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classification methods.

Classification and recognition of graph data are crucial problems in many fields, such as bioinformatics,
chemoinformatics and data mining. In graph kernel-based classification methods, the similarity among
substructures is not fully considered; in addition, poorly discriminative substructures will affect the graph
classification accuracy. To improve the graph classification accuracy, we propose a feature reduction al-
gorithm based on semantic similarity for graph classification in this paper. In the algorithm, we first
learn vector representations of subtree patterns using neural language models and then merge semanti-
cally similar subtree patterns into a new feature. We then provide a new feature discrimination score to
select highly discriminative features. Comprehensive experiments on real datasets demonstrate that the
proposed algorithm achieves a significant improvement in classification accuracy over compared graph

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Graph is a general data structure that is widely used to model
complex objects and dependency relationships among them. Graph
classification has been an important task in graph data mining,
and it has various applications in areas such as cheminformatics,
bioinformatics and society network analysis [19,26,28]. In chem-
informatics, predicting the toxicity and bioactivity of compounds
is a classic example of graph classification, where compounds are
represented as graphs.

In most of the existing graph classification methods
[3,4,10,14,21,23,38,39,41], graphs are first decomposed into sub-
structures, such as subtrees and frequent subgraphs [37]; and
then are represented as graph feature vectors via graph embed-
ding or calculating the occurrence of substructures; finally, graph
feature vectors are used to train conventional classifiers, such as
SVM [5,7], ELM [15,16] and DNN [20]. Recently, there are also
some neural language models-based algorithms for learning the
vector representations of graphs, such as node2vec [13], graph2vec
[24], and S2S-N2N-PP [34].

Graph kernels are classic graph similarity measures in graph
classification. Graph Kkernels decompose graphs into atomic
substructures, such as graphlets, walks, shortest paths, subtree
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patterns and k-discs [1,8,17,18,29,31,33], and they define the sim-
ilarity of two graphs as the number of their common substructure
pairs. In the graphlet kernel [29], a graphlet is an induced and
non-isomorphic subgraph of five vertices or less in general. In the
shortest path kernel [17], graphs are decomposed into a series
of triples including the labels of two vertices and the length of
the shortest path between the two vertices. The random walk
kernel [1] randomly walks on two graphs and counts the number
of matching walks. The Weisfeiler-Lehman (WL) subtree ker-
nel [31] decomposes a graph into a series of subtree patterns. The
graph wavelet alignment kernel [33] obtains multiscale features
of each vertex of a graph using discrete wavelet functions, and
defines the similarity of two graphs as the sum of kernels of every
pair of aligned vertices from the graphs. Costa et al. [8] proposed
neighborhood subgraph pairwise distance kernel (NSPDK). NSPDK
defined the similarity of two graphs as the number of common k-
disc pairs within given distance. Kriege et al. [18] gave a theoretical
evaluation to the expressivity of graph kernels based on property
testing framework [25]. Kriege et al. found that several estab-
lished graph kernels cannot distinguish graph properties, such as
connectivity, planarity, bipartieness or triangle freeness, and then
proposed k-disc graph kernel which can distinguish connectivity,
planarity and triangle freeness. However, there are some literatures
[31,38] that demonstrated the validity of existing graph kernels.
However, graph kernel-based classification methods have two
limitations: (1) graph kernels regard substructures of graphs as
atomic structures and do not fully consider the similarity among
substructures; (2) the feature matrix of a graph dataset is very
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sparse, and substructures with low discrimination have an effect
on the graph classification accuracy. To overcome these limitations,
Yanardag et al. [38] proposed Deep graph kernels based on neural
language models. In the Deep graph kernels, neural language
models are used to learn vector representations of substructures,
and the similarity of substructures is defined according to the
vector representations of the substructures. subgraph2vec [23] is
another method that was proposed to learn vector representations
of rooted subgraphs using neural language models. Compared with
the Deep graph kernels, for each vertex v in a graph, subgraph2vec
viewed subgraphs rooted at neighbors of v as the context informa-
tion of the subgraph rooted at v. Yu et al. [39] proposed a sparse
graph feature selection method for graph classification. Consid-
ering the sparsity of the feature matrix of a graph dataset, they
used LASSO to select key features. Ma et al. [21] proposed a graph
classification method based on graph dataset reconstruction and
kernel feature reduction. They first reconstructed the graph dataset
by deleting subgraphs with a low discrimination score from the
graph dataset, and then they used kernel discriminant analysis
to reduce the dimension of features. Smalter et al. [32] proposed
a pattern-based highly discriminative patterns mining method
for chemical compound classification. To reduce the gap between
graph feature selection and classifier training, Pan et al. [27] pro-
posed a regularized loss minimization subgraph selection method.
This method integrated feature generation, feature selection and
graph classifier training into a unified framework and determined
the number of selected features by minimizing the loss. How-
ever, the above methods only attempt to solve one of the two
limitations.

To overcome the two above limitations, we propose a graph
feature reduction method based on semantic similarity for graph
classification in this paper. The main contributions of this paper
include the following:

(1) We propose a new corpus building method for subtree pat-
terns occurring in a graph dataset. Then we learn vector
representations for subtree patterns using neural language
models so that semantically similar subtree patterns can be
mapped to near positions in the vector space.

(2) We divide the subtree patterns into blocks according to the
Euclidean distances between vector representations of the
subtree patterns and the origin, and we apply AP clustering
to each block to merge semantically similar subtree patterns
in each cluster. In addition, we design a feature discrimina-
tion score based on feature occurrence to select highly dis-
criminative features.

(3) We train an FRS_KELM graph classifier using the highly
discriminative features. Comprehensive experiments on real
datasets show that the proposed graph classification method
achieves a significant improvement in classification accuracy
over compared graph classification methods.

The remainder of this paper is organized as follows. In
Section 2, we introduce the problem definition and neural lan-
guage models. In Section 3, we describe the subtree pattern merg-
ing method based on semantic similarity and the feature selection
method based on feature discrimination score in detail. Then, we
present the overall graph classification method. Comprehensive ex-
perimental studies are shown in Section 4. We provide concluding
remarks in Section 5.

2. Preliminaries

In this section, we provide formal definitions of subtree pat-
tern and corpus, and then we introduce neural language models.
Here, we focus on undirected vertex-labeled simple graphs, where

each vertex of the graphs has a discrete label. Specifically, a vertex-
labeled simple graph g can be denoted as a four-tuple (Vg, Eg, Xg,
A), where Vg is the set of vertices, EgCVy x Vg is the set of edges,
Xg is the set of vertex labels, and A is the mapping function from
a vertex to its label.

2.1. Problem definition

The WL subtree graph kernel is a fast graph kernel based on
WL test of isomorphism. This graph kernel decomposes graphs into
subtree patterns and defines the similarity of two graphs as the
number of their common subtree pattern pairs.

Definition 1 (Subtree Pattern ). Consider a graph g = (Vg, Eg, Zg, A)
and a vertex v € Vg. Let N(v) be the set of neighbor vertices adja-
cent to v. The i-hop subtree pattern rooted at v, i > 0, denoted as
P;(v), is recursively defined as an i-level tree: it is the root node
v for i = 0; otherwise it is a tree rooted at v, and has |N(v)| sub-
trees, whose jth subtree is an (i — 1)-hop subtree pattern rooted
at the jth entry of N(v) for 1 < j < |[N(v)|. The feature multi-
set of g consisting of all i-hop subtree patterns can be defined as

i@ = Uyey, RW).

Each iteration of the WL subtree kernel [31] maps a graph into
a label multiset, where each label in the multiset corresponds to
a subtree pattern of the graph. Given a graph g, the label multi-
set generated at the ith iteration of the WL subtree kernel exactly
equals fi(g). Therefore, we use the WL subtree kernel to obtain the
subtree pattern multiset of a graph.

Given a graph dataset G = {gq, 8>, ..., 8} and a graph g € G. Let
F:(g) be the feature multiset of g consisting of all subtree patterns
from 0-hop to t-hop occurring in g, namely, F(g) = U1!=0 fi(g). We
define the set of i-hop feature multisets of G consisting of the i-hop
feature multisets of all graphs in G as F;(G) = {fi(g;) | 1 <j <n},
and the set of F;(G) for 0 <i < t as 7(G) = {F;(G) | 0 <i <t}.

We have the following observations on the subtree patterns
that occur in a graph dataset G: subtree patterns occurring in one
graph rarely occur in other graphs. The number of subtree patterns
is proportional to the product of the number of vertices in G and
the number of WL iterations. We can transform a subtree pattern
into another by changing some vertex labels.

Definition 2 (Feature Occurrence). Given a training graph dataset
G and its label set Y, where Y ={y{,y,,...,¥n} is the set of
the class labels of graph g e G with [ distinct class labels,
and the set of graphs with the ith label is denoted as G;.
Let F:(G;) be the feature set of G;; then, the occurrence of
a feature ft in F(G;) can be defined as CNT(ft, F:(G;)) =
Yo X (gecntsj@er; G CMECft, fi(8)), where cnt(ft.fi(g)) is the
number of occurrence of ft in f;(g).

Example 1. In Fig. 1, we present an example of labeled graphs and
their subtree patterns. Fig. 1(a) and (b) are two labeled graphs g;
and g,, respectively, where the number in each vertex is its vertex
label. Fig. 1(c) and (d) are the 0-hop and 1-hop subtree patterns of
g7 and g, respectively, where the number under a subtree pattern
is its occurrence in the graph. As shown in the figures, subtree pat-
tern 6 can be transformed into subtree pattern 8 by only changing
its root node’s label.

Definition 3 (Graph Classification Problem). Given a training
graph dataset G and its label set Y, the goal of graph classifica-
tion is to learn a graph classifier using G and Y such that given a
set of testing graphs without class labels, the graph classifier can
predict the class labels of these graphs. We use graph classification
accuracy ACC to measure the graph classifier, defined as follows:

#predictions that are correct

ACC = -
#graphs in the tested graph dataset
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Fig. 1. Labeled graphs g; and g, and their subtree patterns and occurrences.

Definition 4 (Corpus ). Given a graph dataset G = {g1,£,...,8n},
a corpus Cp; built for F;(G) can be defined as a tuple (£2;, S;). Here
2; is a vocabulary that is the set of distinct subtree patterns in
fi(g) for fi(g) € F;(G), and §; is a set of word (subtree pattern) se-
quences generated from F;(G), where the jth word sequence is a
permutation of subtree patterns in fi(g;).

2.2. Neural language model

Given a corpus Cp = (£2,S), neural language models learn the
continuous vector of each word w in €2 using the context informa-
tion of w, where the context of w is defined as a fixed number of
words preceding and following w in word sequences of S. In this
section, we introduce the following two neural language models:
Continuous Bag-of-Words model and Skip-gram model [22].

Continuous Bag-of-Words (CBOW). CBOW model aims to pre-
dict the current word according to the context of the word. Given a
word sequence s € S, where s = [wy, Wo, ..., wr]. Let Wr_p, ..., W;_q
and Wg,q, ..., Wryn be the context of word we. The goal of CBOW
model is to maximize the following log-likelihood by mapping
each word in © to a continuous vector:

r
ZIOEP(WﬂWt—n, ooy W1, Wegt, o, Weyn)
t=1

exp(Pw) @' (w))
S exp@(wo)-o (wp)
Here ®(w) and ®’(w) are the input vector and output vector of
word w. ®(w;) is the average vector of the input vectors of wy's
context words.

Skip-gram model. In contrast to CBOW model, the Skim-gram
model aims to predict context words according to the current
word. Given a word sequence s € S, where s =[wq, Wy, ..., wr],
the goal of Skip-gram model is to maximize the following log-
likelihood by mapping each word in 2 to a continuous vector:

where p(We|We_n, ..., Wi 1, Wy, ..., Wegn) =

T
Z log p(Ween, -, Weet, Weyt, -, Wean [We)

t=1

where p(We—n, ..., We_1, Weyq, .
exp(P(we)-®' (W, )

> exp(@wp)- @' ()

oy Wegn|we) = [T n<j<n,jzo

3. Methods

In this section, we describe the method of learning vector rep-
resentations for subtree patterns in Section 3.1, and then we in-
troduce two feature reduction methods: subtree pattern merging
based on semantic similarity and graph feature selection based
on discrimination score in Sections 3.2 and 3.3, respectively. We
present the overall graph classification method using reduced
graph features in Section 3.4.

3.1. Learning vector representations for subtree patterns

To learn the vector representations of subtree patterns in a
graph dataset G, we build corpora for subtree patterns in G, and
then we use neural language models to learn continuous vector
representations of subtree patterns in this section.

3.1.1. Building corpus for subtree patterns

Given a graph g ¢ G, the i-th WL subtree iteration on g gener-
ates a feature multiset f;(g) that consists of all i-hop subtree pat-
terns occurring in g. If we view a subtree pattern as a word, then
subtree patterns in fi(g) can be viewed as co-occurring words. By
concatenating all subtree patterns in f;(g), we can generate a word
sequence in which a word and its context have a co-occurring re-
lationship. For any two subtree pattern multisets fj(g) and fi(g), if
i # j, then fi(g) N fj(g) = @, which means that subtree patterns
generated from different WL iterations do not have a co-occurring
relationship. Therefore, in contrast to the corpus building method
in Deep WL kernel [38], which concatenates all subtree patterns in
Fi(g) to form a word sequence and builds only one corpus for G,
we build a corpus set for G, where each corpus corresponds to a
feature set F;(G). For example, if the total number of WL iterations
on G is t, then we build a corpus set Cps = {Cpy.Cp1...., Cp;} for
G, where Cp; is the corpus built for subtree patterns generated on
the i-th WL subtree iteration on G.

Given a graph dataset G and the number of WL subtree itera-
tions t, the procedure of building a corpus set Cps for G is shown
in Algorithm 1. The algorithm iterates t + 1 times. In the i-th it-
eration, we obtain the feature set F;(G) for G using WL subtree
iteration in line 3; we then build a corpus Cp; by calling procedure
buildCp() in line 4.

In procedure buildCp, we build a corpus Cp = (£2,S) for a given
feature set F;(G). 2 consists of all distinct subtree patterns in f;(g)
for f;(g) € F;(G), as shown in line 2. In the iteration of lines 3-7,

Algorithm 1: BuildCorpus(G, t).

1Cps <~ @

2fori<0Ototdo

3 get F;(G) of G using WL subtree iteration
4 | Cp; < buildCp(F;(G))

5 | Cps < CpsuU{Cp;}

6 return Cps

procedure buildCp(F;(G))
S« o
Q « the set of distinct subtree patterns occurring in F;(G)
for each feature multiset f;(g) in F;(G) do
S« g
sort st; € f;(g) to form the ascending order list L
concatenate elements in L into a sentence s
S« Sulis}

Cp < (R,5)
9 return Cp

NSO s W N =

-
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we build the word sequence set S. For each f;(g) € F;(G), we build
a word sequence s. In line 5, we sort the elements of f;(g) to form
an ascending order list L according to their Id; then, in line 6, we
concatenate the elements of L into s.

Example 2. For a graph dataset G consisting of g; and g, in
Fig. 1, when the number of WL iterations is 1, we can build
a corpus set Cps = {Cpg,Cp,} for G, where Cpy = (£20.Sg), R =
{1,2,3}, So=1{{1,2,3,3},{1,2,3,3,3}}, and Cp; = (21,51), 1 =
{4,5,6,7,8,9}, S1 = {{4,5,6,6},{6,6,7,8,9}}.

3.1.2. Learning vector representations using neural language models

Given the corpus set Cps generated by Algorithm 1. We use the
following two neural language models realized in the Gensim li-
brary [30]: namely, CBOW model and Skip-gram model to learn
d-dimensional vector representations of subtree patterns. For each
corpus Cp; = (£2;,S;) in Cps, we can obtain a matrix ®; of size
|€2;| x d by training CBOW model or Skip-gram model on S;. The j-
th row of ®; is the vector representation of the j-th subtree pattern
st; in €;, denoted as ®;(st;). We can view the vector representa-
tion of a subtree pattern as a point in vector space. If two subtree
patterns st; € 2; and sty e €2; are semantically similar, then their
vector representations ®;(st;) and ®;(st) will be located at near
positions in vector space. Here semantic similarity of two subtree
patterns means that they have similar contexts.

3.2. Clustering and merging semantically similar subtree patterns

Because the vector representations of semantically similar
subtree patterns are mapped to near positions in vector space, we
can use the Euclidean distance between subtree patterns’ vector
representations to measure the similarity of subtree patterns.
Considering the similarity among subtree patterns, we cluster
subtree patterns using AP clustering [12], and then we merge the
subtree patterns in each cluster into a new feature.

3.2.1. Clustering subtree patterns

To guarantee good time performance, we divide subtree pat-
terns in the vocabulary of a corpus into blocks, and then we ap-
ply AP clustering on each block. The time complexity of one AP
clustering iteration is proportional to the square of the number of
subtree patterns to be clustered. Since the total number of subtree
patterns for a corpus is proportional to the number of vertices in
the associated graph dataset, if we directly apply AP clustering to
all subtree patterns without dividing the blocks, it would be too
time consuming for a large graph dataset.

We divide and cluster subtree patterns as follows: given a cor-
pus Cp; = (£2;, S;) of graph dataset G, we sort the subtree patterns
in €; in ascending order according to the Euclidean distance be-
tween their vector representations and the origin; then, we divide
the sorted subtree patterns into blocks of size B = log2 N, where
N = |Q2;|. We then apply AP clustering to each block to make simi-
lar subtree patterns in the same clusters. The time complexity of
one AP clustering iteration on a subtree pattern block is O(B?%);
thus the total time complexity of clustering all subtree patterns in
Q; is B2(N/B) = O(NB) = O(N log2 N), which is lower than the time
complexity O(N?) of applying AP clustering to €2;, where N is the
number of subtree patterns in €2; and N/B is the number of subtree
pattern blocks.

In the following, we introduce the similarity matrix M and pref-
erence parameter pref used in AP clustering. Given a subtree pat-
tern block of €2;, the similarity matrix M can be defined as a matrix
of size B x B, where M = —||®;(st;) — ®;(sty) 2. Here, st; is the j-
th subtree pattern in the block, ®;(st;) is the vector representation
of stj, and [|®;(st;) — ®;(sty)|l, is the Euclidean distance between
®y(st;) and D;(sty).
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| [ . \ |
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\ ~_ | ~ //
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Fig. 2. Illustration of clustering subtree patterns.

In AP clustering, the parameter pref for a data point to be clus-
tered is the preference degree that this data point is chosen as an
exemplar. This parameter influences the number of clusters in AP
clustering. Given the similarity matrix M of a subtree pattern block,
to control the number of clusters in the AP clustering result, we
define pref for all subtree patterns as follows:

pref = min(M) + B(av(M) — min(M))

where 0 < 8 < 1, min(M) is the minimum value of M, and av(M)
is the average value of M.

Example 3. Given a graph dataset G, let Q; = {sty,st, ..., styp} be
the vocabulary of the corpus Cp; built for F;(G). The 2-dimensional
vector representations @;(st;) of st; for 1 < j < 10 are shown as
points in Fig. 2. The clustering subtree patterns for block size B=5
is as follows: We first sort subtree patterns in €2; in ascending or-
der according to the Euclidean distance between their vector rep-
resentations and the origin (0, 0) to obtain the sorted sequence
[sts, sty, St3, Stq, Sty, Stg, Stg, Stg, St7, St;p]. We then divide the sorted
sequence into 2 subtree pattern blocks of size B sequentially and
then apply AP clustering to each block. The clustering result on the
first block contains 4 clusters: C; = {stq, st3}, C; = {sto}, C3 = {st4},
and C4 = {st5}. The clustering result on the second block contains 5
clusters: Cs5 = {stg}, G5 = {st7}, C; = {stg}, Cg = {stg}, Cog = {St1p}.

3.2.2. Merging semantically similar subtree patterns

We merge subtree patterns in each cluster into a new feature.
Given two graphs g; and g, suppose that there are two subtree
patterns st; and st, that meet the following conditions: (1) st; and
st, are generated from g; and g,, respectively, and (2) st; and st
locate in the same cluster. Since st; and st, are similar, st; and
sty have some contributions to the similarity of g; and g,. If we
view subtree patterns as atomic structures, then the contribution
of st; and st, to the similarity of g; and g, is zero. All subtree
patterns in a cluster can be treated as the same feature to some
degree; thus we merge subtree patterns in a cluster into a new
feature to improve the graph classification accuracy. Suppose that
there are N’ clusters in AP clustering {C;, Gy, ..., Cy}; then the total
number of merged features is N’, where the ith merged feature is
a summary of subtree patterns in the ith cluster C;. The occurrence
of the ith merged feature in a graph g is Zsteq cnt(st, F(g)).

Algorithm 2 presents the procedure for merging subtree pat-
terns, where G is a graph dataset, F;(G) is the i-hop feature set of
G, B is the size of subtree pattern blocks, 8 is a clustering param-
eter and fn is the initial Id of merged features. The workflow of
Algorithm 2 is as follows: we call buildMR() in line 1 to obtain the
merging rules of subtree patterns in F;(G), and we call merge() in
line 2 to merge subtree patterns in F;(G).
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Algorithm 2: FeatureMerge(F;(G), B, 8, fn).
1 R < buildMR(F;(G), fn)

2 F/(G) < merge(F;(G). R)

3 return F}(G)

procedure buildMR(F;(G), fn)

1R« o

2 Cp; < buildCp(F;(G))

3 learn ®; for Cp; using neural language models

4 sort st; € §2; to form the ascending orderlist L according to
the distance between ®;(st;) and the origin

5 divide L into blocks of size B

6 for each block b do

7 compute similarity matrix M of block b
8 pref < min(M) + 8 x (av(M) — min(M))
9 | Cs < APClustering(b, M, pref)
10 for each cluster c in Cs do
n r < (c, fn)
12 R < RU{r}
13 fn<~ fn+1
14 return R
procedure merge(F;(G), R)
1 ]F;(G) g
2 for each graph f;(g) in F;(G) do
3 fl@ <o

4 for each merging rule r in R do

5 insert Y ... cnt(st, fi(g))features with Id r.fn into
L fi(®

6 | Fi(G) <« F(G)U{f(®}

7 return F;(G)

g1 3 0 2 3 0 0 1 0 4 1
g2 1 1 3 1 1 3 0 1 1 2
g3 4 1 3 2 3 3 2 1 2 3
(a) Feature vectors of g1, g2, and g3
i o s i s fo fi fs Jo
g1 5 0] 3 0 0 1 0 4 1
g2 4 1 1 1 3 0 1 1 2
g3 7 1 2 3 3 2 1 2 3

(b)Features vectors after subtree patterns merging

Fig. 3. Illustration of merging subtree patterns.

In procedure buildMR, we obtain the set of merging rules of
subtree patterns for a given feature set F;(G). we divide distinct
subtree patterns occurring in F;(G) into blocks in lines 2-5. For
each iteration of lines 6-13, we obtain the merging rules of sub-
tree patterns in each block, where a merging rule (c, fin) means
that subtree patterns in the cluster ¢ are merged into a new
feature with Id fn.

In procedure merge, we convert F;(G) into a feature set F(G) by
merging subtree patterns in fj(g) for fj(g) € F;(G). In the iteration
of lines 4-5, we obtain f/(g) by merging subtree patterns in fi(g)
according to merging rules R.

Example 4. Given the subtree pattern clustering result
{C1,Gy,...,Co} shown in Example 3 and the occurrence of
subtree patterns in g;, g, and g3z shown in Fig. 3(a). The merging
of subtree patterns is described as follows: the subtree patterns
in each cluster are merged into a feature, where subtree patterns
in C; are merged into a feature denoted as f; for 1 < i < 9; the

number of occurrences of f; in a graph is the sum of the occur-
rences of subtree patterns in C; occurring in the graph. The feature
vectors of these graphs after merging subtree patterns is shown
in Fig. 3(b). For example, since C; = {stq, st3} and the occurrences
of st; and st; in g; are 3 and 2, respectively, so the number of
occurrence of feature f; in gy is 5.

For each feature set F;(G) € F:(G), we convert F;(G) into a new
feature set F;(G) by merging similar subtree patterns using Algo-
rithm 2. Thus, we can convert F;(G) into a new feature set 7/(G),
where F/(G) = {F/(G) | 0 <i <t}, Fi(G) = {fi'(2) | g€ G} and f/(g)
is the merged feature multiset of f;(g).

3.2.3. Influence of merging similar subtree patterns on graph
classification

After we apply AP to subtree patterns, each cluster consists of
similar subtree patterns. Whether two subtree patterns are in the
same cluster depends on the similarity of their vector representa-
tions learned from neural language models. We merge subtree pat-
terns in a cluster into a feature. Merging similar subtree patterns
could increase the separability of a graph data set.

Under the RBF kernel [6] metrics, the similarity of the two
graphs g and q is defined as

_lv-o)?
RBF(V,Q) =e™ 22
where V=WV, ...,Vy) and Q=1(Q1,Q,...,Q4) are d-
dimensional feature vectors of g and ¢, and ||V-QJ?=
Zﬁzl Vg — Qk)z, and o is a free parameter.

Suppose there exists a cluster composed of subtree pat-
terns st; and st;. We merge st; and st; into a feature. V and Q are
transformed into (d — 1)-dimensional feature vectors V' and Q/,
respectively, where

Vi ifl<k<iori+1<k<j
Vi=1Vi+V; ifk=i
Vi ifj<k<d-1.

Similarly, we can define Q, as that of V. Then, we have

d-1
IV -QI? =3 vy -Q)°

k=1

d-1
= > V-Q)P+ v -Q)?
k=1nk#i
d-1
= Y -Q)’+((Vi+V) - (Q+Q))?
k=1Ak#i
d-1
= > W-Q)’+Vi—-Q)+ (V- Q)
k=1Ak#i

+2(Vi-Q)(V; - Q)

d
= (Vi—Q)* +2(V; - Q) (V; - Q)

k=1
=[IV-Ql*+2(Vi - Q)(V; - Q))
After merging, the similarity of graphs g and q is

_vo2
RBF(V',Q") = e 2?

IV-QII2+20%-0)V;~Q))
=e 22z

_ Iv-q|? _ %i-w-e)
=€ 22 xe o2

| =0)v;-Q))

RBF(V,Q) x e o?
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The change of the similarity of graphs g and q after merging is
determined by the occurrences of st; and stj in V and Q.

(=) ;-Q))

If (Vi > QiAV; < Q) or (V; < QiAV; > Q;), then e o2 >
1. So the similarity of g and q increases after merging, which is
consistent with the fact that subtree patterns merging can reduce
the difference of g and q on occurrences of st; and st; in this case.

Vi-Q)v;-Q))

If V;=Q; or V; =Qj, then e o2 = 1. So the similarity
of g and q does not change after merging, which is consistent with
the fact that subtree patterns merging has no impact on the differ-
ence of g and g on occurrences of st; and st; in this case.

B (V,'—Q,')(Vj—Qj)

If (Vi > QiAV; > Q) or (V; < QiAV; < Q)), then e o2 <
1. So the similarity of g and q decreases after merging, which is
consistent with the fact that subtree patterns merging can enlarge
the difference of g and q on occurrences of st; and st; in this case.

Thus it can be seen that the feature vectors of graphs after
merging are more accurate for representing graphs. This could in-
crease the separability among graphs and result in an improve-
ment on graph classification accuracy.

We use an example below to discuss the influence of occurring
frequency of st; and st; on distance changes among graphs after
subtree patterns merging.

Example 5. Fig. 3 gives an example of merging subtree patterns.
Fig. 3(a) shows the 10-dimensional feature vectors of graphs g;, g
and g3. Fig. 3(b) shows the resulting 9-dimensional feature vectors
after subtree pattern merging, where st; and st; are merged into a
feature f;.

As can be seen in Fig. 3, before merging st; and st3, the sim-
ilarity of g; and g, is efr}%, the similarity of g; and g3 is ele%,
and the similarity of g, and g3 is e_%. After merging st; and sts,
the similarity of g; and g, is efz%, which is larger than that before
merging. The similarity of g; and g3 is ef%, which is smaller than

that before merging. The similarity of g, and g3 is 67;%, which is
the same as that before merging.

From the changes of similarity among g;, g, and g3, we can
see that the feature vectors after merging are more accurate for
representing these graphs.

3.3. Selecting highly discriminative features

To improve the graph classification accuracy, we need to se-
lect highly discriminative features for graph classification. In graph
classification, not all the features have equivalent contributions to
the graph classification. Some features have similar occurrence in
each class of the graphs. Since these features are poorly discrim-
inative, which would affect the graph classification accuracy, we
treat them as noises and filter them out.

Definition 5 (Highly Discriminative Feature). Given a training
graph dataset G and its label set Y, where Y has [ distinct class
labels in total and the set of graphs with the ith label is denoted
as G;, a highly discriminative feature of G is a feature occurring
disproportionately in different classes of graphs; that is, a highly
discriminative feature occurs frequently in one class of graphs and
occurs infrequently in the remaining classes of graphs. Given a fea-
ture ft, the discrimination of ft can be measured by its discrimina-
tion measure score(ft); the greater the discrimination score is, the
more discriminative ft will be, where score(ft) can be defined as
follows:

score(ft) = ma)i {abs(

1<i<

CNT (ft, ]:t/(Gi)) _ CNT (ft, ]-'{(G—Gi))
|Gil |G -G

With the discrimination score of each distinct feature occurring
in F/(G), we can obtain highly discriminative feature set of G via
the following steps. (1) Let U be the set of distinct features occur-
ring in F/(G), and we sort the elements of U in descending order
according to their discrimination scores. (2) For a specified param-
eter &, 0 < @ < 1, we select the top «|U| features from the sorted
U, denoted as D. 3)We update F/(G) by deleting such features ft
from f/(g) that ft  f/(g) but ft¢D for g € G and 0 < i < t. Finally,
the updated feature set 7/(G) only includes highly discriminative
features.

After merging semantically similar subtree patterns and select-
ing highly discriminative features, we can represent G as a feature
matrix W of size n x |D|, where W), = Z?:o cnt(Dy, f/(g;)). Here,
n is the number of graphs in G, D is the set of all distinct features
occurring in F](G), and cnt(Dy, f/(g;)) is the occurrence of feature
Dy in the updated f](g;). The jth row of W is denoted as W;, which
is the feature vector of graph g;. The kernel matrix K of G can be
defined as a matrix of n x n, where K;; = h(W;, W) is the kernel
of g; and gy.

3.4. Whole algorithm

Given a training graph dataset G and its label set Y, we pro-
vide the whole algorithm for learning a graph classifier FRS_KELM
in this section. FRS_KELM consists of 4 components: W, R, D and
CKelm, where W is the feature matrix of G, R is the set of subtree
pattern merging rules, D is the set of selected highly discrimina-
tive features, and CKelm is a KELM classifier. KELM [16] uses a ker-
nel function to substitute the hidden layer of ELM, and KELM has
no need for tuning the weights between the input layer and the
hidden layer. In CKelm, the number of hidden nodes is |G| and the
kernel function h can be the linear kernel, RBF kernel or polyno-
mial kernel, among others.

Algorithm 3 presents the procedure for learning FRS_KELM
and predicting class labels for graphs, where T is a set of graphs
without class labels, B is the block size of subtree patterns, 8 is
a parameter used to compute clustering preference in AP clus-
tering, and « is the ratio of selected highly discriminative fea-
tures. The workflow of Algorithm 3 is as follows: we call train
in line 1 to train a graph classifier FRS_KELM; then, for each
graph g in T, we call predict to predict the class label of q in
lines 3-4.

In the train procedure, we learn the FRS_KELM graph classifier
using training dataset G and its label set Y. In line 2, we obtain fea-
ture set F;(G) for G using WL subtree iterations. We then convert
F¢(G) into a merged feature set /(G). In each iteration of the for
loop in line 3, we convert a feature set F;(G) into F;(G) by merging
subtree patterns according to merging rules mr. In lines 8-11, we
update feature set F/(G) by deleting features that are not highly
discriminative features. In lines 12-14, we train a KELM classifier
CKelm using the kernel matrix K of G and the label set Y. The
final FRS_KELM consists of four components: the feature matrix
W, the set of subtree pattern merging rules R, the set of selected
highly discriminative features D and the KELM classifier CKelm in
line 15.

In the predict procedure, we predict the class label of a graph
q. We obtain the feature multiset Fi(q) of q using WL subtree
iterations in line 1. We then convert Fi(q) into a new feature mul-
tiset F/(q) by merging subtree patterns according to FRS_KELM.R
and deleting features not belonging to FRS_KELM.D, respectively,
in lines 2-3. Then, we compute feature vector V and kernel
vector KV for q. V is a vector of size |[FRS_KELM.D|, where V; =
cnt (FRS_KELM.D;, F/(q)); KV is a vector of size |G|, where KV; =
h(V,FRS_KELM.W;) is the kernel of q and g;, in lines 4-5. We
obtain the class label of q using FRS_KELM.CKelm and KV in
line 6.
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Algorithm 3: ClassifyGraph(G, Y, T, t, B, B, o).
1 FRS_KELM < train(G.Y,t, B, B)

2 labels < @

3 for each graph ¢q in T do

4 Ib < predict (FRS_KELM, q, t)

5 L labels < labels U {Ib}

return labels

a

procedure train(G,Y,t,B, B)
1 }—[I(G)ez,ReZ
F:(G) « the feature set generated by t WL subtree iterations
on G
3 for each feature set F;(G) in 7 (G) do
4 | mr < buildMR(F;(G), |R])
5 | Fi(G) < merge(F;(G), mr)
6
7

N

F(G) « FL(G) U{F|(G)}
R <~ Rumr

8 U < all distinct features in 7/ (G)

9 sort u; (u; € U) in descending order according to score(u;)
10 D < the top «|U| features of the ordered u;

update F/(G) by deleting features not in D from F/(G)

12 generate feature matrix W of G

13 generate kernel matrix K of G

14 train a KELM CKelm using K and Y

FRS_KELM <« (W, R, D, CKelm)

16 return FRS_KELM

procedure predict (FRS_KELM, g, t)

F(q) < the feature multiset generated by t WL subtree
iterations on q

F/(q) < merge subtree patterns in F(q) according to
FRS_KELM.R

update F/(q) by deleting features not in FRS_KELM.D from
F(q)

generate feature vector V for q

compute kernel vector KV for q

use FRS_KELM.CKelm and KV to predict the label Ib of g
return b

-
=

-
7

N —

w

N o s

4. Experiments
4.1. Dataset

To test the efficacy of the proposed graph classification method,
in the experiments, we use 4 benchmark datasets: NCI1, Mutag,
Enzymes and PTC, which are described in detail in the following.

NCI1 [36] is a dataset of chemical compounds screened for ac-
tivity against non-small-cell lung cancer;

The Mutag [9] dataset includes 188 aromatic and heteroaro-
matic nitro molecular structures; they are classified according to
whether they have a mutagenic effect on salmonella typhimurium.

Enzymes [2] is a dataset of tertiary structures of 600 enzymes
chosen from the BRENDA database, and they are categorized into 6
classes according to their function: EC1, EC2, ..., EC6.

PTC [35] is a dataset recording the carcinogenicity of com-
pounds; according to object species, PTC is further categorized into
4 datasets: PTC_FR, PTC_MR, PTC_FM and PTC_MM.

The general statistical information of each dataset is shown in
Table 1, where |G| denotes the number of graphs in a dataset;
|AV| and |AE| denote the average numbers of vertices and edges
in a dataset, respectively; |C| denotes the number of graph class
labels in a dataset; |P| and |N| denote the numbers of positive and

Table 1

Statistics information of graph datasets.
Dataset |G| |AV] |AE| |Cl |P| IN]|
NCI1 4110 29.9 323 2 2057 2053
Mutag 188 17.7 38.9 2 125 63
Enzymes 600 32.6 61.1 6 - -
PTC_MM 192 25.8 26.2 2 69 123
PTC_MR 196 26.6 27.1 2 70 126
PTC_FM 204 26.0 26.5 2 80 124
PTC_FR 204 26.4 26.9 2 63 141

negative graphs in a dataset, respectively; and ‘-’ indicates that the
dataset does not have the statistical characteristic.

All the experiments are conducted on an HP Z400 PC, with a
2.39 GHz CPU and 12 GB memory.

4.2. Parameter evaluation

In the experiments, when generating feature set %:(G) for G,
we set the total number of WL subtree iterations t =5. We use
CBOW or Skip-gram models to learn vector representations of sub-
tree patterns, where the context length is 5 or 10 and the dimen-
sion of the vector representation is d = 10. During training of the
KELM classifier, the kernel function adopts the RBF kernel, param-
eter C is chosen from {2!} for 2 < i < 8, and parameter o is chosen
from {2} for —4 <i<8.

In the following work, we study the effect of subtree pattern
block size B, clustering parameter 8 and discriminative feature se-
lection ratio o on the graph classification accuracy, where B is cho-
sen from {1000, 2000, 3000}, 8 is chosen from {0,0.1,0.2,..., 1},
and « is chosen from {0.1, 0.2, 0.3, 0.4}. For each parameter com-
bination, we perform 10-fold cross-validation on each dataset. We
repeat the experiments 10 times and report the average accuracy.

Figs. 4-7 present the graph classification accuracy of the pro-
posed method on PTC datasets with varying parameters B, 8 and
o. The experiments show the following. (1) In general, for dif-
ferent combinations of B and B, the classification accuracy for
o = 0.2 or 0.3 is higher than that for « = 0.1 or 0.4. This re-
sult occurs because an « that is too small in discriminative fea-
ture selection would lose some highly discriminative features; in
contrast, an « that is too large would select some poorly dis-
criminative features. (2) For different combinations of 8 and «,
with the increase in block size B, the classification accuracy would
have a significant improvement. This result occurs because a large
B would be capable of eliminating locality in clustering subtree
patterns.

Fig. 8 presents the classification accuracy of the proposed
method on Mutag. Because the number of distinct subtree patterns
occurring in F;(G) for 0 < i < 5 is less than 2000 for Mutag, we
only set B = 1000 or 2000. This figure shows that the classification
accuracy for B = 2000 is higher than that for B = 1000.

Fig. 9 presents the classification accuracy of the proposed
method on NCI1. This figure shows that (1) with varying «, the
classification accuracy for B = 2000 is higher than that for B =
1000 or 3000; (2) given fixed B and B, the classification improves
with increasing o.

Fig. 10 presents the classification accuracy of the proposed
method on Enzymes. This figure shows that (1) with varying o,
the classification accuracy for B = 3000 is higher than that for B =
1000 or 2000; (2) given fixed B and B, the classification improves
with increasing o.

The above experiments show that by adjusting parameters B,
B, and «, a high classification accuracy can always be obtained
on each dataset. The parameter B affects the locality problem
in clustering subtree patterns. In general, a large B is capable of
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Fig. 4. Average classification accuracy with varying parameters on PTC_FR.
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Fig. 5. Average classification accuracy with varying parameters on PTC_FM.

eliminating the locality problem such that the classification ac-
curacy is improved; however, a large B will increase the time
consumed for clustering subtree patterns. To achieve a tradeoff
between classification accuracy and time performance, we set B
as 1000, 2000 or 3000. A small 8 will increase the number of
clusters in subtree pattern clustering, thus some similar subtree
patterns cannot be clustered into the same cluster; in contrast, a
large B will place dissimilar subtree patterns into a cluster. Be-
cause the distribution of vector representations of subtree patterns
depends on each graph dataset, we tune 8 to a value between 0
and 1 for each dataset. The parameter « determines the number of
selected highly discriminative features. If o is too small, then the
selected features would lose some highly discriminative features;
if o is too large, then the selected features would include some
poorly discriminative features. Thus, we set o as a value between
0.1 and 0.4 for each dataset.

4.3. The selection of clustering methods

In this section we compare the graph classification accuracy
of FRS_KELM with different clustering methods in merging sim-
ilar subtree patterns. DBSCAN [11] is a density-based clustering
method, it views clusters as areas of high density separated by ar-
eas of low density. BIRCH [40] is a hierarchical clustering method.
It builds a Clustering Feature Tree (CF Tree) for the given data.
Then a agglomerative hierarchical clustering algorithm is applied
on CF Tree nodes to obtain the final result. In the experiments, we
use DBSCAN and BIRCH to replace AP clustering in FRS_KELM, and
get FRS_KELM_DBSCAN and FRS_KELM_BIRCH, respectively. Table 2
shows the comparison result of FRS_KELM with different clustering
methods.

Table 2 shows that generally speaking, when applying AP to
cluster subtree patterns, we can obtain better performance on
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Fig. 7. Average classification accuracy with varying parameters on PTC_MR.
Table 2 4.4. Comparison with other methods

Comparison of graph classification accuracy with different clustering methods.

Dataset FRS_KELM FRS_KELM_DBSCAN FRS_KELM_BIRCH
PTC_MM 81.57 + 1.84 65.92 + 1.91 66.15 + 1.64
PTC_MR 79.66 + 1.36 65.92 + 1.91 69.15 + 1.55
PTC_FR 81.72 + 1.28 70.11 £+ 1.11 71.40 + 1.39
PTC_FM 82.89 + 1.28 62.55 + 2.51 62.68 + 1.10
Mutag 91.47 + 1.02 93.19 + 0.76 93.47 + 091
Enzymes 65.45 + 0.91 57.33 £+ 0.82 57.03 + 1.24

graph classification accuracy over that applying DBSCAN or BIRCH.
Specifically, FRS_KELM has a significant advantage on classification
accuracy over FRS_KELM_DBSCAN and FRS_KELM_BIRCH on all but
Mutag dataset. All of the three methods have similar classifica-
tion accuracy on Mutag dataset. The main reason could be that the
distribution of vector representations of subtree patterns on Mutag
is not sensitive to the selected clustering methods.

In this section, we compare the classification accuracy of the
proposed method FRS_KELM with the following graph kernel-
based and neural language model-based methods:

WL Kernel [31]: using WL subtree kernel matrix and SVM to
classify graphs;

Deep WL [38]: using Deep WL subtree kernel matrix and SVM
to classify graphs;

GC_LASSO_ELM [39]: using LASSO to reduce the dimension of
the WL subtree kernel matrix and ELM to classify graphs;

GSR_GK_KDA_ELM [21]: using graph set reconstruction and KDA
to reduce the feature dimension of the WL shortest path kernel
matrix, and then using ELM to classify graphs; GSR_GK_KDA_ELM
only applies to graph datasets with two classes.

FRS_SVM: using our method to merge and select features and
SVM to classify graphs;
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Fig. 9. Average classification accuracy with varying parameters on NCI1.

node2vec [13] uses CBOW model to learn vector representations
of nodes in a graph; we refer to the average value of all nodes’ vec-
tor representations as the graph’s vector representation by Taheri
et al. [34] and KELM to classify graphs;

graph2vec [24] uses DBOW model to learn the vector represen-
tation of an entire graph and KELM to classify graphs.

For the WL kernel, the number of WL subtree iterations is set
as h = {2, 3, 4, 5}, and the best result on each dataset is given.
For GC_LASSO_ELM, the number of WL subtree iterations is set as
its default value of 5. For the Deep WL kernel, the number of WL
subtree iterations on Mutag, PTC and Enzymes is set as h = {2,
3, 4, 5}; the number of WL subtree iterations on NCI1 is set as h
= {2, 3} because when h > 3, Deep WL kernel throws a memory
error. For GSR_GK_KDA_ELM, the number of WL shortest path iter-
ations on Mutag, PTC and Enzymes is set as its default value of 5;
the number of WL shortest path iterations on NCI1 is set as h =2
because when h > 2, GSR_GK_KDA_ELM throws a memory error.

For FRS_KELM and FRS_SVM, the number of WL subtree itera-
tions is set as 5. The other parameters of each method are set
as their default values. Standard 10-fold cross-validation is used
to obtain the graph classification accuracy of each method. For
SVM-based classification methods, the parameter C for each fold
is independently tuned using training data from that fold. The
experiments are repeated 10 times. The comparison of the average
classification accuracy and standard deviation of each method is
shown in Table 3.

Table 3 shows that the graph classification accuracy of the
proposed methods FRS_KELM and FRS_SVM are better than that
of the other compared methods. FRS_KELM and FRS_SVM have
improvements of at least 5% in classification accuracy over the
compared methods. The improvement of FRS_KELM can be ex-
plained as follows. (1) By merging similar subtree patterns in
each cluster into a new feature, FRS_KELM could be capable of
measuring the similarity among graphs more accurately. (2) By
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Fig. 10. Average classification accuracy with varying parameters on Enzymes.
Table 3
Comparison of graph classification accuracy.
Dataset PTC_MM PTC_MR PTC_FR PTC_FM Mutag NCI1 Enzymes
FRS_KELM 81.57 + 1.84 79.66 + 1.36 81.72 + 1.20 82.89 + 1.28 91.49 + 1.02 89.18 + 0.14 65.45 + 0.91
FRS_SVM 80.05 + 1.71 78.63 + 2.72 78.60 + 2.25 79.60 + 3.02 88.78 + 1.43 88.77 + 0.14 60.13 £ 1.22
Deep WL 69.21 + 2.00 63.53 + 1.34 69.50 + 2.87 63.65 + 2.41 83.83 + 1.32 84.37 + 0.23 55.31 + 0.80
WL kernel 67.21 + 1.27 63.42 + 2.17 67.95 + 2.13 62.25 + 2.47 83.61 + 2.02 84.67 + 0.26 53.88 + 0.95
GC_LE 71.22 + 1.89 69.39 + 2.37 72.04 + 1.63 68.71 % 3.022 87.56 + 1.56 81.29 + 0.3 46.68 + 0.87
GSR_GKE 73.84 + 2.31 71.84 + 1.86 71.25 + 232 70.60 + 2.81 86.50 + 1.59 79.16 + 0.24 -
node2vec 67.37 + 0.71 64.36 + 0.21 69.16 + 0.26 67.65 + 0.93 84.44 + 0.39 62.47 + 0.23 22.27 + 0.90
graph2vec 70.78 + 1.72 64.35 + 0.30 70.71 + 1.36 70.11 + 0.78 86.17 + 1.27 84.88 + 0.22 31.03 + 1.14
* Where GC_LE stands for GC_LASSO_ELM. GSR_GKE stands for GSR_GK_KDA_ELM.
Table 4. _ - we show the total time of computing the feature matrix or ker-
Comparison of time performance for graph classification (s). nel matrix, reducing or selecting features and one 10-fold cross-
Dataset ~ PTC_.MM PTC_MR PTC_FR PTC_FM Mutag NCI1 Enzymes validation for graph classification. Note that the total time of
FRS_KELM 33.04  87.07 6404 8005 1813 42445 403.50 GSR_QI(_KDA_ELM also includes the time consumed for recon-
FRS_SVM  33.59 4935 9947 4449 1144 70428 92.32 structing graph datasets. On the small datasets, Mutag, Enzymes
Deep WL 4.49 2.66 235 455 4.42 986.22 48.72 and PTC, the time performance of FRS_KELM is worse than that of
\éch I{‘Emﬂ 3-2‘; g-gg 3‘}5 i-;g ;-Zgﬁ j;;'gf ;3:: WL kernel, Deep WL and GC_LASSO_ELM, and it is slightly worse
GSR GKE 1938 1507 2521 2534 139280 513477 - than that of GSR_GK_KDA_ELM. This result occurs because the pro-

* Where GC_LE stands for GC_LASSO_ELM. GSR_GKE stands for GSR_GK_KDA_ELM.

selecting highly discriminative features for graph classification,
FRS_KELM can filter out poorly discriminative features, which
would be noises. By comparison, the WL kernel treats subtree
patterns as atomic structures and uses all subtree patterns to
compute the kernel matrix. Although the Deep WL kernel takes
the similarity among subtree patterns into account, it uses all
subtree patterns to compute the kernel matrix. GC_LASSO_ELM
and GSR_GK_KDA_ELM reduce the dimensions of features, but they
do not consider the similarity among substructures. The random
walks used in node2vec are linear substructures while the subtree
patterns are non-linear substructures. graph2vec uses all subtree
patterns to a given hop to learn representation vector of a graph, it
does not select discriminative features. The classification accuracy
of FRS_KELM is better than that of FRS_SVM, which means that
when using KELM to classify graphs, we can obtain additional
accuracy improvements compared to using SVM.

In Table 4, we present the comparison of the time perfor-
mance of the compared methods. For each compared method,

posed method includes extra AP clustering on subtree patterns,
whose time complexity of one iteration is O(NB), where B is the
block size and N is the number of subtree patterns to be clustered.
This improves the classification accuracy at the cost of extra time
consumption. One solution to this problem is parallel processing
because the clusterings on subtree pattern blocks are independent
tasks that have no need of information interaction during cluster-
ing. On the large dataset, NCI1, the time performance of FRS_KELM
is better than that of the Deep WL kernel and GSR_GK_KDA_ELM.
The main reason can be explained as follows. In Deep WL ker-
nel, the time complexity of computing the kernel matrix is O(N%).
In GSR_GK_KDA_ELM, the time complexity of kernel discriminant
analysis is O(n3), where n is the number of graphs in the training
dataset.

5. Conclusion and discussion

In this paper, we study the problem of graph feature reduction
based on semantic similarity for graph classification. Rather than
taking substructures in graphs as atomic structures, we study the
similarity among subtree patterns in graphs using neural language
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models and merge similar subtree patterns into a new feature.
Considering the problem that poorly discriminative features affect
graph classification, we provide a new feature discrimination score
to select highly discriminative features for graph classification.
The experiments show that the proposed method significantly
improves the graph classification accuracy. In the future, we will
attempt to apply our feature reduction method in convolutional
neural networks for graph classification and then decrease the gap
between feature selection and training graph classifier. Further-
more, regarding the time complexity of clustering subtree pattern
blocks, we will attempt to design a more effective subtree pattern
blocking and merging method.
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