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An Efficient Parallel Algorithm for Shortest Paths in 
Planar Layered Digraphs I 

S. Subramanian,  2 R. Tamassia,  2 and J. S. Vitter 3 

Abstract. Computing shortest paths in a directed graph has received considerable attention in the 
sequential RAM model of computation. However, developing a polylog-time parallel algorithm that 
is close to the sequential optimal in terms of the total work done remains an elusive goal. We present 
a first step in this direction by giving efficient parallel algorithms for shortest paths in planar layered 
digraphs. 

We show that these graphs admit special kinds of separators called one-way separators which allow 
the paths in the graph to cross it only once. We use these separators to give divide-and-conquer 
solutions to the problem of finding the shortest paths between any two vertices. We first give a simple 
algorithm that works in the CREW model and computes the shortest path between any two vertices 
in an n-node planar layered digraph in time O(log 2 n) using n/log n processors. We then use results of 
Aggarwal and Park [1] and Atallah [4] to improve the time bound to O(log 2 n) in the CREW model 
and O(log n log log n) in the CREW model. The processor bounds still remain as n/log n for the CREW 
model and n/log log n for the CRCW model. 
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1. Introduction. Computing shortest paths in directed graphs is a fundamental 
optimization problem with applications to many areas of computer science and 
operations research [5], 1-20-1. Given a digraph G with nonnegative weights on its 
edges and two vertices s and t of G, the single-pair shortest-path problem consists 
of determining a directed path from s to t with minimum total weight. Among 
the well-known sequential algorithms for this problem is the classical Dijkstra's 
algorithm [10], based on a dynamic programming approach. Its time complexity 
is O((n + m) log n) if elementary data Structures are used, and O(n log n + m) when 
implemented with Fibonacci heaps [123. For the important class of acyclic 
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digraphs, a simple variation of Dijkstra's algorithm runs in time O(n + m). Here 
n and m denote the number of vertices and edges of G, respectively. 

Developing a parallel shortest-path algorithm that runs in polylogarithmic time 
with a linear number of processors is an outstanding open problem. Indeed, all 
the known polylog-time parallel techniques for this problem are based on matrix 
multiplication [14] and are therefore far from optimal in terms of the total work 
done, especially when the digraph is sparse. For general digraphs, the 
best algorithm runs in O(log 2 n) time with n3/log n processors (using the naive 
algorithm for matrix multiplication) [14]. Recently Alon and Galil I-2] have 
given an algorithm which uses fast matrix multiplication techniques to solve 
the all-pairs shortest-paths problem. The work done by their algorithm is 
O((Mn)(3 + co)/2 log 3 n) if the edges have integral weights which are bounded 
above by M. Here n ~' denotes the number of processors needed to perform matrix 
multiplication. However, for calculating single-source shortest paths or for the 
single-pair shortest-path problem even this algorithm is far from optimal. For 
planar undirected graphs the number of processors for the single-source problem 
can be reduced to nl'S/(log 3 n), while keeping the parallel time down to O(log 3 n), 
by using the nested dissection technique of Pan and Reif [23], [24]. Further 
improvements [6], [15] have generalized these ideas to include directed planar 
graphs while keeping the time and processor bounds the same. In recent work 
Klein and Subramanian [17] have given a linear-processor polylog-time algorithm 
for finding single-source shortest paths in planar digraphs. However the algorithm 
in [17] has a polylogarithmic running time with a large exponent. 

To our knowledge, efficient parallel algorithms for computing shortest paths 
have been devised only for two special classes of digraphs: series-parallel digraphs 
and grid digraphs. A series-parallel digraph [28] is an acyclic digraph with exactly 
one source and exactly one sink that is recursively constructed by series and 
parallel compositions..In a series-parallel digraph the weight of a shortest path 
between the source and the sink is obtained by evaluating an arithmetic expression 
with operators + (associated with series compositions) and min (associated with 
parallel compositions), which can be done optimally in O(log n) time with n/log n 
processors [7]. 

A grid digraph has the vertices arranged in a rectangular grid and the edges 
directed from left to right and from bottom to top (an example is shown in Figure 
1). Apostolico et al. [3] gave an algorithm to compute shortest paths in a grid in 
O(log 2 n) time with O(n) processors. The shortest-path problem on grid digraphs 
has applications in text processing, biological research, tomography, and medical 
diagnosis. 

In this work we consider a class of digraphs that extends grid digraphs, namely, 
planar layered digraphs. In a planar layered digraph the vertices are arranged along 
parallel lines, called layers, and edges connect vertices of consecutive layers and 
do not intersect. We present an efficient parallel algorithm for the shortest-path 
problem in such digraphs that runs in O(log 3 n) time with n processors. The 
algorithms uses a divide-and-conquer approach and is based on the novel idea of 
a one-way separator, which has the property that any directed path can cross it 
only once. 
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Fig. 1. An example of a grid digraph. 

The rest of this paper is organized as follows. In Section 2 we formally define 
planar layered digraphs and introduce the notion of one-way separators. In Section 
3 we prove the existence of a one-way separator for planar layered digraphs and 
show how to use such a separator to design an efficient divide-and-conquer 
shortest-path algorithm. In Section 4 we discuss how our results relate to the 
previous one for grid digraphs. Finally, in Section 5 we present our conclusions 
and comment on the open problem of finding shortest paths in planar st-graphs. 

2. Preliminaries. Let G = (V, E) be a directed acyclic graph with n vertices and 
m edges, we say that G is a layered digraph if V is partitioned into p subsets, called 
layers, 11,..., lp such that all edges of G are between consecutive layers. Given p 
parallel lines consecutively numbered in the plane, a p-line embedding of G is a 
drawing such that: 

�9 All vertices of layer I i are drawn on line i. 
�9 Edges are drawn as straight lines. 

A planar p-line embedding is a p-line embedding without crossings. G is a planar 
layered digraph if it admits a planar p-line embedding. Figure 2 gives an example 

Fig. 2. A planar layered digraph. 
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of a layered graph with a planar five-line embedding. Layered graphs have been 
studied under the name of proper hierarchies by Wilson [29]. Di Battista and 
Nardetli [9] give efficient algorithms to test if a layered digraph with only one 
source is planar. Recently Kosaraju [8] has developed an efficient parallel 
algorithm to evaluate planar layered circuits. 

We can transform any planar layered digraph G into a planar layered digraph 
with exactly one source and one sink in the following manner: We first introduce 
two new vertices s and t and put them in two new layers, one at the beginning 
and one at the end. Then, for each sink x in layer i, we find the closest node y to 
its left that is attached to a node in layer i + 1. We then let z be the rightmost 
node in layer i + 1 that is attached to y (see Figure 2 for an example). If there is 
no such node y, then we set z to be the leftmost node in layer i + 1. To make x 
a nonsink vertex we introduce an infinite weight edge from x to z. For example, 
Figure 3 shows how to transform the planar layered digraph in Figure 2 into a 
single-source single-sink planar layered digraph. The dotted edges are the infinite 
weight edges, It is not hard to see that these infinite weight edges do not alter any 
shortest paths or destroy planarity. This computation can be accomplished in 
O(log n) time with n/log n processors using standard techniques (see, for example, 
[16]). A planar layered digraph with exactly one source s (on the first layer) and 
one sink t (on the last layer) is called a planar layered st-graph. In the rest of the 
paper we solve the problem of finding the shortest path between the source and 
the sink of a planar layered st-graph. To find the shortest path between any two 
vertices u and v in G we perform a preprocessing step to remove all the vertices 

t 

s 

Fig. 3. Adding extra edges to create a planar layered st-graph. 
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which are not on any path between u and v. A brief outline of the algorithm 
follows: 

1. Let T, be the set of vertices that are on some path from u to t in G. 
2. Let S v be the set of vertices that are on some path from s to v in G. 
3. Discard all the vertices in G that are not in T, or Sv. 

THEOREM 1. The algorithm outlined above can be implemented in O(log n) time with 
n/log n processors in an E R E W  P R A M .  

PROOF. All the steps can be done in O(log n) time using the techniques of 
Tamassia and Vitter [27]. [] 

A planar layered st-graph is a special case of a planar st-graph which is defined 
as a planar acyclic digraph with exactly one source, s, and exactly one sink, t, 
embedded in the plane so that s and t are on the boundary of the external face. 
These graphs were first introduced in the planarity testing algorithm of Lempel 
et al. [21]. 

We now define the concept of a left ordering of the vertices in a planar st-graph, 
which proves useful in our algorithm. This ordering was introduced by Tamassia 
and Preparata  [26]. We do this by making use of the dual graph of G (labeled 
G*) defined as follows: 

1. Every internal face f i n  G corresponds to a vertex in G*. 
2. The dual edge e* of an edge e is directed from the face to the left of e to the 

face to the right of e .  
3. The external face of G is dualized to two vertices of G*, denoted s* and t*, 

which are incident with the duals of the edges on the leftmost and rightmost 
paths from s to t, respectively. 

DEFINITION 1. For  every x e V we denote by left(x) and right(x) the two faces 
that separate the incoming and outgoing edges of a vertex x ~ s, t. For x = s 
or x = t, we conventionally define left(x) = s* and right(x) = t*. 

DEFINITION 2. We say that x is below y, denoted x 1" y, if there is a path in 
G from x to y. Also, we say that x is to the left of  y, denoted x ~ y, if there is 
a path in G* from right(x) to left(y). 

DEFINITION 3. The left ordering (denoted by < ~) is defined on the basis of the 
relations "left" and "below." A vertex x occurs before another vertex y in the 
ordering if either x ~ y or x T Y 

A planar st-graph with its vertices numbered according to the left ordering 
is shown in Figure 4. Tamassia and Vitter [27] give optimal EREW algorithms 
to construct the left ordering of a planar st-graph. 
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Fig. 4. Left ordering of a planar st-graph. 

DEFINITION 4. Given a graph G = (V, E) with n vertices, we call a set X ~ Van 
f(n)-separator that b-splits G if IXI -< f(n) and the vertices in V -  X can be 
partitioned into sets {A1,. . . ,  AK} such that there are no edges between any two 
sets Ai and Aj and for all Ai we have tAilbn. 

Lipton and Tarjan [22] proved that any planar graph with n vertices has a 

x f~ - sepa ra to r  that Z-splits. This result and other extensions to it have paved the 
way to divide-and-conquer solutions for many problems in planar graphs. A 
parallel algorithm for finding a cycle separator for biconnected graphs which uses 
n processors if the breadth-first search tree of the graph is already known was 
given by Miller [18]; an improved version of the algorithm which uses randomiza- 
tion to find a cycle separator with n l +~ processors was given by Gazit and Miller 
[13]. Randomized parallel algorithms to find small separators for more general 
undirected graphs were given by Miller and Thurston [19]. However, these 
separators seem unsuitable for use in solving problems on directed planar graphs 
because they do not take into account the direction of edges, while separating the 
graph. For  example when considering the problem of determining the shortest 
path from s to t, the existence of a small separator which separates the underyling 
undirected graph does not guarantee an efficient resursive solution. We get into 
trouble because even though we can use the separator to divide the original 
problem into two roughly subproblems, the time taken to patch up the two 
recursive solutions can be large, as the shortest path from s to t may cross the 
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separator many times. For  a clean divide-and-conquer approach we use the 
following special kind of separator: 

DEFINITION 5. Let X be a separator of a digraph G = (V, E) that divides V -  X 
into sets A t . . . . .  Ak, and let p be a simple directed path in G. We say that p crosses 
X r times if there are disjoint subpaths Pl . . . .  , Pr of p such that the endpoints of 
each p~ are in different sets Aj and A1. We call X a one-way separator if any directed 
path p between two vertices in G crosses X at most once. A division of G into 
one or more pieces is a one-way division if the separator X used to divide G is a 
one-way separator. 

Grid digraphs, for instance, have one-way separators of size x/~ that �89 split the 
graph. In fact the shortest-path algorithm by Apostolico et al. [3] uses such 
separators to construct a divide-and-conquer solution. In this paper our main 
result is that planar layered digraphs also admit small one-way separators 
which we use to construct a recursive solution to the shortest-path problem. 

3. Shortest Paths in a Planar Layered st-Graph. Let G = (V,, E) be a planar 
layered st-graph with source s and sink t. In this section we show how to 
determine the shortest path from s to t by a divide-and-conquer approach. The 
crux of the algorithm lies in finding one-way separators. We show how to find 
0ne-way separators X1, X2, and X 3 such that using three one-way divisions 
we can partition G into at most four pieces A, B, C, and D, none of which have 
more than two:thirds of the vertices in G. We then show how this division can 
be used to formulate a recursive solution to the single-source shortest-path 
problem. To show the existence of such separators we need the following lemma, 
which follows directly f romthe  arguments of Lipton and Tarjan [22]. 

LEMMA 1. Let G be any n-vertex planar layered st-graph containin 9 layers 1 
through p. Let  S~ denote the set o f  vertices in the ith layer, and Irt n i denote the size 
of  the set S i. Also let p + 1 be an additional layer containing no vertices. Given any 

layer j, a layer i < j exists such that n i + 2(j - i) < 2x/~j, where tj denotes the 
number of  vertices in layers 1 through j. Similarly a layer k > j exists such that 

n k + 2(k - j - 1) <_ 2 x ~ -  tj. In particular we let i (resp. k) be the layer which 

minimizes the function n i + 2(j - i) _< 2xft~ (resp. nk + 2(k - j - 1) < 2x/n - ti). 

THEOREM 2. Given an n-vertex planar layered st-oraph G containin 9 layers 1 
through p, at most three one-way separators X1, Xz ,  and X a exist such that 

X = X I  w X 2 ~ X 3 ~-splits G into up to four pieces. Furthermore, ]XI = O(x/n). 

PROOF. Given G, let j be the smallest layer such that the layers 1 through j 
have at least n/2 vertices. Let i and k be layers as in Lemma 1. We let X 1 be 
the set of vertices S i in layer i, and let X2 be the set of vertices S k in layer k. 
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Fig. 5. Slicing the graph into three parts. 

Let A be the part of G above k, let B be the part below i, and let M be the 
remaining part in the middle (as shown in Figure 5). By construction A and B 
each have less than 2n/3 vertices. If the number of vertices in M is less than 
2n/3, we label M as C and we are done. Otherwise we form a new planar layered 
st-graph G' from the middle part M and two new vertices s' and t', adding edges 
from all the vertices in layer k to t' and from s' to all t he  vertices in layer i (see 
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Fig. 6. Finding a path separator in the  middle graph. 

Figure 6). Let m be the middle vertex in the left ordering L1 or G', and let q be 
a path constructed by taking the leftmost outgoing edge from m until reaching 
t', and the rightmost incoming edge from m until reaching s' (see Figure 6). The 
path q splits G' into two equal parts C and D. We let X3 be the set of vertices 
on q. 

We now claim that X1, X2, and X3 are one-way separators and that X = 

X1 w Xz w X3 is an O(x/n) separator that ~--splits G. It is easy to see that none 
of the pieces have more than 2n/3 vertices; therefore X ~-splits G. By construction 
Iq[ < k - i + 1, therefore, IXI <-IXll  + IXzl + IX3 = n~ + n k + In k + Iql < ni + 

n k + ( k - i  + 1) < 2(x/t~ + x / n -  t~) < 2(x /~2  + x / ~ )  = 2 x / ~ .  
To prove that X1, X2, and X 3 form one-way separators we note the following: 

By the definition of planar layered digraphs no path in G intersects with vertices 
in Si or S k more than once (see Figure 5); therefore X1 and X z are one-way 
separators. To look at the interactions of paths in G with the path q, we look at 
the two subpaths ql and q2 of q, where ql is the portion below the middle vertex 
and qz is the portion above (see Figure 6). Let C be the subgraph to the left of q 
and let D the subgraph to the right of q. By construction that we can see that no 
path can cross from D to C since no path can enter q~ from the right, and no 
path can leave qz from the left. Therefore, X 3 is also a one-way separator. []  
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We now show how to obtain the separator described in Theorem 2 for a planar 
layered st-graph G quickly in parallel. A brief sketch of the algorithm is outlined 
below. 

1. For  very vertex n determine the level in which it is located. 
2. Determine the number of vertices in level i for all i. 
3. Determine the levels i, j, and k. 
4. Construct the middle graph M and determine its weight. If the weight is less 

than 2n/3 we are done. 
5. Construct the left ordering of M and find the middle vertex x. 
6. Construct the "leftmost outgoing and rightmost incoming" separator starting 

(as shown in Theorem 2) from x. 

THEOREM 3. Given an n-vertex planar layered st-graph G, the algorithm outlined 
above constructs the separator X of Theorem 2 and can be implemented in time 
O(log n) using n/log n processors on an E R E W  PRAM.  

PROOF. Steps 1-4 can be done using standard techniques (see [16]). Steps 5 
and 6 can be completed in O(log n) time using the techniques of Tamassia and 
Vitter [27]. [ ]  

We now use X to construct a divide-and-conquer solution for the shortest- 
path problem. The basic idea is to solve the four all-pairs subproblems (among 
the boundary vertices) in the pieces A, B, C, and D and patch up the solutions 
along the separator X efficiently to obtain the shortest path from s to t. We 
construct planar layered st-graphs from the pieces A, B, C, and D by introducing 
new source and sink vertices and adding edges from the top and bottom layers, 
as shown in Figure 7. It is easy to see that we introduce only o(n) new vertices 
in this fashion. We still have to show that the number of all pairs subproblems 
at any stage is not too much to handle with just n processors since we are 
aiming for a linear processor solution. We use the following lemma which 
follows from the arguments of Lipton and Tarjan [22] to show that the total 
number of source-sink pairs at any level in the recursion is O(n log n). 

LEMMA 2. Let G be an n-vertex planar layered st-graph, and let 0 <_ e <__ 1. I f  
the separator X defined in Theorem 2 is used to split the graph G recursively 
until we have no piece with more than en vertices, then the number of boundary 
vertices (vertices which are a part of some separator in the recursive subdivision) 

is O ( x / ~ e ) .  �9 

Before counting the number of source-sink pairs at some level in the recursion 
let us analyze levels more precisely. Every split in our recursion uses a separator 
X to divide the parent graph P into at most four pices, each of size at most 2k/3, 
where P has k vertices. However, we want to view the splits in terms of one-way 
separators X1,  Xz ,  and X 3, respectively. Each such division partitions the graph 
into two pieces, and the four pieces we obtain after the three divisions have no 
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Fig. 7. A schematic view of the four pieces obtained by using the separator. 

more than 2k/3 vertices each. In this manner we build a recursive division tree 
(RDT), wherein the root corresponds to the graph G, and the leaves to graphs of 
size at most  2. Each internal vertex has two children, which correspond to the 
two pieces resulting from a one-way division. The ith level in the tree consists of 
all the pieces that are at a distance i from the root. It is easy to see that the total 
number of levels in the RDT is O(log n) since once every three levels the number 
of vertices in any piece goes down by a factor of -~. We now claim that at each 
level the number of new source-sink pairs introduced is linear. 

LEMMA 3. The number of  new source-sink subproblems introduced in any level o f  
the recursive division tree is O(n). 

PROOF. By induction. The base case i = 2 is certainly true, since the separator 

X we get from Theorem 2 is of size at most 2 x / ~ ,  and therefore the total number 
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of source-sink subproblems introduced in the first level of recursion is at most 
8n. Let us consider some level i in the RDT, such that the induction hypothesis 
holds for all levels up to i - 1. We now prove that only O(n) new source-sink pairs 
are introduced in constructing level i. Let e = (~_)(i-1)/3; from the definition of 
RDT, we know that the size of any piece in level i - 1 is at most en. Therefore, by 

Lemma 2 the number of boundary vertices is O ( x / ~  ). Let B be the set of boundary 
vertices in level i - 1. To construct the next level of the RDT we use separators 

X 1, X 2 . . . . .  X l, each of size at most 2 x / ~ ,  to divide the pieces in level i - 1. Any 
new source-sink pair in level i will involve some separator vertex a ~ X j, for 
1 < j < l, and a boundary vertex b ~ B. Hence, the total number of source-sink 

pairs introduced is at most 2 x / ~ O ( x / ~  ) = O(n). 
From Lemma 3 we know that the total number of source-sink subproblems in 

any level is O(n log n), since there are O(log n) levels and only O(n) new subproblems 
are introduced in any level. We use the following strategy to solve the shortest-path 
problem: 

1. Recursively subdivide the graph until there are only two vertices in any piece. 
2. Solve the problem in a bottom-up manner, by dynamically assigning processors 

to each piece depending on the number of source-sink pairs in that piece. 

In the remaining part we show how to patch up the results of any two pieces 
P1 and P2 to obtain the shortest-path information of the parent graph P at all 
levels of the RDT. Let np denote the number of vertices in P. To patch up the 
pieces P1 and P2 we need to update the shortest-path information along the 
common boundary. Let us suppose without loss of generality that the source 
set S is in P~ and the sink set T is in P2, and the common boundary 
between them is Z. Let n~, n~, and n z be the number ~vertices in S, T, and Z, 
respectively. 

We know from Theorem 2 that Z is a one-way separator that is either a layer 
of vertices or a speical "rightmost-edge-in, leftmost-edge-out" path constructed 
from a middle vertex m. We have already solved the subproblems associated with 
pieces P1 and P2; therefore, we know the all-pairs shortest paths from vertices in 
S to those in Z, and from vertices in Z to those in T. We now have to construct 
the all-pairs shortest paths from vertices in S to those in T. On the face of it this 
seems an easy enough job, since, for each pair of vertices (a, b) for which 
a E S, b ~ T, all we have to do is check for every vertex in Z whether it is in the 
shortest path from a to b or not. This can be done in constant time with ISI 
processors in a CRCW PRAM. However, a little thought reveals that such a 
naive appproach would require too many processors. Assume without loss of 
generality that n~ < nt. We first use an idea from [3] to show that the all-pairs 
shortest paths from vertices in S to vertices in T can be computed in log2n 
time with nsn t + n~n z processors. We make use of the following definition and 
lemma. 

DEFINITION 6. Let a and b be two vertices separated by a one-way separator 
Z c V in the graph G. We denote by l(a, b) the lowest point in the left ordering 
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of the vertices in X in the graph G such that a shortest path from a to b in G 
passes through it. 

LEMMA 4. Let a be a vertex in S and let b I and let b 2 be vertices in T. We claim 
that if b 2 o c c u r s  after b 1 in the left ordering of the parent graph P, then l(a, b2) does 
not occur before l(a, bl) in the left ordering. 

PROOF. We give a proof  by contradiction for the case when Z is a path; the proof 
when Z is a layer is similar. Let m = l(a, b2) and m 1 = l(a, bl). Let us suppose m 
occurs before ml in the left ordering of P (see Figure 8). By construction of the 
separator we know that both bx and b2 are on the boundaries of the parent graph 
P (either on the right boundary or on the layer just below the sink as in Figure 
7); therefore, the paths from a to b~ and b2 must cross each other at some point. 
Let the point of crossing be z. Consider the two pieces of each path; let the subpath 
from a to z be p~, and the one from z to bl be P2. Similarly, let the two parts of the 
path from a to b 2 be ql and q2. Without loss of generality assume that the weight of 
pl is less than that of ql.  We now have a contradiction because the path composed 
of Pl and q2 has weight less than the one made up of q~ and q2. []  

A similar lemma can be proved about  paths from two sources vertices to a single 
sink vertex. We now show how to use Lemma 4 to do the patching up across 
boundary Z with nsn ~ + nsnz processors. For  every vertex a e S we use nt + n~ 
processors to determine simultaneously all the shortest paths p~ from a to each 
b e T .  

Let us denote the problem of patching across the separator, for a given source 
vertex a, as P(a, Z ,  T) where we are given the shortest paths from a to every vertex 
in Z and between all pairs of vertices (z, b), where z is in Z and b is in T. Our goal 

Separator Z q2/ . . . . . . .a  

..." 
P2 

z"  

ml i 

Fig. 8. Shortest paths from a are noncrossing. 
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is to determine the shortest paths from a to every vertex b 6 T. The algorithm to 
solve P(a, Z, T) is as follows: 

1. Let bm be the middle vertex in the left ordering of T. 
2. Determine the vertex z,, such that z,, = l(a, bin). 
3. If n~ = 1 use nt processors to determine for all b ~ T the shortest path from a 

to b. Otherwise go to Step 4. 
4. Divide T into two sets T~ and T12 such that T 1 - - { b ~ T I b < b m }  and 

T 2 = T -  T 1. Similarly divide Z into two corresponding sets Z~ and Z2 such 
that Z 1 = {z~Z[zm} and Z z = Z - Z 1 .  

5. Recursively solve the two subproblems P(a, Z 1, Tt) and P(a, Z2, T2). 
6. For  all vertices b ~ T1 compare the shortest path from a to b through Z1, with 

the one through Zm, and pick the smaller one. 

THEOREM 4. Startin9 with an n-vertex planar layered st-graph, it is possible at any 
stage of the recursion to obtain the shortest-path results of the parent graph P from 
those of its children P1 and P2 by runnin9 [S[ copies of the algorithm outlined 
above. Moreover, this can be done in time O(log 2 n) in a CREW PRAM, usin9 
(nsn~ + nsnz)/log n + np/log n processors. 

PROOF. Steps 1 and 2 are obviously correct. To prove the correctness of Step 4 we 
make use of Lemma 4. We know from Lemma 4 that for any b ~ T2 the shortest 
path from a to b does not use any vertex in Z~, a n d  for all b ~ T 1 the shortest 
path from a to b either passes through Z1 or through Zm. We can therefore 
recursively divide the problem into two subproblems P(a, Z~, T1) and P(a, Zz, T2), 
and do the correction in Step 6 to determine the shortest paths to vertices in TI. 
To determine the processor and time complexity we note that the left ordering of 
the any planar st-graph with n vertices can be determined in O(log n) time with 
n/log n processors [27]. Thus, we can determine the orderings of S and T in 

O(log np + log n) time with ~ p / l o g  n processors. The time complexity of the 
various steps are as follows: 

1. Step 1 can be performed in O(log nt + log n) time with nJlog n processors in a 
EREW PRAM. 

2. Step 2 can be performed in time O(log nz + log n) with nz/log n processors in 
an EREW PRAM. 

3. Step 3 takes O(log n) time with nJlog n processors. 
4. Step 4 can be done in O(log n, + log nz + log n) time with (nt + nz)/log n 

processors. 
5. The depth of recursion is O(log nt), since the size of the sink set T goes down 

by a factor of 2 every time Step 4 is executed. Therefore, the total time taken 
for the patch up is O(log np + log 2 nt + log n~ + log n)) = .  O ( l o g  2 n). 

6. Step 6 can be done in O(log n) time with nJlog n processors in a CREW PRAM. 

To see the processor complexity of the recursive subproblems we note that the 
two subproblems are solved in parallel partitioning the processors between them. 
Subproblem P(a, Z1, TO gets (IZll + I Tl[)/logn processors, while subproblem 
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P(a, Z2, T2) gets (IZ21 + ]Tll)/logn processors. The total number of processors 
needed is ns(n z + nt)/log n + nv/log n. 

THEOREM 5. Given an n-vertex planar layeres st-graph G with nonneoative edge 
weights, we can determine the shortest path from s to t in time O(log 3 n) with n/log n 
processors in a C R E W  PRAM.  

PROOF. The proof immediately follows from Lemma 2 and Theorems 3 
and 4. [] 

4. The Tube Minima Problem and a More Efficient Solution. Consider at any 
stage of the computation the array A, where AUi, k, j ]  is the value of the shortest 
path from vertex i t  S to vertex j~  T that is constrained to pass through the 
vertex k ~ Z. Let | j) be the smallest index k that minimizes A[i, k, j]. We say 
that A is totally monotone if | satisfies the following properties: 

| j) < | + 1, j), 

| j) __< | j + 1). 

Furthermore, | for every submatrix A' of A should also satisfy these properties. 
It can be shown that at every stage of the computation the matrix A constructed 
as above is totally monotone. It is not hard to see that to patch up two 
subproblems P1 and P2 we only need to determine the value of | for all i,j. 
The problem of determining the value of | was formalized by Aggarwal and Park 
as the tube minima problem and has many applications in computational geometry 
[13. They give the following bounds for calculating the tube minima of an 
x/fn x x /n  x x /n  array." 

THEOREM 6. The tube minima of an x/~ x x /n  x x /n  array can be found in time 
O(log n) and work O(n) in a C R E W  PRAM.  

Similarly for the CRCW model of computation Atallah [4] has given an 
algorithm with the following bounds: 

THEOREM 7. The tube minima of an x /n  x x//n x x//n array can be found in time 
O(log log n) and work O(n) in a C R C W  PRAM.  

We can use these algorithms in the patch-up stage to get improved algorithms. 
To do that we need to make a slight change to our recursive decomposition. In 
our current decomposition tree we only worry about the total number of 
source-sink pairs at any level, and not about the number of boundary vertices in 
any one particular region. Therefore, our division does not guarantee that the 
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number of recursive subproblems in each piece is small. It is possible to do the 
division so that the number of boundary vertices in any piece P (at any level) is 

O(x~p), where the number of vertices in P is np. This can be accomplished by using 
the following idea due to Frederickson [11]: Mark the boundary vertices and use 
the separator algorithm from Theorem 3 once, to divide the marked vertices (into 
small pieces), at every stage. Our separator algorithm can be easily modified to 
divide a collection of marked vertices. This change in our division strategy 
guarantees that at any stage each piece has a small number of boundary vertices. 
In particular, we have the following lemma, which follows from the arguments 
in [11]. 

LEMMA 5. Let G be an n-vertex planar layered st-graph, and let 0 <_ ~ < 1. Using 
the separator X defined in Theorem 2 we can divide the graph into O(n/r) regions, 

such that each regions has at most r vertices, and there are only O(n/x/r ) boundary 

vertices in all. Furthermore, none of the regions contain more than O(x/r ) boundary 
vertices. 

Using this division strategy the patch-up problem for any parent piece P at 

any stage can be solved as a tube-minima problem on an O ( ~ p  x x/-npp x x~p) 
array. We therefore get the following bounds for the shortest-path 
problem: 

THEOREM 8. Given an n-vertex planar layered st-graph G with nonnegative edge 
weights, we can determine the shortest path from s to t in time O(log n) with n/log n 
processors in a C R E W  P R A M ,  and in time O(log n log log n) with n/log log n 
processors in a C R C W  PRAM.  

5. Conclusions. We have given a linear processor CREW algorithm for determin- 
ing the shortest paths in a planary layered digraph which runs in time O(log 2 n). 
Our motivation for considering layered graphs was to see if they can be used to 
solve the shortest-path problem for planar st-graphs; however, since they extend 
the class of grid digraphs they may have other applications. As far as planar 
st-graphs are concerned, it seems unlikely that a similar approach would give a 
linear processor solution. As evidence we present the graph in Figure 9 that cannot 
be decomposed into smaller pieces (that are a constant fraction smaller in weight) 

by using one-way separators of size O(v/n)i Klein and Subramanian [17] have to 
some extent resolved this problem by presenting a linear-processor polylog-time 
algorithm for finding single-source shortest-path problems in planar digraphs. 
However, their algorithm has a polylogarithmic running time with a large 
exponent. It may be possible to use a combination of the ideas presented in this 
paper along with the ones in [-17] to get a linear-processor algorithm that has a 
better running time. 
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Fig. 9. A bad planar st-graph. 
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