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Abstract. Let D be a given set of (string) documents of total length
n. The top-k document retrieval problem is to index D such that when
a pattern P of length p, and a parameter k come as a query, the index
returns those k documents which are most relevant to P . We present
the first non-trivial external memory index supporting top-k document
retrieval queries in optimal O(p/B+ logB n+ k/B) I/Os, where B is the
block size. The index space is almost linear O(n log∗ n) words.

1 Introduction and Related Work

The inverted index is the most fundamental data structure in the field of infor-
mation retrieval [43]. It is the backbone of every known search engine today. For
each word in any document collection, the inverted index maintains a list of all
documents in that collection which contain the word. Despite its power to an-
swer various types of queries, the inverted index becomes inefficient, for example,
when queries are phrases instead of words. This inefficiency results from inade-
quate use of word orderings in query phrases [37]. Similar problems also occur in
applications when word boundaries do not exist or cannot be identified determin-
istically in the documents, like genome sequences in bioinformatics and text in
many East-Asian languages. These applications call for data structures to answer
queries in a more general form, that is, (string) pattern matching. Specifically,
they demand the ability to identify efficiently all the documents that contain a
specific pattern as a substring. The usual inverted-index approach might require
the maintenance of document lists for all possible substrings of the documents.
This can take quadratic space and hence is neither theoretically interesting nor
sensible from a practical viewpoint.

The first frameworks for answering document retrieval queries were proposed
by Matias et al. [30] and Muthukrishnan [31]. Their data structures solve the doc-
ument listing problem, where the task is to index a collection D of D documents,
such that whenever a pattern P of length p comes as a query, report all those
documents containing P exactly once. Muthukrishnan also initiated the study
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of relevance metric-based document retrieval [31], which was then formalized by
Hon et al. [22] as follows:

Problem 1 (Top-k document retrieval problem). Let w(P, d) be the score
function capturing the relevance of a pattern P with respect to a document d.
Given a document collection D= {d1, d2, .., dD} of D documents, build an index
answering the following query: given P and k, find k documents with the highest
w(P, .) values in its sorted (or unsorted) order.

Here, instead of reporting all the documents that match a query pattern, the
problem is to output the k documents most relevant to the query in sorted order
of relevance score. Relevance metrics considered in the problem can be either
pattern-independent (e.g., PageRank) or -dependent. In the latter case one can
take into account information like the frequency of the pattern occurrences (or
term-frequency of popular tf-idf measure, which takes the number of occurrences
of P in a document d as w(P, d)) and even the locations of the occurrences
(e.g.,min-dist [22] which takes proximity of two closest occurrences of pattern as
the score). In general, we assume that other than a static weight which is fixed
for each document d, w(P, d) is dependent only on the set of occurrences of P
in d. The framework of Hon et al. [22] takes linear space and answers the query
in O(p + k log k) time. This was then improved by Navarro and Nekrich [33] to
achieve O(p + k) query cost. Both [22] and [33] reduced this problem to a 4-
sided orthogonal range query in 3d, which is defined as follows: the data consists
of a set S of 3-dimensional points and the query consists of four parameters
x′, x′′, y′ and z′, and output is the set of all those points (xi, yi, zi) ∈ S such
that xi ∈ [x′, x′′], yi ≤ y′ and zi ≥ z′. While general 4-sided orthogonal range
searching is proved hard [9], the desired bounds can nevertheless be achieved by
identifying a special property that one dimension of the reduced subproblem can
only have p distinct values. Even though there has been series of work on top-k
string, including in theory as well as practical IR [5, 10, 11, 13, 15, 17–25, 33–
35, 37, 38, 42] communities, most implementations (as well as theoretical results)
have focused on RAM based compressed and/or efficient indexes (See [32] for
an excellent survey). We introduce an alternative framework for solving this
problem and obtain the first non-trivial external memory [3] solution as follows:

Theorem 1. In the external memory model, there exists an O(nh)-word struc-
ture that solves the top-k (unsorted) document retrieval problem in O(p/B +

logB n+log(h) n+k/B) I/Os for any h ≤ log∗ n, where log(h) n = log log(h−1) n,

log(1) n = logn and B is the block size.

For h = log∗ n, log(h) n is a constant, and hence we have the following result.

Corollary 1. There exists an O(n log∗ n)-word structure for answering top-k
(unsorted) document retrieval problem in optimal O(p/B+ logB n+ k/B) I/Os.

Our framework can also be used for improving the existing internal memory
results [22, 33] (see Theorem 2). In situations where the locus node can be
computed in o(p) time, our new index support faster queries. For example in
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cross-document pattern matching [26], the locus can be computed in O(log log p)
time. Another application is autocompletion search (like in Google InstantTM ),
where multiple loci are searched with amortized constant time for each locus
(see [27, 41] for other examples).

Theorem 2. There exists an O(n) word space data structure in word RAM
model for solving (sorted) top-k document retrieval problem in O(k) time, once
the locus of the pattern match is given.

A related but somewhat orthogonal line of research has been to get top-k
queries on general array based ranges. In this, we are given array A of colors
with each color is assigned a score, and for a range query (i, j), we have to
output k highest scored colors in this range (with each color reported at most
once). If the scoring criteria is based on frequency, for example say score of a
color is its number of occurrences in A[i..j], then lower-bounds on range-mode
problem [8, 16] would imply no efficient (linear space and polylog time) data
structures can exist. There are variants considered where each entry in the array
has a fixed score or each color (document) has a fixed score, independent of
number of occurrences. Recent [29] surprising result of achieving optimal I/Os
with O(n log∗ n) space has been for 3-sided categorical range reporting where
each entry has another attribute called score, and the query specifies range as
well as score threshold. We are supposed to output all colors whose at least one
entry within the range satisfies the score criteria. There are easier variants where
each entry of the same color gets the same score attribute like PageRank which
have been shown to have efficient external memory results [36]. There are even
simpler variants, where only top-k scores are to be reported [2, 28, 39] without
considering colors or unique colors are to be reported without considering scores
(as in document listing). Both these variants lead to 3-sided queries which are
easier to solve in external memory. In internal memory, there exists optimal space
and time data structures for outputting these scores in the sorted order [7].

2 Preliminary: Top-k Framework

This section briefly explains the linear space framework for top-k document
retrieval based on the work of Hon et al. [22], and Navarro and Nekrich [33]. The
generalized suffix tree (GST) of a document collection D= {d1, d2, d3, . . . , dD} is
the combined compact trie (a.k.a. Patricia trie) of all the non-empty suffixes of
all the documents. Use n to denote the total length of all the documents, which
is also the number of the leaves in GST. For each node u in GST, consider the
path from the root node to u. Let depth(u) be the number of nodes on the path,
and prefix(u) be the string obtained by concatenating all the edge labels of
the path. For a pattern P that appears in at least one document, the locus of
P , denoted as uP , is the node closest to the root satisfying that P is a prefix
of prefix(uP ). By numbering all the nodes in GST in the pre-order traversal
manner, the part of GST relevant to P (i.e., the subtree rooted at uP ) can be
represented as a range.
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Nodes are marked with documents. A leaf node � is marked with a docu-
ment d ∈ D if the suffix represented by � belongs to d. An internal node u
is marked with d if it is the lowest common ancestor of two leaves marked
with d. Notice that a node can be marked with multiple documents. For each
node u and each of its marked documents d, define a link to be a quadruple
(origin, target, doc, score), where origin = u, target is the lowest proper ances-
tor1 of u marked with d, doc = d and score = w

(
prefix(u), d

)
. Two crucial

properties of the links identified in [22] are listed below.

Lemma 1. For each document d that contains a pattern P , there is a unique
link whose origin is in the subtree of uP and whose target is a proper ancestor
of uP . The score of the link is exactly the score of d with respect to P .

Lemma 2. The total number of links is O(n).

Based on Lemma 1, the top-k document retrieval problem can be reduced to
the problem of finding the top-k links (according to its score) stabbed by uP ,
where link stabbing is defined as follows:

Definition 1 (Link Stabbing). We say that a link is stabbed by node u if it
is originated in the subtree of u and targets at a proper ancestor of u.

If we order the nodes in GST as per the pre-order traversal order, these
constraints translate into finding all the links (i) the numbers of whose origins
fall in the number range of the subtree of uP , and (ii) the numbers of whose
targets are less than the number of uP . Regarding constraint (i) as a two-sided
range constraint on x-dimension, and regarding constraint (ii) as a one-sided
range constraint on y-dimension, the problem asks for the top-k weighted points
that fall in a three-sided window in 2d space, where weight of a point is the score
of the corresponding link [33].

3 External Memory Structures

This section is dedicated for proving Theorem 1. The initial phase of pattern
search can be performed in O(p/B + logB n) I/O’s using a string B-tree [12].
Once the suffix range of P is identified, we take the lowest common ancestor of
the left-most and right-most leaves in the suffix range of GST to identify the
locus node uP . Hence, the first phase (i.e., finding the locus node uP of P ) takes
optimal I/O’s and now we focus only on the second phase (i.e., reporting the
top-k links stabbed by uP ). Instead of solving the top-k version, we first solve a
threshold version in Sec 3.1 where the objective is to retrieve those links stabbed
by uP with score at least a given threshold τ . Then in Sec 3.2, we propose a
separate structure that converts the original top-k-form query into a threshold-
form query so that the structure in Sec 3.1 can now be used to answer the
original problem. Finally, we obtain Theorem 1 via bootstrapping on a special
structure for handling top-k queries in lesser number of I/Os for small values of
k. We shall assume all scores are distinct and are within [1, O(n)]. Otherwise,
the ties can be broken arbitrarily and reduce the values into rank-space.

1 Define a dummy node as the parent of the root node, marked with all the documents.
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3.1 Breaking Down into Sub-Problems

Instead of solving the top-k version, we first solve a threshold version, where
the objective is to retrieve those links stabbed by uP with score at least a
given threshold τ . We show that the problem can be decomposed into simpler
subproblems, which consists of a 3d dominance reporting and O(log(n/B)) 3-
sided range reporting in 2d, both can be solved efficiently using known structures.
The main result is captured in Lemma 3 defined below. From now onwards, the
origin, target and score of a link Li are represented by oi, ti and wi respectively.
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Fig. 1. Rank Components

Lemma 3. There exists an O(n) space
data structure for answering the fol-
lowing query: given a query node uP

and a threshold τ , all links stabbed by
uP with score ≥ τ can be reported in
O(log2(n/B) + z/B) I/Os, where z is the
number of outputs.

Rank and Components. For any node u in
GST, we use u to denote its pre-order rank
as well. Let size(u) denotes the number of
leaves in the subtree of u, then we define
its rank as:

rank(u) = �log�size(u)
B

��

Note that rank(.) ∈ [0, �log� n
B ��]. A contiguous subtree consisting of nodes

with the same rank is defined as a component, and the rank of a component is
same as the rank of nodes within it (see figure 1). Therefore, a component with
rank = 0 is a bottom level subtree of size (number of leaves) at most B. From
the definition, it can be seen that a node and at most one of its children can
have the same rank. Therefore, a component with rank ≥ 1 consists of nodes in
a path which goes top-down in the tree.

The number of links originating within the subtree of any node u is at most
2size(u) − 1. Therefore, the number of links originating within a component
with rank = 0 is O(B). These O(B) links corresponding to each component
with rank = 0 can be maintained separately as a list, taking total O(n) words
space. Now, given a locus node uP , if rank(uP ) = 0, the number of links origi-
nating within the subtree of uP is also O(B) and all of them can be processed
in O(1) I/O’s by simply scanning the list of links corresponding to the compo-
nent to which uP belongs to. The query processing is more sophisticated when
rank(uP ) ≥ 1. For handling this case, we classify the links into the following 2
types based on the rank of its target with respect to the rank of query node uP :

1. equi-ranked links : links with rank(target) = rank(uP )
2. high-ranked links : links with rank(target) > rank(uP )
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Fig. 2. Pseudo Origin

Next we show that the problem of retriev-
ing outputs among equi-ranked links can be
reduced to a 3d dominance query, and the
problem of retrieving outputs among high-
ranked links can be reduced to at most
�log� n

B �� 3-sided range queries in 2d.

Processing Equi-Ranked Links. Let C be
a component and SC be set of all links Li,
such that its target ti is a node in C. Also,
for any link Li ∈ SC , let pseudo origin si be
the (pre-order rank of) lowest ancestor of its
origin oi within C (see Figure 2). Then a link
Li ∈ SC originates in the subtree of any node
u within C if and only if si ≥ u. Now if the
locus uP is a node in C, then among all equi-
ranked links, we need to consider only those
links Li ∈ SC , because the origin oj of any
other equi-ranked link Lj /∈ SC , will not be in the subtree of uP . Based on
the above observations, all equi-ranked output links are those Li ∈ SC with
ti < uP ≤ si and wi ≥ τ . To solve this in external memory, we treat each link
Li ∈ SC as a 3d point (ti, si, wi) and maintain a 3d dominance query structure
over it. Now the outputs with respect to uP and τ are those links corresponding
to the points within (−∞, uP ) × [uP ,∞)× [τ,∞). Such a structure for SC can
be maintained in linear O(|SC |) words of space and can answer the query in
O(logB |SC | + zeq/B) I/O’s using the result by Afshani [1], where |SC | is the
number of points (corresponding to links in SC) and zeq be the output size.
Thus overall these structures occupies O(n)-word space.

Lemma 4. Given a query node uP and a threshold τ , all the equi-ranked links
stabbed by uP with score ≥ τ can be retrieved in O(logB n+ zeq/B) I/Os using
an O(n) word space data structure, where zeq is the output size. 
�

Processing High-Ranked Links. The following is an important observation.

Observation 1. Any link Li with its origin oi within the subtree of a node u is
stabbed by u if rank(ti) > rank(u), where ti is the target of Li.

This implies, while looking for the outputs among the high-ranked links, the
condition of ti being a proper ancestor of uP can be ignored as it is taken care
of automatically if oi ∈ [

uP , u
′
P

]
, where u′

P be the (pre-order rank of) right-
most leaf in the subtree rooted at uP . Let Gr be the set of all links with rank
equals r for 1 ≤ r ≤ �log� n

B ��. Since there are only O(log(n/B)) sets, we shall
maintain separate structures for links in each Gr by considering only origin and
score values. We treat each link Li ∈ Gr as a 2d point (oi, wi), and maintain
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a 3-sided range query structure over them for r = 1, 2, .., �log� n
B ��. All high-

ranked output links can be obtained by retrieving those links in Li ∈ Gr with the
corresponding point (oi, wi) ∈ [uP , u

′
P ]×[τ,∞] for r = rank(uP )+1, .., �log� n

B ��.
By using the linear space data structure in [4], the space and I/O bounds for
a particular r is given by O(|Gr |) words and O(logB |Gr| + zr/B), where zr is
the number of output links in Gr. Since a link can be a part of at most one
Gr, the total space consumption is O(n) words and the total query I/Os is
O(logB n log(n/B) + zhi/B) = O(log2(n/B) + zhi/B), where zhi represents the
number of high-ranked output links.

Lemma 5. Given a query node uP and a threshold τ , all the high-ranked links
stabbed by uP with score ≥ τ can be retrieved in O(log2(n/B) + zhi/B) I/Os
using an O(n) word space data structure, where zhi is the output size. 
�

By combining Lemma 4 and Lemma 5, we obtain Lemma 3.

3.2 Converting Top-k to Threshold via Logarithmic Sketch

Here we derive a linear space data structure, such that given a query node u
and a parameter k, a threshold τ can be computed in constant I/Os, such that
the number of links z stabbed by u with score ≥ τ is bounded by, k ≤ z ≤
2k+O(logn). Hence query I/Os in Lemma 3 can be modified as O(log2(n/B)+
z/B) = O(log2(n/B) + k/B). From the retrieved z outputs, the actual top-k
answers can be computed by selection [6, 40] and filtering in another O(z/B) =
O(k/B + logB n) I/O’s. We summarize our result in the following lemma.

Lemma 6. There exist an O(n) word data structure for answering the following
query in O(log2(n/B) + k/B) I/O’s: given a query point u and an integer k,
report the top-k links stabbed by u. 
�

The details of top-k to threshold conversion are given below.

Marked Nodes and Prime Nodes in GST. We identify certain nodes in the
GST as marked nodes and prime nodes with respect to a parameter g called the
grouping factor. The procedure starts by combining every g consecutive leaves
(from left to right) together as a group, and marking the lowest common ancestor
(LCA) of first and last leaf in each group. Further, we mark the LCA of all pairs
of marked nodes recursively. Additionally, we ensure that the root is always
marked. At the end of this procedure, the number of marked nodes in GST will
be O(n/g) [22]. Prime nodes are those which are the children of marked nodes 2.
Corresponding to any marked node u∗ (except root), there is a unique prime
node u′, which is its closest prime ancestor. In case u∗’s parent is marked then
u′ = u∗. For every prime node u′ with atleast one marked node in its subtree,
the corresponding closest marked descendant u∗ is unique. If u′ is marked then
the closest marked descendant u∗ is same as u′.
2 Note that the number of prime nodes can be Θ(n) in the worst case.
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Hon et al. [22] showed that, given any node u with u∗ being its highest marked
descendent (if it exists), the number of leaves in the subtree of u, but not in
the subtree of u∗ (which we call as fringe leaves) is at most 2g. This means
for a given threshold τ , if z is the number of outputs corresponding to u∗ as
the locus node, then the number of outputs corresponding to u as the locus is
within z ± 2g. This is because of the fact that the number of documents d with
w
(
prefix(u), d

) �= w
(
prefix(u∗), d

)
cannot be more than the number of fringe

leaves. Therefore, we maintain the following information at every marked node
u∗: the score of q−th highest scored link stabbed by u∗ for q = 1, 2, 4, 8, ... By
choosing g = logn, the total space can be bounded by O((n/g) logn) = O(n)
words, and can retrieve any particular entry in O(1) time.

Using the above values, the threshold τ corresponding to any given u and k
can be computed as follows: first find the highest marked node u∗ in the subtree
of u (u∗ = u if u is marked). Now identify i such that 2i−1 < k + 2g ≤ 2i and
choose τ as the score of 2i-th highest scored link stabbed by u∗. This ensures
that k ≤ z < 2k +O(g) = 2k +O(log n).

3.3 Special Structures for Bounded k

In this section, we derive a faster data structures for the case when k is upper
bounded by a parameter g. The main idea is to identify smaller sets of O(g)
links, such that top-g links stabbed by any node u are contained in one of such
sets. Thus by constructing the structure described in Lemma 6 over the links in
each such sets, the top-k queries for any k ≤ g can be answered faster as follows:

Lemma 7. There exists a O(n) word data structure for answering top-k queries
for k ≤ g in O(log2(g/B) + k/B) I/O’s.

Recall the definitions of marked nodes and prime nodes from Sec 3.2. Let u′

be a prime node and u∗ (if it exists) be the unique highest marked descendent
of u′ by choosing a grouping factor g (which will be fixed later). All the links
originated from the subtree of u′ are categorized into the following (Figure 3).

– near-links: The links which are stabbed by u∗, but not by u′.
– far-link: The links which are stabbed by both u∗ and u′.
– small-link: The links which are stabbed neither by u∗, nor by u′.
– fringe-links: The links originated not from the subtree of u∗.

Lemma 8. The number of fringe-links and the number of near-links of any
prime node u′ is O(g).

Proof. The number of leaves in subtree(u′)\subtree(u∗) is at most 2g [22]. There-
fore, the number of fringe-links can be bounded by O(g). For every document d
whose link originates from subtree(u∗) going out of it ends up as a near-link if
and only if d exists at one of the leaves of subtree(u′)\subtree(u∗). Thus, this
can also be bounded by O(g). In the case where u∗ does not exist for u′, only
fringe-links exist. More over the subtree size of u′ is O(g) there can be no more
than O(g) of these links. 
�
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Fig. 3. Categorization of Links

Consider the following set, consisting of
O(g) links with respect to u′: all fringe-links,
near-links and g highest scored far-links. We
maintain these links at u′ (as a data struc-
ture to be explained later). For any node u,
whose closest prime ancestor (including it-
self) is u′, the above mentioned set is called
candidate links of u. From each u, we main-
tain the pointer to its closest prime ancestor
where the set of candidate links is stored.

Lemma 9. The candidate links of any node
u contains top-g highest scored links stabbed
by u.

Proof. Let u′ be the closest prime ancestor of u. If no marked descendant of u′

exist, then all the links are stored as candidate links. Otherwise, small-links can
never be candidates as they never cross u. Now, if u lies on the path from u′ to
u∗ then all far-links will satisfy both origin and target conditions. Else, far-links
do not qualify. Hence, any link which is not among top-g (highest scored) of
these far-links, can never be the candidate. 
�

Taking a clue from Lemma 8 and 9, for every prime node u′, we shall maintain
a data structure as in Lemma 6 by considering only the links stored at u′, and
top-k queries can be answered faster when k ≤ g. For this we shall define a
candidate tree CT (u′) of node u′ (except the root) to be a modified version of
subtree of u′ in GST augmented with candidate links stored at u′. Firstly, for
every candidate link which is targeted above u′, we change the target to v, which
will be a dummy parent of u′ in CT (u′). Now CT (u′) consists of those nodes
which are either origin or target (after modification) of some candidate link
of u′. Moreover, all the nodes in subtree(u′)\subtree(u∗) are included as well.
Since only the subset of nodes is selected from subtree(u′), our tree is basically
a Steiner tree connecting these nodes. Moreover, the tree is edge-compacted so
that no degree-1 node remains. Thus, the size of the tree as well as the number
of associated links is O(g). Next we do a rank-space reduction of pre-order rank
(w.r.t to GST) of the nodes in CT (u′) as well as the scores of candidate links.

The candidate tree (no degree-1 nodes) as well as the associated candidate
links satisfies all the properties which we have exploited while deriving the
structure in Lemma 6. Hence such a structure for CT (u′) can be maintained
in O(min(g, size(u′)) words space and the top-k links in CT (u′) stabbed by any
node u, with u′ being its lowest prime ancestor can be retrieved in O(log2(g/B)+
k/B) I/O’s. The total space consumption of structures corresponding all prime
nodes can be bounded by O(n) words as follows: the number of prime nodes with
at least a marked node in its subtree is O(n/g), as each such prime node can
be associated with a unique marked node. Thus the associated structures takes
O(n/g × g) = O(n) words space. The candidate set of a prime node u′ with
no marked nodes in its subtree consists of O(size(u′)) links, moreover a link
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cannot be in the candidate set of two such prime nodes. Thus the total space
is O(n) words in this case as well. Note that for g = O(B), we need not store
any structure on CT (u′), because such a candidate tree fits entirely in constant
number of blocks which can be processed in O(1) I/Os. This completes the proof
of Lemma 7.

3.4 I/O-Optimal Data Structure via Bootstrapping

The bounds in Theorem 1 can be achieved by maintaining multiple structures as
in Lemma 7. Clearly the structure in Lemma 6 is optimal for k ≥ B log2(n/B).
However, for handling the case when k < B log2(n/B), we shall choose the

grouping factor gi = B(log(i)(n/B))2, for i = 1, 2, 3, .., h ≤ log∗ n and maintain
h separate structures as in Lemma 7, occupying O(nh) space. Thus top-k query
for any k ≥ gh can be answered by querying on the structure corresponding to the
grouping factor gj, where gj ≥ k > gj+1 in O(log2(gj/B)+ k/B) = O(gj+1/B+
k/B) = O(k/B) I/Os. For k < gh, we shall query on the structure corresponding
to the grouping factor gh, and the I/Os are bounded by O(log2(gh/B)+k/B) =

O(log(h) n+ k/B). This completes the proof of Theorem 1.

4 Adapting to Internal Memory

Our external memory framework can be adapted to internal memory by choosing
B = Θ(1), and by replacing the external memory substructures by the corre-
sponding internal memory counterparts. Retrieving the outputs among high-
ranked links is reduced to O(log n) 3-sided range reporting queries. By using
an interval tree like approach, the problem of retrieving outputs among equi-
ranked links also can be reduced to O(log n) 3-sided range reporting queries.
By using the linear-space sorted range reporting structure by Brodal et al. [7]
for 3-sided range reporting, the outputs can be obtained in the sorted order of
score. Further, these sorted outputs from O(log n) different places can be merged
using an atomic heap [14], which is capable of performing all heap operations

in O(1) time, provided the number of elements in the heap is O(logO(1) n) as
in our case. At the beginning of each of these O(log n) queries, we may need
to perform a binary search for finding the boundaries, thus resulting in a total
query time of O(log2 n + k), which is O(k) for k ≥ log2 n. The space can be
bounded by O(n) words. For the case when k < log2 n, we obtain a linear space
and O(log2 logn+ k) query time structure by using the ideas from Sec 3.3 (here
we choose grouping factor g = log2 n). Again, this structure can answer queries
in O(k) time for k ≥ log2 logn. We do not continue this bootstrapping further.
Instead, we make use of the following observation: the candidate set of a node
consists of only O(g) links, hence a pointer to any particular link within the can-
didate set of any node can be maintained in O(log g) = O(log logn) bits. Thus,
at every node u in GST, we shall maintain the top-(log2 logn) links stabbed by u
in the decreasing order of score as a pointer to its location within the candidate
set of u. This occupies O(n log3 logn) bits or o(n) words and top-k queries for
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any k ≤ log2 logn can be answered in O(k) time by chasing the first k point-
ers and retrieving the documents associated with the corresponding links. This
completes the proof of Theorem 2.
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