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a b s t r a c t 

Classification and recognition of graph data are crucial problems in many fields, such as bioinformatics, 

chemoinformatics and data mining. In graph kernel-based classification methods, the similarity among 

substructures is not fully considered; in addition, poorly discriminative substructures will affect the graph 

classification accuracy. To improve the graph classification accuracy, we propose a feature reduction al- 

gorithm based on semantic similarity for graph classification in this paper. In the algorithm, we first 

learn vector representations of subtree patterns using neural language models and then merge semanti- 

cally similar subtree patterns into a new feature. We then provide a new feature discrimination score to 

select highly discriminative features. Comprehensive experiments on real datasets demonstrate that the 

proposed algorithm achieves a significant improvement in classification accuracy over compared graph 

classification methods. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Graph is a general data structure that is widely used to model

complex objects and dependency relationships among them. Graph

classification has been an important task in graph data mining,

and it has various applications in areas such as cheminformatics,

bioinformatics and society network analysis [19,26,28] . In chem-

informatics, predicting the toxicity and bioactivity of compounds

is a classic example of graph classification, where compounds are

represented as graphs. 

In most of the existing graph classification methods

[3,4,10,14,21,23,38,39,41] , graphs are first decomposed into sub-

structures, such as subtrees and frequent subgraphs [37] ; and

then are represented as graph feature vectors via graph embed-

ding or calculating the occurrence of substructures; finally, graph

feature vectors are used to train conventional classifiers, such as

SVM [5,7] , ELM [15,16] and DNN [20] . Recently, there are also

some neural language models-based algorithms for learning the

vector representations of graphs, such as node2vec [13] , graph2vec

[24] , and S2S-N2N-PP [34] . 

Graph kernels are classic graph similarity measures in graph

classification. Graph kernels decompose graphs into atomic

substructures, such as graphlets, walks, shortest paths, subtree
∗ Corresponding author. 
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atterns and k-discs [1,8,17,18,29,31,33] , and they define the sim-

larity of two graphs as the number of their common substructure

airs. In the graphlet kernel [29] , a graphlet is an induced and

on-isomorphic subgraph of five vertices or less in general. In the

hortest path kernel [17] , graphs are decomposed into a series

f triples including the labels of two vertices and the length of

he shortest path between the two vertices. The random walk

ernel [1] randomly walks on two graphs and counts the number

f matching walks. The Weisfeiler-Lehman (WL) subtree ker-

el [31] decomposes a graph into a series of subtree patterns. The

raph wavelet alignment kernel [33] obtains multiscale features

f each vertex of a graph using discrete wavelet functions, and

efines the similarity of two graphs as the sum of kernels of every

air of aligned vertices from the graphs. Costa et al. [8] proposed

eighborhood subgraph pairwise distance kernel (NSPDK). NSPDK

efined the similarity of two graphs as the number of common k -

isc pairs within given distance. Kriege et al. [18] gave a theoretical

valuation to the expressivity of graph kernels based on property

esting framework [25] . Kriege et al. found that several estab-

ished graph kernels cannot distinguish graph properties, such as

onnectivity, planarity, bipartieness or triangle freeness, and then

roposed k -disc graph kernel which can distinguish connectivity,

lanarity and triangle freeness. However, there are some literatures

31,38] that demonstrated the validity of existing graph kernels. 

However, graph kernel-based classification methods have two

imitations: (1) graph kernels regard substructures of graphs as

tomic structures and do not fully consider the similarity among

ubstructures; (2) the feature matrix of a graph dataset is very

https://doi.org/10.1016/j.neucom.2020.02.047
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parse, and substructures with low discrimination have an effect

n the graph classification accuracy. To overcome these limitations,

anardag et al. [38] proposed Deep graph kernels based on neural

anguage models. In the Deep graph kernels, neural language

odels are used to learn vector representations of substructures,

nd the similarity of substructures is defined according to the

ector representations of the substructures. subgraph2vec [23] is

nother method that was proposed to learn vector representations

f rooted subgraphs using neural language models. Compared with

he Deep graph kernels, for each vertex v in a graph, subgraph2vec

iewed subgraphs rooted at neighbors of v as the context informa-

ion of the subgraph rooted at v . Yu et al. [39] proposed a sparse

raph feature selection method for graph classification. Consid-

ring the sparsity of the feature matrix of a graph dataset, they

sed LASSO to select key features. Ma et al. [21] proposed a graph

lassification method based on graph dataset reconstruction and

ernel feature reduction. They first reconstructed the graph dataset

y deleting subgraphs with a low discrimination score from the

raph dataset, and then they used kernel discriminant analysis

o reduce the dimension of features. Smalter et al. [32] proposed

 pattern-based highly discriminative patterns mining method

or chemical compound classification. To reduce the gap between

raph feature selection and classifier training, Pan et al. [27] pro-

osed a regularized loss minimization subgraph selection method.

his method integrated feature generation, feature selection and

raph classifier training into a unified framework and determined

he number of selected features by minimizing the loss. How-

ver, the above methods only attempt to solve one of the two

imitations. 

To overcome the two above limitations, we propose a graph

eature reduction method based on semantic similarity for graph

lassification in this paper. The main contributions of this paper

nclude the following: 

(1) We propose a new corpus building method for subtree pat-

terns occurring in a graph dataset. Then we learn vector

representations for subtree patterns using neural language

models so that semantically similar subtree patterns can be

mapped to near positions in the vector space. 

(2) We divide the subtree patterns into blocks according to the

Euclidean distances between vector representations of the

subtree patterns and the origin, and we apply AP clustering

to each block to merge semantically similar subtree patterns

in each cluster. In addition, we design a feature discrimina-

tion score based on feature occurrence to select highly dis-

criminative features. 

(3) We train an FRS_KELM graph classifier using the highly

discriminative features. Comprehensive experiments on real

datasets show that the proposed graph classification method

achieves a significant improvement in classification accuracy

over compared graph classification methods. 

The remainder of this paper is organized as follows. In

ection 2 , we introduce the problem definition and neural lan-

uage models. In Section 3 , we describe the subtree pattern merg-

ng method based on semantic similarity and the feature selection

ethod based on feature discrimination score in detail. Then, we

resent the overall graph classification method. Comprehensive ex-

erimental studies are shown in Section 4 . We provide concluding

emarks in Section 5 . 

. Preliminaries 

In this section, we provide formal definitions of subtree pat-

ern and corpus, and then we introduce neural language models.

ere, we focus on undirected vertex-labeled simple graphs, where
ach vertex of the graphs has a discrete label. Specifically, a vertex-

abeled simple graph g can be denoted as a four-tuple ( V g , E g , �g ,

), where V g is the set of vertices, E g ⊆V g × V g is the set of edges,

g is the set of vertex labels, and λ is the mapping function from

 vertex to its label. 

.1. Problem definition 

The WL subtree graph kernel is a fast graph kernel based on

L test of isomorphism. This graph kernel decomposes graphs into

ubtree patterns and defines the similarity of two graphs as the

umber of their common subtree pattern pairs. 

efinition 1 (Subtree Pattern ) . Consider a graph g = (V g , E g , �g , λ)

nd a vertex v ∈ V g . Let N ( v ) be the set of neighbor vertices adja-

ent to v . The i -hop subtree pattern rooted at v, i ≥ 0, denoted as

 i ( v ), is recursively defined as an i -level tree: it is the root node

 for i = 0 ; otherwise it is a tree rooted at v , and has | N ( v )| sub-

rees, whose j th subtree is an (i − 1) -hop subtree pattern rooted

t the j th entry of N ( v ) for 1 ≤ j ≤ | N ( v )|. The feature multi-

et of g consisting of all i -hop subtree patterns can be defined as

f i (g) = 

⋃ 

v ∈ V g P i (v ) . 

Each iteration of the WL subtree kernel [31] maps a graph into

 label multiset, where each label in the multiset corresponds to

 subtree pattern of the graph. Given a graph g , the label multi-

et generated at the i th iteration of the WL subtree kernel exactly

quals f i ( g ). Therefore, we use the WL subtree kernel to obtain the

ubtree pattern multiset of a graph. 

Given a graph dataset G = { g 1 , g 2 , . . . , g n } and a graph g ∈ G . Let

 t ( g ) be the feature multiset of g consisting of all subtree patterns

rom 0-hop to t -hop occurring in g , namely, F t (g) = 

⋃ t 
i =0 f i (g) . We

efine the set of i -hop feature multisets of G consisting of the i -hop

eature multisets of all graphs in G as F i (G ) = { f i (g j ) | 1 ≤ j ≤ n } ,
nd the set of F i (G ) for 0 ≤ i ≤ t as F t (G ) = { F i (G ) | 0 ≤ i ≤ t} . 

We have the following observations on the subtree patterns

hat occur in a graph dataset G : subtree patterns occurring in one

raph rarely occur in other graphs. The number of subtree patterns

s proportional to the product of the number of vertices in G and

he number of WL iterations. We can transform a subtree pattern

nto another by changing some vertex labels. 

efinition 2 (Feature Occurrence) . Given a training graph dataset

 and its label set Y , where Y = { y 1 , y 2 , . . . , y n } is the set of

he class labels of graph g i ∈ G with l distinct class labels,

nd the set of graphs with the i th label is denoted as G i .

et F t (G i ) be the feature set of G i ; then, the occurrence of

 feature ft in F t (G i ) can be defined as CNT ( f t , F t (G i ) ) =
 t 
j=0 

∑ 

(g∈ G i ) ∧ ( f j (g) ∈ F j (G i ) ) 
cnt( f t , f j (g) ) , where cnt ( ft , f j ( g )) is the

umber of occurrence of ft in f j ( g ). 

xample 1. In Fig. 1 , we present an example of labeled graphs and

heir subtree patterns. Fig. 1 (a) and (b) are two labeled graphs g 1 
nd g 2 , respectively, where the number in each vertex is its vertex

abel. Fig. 1 (c) and (d) are the 0-hop and 1-hop subtree patterns of

 1 and g 2 , respectively, where the number under a subtree pattern

s its occurrence in the graph. As shown in the figures, subtree pat-

ern 6 can be transformed into subtree pattern 8 by only changing

ts root node’s label. 

efinition 3 (Graph Classification Problem) . Given a training

raph dataset G and its label set Y , the goal of graph classifica-

ion is to learn a graph classifier using G and Y such that given a

et of testing graphs without class labels, the graph classifier can

redict the class labels of these graphs. We use graph classification

ccuracy ACC to measure the graph classifier, defined as follows: 

CC = 

# predictions that are correct 

# graphs in the tested graph dataset 
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Fig. 1. Labeled graphs g 1 and g 2 , and their subtree patterns and occurrences. 
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Algorithm 1: BuildCorpus ( G, t ). 

1 Cps ← ∅ 

2 for i ← 0 to t do 

3 get F i (G ) of G using WL subtree iteration 

4 Cp i ← buildCp ( F i ( G ) ) 

5 Cps ← Cps ∪ { Cp i } 
6 return Cps 

procedure buildCp ( F i (G ) ) 

1 S ← ∅ 

2 � ← the set of distinct subtree patterns occurring in F i (G ) 

3 for each feature multiset f i (g) in F i (G ) do 

4 s ← ∅ 

5 sort st j ∈ f i (g) to form the ascending order list L 

6 concatenate elements in L into a sentence s 

7 S ← S ∪ { s } 
8 Cp ← (�, S) 

9 return Cp 
Definition 4 (Corpus ) . Given a graph dataset G = { g 1 , g 2 , . . . , g n } ,
a corpus Cp i built for F i (G ) can be defined as a tuple ( �i , S i ). Here

�i is a vocabulary that is the set of distinct subtree patterns in

f i (g) for f i (g) ∈ F i (G ) , and S j is a set of word (subtree pattern) se-

quences generated from F i (G ) , where the j th word sequence is a

permutation of subtree patterns in f i (g j ) . 

2.2. Neural language model 

Given a corpus Cp = (�, S) , neural language models learn the

continuous vector of each word w in � using the context informa-

tion of w , where the context of w is defined as a fixed number of

words preceding and following w in word sequences of S . In this

section, we introduce the following two neural language models:

Continuous Bag-of-Words model and Skip-gram model [22] . 

Continuous Bag-of-Words (CBOW). CBOW model aims to pre-

dict the current word according to the context of the word. Given a

word sequence s ∈ S , where s = [ w 1 , w 2 , . . . , w T ] . Let w t−n , . . . , w t−1

and w t+1 , . . . , w t+ n be the context of word w t . The goal of CBOW

model is to maximize the following log-likelihood by mapping

each word in � to a continuous vector: 

T ∑ 

t=1 

log p(w t | w t−n , . . . , w t−1 , w t+1 , · · · , w t+ n ) 

where p(w t | w t−n , . . . , w t−1 , w t+1 , . . . , w t+ n ) = 

exp ( �( w t ) ·�
′ 
(w t )) ∑ | �| 

i =1 
exp ( �( w t ) ·�′ 

(w i ) ) 
.

Here �( w ) and �′ ( w ) are the input vector and output vector of

word w . �(w t ) is the average vector of the input vectors of w t ’s

context words. 

Skip-gram model. In contrast to CBOW model, the Skim-gram

model aims to predict context words according to the current

word. Given a word sequence s ∈ S , where s = [ w 1 , w 2 , . . . , w T ] ,

the goal of Skip-gram model is to maximize the following log-

likelihood by mapping each word in � to a continuous vector: 

T ∑ 

t=1 

log p(w t−n , . . . , w t−1 , w t+1 , . . . , w t+ n | w t ) 

where p(w t−n , . . . , w t−1 , w t+1 , . . . , w t+ n | w t ) = 

∏ 

−n ≤ j ≤n, j 	 =0 

exp (�(w t ) ·�
′ 
(w t+ j )) ∑ | �| 

exp (�(w t ) ·�′ 
( w i )) 

. 

i =1 
. Methods 

In this section, we describe the method of learning vector rep-

esentations for subtree patterns in Section 3.1 , and then we in-

roduce two feature reduction methods: subtree pattern merging

ased on semantic similarity and graph feature selection based

n discrimination score in Sections 3.2 and 3.3 , respectively. We

resent the overall graph classification method using reduced

raph features in Section 3.4 . 

.1. Learning vector representations for subtree patterns 

To learn the vector representations of subtree patterns in a

raph dataset G , we build corpora for subtree patterns in G , and

hen we use neural language models to learn continuous vector

epresentations of subtree patterns in this section. 

.1.1. Building corpus for subtree patterns 

Given a graph g ∈ G , the i -th WL subtree iteration on g gener-

tes a feature multiset f i (g) that consists of all i -hop subtree pat-

erns occurring in g . If we view a subtree pattern as a word, then

ubtree patterns in f i (g) can be viewed as co-occurring words. By

oncatenating all subtree patterns in f i (g) , we can generate a word

equence in which a word and its context have a co-occurring re-

ationship. For any two subtree pattern multisets f i ( g ) and f j (g) , if

 	 = j , then f i (g) ∩ f j (g) = ∅ , which means that subtree patterns

enerated from different WL iterations do not have a co-occurring

elationship. Therefore, in contrast to the corpus building method

n Deep WL kernel [38] , which concatenates all subtree patterns in

 t (g) to form a word sequence and builds only one corpus for G ,

e build a corpus set for G , where each corpus corresponds to a

eature set F i (G ) . For example, if the total number of WL iterations

n G is t , then we build a corpus set Cps = { Cp 0 , Cp 1 , . . . , Cp t } for

 , where Cp i is the corpus built for subtree patterns generated on

he i- th WL subtree iteration on G . 

Given a graph dataset G and the number of WL subtree itera-

ions t , the procedure of building a corpus set Cps for G is shown

n Algorithm 1 . The algorithm iterates t + 1 times. In the i- th it-

ration, we obtain the feature set F i (G ) for G using WL subtree

teration in line 3; we then build a corpus Cp i by calling procedure

uildCp() in line 4. 

In procedure buildCp , we build a corpus Cp = (�, S) for a given

eature set F i (G ) . � consists of all distinct subtree patterns in f i (g)

or f (g) ∈ F (G ) , as shown in line 2. In the iteration of lines 3–7,
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Fig. 2. Illustration of clustering subtree patterns. 
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e build the word sequence set S . For each f i (g) ∈ F i (G ) , we build

 word sequence s . In line 5, we sort the elements of f i (g) to form

n ascending order list L according to their Id; then, in line 6, we

oncatenate the elements of L into s . 

xample 2. For a graph dataset G consisting of g 1 and g 2 in

ig. 1 , when the number of WL iterations is 1, we can build

 corpus set Cps = { Cp 0 , Cp 1 } for G , where Cp 0 = (�0 , S 0 ) , �0 =
 1 , 2 , 3 } , S 0 = {{ 1 , 2 , 3 , 3 } , { 1 , 2 , 3 , 3 , 3 }} , and Cp 1 = (�1 , S 1 ) , �1 =
 4 , 5 , 6 , 7 , 8 , 9 } , S 1 = {{ 4 , 5 , 6 , 6 } , { 6 , 6 , 7 , 8 , 9 }} . 

.1.2. Learning vector representations using neural language models 

Given the corpus set Cps generated by Algorithm 1. We use the

ollowing two neural language models realized in the Gensim li-

rary [30] : namely, CBOW model and Skip-gram model to learn

 -dimensional vector representations of subtree patterns. For each

orpus Cp i = (�i , S i ) in Cps , we can obtain a matrix �i of size

 �i | × d by training CBOW model or Skip-gram model on S i . The j-

h row of �i is the vector representation of the j- th subtree pattern

t j in �i , denoted as �i ( st j ). We can view the vector representa-

ion of a subtree pattern as a point in vector space. If two subtree

atterns st j ∈ �i and st k ∈ �i are semantically similar, then their

ector representations �i ( st j ) and �i ( st k ) will be located at near

ositions in vector space. Here semantic similarity of two subtree

atterns means that they have similar contexts. 

.2. Clustering and merging semantically similar subtree patterns 

Because the vector representations of semantically similar

ubtree patterns are mapped to near positions in vector space, we

an use the Euclidean distance between subtree patterns’ vector

epresentations to measure the similarity of subtree patterns.

onsidering the similarity among subtree patterns, we cluster

ubtree patterns using AP clustering [12] , and then we merge the

ubtree patterns in each cluster into a new feature. 

.2.1. Clustering subtree patterns 

To guarantee good time performance, we divide subtree pat-

erns in the vocabulary of a corpus into blocks, and then we ap-

ly AP clustering on each block. The time complexity of one AP

lustering iteration is proportional to the square of the number of

ubtree patterns to be clustered. Since the total number of subtree

atterns for a corpus is proportional to the number of vertices in

he associated graph dataset, if we directly apply AP clustering to

ll subtree patterns without dividing the blocks, it would be too

ime consuming for a large graph dataset. 

We divide and cluster subtree patterns as follows: given a cor-

us Cp i = (�i , S i ) of graph dataset G , we sort the subtree patterns

n �i in ascending order according to the Euclidean distance be-

ween their vector representations and the origin; then, we divide

he sorted subtree patterns into blocks of size B = log 
2 

N, where

 = | �i | . We then apply AP clustering to each block to make simi-

ar subtree patterns in the same clusters. The time complexity of

ne AP clustering iteration on a subtree pattern block is O ( B 2 );

hus the total time complexity of clustering all subtree patterns in

i is B 
2 (N/B ) = O (NB ) = O (N log 

2 
N) , which is lower than the time

omplexity O ( N 

2 ) of applying AP clustering to �i , where N is the

umber of subtree patterns in �i and N / B is the number of subtree

attern blocks. 

In the following, we introduce the similarity matrix M and pref-

rence parameter pref used in AP clustering. Given a subtree pat-

ern block of �i , the similarity matrix M can be defined as a matrix

f size B × B , where M j,k = −‖ �i ( st j ) − �i ( st k ) ‖ 2 . Her e, st j is the j -

h subtree pattern in the block, �i ( st j ) is the vector representation

f st j , and ‖ �i ( st j ) − �i ( st k ) ‖ 2 is the Euclidean distance between

i ( st j ) and �i ( st k ). 
In AP clustering, the parameter pref for a data point to be clus-

ered is the preference degree that this data point is chosen as an

xemplar. This parameter influences the number of clusters in AP

lustering. Given the similarity matrix M of a subtree pattern block,

o control the number of clusters in the AP clustering result, we

efine pref for all subtree patterns as follows: 

pre f = min (M) + β( av (M) − min (M)) 

here 0 ≤ β ≤ 1, min ( M ) is the minimum value of M , and av ( M )

s the average value of M . 

xample 3. Given a graph dataset G , let �i = { st 1 , st 2 , . . . , st 10 } be

he vocabulary of the corpus Cp i built for F i (G ) . The 2-dimensional

ector representations �i ( st j ) of st j for 1 ≤ j ≤ 10 are shown as

oints in Fig. 2 . The clustering subtree patterns for block size B = 5

s as follows: We first sort subtree patterns in �i in ascending or-

er according to the Euclidean distance between their vector rep-

esentations and the origin (0, 0) to obtain the sorted sequence

 st 5 , st 2 , st 3 , st 1 , st 4 , st 6 , st 8 , st 9 , st 7 , st 10 ]. We then divide the sorted

equence into 2 subtree pattern blocks of size B sequentially and

hen apply AP clustering to each block. The clustering result on the

rst block contains 4 clusters: C 1 = { st 1 , st 3 } , C 2 = { st 2 } , C 3 = { st 4 } ,
nd C 4 = { st 5 } . The clustering result on the second block contains 5

lusters: C 5 = { st 6 } , C 6 = { st 7 } , C 7 = { st 8 } , C 8 = { st 9 } , C 9 = { st 10 } . 

.2.2. Merging semantically similar subtree patterns 

We merge subtree patterns in each cluster into a new feature.

iven two graphs g 1 and g 2 , suppose that there are two subtree

atterns st 1 and st 2 that meet the following conditions: (1) st 1 and

t 2 are generated from g 1 and g 2 , respectively, and (2) st 1 and st 2 
ocate in the same cluster. Since st 1 and st 2 are similar, st 1 and

t 2 have some contributions to the similarity of g 1 and g 2 . If we

iew subtree patterns as atomic structures, then the contribution

f st 1 and st 2 to the similarity of g 1 and g 2 is zero. All subtree

atterns in a cluster can be treated as the same feature to some

egree; thus we merge subtree patterns in a cluster into a new

eature to improve the graph classification accuracy. Suppose that

here are N 

′ clusters in AP clustering { C 1 , C 2 , . . . , C N ′ } ; then the total

umber of merged features is N 

′ , where the i th merged feature is

 summary of subtree patterns in the i th cluster C i . The occurrence

f the i th merged feature in a graph g is 
∑ 

st ∈ C i cnt ( st , F t (g) ) . 

Algorithm 2 presents the procedure for merging subtree pat-

erns, where G is a graph dataset, F i (G ) is the i -hop feature set of

, B is the size of subtree pattern blocks, β is a clustering param-

ter and fn is the initial Id of merged features. The workflow of

lgorithm 2 is as follows: we call buildMR () in line 1 to obtain the

erging rules of subtree patterns in F i (G ) , and we call merge () in

ine 2 to merge subtree patterns in F (G ) . 
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Algorithm 2: F eatureMerge (F i (G ) , B, β, f n ) . 

1 R ← buildMR (F i (G ) , f n ) 

2 F 

′ 
i 
(G ) ← merge (F i (G ) , R ) 

3 return F 

′ 
i 
(G ) 

procedure buildMR (F i (G ) , f n ) 

1 R ← ∅ 

2 Cp i ← buildCp (F i (G ) ) 

3 learn �i for Cp i using neural language models 

4 sort st j ∈ Ωi to form the ascending orderlist L according to 

the distance between �i ( st j ) and the origin 

5 divide L into blocks of size B 

6 for each block b do 

7 compute similarity matrix M of block b 

8 pre f ← min (M) + β × ( av (M) − min (M)) 

9 Cs ← AP C lust ering (b, M, pre f ) 

10 for each cluster c in Cs do 

11 r ← (c, f n ) 

12 R ← R ∪ { r} 
13 f n ← f n + 1 

14 return R 

procedure merge (F i (G ) , R ) 

1 F 

′ 
i 
(G ) ← ∅ 

2 for each graph f i (g) in F i (G ) do 

3 f ′ 
i 
(g) ← ∅ 

4 for each merging rule r in R do 

5 insert 
∑ 

st ∈ r.c cnt ( st , f i (g) ) features with Id r. f n into 

f ′ 
i 
(g) 

6 F 

′ 
i 
(G ) ← F 

′ 
i 
(G ) ∪ { f ′ 

i 
(g) } 

7 return F 

′ 
i 
(G ) 

Fig. 3. Illustration of merging subtree patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

r  

v  

i  

o  

o

 

f  

r  

w  

i

3

c

 

s  

s  

t  

t  

c

 

g

R

w  

d  ∑
 

t  

t  

r

V

S

‖

R

In procedure buildMR , we obtain the set of merging rules of

subtree patterns for a given feature set F i (G ) . we divide distinct

subtree patterns occurring in F i (G ) into blocks in lines 2–5. For

each iteration of lines 6–13, we obtain the merging rules of sub-

tree patterns in each block, where a merging rule ( c, fn ) means

that subtree patterns in the cluster c are merged into a new

feature with Id fn . 

In procedure merge , we convert F i (G ) into a feature set F 

′ 
i 
(G ) by

merging subtree patterns in f i ( g ) for f i (g) ∈ F i (G ) . In the iteration

of lines 4–5, we obtain f ′ 
i 
(g) by merging subtree patterns in f i ( g )

according to merging rules R . 

Example 4. Given the subtree pattern clustering result

{ C 1 , C 2 , . . . , C 9 } shown in Example 3 and the occurrence of

subtree patterns in g 1 , g 2 and g 3 shown in Fig. 3 (a). The merging

of subtree patterns is described as follows: the subtree patterns

in each cluster are merged into a feature, where subtree patterns

in C are merged into a feature denoted as f for 1 ≤ i ≤ 9; the
i i 
umber of occurrences of f i in a graph is the sum of the occur-

ences of subtree patterns in C i occurring in the graph. The feature

ectors of these graphs after merging subtree patterns is shown

n Fig. 3 (b). For example, since C 1 = { st 1 , st 3 } and the occurrences

f st 1 and st 3 in g 1 are 3 and 2, respectively, so the number of

ccurrence of feature f 1 in g 1 is 5. 

For each feature set F i (G ) ∈ F t (G ) , we convert F i (G ) into a new

eature set F 

′ 
i 
(G ) by merging similar subtree patterns using Algo-

ithm 2. Thus, we can convert F t (G ) into a new feature set F 

′ 
t (G ) ,

here F 

′ 
t (G ) = { F 

′ 
i 
(G ) | 0 ≤ i ≤ t} , F 

′ 
i 
(G ) = { f i ′ (g) | g ∈ G } and f i 

′ ( g )
s the merged feature multiset of f i ( g ). 

.2.3. Influence of merging similar subtree patterns on graph 

lassification 

After we apply AP to subtree patterns, each cluster consists of

imilar subtree patterns. Whether two subtree patterns are in the

ame cluster depends on the similarity of their vector representa-

ions learned from neural language models. We merge subtree pat-

erns in a cluster into a feature. Merging similar subtree patterns

ould increase the separability of a graph data set. 

Under the RBF kernel [6] metrics, the similarity of the two

raphs g and q is defined as 

BF (V, Q ) = e −
‖ V−Q‖ 2 

2 σ2 

here V = (V 1 , V 2 , . . . , V d ) and Q = (Q 1 , Q 2 , . . . , Q d ) are d -

imensional feature vectors of g and q , and ‖ V − Q‖ 2 =
 d 
k =1 (V k − Q k ) 

2 
, and σ is a free parameter. 

Suppose there exists a cluster composed of subtree pat-

erns st i and st j . We merge st i and st j into a feature. V and Q are

ransformed into (d − 1) -dimensional feature vectors V 

′ and Q 

′ ,
espectively, where 

 

′ 
k = 

⎧ ⎨ 

⎩ 

V k if 1 ≤ k < i or i + 1 ≤ k < j ;
V i + V j if k = i ;
V k +1 if j ≤ k ≤ d − 1 . 

imilarly, we can define Q 

′ 
k 

as that of V ′ 
k 
. Then, we have 

 V 

′ − Q 

′ ‖ 

2 = 

d−1 ∑ 

k =1 

(V 

′ 
k − Q 

′ 
k ) 

2 

= 

d−1 ∑ 

k =1 ∧ k 	 = i 
(V 

′ 
k − Q 

′ 
k ) 

2 + (V 

′ 
i − Q 

′ 
i ) 

2 

= 

d−1 ∑ 

k =1 ∧ k 	 = i 
(V 

′ 
k − Q 

′ 
k ) 

2 + ((V i + V j ) − (Q i + Q j )) 
2 

= 

d−1 ∑ 

k =1 ∧ k 	 = i 
(V 

′ 
k − Q 

′ 
k ) 

2 + (V i − Q i ) 
2 + (V j − Q j ) 

2 

+ 2(V i − Q i )(V j − Q j ) 

= 

d ∑ 

k =1 

(V k − Q k ) 
2 + 2(V i − Q i )(V j − Q j ) 

= ‖ V − Q‖ 

2 + 2(V i − Q i )(V j − Q j ) 

After merging, the similarity of graphs g and q is 

BF (V 

′ , Q 

′ ) = e −
‖ V ′ −Q ′ ‖ 2 

2 σ2 

= e −
‖ V−Q‖ 2 +2(V i −Q i )(V j −Q j ) 

2 σ2 

= e −
‖ V−Q‖ 2 

2 σ2 × e −
(V i −Q i )(V j −Q j ) 

σ2 

= RBF (V, Q ) × e −
(V i −Q i )(V j −Q j ) 

σ2 
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The change of the similarity of graphs g and q after merging is

etermined by the occurrences of st i and st j in V and Q . 

If ( V i > Q i ∧ V j < Q j ) or ( V i < Q i ∧ V j > Q j ), then e 
− (V i −Q i )(V j −Q j ) 

σ2 >

 . So the similarity of g and q increases after merging, which is

onsistent with the fact that subtree patterns merging can reduce

he difference of g and q on occurrences of st i and st j in this case. 

If V i = Q i or V j = Q j , then e 
− (V i −Q i )(V j −Q j ) 

σ2 = 1 . So the similarity

f g and q does not change after merging, which is consistent with

he fact that subtree patterns merging has no impact on the differ-

nce of g and q on occurrences of st i and st j in this case. 

If ( V i > Q i ∧ V j > Q j ) or ( V i < Q i ∧ V j < Q j ), then e 
− (V i −Q i )(V j −Q j ) 

σ2 <

 . So the similarity of g and q decreases after merging, which is

onsistent with the fact that subtree patterns merging can enlarge

he difference of g and q on occurrences of st i and st j in this case. 

Thus it can be seen that the feature vectors of graphs after

erging are more accurate for representing graphs. This could in-

rease the separability among graphs and result in an improve-

ent on graph classification accuracy. 

We use an example below to discuss the influence of occurring

requency of st i and st j on distance changes among graphs after

ubtree patterns merging. 

xample 5. Fig. 3 gives an example of merging subtree patterns.

ig. 3 (a) shows the 10-dimensional feature vectors of graphs g 1 , g 2 
nd g 3 . Fig. 3 (b) shows the resulting 9-dimensional feature vectors

fter subtree pattern merging, where st 1 and st 3 are merged into a

eature f 1 . 

As can be seen in Fig. 3 , before merging st 1 and st 3 , the sim-

larity of g 1 and g 2 is e 
− 16 

σ2 , the similarity of g 1 and g 3 is e 
− 16 

σ2 ,

nd the similarity of g 2 and g 3 is e 
− 10 

σ2 . After merging st 1 and st 3 ,

he similarity of g 1 and g 2 is e 
− 14 

σ2 , which is larger than that before

erging. The similarity of g 1 and g 3 is e 
− 17 

σ2 , which is smaller than

hat before merging. The similarity of g 2 and g 3 is e 
− 10 

σ2 , which is

he same as that before merging. 

From the changes of similarity among g 1 , g 2 , and g 3 , we can

ee that the feature vectors after merging are more accurate for

epresenting these graphs. 

.3. Selecting highly discriminative features 

To improve the graph classification accuracy, we need to se-

ect highly discriminative features for graph classification. In graph

lassification, not all the features have equivalent contributions to

he graph classification. Some features have similar occurrence in

ach class of the graphs. Since these features are poorly discrim-

native, which would affect the graph classification accuracy, we

reat them as noises and filter them out. 

efinition 5 (Highly Discriminative Feature) . Given a training

raph dataset G and its label set Y , where Y has l distinct class

abels in total and the set of graphs with the i th label is denoted

s G i , a highly discriminative feature of G is a feature occurring

isproportionately in different classes of graphs; that is, a highly

iscriminative feature occurs frequently in one class of graphs and

ccurs infrequently in the remaining classes of graphs. Given a fea-

ure ft , the discrimination of ft can be measured by its discrimina-

ion measure score ( ft ); the greater the discrimination score is, the

ore discriminative ft will be, where score ( ft ) can be defined as

ollows: 

core ( f t ) = max 
1 ≤i ≤l 

{
abs 

(
CNT ( f t , F 

′ 
t (G i ) ) 

| G i | − CNT ( f t , F 

′ 
t (G − G i ) ) 

| G − G i | 
)}
With the discrimination score of each distinct feature occurring

n F 

′ 
t (G ) , we can obtain highly discriminative feature set of G via

he following steps. (1) Let U be the set of distinct features occur-

ing in F 

′ 
t (G ) , and we sort the elements of U in descending order

ccording to their discrimination scores. (2) For a specified param-

ter α, 0 < α ≤ 1, we select the top α| U | features from the sorted

 , denoted as D . 3)We update F 

′ 
t (G ) by deleting such features ft

rom f ′ 
i 
(g) that f t ∈ f ′ 

i 
(g) but ft 	∈ D for g ∈ G and 0 ≤ i ≤ t . Finally,

he updated feature set F 

′ 
t (G ) only includes highly discriminative

eatures. 

After merging semantically similar subtree patterns and select-

ng highly discriminative features, we can represent G as a feature

atrix W of size n × | D |, where W j,k = 

∑ t 
i =0 cnt ( D k , f 

′ 
i 
(g j ) ) . Here,

 is the number of graphs in G, D is the set of all distinct features

ccurring in F 

′ 
i 
(G ) , and cnt ( D k , f 

′ 
i 
( g j ) ) is the occurrence of feature

 k in the updated f ′ 
i 
( g j ) . The j th row of W is denoted as W j , which

s the feature vector of graph g j . The kernel matrix K of G can be

efined as a matrix of n × n , where K j,k = h ( W j , W k ) is the kernel

f g j and g k . 

.4. Whole algorithm 

Given a training graph dataset G and its label set Y , we pro-

ide the whole algorithm for learning a graph classifier FRS _ KELM

n this section. FRS _ KELM consists of 4 components: W, R, D and

Kelm , where W is the feature matrix of G, R is the set of subtree

attern merging rules, D is the set of selected highly discrimina-

ive features, and CKelm is a KELM classifier. KELM [16] uses a ker-

el function to substitute the hidden layer of ELM, and KELM has

o need for tuning the weights between the input layer and the

idden layer. In CKelm , the number of hidden nodes is | G | and the

ernel function h can be the linear kernel, RBF kernel or polyno-

ial kernel, among others. 

Algorithm 3 presents the procedure for learning FRS _ KELM

nd predicting class labels for graphs, where T is a set of graphs

ithout class labels, B is the block size of subtree patterns, β is

 parameter used to compute clustering preference in AP clus-

ering, and α is the ratio of selected highly discriminative fea-

ures. The workflow of Algorithm 3 is as follows: we call train

n line 1 to train a graph classifier FRS _ KELM ; then, for each

raph q in T , we call predict to predict the class label of q in

ines 3–4. 

In the train procedure, we learn the FRS _ KELM graph classifier

sing training dataset G and its label set Y . In line 2, we obtain fea-

ure set F t (G ) for G using WL subtree iterations. We then convert

 t (G ) into a merged feature set F 

′ 
t (G ) . In each iteration of the for

oop in line 3, we convert a feature set F i (G ) into F 

′ 
i 
(G ) by merging

ubtree patterns according to merging rules mr . In lines 8–11, we

pdate feature set F 

′ 
t (G ) by deleting features that are not highly

iscriminative features. In lines 12–14, we train a KELM classifier

Kelm using the kernel matrix K of G and the label set Y . The

nal FRS _ KELM consists of four components: the feature matrix

 , the set of subtree pattern merging rules R , the set of selected

ighly discriminative features D and the KELM classifier CKelm in

ine 15. 

In the predict procedure, we predict the class label of a graph

 . We obtain the feature multiset F t ( q ) of q using WL subtree

terations in line 1. We then convert F t ( q ) into a new feature mul-

iset F ′ t (q ) by merging subtree patterns according to FRS _ KELM .R

nd deleting features not belonging to FRS _ KELM .D, respectively,

n lines 2–3. Then, we compute feature vector V and kernel

ector KV for q. V is a vector of size | FRS _ KELM .D | , where V i =
nt ( FRS _ KELM .D i , F 

′ 
t (q ) ) ; KV is a vector of size | G |, where KV j =

 (V, FRS _ KELM .W j ) is the kernel of q and g j , in lines 4–5. We

btain the class label of q using FRS _ KELM . CKelm and KV in

ine 6. 
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Algorithm 3: ClassifyGraph ( G, Y, T, t, B, β , α). 

1 FRS _ KELM ← train (G, Y, t, B, β) 

2 l abel s ← ∅ 

3 for each graph q in T do 

4 lb ← predict ( FRS _ KELM , q, t) 

5 l abel s ← l abel s ∪ { lb } 
6 return l abel s 

procedure train (G, Y, t, B, β) 

1 F 

′ 
t (G ) ← ∅ , R ← ∅ 

2 F t (G ) ← the feature set generated by t WL subtree iterations 

on G 

3 for each feature set F i (G ) in F t (G ) do 

4 mr ← buildMR (F i (G ) , | R | ) 
5 F 

′ 
i 
(G ) ← merge (F i (G ) , mr) 

6 F 

′ 
t (G ) ← F 

′ 
t (G ) ∪ { F 

′ 
i 
(G ) } 

7 R ← R ∪ mr 

8 U ← all distinct features in F 

′ 
t (G ) 

9 sort u i ( u i ∈ U) in descending order according to score (u i ) 

10 D ← the top α| U| features of the ordered u i 
11 update F 

′ 
t (G ) by deleting features not in D from F 

′ 
t (G ) 

12 generate feature matrix W of G 

13 generate kernel matrix K of G 

14 train a KELM CKelm using K and Y 

15 FRS _ KELM ← (W, R, D, CKelm ) 

16 return FRS _ KELM 

procedure predict ( FRS _ KELM , q, t) 

1 F t (q ) ← the feature multiset generated by t WL subtree 

iterations on q 

2 F ′ t (q ) ← merge subtree patterns in F t (q ) according to 

FRS _ KELM .R 

3 update F ′ t (q ) by deleting features not in FRS _ KELM .D from 

F ′ t (q ) 

4 generate feature vector V for q 

5 compute kernel vector KV for q 

6 use FRS _ KELM . CKelm and KV to predict the label lb of q 

7 return lb 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Statistics information of graph datasets. 

Dataset | G | | AV | | AE | | C | | P | | N | 

NCI1 4110 29.9 32.3 2 2057 2053 

Mutag 188 17.7 38.9 2 125 63 

Enzymes 600 32.6 61.1 6 – –

PTC_MM 192 25.8 26.2 2 69 123 

PTC_MR 196 26.6 27.1 2 70 126 

PTC_FM 204 26.0 26.5 2 80 124 

PTC_FR 204 26.4 26.9 2 63 141 
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4. Experiments 

4.1. Dataset 

To test the efficacy of the proposed graph classification method,

in the experiments, we use 4 benchmark datasets: NCI1, Mutag,

Enzymes and PTC, which are described in detail in the following. 

NCI1 [36] is a dataset of chemical compounds screened for ac-

tivity against non-small-cell lung cancer; 

The Mutag [9] dataset includes 188 aromatic and heteroaro-

matic nitro molecular structures; they are classified according to

whether they have a mutagenic effect on salmonella typhimurium.

Enzymes [2] is a dataset of tertiary structures of 600 enzymes

chosen from the BRENDA database, and they are categorized into 6

classes according to their function: EC1, EC2, . . . , EC6. 

PTC [35] is a dataset recording the carcinogenicity of com-

pounds; according to object species, PTC is further categorized into

4 datasets: PTC_FR, PTC_MR, PTC_FM and PTC_MM. 

The general statistical information of each dataset is shown in

Table 1 , where | G | denotes the number of graphs in a dataset;

| AV | and | AE | denote the average numbers of vertices and edges

in a dataset, respectively; | C | denotes the number of graph class

labels in a dataset; | P | and | N | denote the numbers of positive and
egative graphs in a dataset, respectively; and ‘–’ indicates that the

ataset does not have the statistical characteristic. 

All the experiments are conducted on an HP Z400 PC, with a

.39 GHz CPU and 12 GB memory. 

.2. Parameter evaluation 

In the experiments, when generating feature set F t (G ) for G ,

e set the total number of WL subtree iterations t = 5 . We use

BOW or Skip-gram models to learn vector representations of sub-

ree patterns, where the context length is 5 or 10 and the dimen-

ion of the vector representation is d = 10 . During training of the

ELM classifier, the kernel function adopts the RBF kernel, param-

ter C is chosen from {2 i } for 2 ≤ i ≤ 8, and parameter σ is chosen

rom {2 i } for −4 ≤ i ≤ 8 . 

In the following work, we study the effect of subtree pattern

lock size B , clustering parameter β and discriminative feature se-

ection ratio α on the graph classification accuracy, where B is cho-

en from {10 0 0, 20 0 0, 30 0 0}, β is chosen from { 0 , 0 . 1 , 0 . 2 , . . . , 1 } ,
nd α is chosen from {0.1, 0.2, 0.3, 0.4}. For each parameter com-

ination, we perform 10-fold cross-validation on each dataset. We

epeat the experiments 10 times and report the average accuracy. 

Figs. 4–7 present the graph classification accuracy of the pro-

osed method on PTC datasets with varying parameters B, β and

. The experiments show the following. (1) In general, for dif-

erent combinations of B and β , the classification accuracy for

= 0.2 or 0.3 is higher than that for α = 0.1 or 0.4. This re-

ult occurs because an α that is too small in discriminative fea-

ure selection would lose some highly discriminative features; in

ontrast, an α that is too large would select some poorly dis-

riminative features. (2) For different combinations of β and α,

ith the increase in block size B , the classification accuracy would

ave a significant improvement. This result occurs because a large

 would be capable of eliminating locality in clustering subtree

atterns. 

Fig. 8 presents the classification accuracy of the proposed

ethod on Mutag. Because the number of distinct subtree patterns

ccurring in F i (G ) for 0 ≤ i ≤ 5 is less than 20 0 0 for Mutag, we

nly set B = 10 0 0 or 20 0 0. This figure shows that the classification

ccuracy for B = 20 0 0 is higher than that for B = 10 0 0 . 

Fig. 9 presents the classification accuracy of the proposed

ethod on NCI1. This figure shows that (1) with varying α, the

lassification accuracy for B = 20 0 0 is higher than that for B =
0 0 0 or 30 0 0; (2) given fixed B and β , the classification improves

ith increasing α. 

Fig. 10 presents the classification accuracy of the proposed

ethod on Enzymes. This figure shows that (1) with varying α,

he classification accuracy for B = 30 0 0 is higher than that for B =
0 0 0 or 20 0 0; (2) given fixed B and β , the classification improves

ith increasing α. 

The above experiments show that by adjusting parameters B,

, and α, a high classification accuracy can always be obtained

n each dataset. The parameter B affects the locality problem

n clustering subtree patterns. In general, a large B is capable of
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Fig. 4. Average classification accuracy with varying parameters on PTC_FR. 

Fig. 5. Average classification accuracy with varying parameters on PTC_FM. 
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liminating the locality problem such that the classification ac-

uracy is improved; however, a large B will increase the time

onsumed for clustering subtree patterns. To achieve a tradeoff

etween classification accuracy and time performance, we set B

s 10 0 0, 20 0 0 or 30 0 0. A small β will increase the number of

lusters in subtree pattern clustering, thus some similar subtree

atterns cannot be clustered into the same cluster; in contrast, a

arge β will place dissimilar subtree patterns into a cluster. Be-

ause the distribution of vector representations of subtree patterns

epends on each graph dataset, we tune β to a value between 0

nd 1 for each dataset. The parameter α determines the number of

elected highly discriminative features. If α is too small, then the

elected features would lose some highly discriminative features;

f α is too large, then the selected features would include some

oorly discriminative features. Thus, we set α as a value between

.1 and 0.4 for each dataset. 
.3. The selection of clustering methods 

In this section we compare the graph classification accuracy

f FRS _ KELM with different clustering methods in merging sim-

lar subtree patterns. DBSCAN [11] is a density-based clustering

ethod, it views clusters as areas of high density separated by ar-

as of low density. BIRCH [40] is a hierarchical clustering method.

t builds a Clustering Feature Tree (CF Tree) for the given data.

hen a agglomerative hierarchical clustering algorithm is applied

n CF Tree nodes to obtain the final result. In the experiments, we

se DBSCAN and BIRCH to replace AP clustering in FRS _ KELM , and

et FRS _ KELM _ DBSCAN and FRS _ KELM _ BIRCH , respectively. Table 2

hows the comparison result of FRS _ KELM with different clustering

ethods. 

Table 2 shows that generally speaking, when applying AP to

luster subtree patterns, we can obtain better performance on
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Fig. 6. Average classification accuracy with varying parameters on PTC_MM. 

Fig. 7. Average classification accuracy with varying parameters on PTC_MR. 

Table 2 

Comparison of graph classification accuracy with different clustering methods. 

Dataset FRS _ KELM FRS _ KELM _ DBSCAN FRS _ KELM _ BIRCH 

PTC _ MM 81.57 ± 1.84 65.92 ± 1.91 66.15 ± 1.64 

PTC _ MR 79.66 ± 1.36 65.92 ± 1.91 69.15 ± 1.55 

PTC _ FR 81.72 ± 1.28 70.11 ± 1.11 71.40 ± 1.39 

PTC _ FM 82.89 ± 1.28 62.55 ± 2.51 62.68 ± 1.10 

Mutag 91.47 ± 1.02 93.19 ± 0.76 93.47 ± 0.91 

Enzymes 65.45 ± 0.91 57.33 ± 0.82 57.03 ± 1.24 
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graph classification accuracy over that applying DBSCAN or BIRCH.

Specifically, FRS _ KELM has a significant advantage on classification

accuracy over FRS _ KELM _ DBSCAN and FRS _ KELM _ BIRCH on all but

Mutag dataset. All of the three methods have similar classifica-

tion accuracy on Mutag dataset. The main reason could be that the

distribution of vector representations of subtree patterns on Mutag

is not sensitive to the selected clustering methods. 
.4. Comparison with other methods 

In this section, we compare the classification accuracy of the

roposed method FRS_KELM with the following graph kernel-

ased and neural language model-based methods: 

WL Kernel [31] : using WL subtree kernel matrix and SVM to

lassify graphs; 

Deep WL [38] : using Deep WL subtree kernel matrix and SVM

o classify graphs; 

GC_LASSO_ELM [39] : using LASSO to reduce the dimension of

he WL subtree kernel matrix and ELM to classify graphs; 

GSR_GK_KDA_ELM [21] : using graph set reconstruction and KDA

o reduce the feature dimension of the WL shortest path kernel

atrix, and then using ELM to classify graphs; GSR_GK_KDA_ELM

nly applies to graph datasets with two classes. 

FRS_SVM: using our method to merge and select features and

VM to classify graphs; 
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Fig. 8. Average classification accuracy with varying parameters on Mutag. 

Fig. 9. Average classification accuracy with varying parameters on NCI1. 
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node2vec [13] uses CBOW model to learn vector representations

f nodes in a graph; we refer to the average value of all nodes’ vec-

or representations as the graph’s vector representation by Taheri

t al. [34] and KELM to classify graphs; 

graph2vec [24] uses DBOW model to learn the vector represen-

ation of an entire graph and KELM to classify graphs. 

For the WL kernel, the number of WL subtree iterations is set

s h = {2, 3, 4, 5}, and the best result on each dataset is given.

or GC _ LASSO _ ELM , the number of WL subtree iterations is set as

ts default value of 5. For the Deep WL kernel, the number of WL

ubtree iterations on Mutag, PTC and Enzymes is set as h = {2,

, 4, 5}; the number of WL subtree iterations on NCI1 is set as h

 {2, 3} because when h > 3, Deep WL kernel throws a memory

rror. For GSR _ GK _ KDA _ ELM , the number of WL shortest path iter-

tions on Mutag, PTC and Enzymes is set as its default value of 5;

he number of WL shortest path iterations on NCI1 is set as h = 2

ecause when h > 2, GSR _ GK _ KDA _ ELM throws a memory error.
or FRS _ KELM and FRS _ SVM , the number of WL subtree itera-

ions is set as 5. The other parameters of each method are set

s their default values. Standard 10-fold cross-validation is used

o obtain the graph classification accuracy of each method. For

VM-based classification methods, the parameter C for each fold

s independently tuned using training data from that fold. The

xperiments are repeated 10 times. The comparison of the average

lassification accuracy and standard deviation of each method is

hown in Table 3 . 

Table 3 shows that the graph classification accuracy of the

roposed methods FRS _ KELM and FRS _ SVM are better than that

f the other compared methods. FRS _ KELM and FRS _ SVM have

mprovements of at least 5% in classification accuracy over the

ompared methods. The improvement of FRS _ KELM can be ex-

lained as follows. (1) By merging similar subtree patterns in

ach cluster into a new feature, FRS _ KELM could be capable of

easuring the similarity among graphs more accurately. (2) By
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Fig. 10. Average classification accuracy with varying parameters on Enzymes. 

Table 3 

Comparison of graph classification accuracy. 

Dataset PTC _ MM PTC _ MR PTC _ FR PTC _ FM Mutag NCI1 Enzymes 

FRS_KELM 81.57 ± 1.84 79.66 ± 1.36 81.72 ± 1.20 82.89 ± 1.28 91.49 ± 1.02 89.18 ± 0.14 65.45 ± 0.91 

FRS_SVM 80.05 ± 1.71 78.63 ± 2.72 78.60 ± 2.25 79.60 ± 3.02 88.78 ± 1.43 88.77 ± 0.14 60.13 ± 1.22 

Deep WL 69.21 ± 2.00 63.53 ± 1.34 69.50 ± 2.87 63.65 ± 2.41 83.83 ± 1.32 84.37 ± 0.23 55.31 ± 0.80 

WL kernel 67.21 ± 1.27 63.42 ± 2.17 67.95 ± 2.13 62.25 ± 2.47 83.61 ± 2.02 84.67 ± 0.26 53.88 ± 0.95 

GC_LE 71.22 ± 1.89 69.39 ± 2.37 72.04 ± 1.63 68.71 ± 3.022 87.56 ± 1.56 81.29 ± 0.3 46.68 ± 0.87 

GSR_GKE 73.84 ± 2.31 71.84 ± 1.86 71.25 ± 2.32 70.60 ± 2.81 86.50 ± 1.59 79.16 ± 0.24 –

node2vec 67.37 ± 0.71 64.36 ± 0.21 69.16 ± 0.26 67.65 ± 0.93 84.44 ± 0.39 62.47 ± 0.23 22.27 ± 0.90 

graph2vec 70.78 ± 1.72 64.35 ± 0.30 70.71 ± 1.36 70.11 ± 0.78 86.17 ± 1.27 84.88 ± 0.22 31.03 ± 1.14 

∗ Where GC _ LE stands for GC _ LASSO _ ELM . GSR _ GKE stands for GSR _ GK _ KDA _ ELM . 

Table 4 

Comparison of time performance for graph classification (s). 

Dataset PTC _ MM PTC _ MR PTC _ FR PTC _ FM Mutag NCI1 Enzymes 

FRS_KELM 33.04 87.07 64.04 80.05 18.13 424.45 403.50 

FRS_SVM 33.59 49.35 99.47 44.49 11.44 704.28 92.32 

Deep WL 4.49 2.66 2.35 4.55 4.42 986.22 48.72 

WL kernel 3.04 2.60 3.16 3.29 2.43 211.46 13.82 

GC _ LE 3.45 3.00 3.44 4.29 2.456 482.51 27.95 

GSR _ GKE 19.38 15.07 25.21 25.34 1392.80 5134.77 –

∗ Where GC _ LE stands for GC _ LASSO _ ELM . GSR _ GKE stands for GSR _ GK _ KDA _ ELM . 
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selecting highly discriminative features for graph classification,

FRS _ KELM can filter out poorly discriminative features, which

would be noises. By comparison, the WL kernel treats subtree

patterns as atomic structures and uses all subtree patterns to

compute the kernel matrix. Although the Deep WL kernel takes

the similarity among subtree patterns into account, it uses all

subtree patterns to compute the kernel matrix. GC _ LASSO _ ELM

and GSR _ GK _ KDA _ ELM reduce the dimensions of features, but they

do not consider the similarity among substructures. The random

walks used in node2vec are linear substructures while the subtree

patterns are non-linear substructures. graph2vec uses all subtree

patterns to a given hop to learn representation vector of a graph, it

does not select discriminative features. The classification accuracy

of FRS _ KELM is better than that of FRS _ SVM , which means that

when using KELM to classify graphs, we can obtain additional

accuracy improvements compared to using SVM. 

In Table 4 , we present the comparison of the time perfor-

mance of the compared methods. For each compared method,
e show the total time of computing the feature matrix or ker-

el matrix, reducing or selecting features and one 10-fold cross-

alidation for graph classification. Note that the total time of

SR _ GK _ KDA _ ELM also includes the time consumed for recon-

tructing graph datasets. On the small datasets, Mutag, Enzymes

nd PTC, the time performance of FRS _ KELM is worse than that of

L kernel, Deep WL and GC _ LASSO _ ELM , and it is slightly worse

han that of GSR _ GK _ KDA _ ELM . This result occurs because the pro-

osed method includes extra AP clustering on subtree patterns,

hose time complexity of one iteration is O ( NB ), where B is the

lock size and N is the number of subtree patterns to be clustered.

his improves the classification accuracy at the cost of extra time

onsumption. One solution to this problem is parallel processing

ecause the clusterings on subtree pattern blocks are independent

asks that have no need of information interaction during cluster-

ng. On the large dataset, NCI1, the time performance of FRS _ KELM

s better than that of the Deep WL kernel and GSR _ GK _ KDA _ ELM .

he main reason can be explained as follows. In Deep WL ker-

el, the time complexity of computing the kernel matrix is O ( N 

4 ).

n GSR _ GK _ KDA _ ELM , the time complexity of kernel discriminant

nalysis is O ( n 3 ), where n is the number of graphs in the training

ataset. 

. Conclusion and discussion 

In this paper, we study the problem of graph feature reduction

ased on semantic similarity for graph classification. Rather than

aking substructures in graphs as atomic structures, we study the

imilarity among subtree patterns in graphs using neural language
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odels and merge similar subtree patterns into a new feature.

onsidering the problem that poorly discriminative features affect

raph classification, we provide a new feature discrimination score

o select highly discriminative features for graph classification.

he experiments show that the proposed method significantly

mproves the graph classification accuracy. In the future, we will

ttempt to apply our feature reduction method in convolutional

eural networks for graph classification and then decrease the gap

etween feature selection and training graph classifier. Further-

ore, regarding the time complexity of clustering subtree pattern

locks, we will attempt to design a more effective subtree pattern

locking and merging method. 
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