification: a diversified discriminative
feature selection approach, in: Proceedings of CIKM, 2012, pp. 205-214.

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0021
arxiv:/1301.3781
arxiv:/1606.08928
arxiv:/1707.05005
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0034
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0034
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0034
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30237-X/sbref0038

126 Z. Sun, H. Huo and J. Huan et al./ Neurocomputing 397 (2020) 114-126

Zhigang Sun received the B.S. degree from University of
Jinan in 2007, and the M.S. degree from Guilin University
of Electronic Technology in 2010. He is currently pursuing
the Ph.D. degree at Xidian University, China. His research
interests include graph classification, graph indexing and
search, design and analysis of algorithms, and compressed
indexes.

Hongwei Huo (M'00-SM’'17) received the B.S. degree in
mathematics from Northwest University, China, and the
M.S. degree in computer science and the Ph.D. degree
in electronic engineering from Xidian University. She is
currently a Professor with the Department of Computer
Science, Xidian University. Her research interests include
the design and analysis of algorithms, graph indexing and
classification, compressed data structures, external mem-
ory algorithms and compressed indexes, genome com-
pression and pattern searching, parallel and distributed
algorithms, and algorithm engineering.

Jun Huan (SM'11) received the Ph.D. degree in computer
science from the University of North Carolina. He is cur-
rently the head of the Big Data Lab at Baidu Research. He
was formerly a professor in the Department of Electrical
Engineering and Computer Science at the University
of Kansas, where he directed the Data Science and
Computational Life Sciences Laboratory. He held courtesy
appointments at the KU Bioinformatics Center, the KU
Bioengineering Program, and a visiting professorship
from GlaxoSmithKline plc. He has authored over 120
peer-reviewed papers in leading conferences and journals
and has graduated more than ten PhD students. He
works on data science, deep learning, data mining and
interdisciplinary topics including bioinformatics. He serves the editorial boards of
several international journals, including the Springer Journal of Big Data, the Else-
vier Journal of Big Data Research, and the International Journal of Data Mining and
Bioinformatics. He regularly serves the program committee of top-tier international
conferences on machine learning, data mining, big data, and bioinformatics.

Jeffrey Scott Vitter (F93) received the B.S. degree (with
highest honors) in mathematics from the University of
Notre Dame in 1977, the Ph.D. degree in computer science
from Stanford University in 1980, and an M.B.A degree
from Duke University in 2002. He is currently Distin-
guished Professor of Computer and Information Science
with the University of Mississippi, where he served as
chancellor from 2016 to 2019. From 2010 to 2015, he was
provost and executive vice chancellor and Roy A. Roberts
Distinguished Professor at the University of Kansas. From
2008 to 2010, he was on the faculty at Texas A&M Uni-
versity, where he also served as a provost and executive
vice president for academics. From 2002 to 2008, he was
the Frederick L. Hovde Dean of Science with Purdue University. From 1993 to 2002,
he held the Gilbert, Louis, and Edward Lehrman Distinguished Professorship with
Duke University, where he also served as a chair of the Department of Computer
Science and a co-director of Duke’s Center for Geometric and Biological Computing.
From 1980 to 1992, he advanced through the faculty ranks in computer science at
Brown University. He is a Fellow of the Guggenheim Foundation, National Academy
of Inventors, AAAS, ACM, and IEEE, and he is a U.S. National Science Foundation
Presidential Young Investigator and Fulbright Scholar. He has authored the book
Algorithms and Data Structures for External Memory, co-authored the books
Design and Analysis of Coalesced Hashing and Efficient Algorithms for MPEG Video
Compression, co-edited the collections External Memory Algorithms and Algorithm
Engineering, and co-holder of patents in the areas of external sorting, prediction,
and approximate data structures. His research interests span the design and
analysis of algorithms, external memory algorithms, data compression, databases,
compressed data structures, parallel algorithms, machine learning, random variate
generation, and sampling. He has received the IBM Faculty Development Award,
the ACM Recognition of Service Award (twice), and the 2009 ACM SIGMOD Test
of Time Award. He has served on several boards and professional committees. He
serves or has served on the editorial boards of Algorithmica, Communications of
the ACM, IEEE Transactions on Computers, Theory of Computing Systems, and SIAM
Journal on Computing, and has edited several special issues.

	Feature reduction based on semantic similarity for graph classification
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Neural language model

	3 Methods
	3.1 Learning vector representations for subtree patterns
	3.1.1 Building corpus for subtree patterns
	3.1.2 Learning vector representations using neural language models

	3.2 Clustering and merging semantically similar subtree patterns
	3.2.1 Clustering subtree patterns
	3.2.2 Merging semantically similar subtree patterns
	3.2.3 Influence of merging similar subtree patterns on graph classification

	3.3 Selecting highly discriminative features
	3.4 Whole algorithm

	4 Experiments
	4.1 Dataset
	4.2 Parameter evaluation
	4.3 The selection of clustering methods
	4.4 Comparison with other methods

	5 Conclusion and discussion
	Author contribution
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

