
Algorithmica (1995) 14:322-339 Algorithmica
�9 1995 Springer-Verlag New York Inc.

An Efficient Parallel Algorithm for Shortest Paths in
Planar Layered Digraphs I

S. Subramanian, 2 R. Tamassia, 2 and J. S. Vitter 3

Abstract. Computing shortest paths in a directed graph has received considerable attention in the
sequential RAM model of computation. However, developing a polylog-time parallel algorithm that
is close to the sequential optimal in terms of the total work done remains an elusive goal. We present
a first step in this direction by giving efficient parallel algorithms for shortest paths in planar layered
digraphs.

We show that these graphs admit special kinds of separators called one-way separators which allow
the paths in the graph to cross it only once. We use these separators to give divide-and-conquer
solutions to the problem of finding the shortest paths between any two vertices. We first give a simple
algorithm that works in the CREW model and computes the shortest path between any two vertices
in an n-node planar layered digraph in time O(log 2 n) using n/log n processors. We then use results of
Aggarwal and Park [1] and Atallah [4] to improve the time bound to O(log 2 n) in the CREW model
and O(log n log log n) in the CREW model. The processor bounds still remain as n/log n for the CREW
model and n/log log n for the CRCW model.

Key Words. Parallel algorithms, Shortest paths, Planar separators.

1. Introduction. Computing shortest paths in directed graphs is a fundamental
optimization problem with applications to many areas of computer science and
operations research [5], 1-20-1. Given a digraph G with nonnegative weights on its
edges and two vertices s and t of G, the single-pair shortest-path problem consists
of determining a directed path from s to t with minimum total weight. Among
the well-known sequential algorithms for this problem is the classical Dijkstra's
algorithm [10], based on a dynamic programming approach. Its time complexity
is O((n + m) log n) if elementary data Structures are used, and O(n log n + m) when
implemented with Fibonacci heaps [123. For the important class of acyclic

I Support for the first and third authors was provided in part by a National Science Foundation
Presidential Young Investigator Award CCR-9047466 with matching funds from IBM, by NSF
Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office
of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052,
ARPA, Order 8225. Support for the second author was provided in part by NSF Research Grant
CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval
Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052 and ARPA
Order 8225.
2 Department of Computer Science, Brown University, Providence, RI 02912-1910, USA. ss@cs.brown.
edu and rt@cs.brown.edu.
3 Department of Computer Science, Duke University, Durham, NC 27708-0129, USA. jsv@cs.duke.
edu.

Received June 26, 1992; revised January 25, 1994. Communicated by C. K. Wong.

An Efficient Parallel Algorithm for Shortest Paths in Planar Layered Digraphs 323

digraphs, a simple variation of Dijkstra's algorithm runs in time O(n + m). Here
n and m denote the number of vertices and edges of G, respectively.

Developing a parallel shortest-path algorithm that runs in polylogarithmic time
with a linear number of processors is an outstanding open problem. Indeed, all
the known polylog-time parallel techniques for this problem are based on matrix
multiplication [14] and are therefore far from optimal in terms of the total work
done, especially when the digraph is sparse. For general digraphs, the
best algorithm runs in O(log 2 n) time with n3/log n processors (using the naive
algorithm for matrix multiplication) [14]. Recently Alon and Galil I-2] have
given an algorithm which uses fast matrix multiplication techniques to solve
the all-pairs shortest-paths problem. The work done by their algorithm is
O((Mn)(3 + co)/2 log 3 n) if the edges have integral weights which are bounded
above by M. Here n ~' denotes the number of processors needed to perform matrix
multiplication. However, for calculating single-source shortest paths or for the
single-pair shortest-path problem even this algorithm is far from optimal. For
planar undirected graphs the number of processors for the single-source problem
can be reduced to nl'S/(log 3 n), while keeping the parallel time down to O(log 3 n),
by using the nested dissection technique of Pan and Reif [23], [24]. Further
improvements [6], [15] have generalized these ideas to include directed planar
graphs while keeping the time and processor bounds the same. In recent work
Klein and Subramanian [17] have given a linear-processor polylog-time algorithm
for finding single-source shortest paths in planar digraphs. However the algorithm
in [17] has a polylogarithmic running time with a large exponent.

To our knowledge, efficient parallel algorithms for computing shortest paths
have been devised only for two special classes of digraphs: series-parallel digraphs
and grid digraphs. A series-parallel digraph [28] is an acyclic digraph with exactly
one source and exactly one sink that is recursively constructed by series and
parallel compositions..In a series-parallel digraph the weight of a shortest path
between the source and the sink is obtained by evaluating an arithmetic expression
with operators + (associated with series compositions) and min (associated with
parallel compositions), which can be done optimally in O(log n) time with n/log n
processors [7].

A grid digraph has the vertices arranged in a rectangular grid and the edges
directed from left to right and from bottom to top (an example is shown in Figure
1). Apostolico et al. [3] gave an algorithm to compute shortest paths in a grid in
O(log 2 n) time with O(n) processors. The shortest-path problem on grid digraphs
has applications in text processing, biological research, tomography, and medical
diagnosis.

In this work we consider a class of digraphs that extends grid digraphs, namely,
planar layered digraphs. In a planar layered digraph the vertices are arranged along
parallel lines, called layers, and edges connect vertices of consecutive layers and
do not intersect. We present an efficient parallel algorithm for the shortest-path
problem in such digraphs that runs in O(log 3 n) time with n processors. The
algorithms uses a divide-and-conquer approach and is based on the novel idea of
a one-way separator, which has the property that any directed path can cross it
only once.

324 s. Subramanian, R. Tamassia, and J. S. Vitter

l r w ' ~ u l i R ~ r W

| / I /

Fig. 1. An example of a grid digraph.

The rest of this paper is organized as follows. In Section 2 we formally define
planar layered digraphs and introduce the notion of one-way separators. In Section
3 we prove the existence of a one-way separator for planar layered digraphs and
show how to use such a separator to design an efficient divide-and-conquer
shortest-path algorithm. In Section 4 we discuss how our results relate to the
previous one for grid digraphs. Finally, in Section 5 we present our conclusions
and comment on the open problem of finding shortest paths in planar st-graphs.

2. Preliminaries. Let G = (V, E) be a directed acyclic graph with n vertices and
m edges, we say that G is a layered digraph if V is partitioned into p subsets, called
layers, 11,..., lp such that all edges of G are between consecutive layers. Given p
parallel lines consecutively numbered in the plane, a p-line embedding of G is a
drawing such that:

�9 All vertices of layer I i are drawn on line i.
�9 Edges are drawn as straight lines.

A planar p-line embedding is a p-line embedding without crossings. G is a planar
layered digraph if it admits a planar p-line embedding. Figure 2 gives an example

Fig. 2. A planar layered digraph.

An Efficient Parallel Algorithm for Shortest Paths in Planar Layered Digraphs 325

of a layered graph with a planar five-line embedding. Layered graphs have been
studied under the name of proper hierarchies by Wilson [29]. Di Battista and
Nardetli [9] give efficient algorithms to test if a layered digraph with only one
source is planar. Recently Kosaraju [8] has developed an efficient parallel
algorithm to evaluate planar layered circuits.

We can transform any planar layered digraph G into a planar layered digraph
with exactly one source and one sink in the following manner: We first introduce
two new vertices s and t and put them in two new layers, one at the beginning
and one at the end. Then, for each sink x in layer i, we find the closest node y to
its left that is attached to a node in layer i + 1. We then let z be the rightmost
node in layer i + 1 that is attached to y (see Figure 2 for an example). If there is
no such node y, then we set z to be the leftmost node in layer i + 1. To make x
a nonsink vertex we introduce an infinite weight edge from x to z. For example,
Figure 3 shows how to transform the planar layered digraph in Figure 2 into a
single-source single-sink planar layered digraph. The dotted edges are the infinite
weight edges, It is not hard to see that these infinite weight edges do not alter any
shortest paths or destroy planarity. This computation can be accomplished in
O(log n) time with n/log n processors using standard techniques (see, for example,
[16]). A planar layered digraph with exactly one source s (on the first layer) and
one sink t (on the last layer) is called a planar layered st-graph. In the rest of the
paper we solve the problem of finding the shortest path between the source and
the sink of a planar layered st-graph. To find the shortest path between any two
vertices u and v in G we perform a preprocessing step to remove all the vertices

t

s

Fig. 3. Adding extra edges to create a planar layered st-graph.

326 s. Subramanian, R. Tamassia, and J. S. Vitter

which are not on any path between u and v. A brief outline of the algorithm
follows:

1. Let T, be the set of vertices that are on some path from u to t in G.
2. Let S v be the set of vertices that are on some path from s to v in G.
3. Discard all the vertices in G that are not in T, or Sv.

THEOREM 1. The algorithm outlined above can be implemented in O(log n) time with
n/log n processors in an E R E W P R A M .

PROOF. All the steps can be done in O(log n) time using the techniques of
Tamassia and Vitter [27]. []

A planar layered st-graph is a special case of a planar st-graph which is defined
as a planar acyclic digraph with exactly one source, s, and exactly one sink, t,
embedded in the plane so that s and t are on the boundary of the external face.
These graphs were first introduced in the planarity testing algorithm of Lempel
et al. [21].

We now define the concept of a left ordering of the vertices in a planar st-graph,
which proves useful in our algorithm. This ordering was introduced by Tamassia
and Preparata [26]. We do this by making use of the dual graph of G (labeled
G*) defined as follows:

1. Every internal face f i n G corresponds to a vertex in G*.
2. The dual edge e* of an edge e is directed from the face to the left of e to the

face to the right of e .
3. The external face of G is dualized to two vertices of G*, denoted s* and t*,

which are incident with the duals of the edges on the leftmost and rightmost
paths from s to t, respectively.

DEFINITION 1. For every x e V we denote by left(x) and right(x) the two faces
that separate the incoming and outgoing edges of a vertex x ~ s, t. For x = s
or x = t, we conventionally define left(x) = s* and right(x) = t*.

DEFINITION 2. We say that x is below y, denoted x 1" y, if there is a path in
G from x to y. Also, we say that x is to the left of y, denoted x ~ y, if there is
a path in G* from right(x) to left(y).

DEFINITION 3. The left ordering (denoted by < ~) is defined on the basis of the
relations "left" and "below." A vertex x occurs before another vertex y in the
ordering if either x ~ y or x T Y

A planar st-graph with its vertices numbered according to the left ordering
is shown in Figure 4. Tamassia and Vitter [27] give optimal EREW algorithms
to construct the left ordering of a planar st-graph.

An Efficient Parallel Algorithm for Shortest Paths in Planar Layered Digraphs 327

t 14

1 $

Fig. 4. Left ordering of a planar st-graph.

DEFINITION 4. Given a graph G = (V, E) with n vertices, we call a set X ~ Van
f(n)-separator that b-splits G if IXI -< f(n) and the vertices in V - X can be
partitioned into sets {A1,. . . , AK} such that there are no edges between any two
sets Ai and Aj and for all Ai we have tAilbn.

Lipton and Tarjan [22] proved that any planar graph with n vertices has a

x f~ - sepa ra to r that Z-splits. This result and other extensions to it have paved the
way to divide-and-conquer solutions for many problems in planar graphs. A
parallel algorithm for finding a cycle separator for biconnected graphs which uses
n processors if the breadth-first search tree of the graph is already known was
given by Miller [18]; an improved version of the algorithm which uses randomiza-
tion to find a cycle separator with n l +~ processors was given by Gazit and Miller
[13]. Randomized parallel algorithms to find small separators for more general
undirected graphs were given by Miller and Thurston [19]. However, these
separators seem unsuitable for use in solving problems on directed planar graphs
because they do not take into account the direction of edges, while separating the
graph. For example when considering the problem of determining the shortest
path from s to t, the existence of a small separator which separates the underyling
undirected graph does not guarantee an efficient resursive solution. We get into
trouble because even though we can use the separator to divide the original
problem into two roughly subproblems, the time taken to patch up the two
recursive solutions can be large, as the shortest path from s to t may cross the

328 s. Subramanian, R. Tamassia, and J. S. Vitter

separator many times. For a clean divide-and-conquer approach we use the
following special kind of separator:

DEFINITION 5. Let X be a separator of a digraph G = (V, E) that divides V - X
into sets A t Ak, and let p be a simple directed path in G. We say that p crosses
X r times if there are disjoint subpaths Pl , Pr of p such that the endpoints of
each p~ are in different sets Aj and A1. We call X a one-way separator if any directed
path p between two vertices in G crosses X at most once. A division of G into
one or more pieces is a one-way division if the separator X used to divide G is a
one-way separator.

Grid digraphs, for instance, have one-way separators of size x/~ that �89 split the
graph. In fact the shortest-path algorithm by Apostolico et al. [3] uses such
separators to construct a divide-and-conquer solution. In this paper our main
result is that planar layered digraphs also admit small one-way separators
which we use to construct a recursive solution to the shortest-path problem.

3. Shortest Paths in a Planar Layered st-Graph. Let G = (V,, E) be a planar
layered st-graph with source s and sink t. In this section we show how to
determine the shortest path from s to t by a divide-and-conquer approach. The
crux of the algorithm lies in finding one-way separators. We show how to find
0ne-way separators X1, X2, and X 3 such that using three one-way divisions
we can partition G into at most four pieces A, B, C, and D, none of which have
more than two:thirds of the vertices in G. We then show how this division can
be used to formulate a recursive solution to the single-source shortest-path
problem. To show the existence of such separators we need the following lemma,
which follows directly f romthe arguments of Lipton and Tarjan [22].

LEMMA 1. Let G be any n-vertex planar layered st-graph containin 9 layers 1
through p. Let S~ denote the set o f vertices in the ith layer, and Irt n i denote the size
of the set S i. Also let p + 1 be an additional layer containing no vertices. Given any

layer j, a layer i < j exists such that n i + 2(j - i) < 2x/~j, where tj denotes the
number of vertices in layers 1 through j. Similarly a layer k > j exists such that

n k + 2(k - j - 1) <_ 2 x ~ - tj. In particular we let i (resp. k) be the layer which

minimizes the function n i + 2(j - i) _< 2xft~ (resp. nk + 2(k - j - 1) < 2x/n - ti).

THEOREM 2. Given an n-vertex planar layered st-oraph G containin 9 layers 1
through p, at most three one-way separators X1, Xz , and X a exist such that

X = X I w X 2 ~ X 3 ~-splits G into up to four pieces. Furthermore,]XI = O(x/n).

PROOF. Given G, let j be the smallest layer such that the layers 1 through j
have at least n/2 vertices. Let i and k be layers as in Lemma 1. We let X 1 be
the set of vertices S i in layer i, and let X2 be the set of vertices S k in layer k.

Layer k

Layer j

329

The Middle Portion "M" �9 �9 �9

Layer i

An Efficient Parallel Algorithm for Shortest Paths in Planar Layered Digraphs

i iiii

Fig. 5. Slicing the graph into three parts.

Let A be the part of G above k, let B be the part below i, and let M be the
remaining part in the middle (as shown in Figure 5). By construction A and B
each have less than 2n/3 vertices. If the number of vertices in M is less than
2n/3, we label M as C and we are done. Otherwise we form a new planar layered
st-graph G' from the middle part M and two new vertices s' and t', adding edges
from all the vertices in layer k to t' and from s' to all t he vertices in layer i (see

330 S. Subramanian0 R. Tamassia, and J. S. Vitter

- t t

he middle vertex

Path Separator

ql

_ s !

Fig. 6. Finding a path separator in the middle graph.

Figure 6). Let m be the middle vertex in the left ordering L1 or G', and let q be
a path constructed by taking the leftmost outgoing edge from m until reaching
t', and the rightmost incoming edge from m until reaching s' (see Figure 6). The
path q splits G' into two equal parts C and D. We let X3 be the set of vertices
on q.

We now claim that X1, X2, and X3 are one-way separators and that X =

X1 w Xz w X3 is an O(x/n) separator that ~--splits G. It is easy to see that none
of the pieces have more than 2n/3 vertices; therefore X ~-splits G. By construction
Iq[< k - i + 1, therefore, IXI <-IXll + IXzl + IX3 = n~ + n k + In k + Iql < ni +

n k + (k - i + 1) < 2(x/t~ + x / n - t~) < 2(x /~2 + x / ~) = 2 x / ~ .
To prove that X1, X2, and X 3 form one-way separators we note the following:

By the definition of planar layered digraphs no path in G intersects with vertices
in Si or S k more than once (see Figure 5); therefore X1 and X z are one-way
separators. To look at the interactions of paths in G with the path q, we look at
the two subpaths ql and q2 of q, where ql is the portion below the middle vertex
and qz is the portion above (see Figure 6). Let C be the subgraph to the left of q
and let D the subgraph to the right of q. By construction that we can see that no
path can cross from D to C since no path can enter q~ from the right, and no
path can leave qz from the left. Therefore, X 3 is also a one-way separator. []

An Efficient Parallel Algorithm for Shortest Paths in Planar Layered Digraphs 331

We now show how to obtain the separator described in Theorem 2 for a planar
layered st-graph G quickly in parallel. A brief sketch of the algorithm is outlined
below.

1. For very vertex n determine the level in which it is located.
2. Determine the number of vertices in level i for all i.
3. Determine the levels i, j, and k.
4. Construct the middle graph M and determine its weight. If the weight is less

than 2n/3 we are done.
5. Construct the left ordering of M and find the middle vertex x.
6. Construct the "leftmost outgoing and rightmost incoming" separator starting

(as shown in Theorem 2) from x.

THEOREM 3. Given an n-vertex planar layered st-graph G, the algorithm outlined
above constructs the separator X of Theorem 2 and can be implemented in time
O(log n) using n/log n processors on an E R E W PRAM.

PROOF. Steps 1-4 can be done using standard techniques (see [16]). Steps 5
and 6 can be completed in O(log n) time using the techniques of Tamassia and
Vitter [27]. []

We now use X to construct a divide-and-conquer solution for the shortest-
path problem. The basic idea is to solve the four all-pairs subproblems (among
the boundary vertices) in the pieces A, B, C, and D and patch up the solutions
along the separator X efficiently to obtain the shortest path from s to t. We
construct planar layered st-graphs from the pieces A, B, C, and D by introducing
new source and sink vertices and adding edges from the top and bottom layers,
as shown in Figure 7. It is easy to see that we introduce only o(n) new vertices
in this fashion. We still have to show that the number of all pairs subproblems
at any stage is not too much to handle with just n processors since we are
aiming for a linear processor solution. We use the following lemma which
follows from the arguments of Lipton and Tarjan [22] to show that the total
number of source-sink pairs at any level in the recursion is O(n log n).

LEMMA 2. Let G be an n-vertex planar layered st-graph, and let 0 <_ e <__ 1. I f
the separator X defined in Theorem 2 is used to split the graph G recursively
until we have no piece with more than en vertices, then the number of boundary
vertices (vertices which are a part of some separator in the recursive subdivision)

is O (x / ~ e) . �9

Before counting the number of source-sink pairs at some level in the recursion
let us analyze levels more precisely. Every split in our recursion uses a separator
X to divide the parent graph P into at most four pices, each of size at most 2k/3,
where P has k vertices. However, we want to view the splits in terms of one-way
separators X1, Xz , and X 3, respectively. Each such division partitions the graph
into two pieces, and the four pieces we obtain after the three divisions have no

332 S. Subramanian, R. Tamassia, and J. S. Vitter

J

...............

-',,. ~. i /

.............

.............. i::-i..~2

,.....-."':7 i ""::::i:.'.:?..
................ 2::.~.:::- i 7 "."::"."..,._

-....L.r

Fig. 7. A schematic view of the four pieces obtained by using the separator.

more than 2k/3 vertices each. In this manner we build a recursive division tree
(RDT), wherein the root corresponds to the graph G, and the leaves to graphs of
size at most 2. Each internal vertex has two children, which correspond to the
two pieces resulting from a one-way division. The ith level in the tree consists of
all the pieces that are at a distance i from the root. It is easy to see that the total
number of levels in the RDT is O(log n) since once every three levels the number
of vertices in any piece goes down by a factor of -~. We now claim that at each
level the number of new source-sink pairs introduced is linear.

LEMMA 3. The number of new source-sink subproblems introduced in any level o f
the recursive division tree is O(n).

PROOF. By induction. The base case i = 2 is certainly true, since the separator

X we get from Theorem 2 is of size at most 2 x / ~ , and therefore the total number

An Efficient Parallel Algorithm for Shortest Paths in Planar Layered Digraphs 333

of source-sink subproblems introduced in the first level of recursion is at most
8n. Let us consider some level i in the RDT, such that the induction hypothesis
holds for all levels up to i - 1. We now prove that only O(n) new source-sink pairs
are introduced in constructing level i. Let e = (~_)(i-1)/3; from the definition of
RDT, we know that the size of any piece in level i - 1 is at most en. Therefore, by

Lemma 2 the number of boundary vertices is O (x / ~). Let B be the set of boundary
vertices in level i - 1. To construct the next level of the RDT we use separators

X 1, X 2 X l, each of size at most 2 x / ~ , to divide the pieces in level i - 1. Any
new source-sink pair in level i will involve some separator vertex a ~ X j, for
1 < j < l, and a boundary vertex b ~ B. Hence, the total number of source-sink

pairs introduced is at most 2 x / ~ O (x / ~) = O(n).
From Lemma 3 we know that the total number of source-sink subproblems in

any level is O(n log n), since there are O(log n) levels and only O(n) new subproblems
are introduced in any level. We use the following strategy to solve the shortest-path
problem:

1. Recursively subdivide the graph until there are only two vertices in any piece.
2. Solve the problem in a bottom-up manner, by dynamically assigning processors

to each piece depending on the number of source-sink pairs in that piece.

In the remaining part we show how to patch up the results of any two pieces
P1 and P2 to obtain the shortest-path information of the parent graph P at all
levels of the RDT. Let np denote the number of vertices in P. To patch up the
pieces P1 and P2 we need to update the shortest-path information along the
common boundary. Let us suppose without loss of generality that the source
set S is in P~ and the sink set T is in P2, and the common boundary
between them is Z. Let n~, n~, and n z be the number ~vertices in S, T, and Z,
respectively.

We know from Theorem 2 that Z is a one-way separator that is either a layer
of vertices or a speical "rightmost-edge-in, leftmost-edge-out" path constructed
from a middle vertex m. We have already solved the subproblems associated with
pieces P1 and P2; therefore, we know the all-pairs shortest paths from vertices in
S to those in Z, and from vertices in Z to those in T. We now have to construct
the all-pairs shortest paths from vertices in S to those in T. On the face of it this
seems an easy enough job, since, for each pair of vertices (a, b) for which
a E S, b ~ T, all we have to do is check for every vertex in Z whether it is in the
shortest path from a to b or not. This can be done in constant time with ISI
processors in a CRCW PRAM. However, a little thought reveals that such a
naive appproach would require too many processors. Assume without loss of
generality that n~ < nt. We first use an idea from [3] to show that the all-pairs
shortest paths from vertices in S to vertices in T can be computed in log2n
time with nsn t + n~n z processors. We make use of the following definition and
lemma.

DEFINITION 6. Let a and b be two vertices separated by a one-way separator
Z c V in the graph G. We denote by l(a, b) the lowest point in the left ordering

334 S. Subramanian, R. Tamassia, and J. S. Vitter

of the vertices in X in the graph G such that a shortest path from a to b in G
passes through it.

LEMMA 4. Let a be a vertex in S and let b I and let b 2 be vertices in T. We claim
that if b 2 o c c u r s after b 1 in the left ordering of the parent graph P, then l(a, b2) does
not occur before l(a, bl) in the left ordering.

PROOF. We give a proof by contradiction for the case when Z is a path; the proof
when Z is a layer is similar. Let m = l(a, b2) and m 1 = l(a, bl). Let us suppose m
occurs before ml in the left ordering of P (see Figure 8). By construction of the
separator we know that both bx and b2 are on the boundaries of the parent graph
P (either on the right boundary or on the layer just below the sink as in Figure
7); therefore, the paths from a to b~ and b2 must cross each other at some point.
Let the point of crossing be z. Consider the two pieces of each path; let the subpath
from a to z be p~, and the one from z to bl be P2. Similarly, let the two parts of the
path from a to b 2 be ql and q2. Without loss of generality assume that the weight of
pl is less than that of ql. We now have a contradiction because the path composed
of Pl and q2 has weight less than the one made up of q~ and q2. []

A similar lemma can be proved about paths from two sources vertices to a single
sink vertex. We now show how to use Lemma 4 to do the patching up across
boundary Z with nsn ~ + nsnz processors. For every vertex a e S we use nt + n~
processors to determine simultaneously all the shortest paths p~ from a to each
b e T .

Let us denote the problem of patching across the separator, for a given source
vertex a, as P(a, Z , T) where we are given the shortest paths from a to every vertex
in Z and between all pairs of vertices (z, b), where z is in Z and b is in T. Our goal

Separator Z q2/a

..."
P2

z"

ml i

Fig. 8. Shortest paths from a are noncrossing.

An Efficient Parallel Algorithm .for Shortest Paths in Planar Layered Digraphs 335

is to determine the shortest paths from a to every vertex b 6 T. The algorithm to
solve P(a, Z, T) is as follows:

1. Let bm be the middle vertex in the left ordering of T.
2. Determine the vertex z,, such that z,, = l(a, bin).
3. If n~ = 1 use nt processors to determine for all b ~ T the shortest path from a

to b. Otherwise go to Step 4.
4. Divide T into two sets T~ and T12 such that T 1 - - { b ~ T I b < b m } and

T 2 = T - T 1. Similarly divide Z into two corresponding sets Z~ and Z2 such
that Z 1 = {z~Z[zm} and Z z = Z - Z 1 .

5. Recursively solve the two subproblems P(a, Z 1, Tt) and P(a, Z2, T2).
6. For all vertices b ~ T1 compare the shortest path from a to b through Z1, with

the one through Zm, and pick the smaller one.

THEOREM 4. Startin9 with an n-vertex planar layered st-graph, it is possible at any
stage of the recursion to obtain the shortest-path results of the parent graph P from
those of its children P1 and P2 by runnin9 [S[copies of the algorithm outlined
above. Moreover, this can be done in time O(log 2 n) in a CREW PRAM, usin9
(nsn~ + nsnz)/log n + np/log n processors.

PROOF. Steps 1 and 2 are obviously correct. To prove the correctness of Step 4 we
make use of Lemma 4. We know from Lemma 4 that for any b ~ T2 the shortest
path from a to b does not use any vertex in Z~, a n d for all b ~ T 1 the shortest
path from a to b either passes through Z1 or through Zm. We can therefore
recursively divide the problem into two subproblems P(a, Z~, T1) and P(a, Zz, T2),
and do the correction in Step 6 to determine the shortest paths to vertices in TI.
To determine the processor and time complexity we note that the left ordering of
the any planar st-graph with n vertices can be determined in O(log n) time with
n/log n processors [27]. Thus, we can determine the orderings of S and T in

O(log np + log n) time with ~ p / l o g n processors. The time complexity of the
various steps are as follows:

1. Step 1 can be performed in O(log nt + log n) time with nJlog n processors in a
EREW PRAM.

2. Step 2 can be performed in time O(log nz + log n) with nz/log n processors in
an EREW PRAM.

3. Step 3 takes O(log n) time with nJlog n processors.
4. Step 4 can be done in O(log n, + log nz + log n) time with (nt + nz)/log n

processors.
5. The depth of recursion is O(log nt), since the size of the sink set T goes down

by a factor of 2 every time Step 4 is executed. Therefore, the total time taken
for the patch up is O(log np + log 2 nt + log n~ + log n)) = . O (l o g 2 n).

6. Step 6 can be done in O(log n) time with nJlog n processors in a CREW PRAM.

To see the processor complexity of the recursive subproblems we note that the
two subproblems are solved in parallel partitioning the processors between them.
Subproblem P(a, Z1, TO gets (IZll + I Tl[)/logn processors, while subproblem

336 S. Subramanian, R. Tamassia, and J. S. Vitter

P(a, Z2, T2) gets (IZ21 +]Tll)/logn processors. The total number of processors
needed is ns(n z + nt)/log n + nv/log n.

THEOREM 5. Given an n-vertex planar layeres st-graph G with nonneoative edge
weights, we can determine the shortest path from s to t in time O(log 3 n) with n/log n
processors in a C R E W PRAM.

PROOF. The proof immediately follows from Lemma 2 and Theorems 3
and 4. []

4. The Tube Minima Problem and a More Efficient Solution. Consider at any
stage of the computation the array A, where AUi, k, j] is the value of the shortest
path from vertex i t S to vertex j~ T that is constrained to pass through the
vertex k ~ Z. Let | j) be the smallest index k that minimizes A[i, k, j]. We say
that A is totally monotone if | satisfies the following properties:

| j) < | + 1, j),

| j) __< | j + 1).

Furthermore, | for every submatrix A' of A should also satisfy these properties.
It can be shown that at every stage of the computation the matrix A constructed
as above is totally monotone. It is not hard to see that to patch up two
subproblems P1 and P2 we only need to determine the value of | for all i,j.
The problem of determining the value of | was formalized by Aggarwal and Park
as the tube minima problem and has many applications in computational geometry
[13. They give the following bounds for calculating the tube minima of an
x/fn x x /n x x /n array."

THEOREM 6. The tube minima of an x/~ x x /n x x /n array can be found in time
O(log n) and work O(n) in a C R E W PRAM.

Similarly for the CRCW model of computation Atallah [4] has given an
algorithm with the following bounds:

THEOREM 7. The tube minima of an x /n x x//n x x//n array can be found in time
O(log log n) and work O(n) in a C R C W PRAM.

We can use these algorithms in the patch-up stage to get improved algorithms.
To do that we need to make a slight change to our recursive decomposition. In
our current decomposition tree we only worry about the total number of
source-sink pairs at any level, and not about the number of boundary vertices in
any one particular region. Therefore, our division does not guarantee that the

An Efficient Parallel Algorithm for Shortest Paths in Planar Layered Digraphs 337

number of recursive subproblems in each piece is small. It is possible to do the
division so that the number of boundary vertices in any piece P (at any level) is

O(x~p), where the number of vertices in P is np. This can be accomplished by using
the following idea due to Frederickson [11]: Mark the boundary vertices and use
the separator algorithm from Theorem 3 once, to divide the marked vertices (into
small pieces), at every stage. Our separator algorithm can be easily modified to
divide a collection of marked vertices. This change in our division strategy
guarantees that at any stage each piece has a small number of boundary vertices.
In particular, we have the following lemma, which follows from the arguments
in [11].

LEMMA 5. Let G be an n-vertex planar layered st-graph, and let 0 <_ ~ < 1. Using
the separator X defined in Theorem 2 we can divide the graph into O(n/r) regions,

such that each regions has at most r vertices, and there are only O(n/x/r) boundary

vertices in all. Furthermore, none of the regions contain more than O(x/r) boundary
vertices.

Using this division strategy the patch-up problem for any parent piece P at

any stage can be solved as a tube-minima problem on an O (~ p x x/-npp x x~p)
array. We therefore get the following bounds for the shortest-path
problem:

THEOREM 8. Given an n-vertex planar layered st-graph G with nonnegative edge
weights, we can determine the shortest path from s to t in time O(log n) with n/log n
processors in a C R E W P R A M , and in time O(log n log log n) with n/log log n
processors in a C R C W PRAM.

5. Conclusions. We have given a linear processor CREW algorithm for determin-
ing the shortest paths in a planary layered digraph which runs in time O(log 2 n).
Our motivation for considering layered graphs was to see if they can be used to
solve the shortest-path problem for planar st-graphs; however, since they extend
the class of grid digraphs they may have other applications. As far as planar
st-graphs are concerned, it seems unlikely that a similar approach would give a
linear processor solution. As evidence we present the graph in Figure 9 that cannot
be decomposed into smaller pieces (that are a constant fraction smaller in weight)

by using one-way separators of size O(v/n)i Klein and Subramanian [17] have to
some extent resolved this problem by presenting a linear-processor polylog-time
algorithm for finding single-source shortest-path problems in planar digraphs.
However, their algorithm has a polylogarithmic running time with a large
exponent. It may be possible to use a combination of the ideas presented in this
paper along with the ones in [-17] to get a linear-processor algorithm that has a
better running time.

338 S. Subramanian, R. Tamassia, and J. S. Vitter

n3/4nodes in a row =-

n 1/4rows

/ J

f J

J

Fig. 9. A bad planar st-graph.

i

P41~- - -4 I . ~ l - ~ - 4 b q l ' - - - - - 4
k A~ �9

b - - - - - P 4 ~
Jk �9

Acknowledgments. We would like to thank Alok Aggarwal and Mike Atallah for
showing us that we can get better bounds by using the algorithms for the tube
minima problem, and for bringing to our attention Frederickson's technique for
maintaining a small boundary [11].

References

[1] A. Aggarwal and J. Park, Notes on searching multidimensional monotone arrays, Proc. 29th
Annual IEEE Symposium on Foundations of Computer Science, 1988, pp. 496-512.

[2] N. Alon and Z. Galil, On the exponent of the all pairs shortest path problem, Proc. 32nd Annual
IEEE Symposium on Foundations of Computer Science, 1991, pp. 569-575.

[3] A. Apostolico, M. J. Atallah, L. Larmore, and H. S. Mcfaddin, Efficient parallel algorithms for
string editing and related problems, SIAM Journal on Computing, 19 (1990), 968-988.

[4] M.J. Atallah, A faster parallel algorithm for a matrix searching problem, Proc. 2rid Scandinavian
Workshop on Algorithm Theory, 1990, pp. 193-200.

An Efficient Parallel Algorithm for Shortest Paths in Planar Layered Digraphs 339

[5] R. Bellman, On a routing problem, Quarterly Journal of Applied Mathematics, 16 (1958), 87-90.
[6] E. Cohen, Efficient parallel shortest-paths in digraphs with a separator decomposition, Proc.

5th Annual Symposium on Parallel Algorithms and Architectures, 1993, pp. 5~67.
[7] R. Cole and U. Vishkin, Optimal parallel algorithms for expression tree evaluation and list

ranking, Proc. Third Aegean Workshop on Computing, 1988, pp. 91-100.
[8] A.L. Delcher and S. R. Kosaraju, An NC algorithm for evaluating monotone planar circuits,

Manuscript.
[9] G. Di Battista and E. Nardelli, An algorithm for testing planarity of hierarchical graphs, Proe.

Workshop WG86, Bernierd, June 1986 (1987), pp. 277-289.
[10] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1

(1959), 269-271.
[11] G.N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications,

SIAM Journal on Computing, 16 (1987), 1004-1022.
[12] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network

optimization algorithms, Journal of the Association for Computing Machinery, 34 (1987), 596-615.
[13] H. Gazit and G. L. Miller, A parallel algorithm for finding a separator in planar graphs, Proc.

28th Annual IEEE Symposium on Foundations of Computer Science, 1987, pp. 238-248.
[14] M. Gondran and M. Minoux, in Graphs and Algorithms, Wiley Interscience, New York, 1984.
[15] Y. Han, V. Pan, and J. H. Reif, Efficient parallel algorithms for computing all pair shortest

paths in directed graphs, Proc. Fourth Annual ACM Symposium on Parallel Algorithms and
Architectures, 1992, pp. 353-362.

[16] R.M. Karp and V. Ramachandran, A survey of parallel algorithms for shared memory machines,
in Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), North-Holland, Amsterdam,
1990, pp. 871 941.

[17] P.N. Klein and S. Subramanian, A linear-processor polylog-time algorithm for shortest-paths
in planar graphs Proc. 1993 IEEE Symposium on Foundations of Computer Science, 1993,
pp. 259 270

[18] G.L. Miller, Finding small simple cycle separators for 2-connected planar graphs, Journal of
Computer and System Sciences, 32 (1986), 265-279.

[19] G.L. Miller and W..Thurston, Separators in two and three dimensions, Proe. 22nd Annual
ACM Symposium on Theory of Computing, 1990, pp. 300-309.

[20] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[2!] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planitary testing of graphs, Theory of
Graphs, Proc. Internat. Symposium, 1966, pp. 215-232.

[22] R.J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM Journal on
Computing, 9 (1980), 615-627.

[23] V. Pan and J. H. Reif, Fast and efficient solution of path algebra problems, Journal of Computer
and System Sciences, 38 (1989), 494-510.

[24] V. Pan and J. H. Reif, The parallel computation of minimum cost paths in graphs by stream
contraction, Information Processin 9 Letters, 40 (1991), 79-83.

[25] G. Shannon and F. Wan, Subdividing Planar Graphs in Parallel, Technical Report, Department
of Computer Science, Indiana Universty, 1991.

[26] R. Tamassia and F. P. Preparata, Dynamic maintenance of planar digraphs, with applications,
Algorithmica, 5 (1990), 509-527.

[27] R. Tamassia and J. S. Vitter, Parallel transitive closure and point location in planar structures,
SIAM Journal on Computing, 20 (1990), 708-725.

[28] J. Valdes, R. E. Tarjan, and E. L. Lawler, The recognition of series parallel digraphs, SIAM
Journal on Computing, 11 (1982), 298-313.

[29] S. Whitesides, Forms of hierarchy: a selected bibliography, General Systems, 14 (1969), 3-15.

