
Online Algorithms for Prefetching and Caching
on Parallel Disks∗

Rahul Shah
Dept. of Computer Sciences

Purdue University
West Lafayette, IN 47907

rahul@cs.purdue.edu

Peter J. Varman
Dept. of ECE

Rice University
Houston, TX 77005

pjv@rice.edu

Jeffrey Scott Vitter
Dept. of Computer Sciences

Purdue University
West Lafayette, IN 47907

jsv@purdue.edu

ABSTRACT
Parallel disks provide a cost effective way of speeding up
I/Os in applications that work with large amounts of data.
The main challenge is to achieve as much parallelism as pos-
sible, using prefetching to avoid bottlenecks in disk access.
Efficient algorithms have been developed for some partic-
ular patterns of accessing the disk blocks. In this paper,
we consider general request sequences. When the request
sequence consists of unique block requests, the problem is
called prefetching and is a well-solved problem for arbitrary
request sequences. When the reference sequence can have
repeated references to the same block, we need to devise an
effective caching policy as well. While optimum offline algo-
rithms have been recently designed for the problem, in the
online case, no effective algorithm was previously known.
Our main contribution is a deterministic online algorithm
threshold-LRU which achieves O((MD/L)2/3) competitive
ratio and a randomized online algorithm threshold-MARK
which achieves O(

p

(MD/L) log(MD/L)) competitive ra-
tio for the caching/prefetching problem on the parallel disk
model (PDM), where D is the number of disks, M is the size
of fast memory buffer, and M + L is the amount of looka-
head available in the request sequence. The best-known
lower bound on the competitive ratio is Ω(

p

MD/L) for
lookahead L ≥ M in both models. We also show that if
the deterministic online algorithm is allowed to have twice
the memory of the offline then a tight competitive ratio of
Θ(

p

MD/L) can be achieved. This problem generalizes the
well-known paging problem on a single disk to the parallel
disk model.

1. INTRODUCTION

∗Supported in part the Army Research Office through grant
DAAD19–03–1–0321, by the National Science Foundation
through Grants CCR–9877133 and 0105565, and an IBM
research grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04, June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

The parallel disk model (PDM) [19] is one of the most
popular models for measuring the I/O complexity of prob-
lems when data are allowed to be on multiple disks. In each
I/O step, a block from each disk can be read (or written)
simultaneously. That is, if D is the number of disks, in
one I/O step we can read or write as many as D blocks
if these blocks happen to fall on different disks. A funda-
mental problem in this model is caching/prefetching: Given
an ordered sequence of read requests and a main memory
buffer of size M , the problem is to generate the I/O schedule
to serve these requests in the minimum number of parallel
I/Os. At each I/O step, at most one block from each disk is
read into the buffer. The read request for the block can be
served from the buffer. At the moment when a read request
for a particular block is issued, an I/O step must be done to
fetch that block into memory buffer from its corresponding
disk if the block is not already in the memory buffer. Dur-
ing this I/O step, we might choose to prefetch some blocks
from other disks, so that when the blocks are requested they
are already in memory, thus avoiding I/O. This is called the
prefetching problem for parallel disks. After the block’s read
request is served, we may still want to keep it in the mem-
ory buffer in case any future read request for the same block
occurs in the read sequence. Determining which blocks to
keep in the buffer is known as the caching problem.

For minimizing the number of I/Os in the parallel disk
model, caching and prefetching have to be considered simul-
taneously. In the special case where all the blocks in the
request sequence are unique, which we call the read-once
version of the problem, no caching is required and the only
problem is prefetching. The more general read-many ver-
sion involves caching. If the full request sequence is known
in advance (i.e., if future references are known), the prob-
lem becomes offline. In the online problem we consider in
this paper, future requests are unknown to the algorithm
or perhaps are known for only some limited lookahead. We
consider competitive ratio as the measure of effectiveness of
our online algorithms.

Prefetching is needed to take advantage of parallelism. In
order to do prefetching effectively, an algorithm needs a cer-
tain amount of lookahead into the request sequence. In the
read-once case, this lookahead can be in the form of the next
L blocks in the request sequence. However, in the read-many
case, an adversary can nullify any advantage of lookahead
by repeating the same block L times consecutively. In this
case, the lookahead doesn’t provide much information. To
overcome this problem, many different definitions of looka-

heads are considered in the (single-disk) paging literature
[20, 1, 8]. We shall assume the definition provided by [1] of
strong lookahead. The algorithm has a strong lookahead of
size L if, at any given time, it can see up to the number of
references into the future that are sufficient to have L dis-
tinct blocks in the lookahead string. We shall use the term
“lookahead” to implicitly mean strong lookahead.

Lookahead of at least M blocks is required in order to
achieve a competitive ratio achieving full parallelism. When
lookahead is less than M−D, the lower bounds for the single
disk case (which is a particular case of our problem) are
Ω(D), and hence meaningful parallelism cannot be achieved.
Hence, whenever convenient, we shall denote the lookahead
by M + L. The challenge is to achieve a competitive ratio
sublinear in D.

1.1 Previous and related work
Paging (caching) algorithms have a long history in com-

puter science. Given a sequence of n pages (or blocks) to be
read and a memory of size M , which pages should be kept
in fast memory so as to have the minimum number of page
faults? When the request sequence is known in advance,
Belady’s MIN replacement policy [6] achieves a minimum
number of page faults. When future requests are not known
to the algorithm, the problem becomes online. The compet-
itive ratio measures how best any online algorithm without
knowledge of future requests compares with the one with
full future knowledge. See [18, 14, 1, 10, 7] for some funda-
mental results for competitive online paging.

Sleator and Tarjan [18] showed that LRU and FIFO re-
placement policies achieve a competitive ratio of M , which is
the best possible for any online algorithm in a deterministic
setting. Albers [1] showed that when the online algorithm
has a strong lookahead of L the competitive ratio can be
lowered to M − L for L ≤ M − 2. This algorithm is based
on LRU. Several other definitions of lookahead are consid-
ered in the literature, like the resource-bounded lookahead
of Young [20] or the natural lookahead of Breslauer [8]. The
competitive ratio when the online algorithm has more re-
sources than the offline algorithm is also considered. If the
online algorithm has M +K fast memory, then the compet-
itive ratio is (M + K)/(1 + K), when compared with the
offline algorithm with memory size M [18, 8]. Under ran-
domized setting against an oblivious adversary a competitive
ratio 2HM can be achieved by the marking algorithm[10, 7]
which is asymptotically tight. A tight competitive ratio of
HM was obtained by the partition algorithm of McGeoch
and Sleator [17].

When considering the problem on the parallel disk model
(PDM), lookahead is a must in order to effectively prefetch
blocks. The problem of minimizing page faults translates
to the problem of minimizing the number of parallel I/Os.
This problem is interesting even when the request sequence
consists of distinct pages (read-once). Here, in order to ex-
ploit parallelization, we need to prefetch some blocks into
fast memory using parallel I/Os. This problem is called
prefetching. When the pages can repeat in the sequence,
then caching (paging) comes into play. In the particular
case when the number of disks is one, this problem reduces
to the paging problem described above.

This problem has been studied extensively. When looka-
head is M , Barve et al. [5] gave the first O(

√
D) compet-

itive algorithm for the read-once problem. Following this,

the read-once problem was optimally solved for all ranges
of lookahead (L < M and L > M) by Kallahalla and
Varman [12]. They also gave the first optimal offline algo-
rithm for the read-once case. Despite the optimal progress
on prefetching, any effective online caching policy was not
known on PDM. Kallahalla and Varman [13] and Hutchinson
et al. [11] independently gave the optimal offline strategies
for the caching/prefetching problem (i.e., read-many), which
can be seen as a parallel generalization of Belady’s MIN
policy and the optimal solution for the read-once (prefetch
only) problem. The only online algorithm, which was given
by Kallahalla and Varman [13], is O(D)-competitive when
lookahead is a constant multiple of M . The read-once prob-
lem (prefetch) has a tight competitive ratio of Θ(

p

MD/L),
given by [12].

A similar problem has been well considered by Karlin et
al. [9, 16, 15] and Albers et al. [3, 2, 4] in a more general set-
ting than PDM. In those papers, two factors are considered:
the time needed by the application to process an in-memory
block and the time needed to fetch a block from disk into
fast memory. The problem is then to minimize total time
or other similar metrics. This model tends to PDM in the
limit as CPU speed increases relative to the disk latency.
Most of the work is focused on approximation algorithms
for the offline problem. We note that although some strate-
gies used in the offline case for this model (like aggressive,
reverse aggressive and conservative) are strikingly similar to
those used in the optimal PDM algorithms (like greedy write,
duality, lazy prefetching, prudent prefetching), the analysis
(such as in [16]) tends be more suboptimal in the limit as
their model approaches PDM. A striking result of the PDM
work is that a similar framework to those in [9, 16, 15, 3, 2,
4] with proper augmentation and analysis can indeed pro-
vide optimal algorithms in PDM. While the more general
problem remains hard, on PDM, this is a well-solved prob-
lem in offline case and in the case where request sequence is
read-once (prefetching).

1.2 Our results
Our main contributions are summarized as follows:

1. For the read-once case, we present a simplified algo-
rithm which achieves the asymptotically tight compet-
itive ratio of O(

p

MD/L).

2. For the read-many case, under deterministic setting,
we present the parallel disk generalization of LRU called
threshold-LRU (or tLRU), which achieves a competi-

tive ratio of O((MD/L)2/3) for lookahead M +L. This
improves upon the previous best of O(MD/L).

3. For the read-many case, under a randomized (oblivious
adversary) setting, we present a parallel generalization
of the MARK algorithm called threshold-MARK (or
tMARK). This achieves the expected competitive ratio

of O(
p

(MD/L) log(MD/L)) for lookahead M + L.

4. For the read-many case, under deterministic setting,
we show that the asymptotically tight competitive ra-
tio of O(

p

MD/L) can be achieved if the online al-
gorithm (tLRU) is allowed twice the memory of the
offline adversary. This is asymptotically tight when
L > (1 + 1/ε)M for any constant ε.

Problem Results (Competitive Ratio) Lower bound Algorithm
Offline read-once optimal – L-OPT[12], duality+FIFO[11]
Offline read-many optimal – Supervisor[13], duality+MIN[11]

Online read-once O(
√

D), L = M Ω(
√

D) NOM [5]

O(
p

MD/L) Ω(
p

MD/L) L-OPT[12],threshold [this paper]

Online read-many O(MD/L), L ≥ M Ω(
p

MD/L) Supervisor [13]

O((MD/L)2/3), L ≥ (1 + 1/ε)M Ω(
p

MD/L) tLRU [this paper]

Rand. Online r-many O(
p

(MD/L) log(MD/L)), L ≥ (1 + 1/ε)M Ω(
p

MD/L) tMARK [this paper]

Table 1: Caching and Prefetching Results on PDM

Our algorithms are built up on the work of [18, 1, 12, 11,
10].

In Section 2, we formulate the problem and describe known
results which are essential building blocks of our algorithm.
In Section 3, we present four algorithms with competitive
analyses. We conclude with open problems and issues in
Section 4.

2. PRELIMINARIES

2.1 Problem setting and formulations
Our problem setting consists of a request sequence Σ of n

blocks (not necessarily distinct), a lookahead window of size
L, buffer memory (shared) of size M , and D disks. The re-
quest sequence is an ordered sequence of n pages (or blocks).
Each block is associated with its particular disk. The request
sequence can be seen as a series of read requests for partic-
ular blocks. At the time when the read request is issued,
if the requested block is in the buffer, it is accessed there;
otherwise, an I/O step must be performed to fetch the block
from its corresponding disk into the buffer. The I/Os are
parallel; in each I/O step, at most D blocks can be fetched,
one from each disk.

The central task is to schedule the I/Os so that we can
exploit maximum parallelization and minimize the number
of I/O steps (or I/Os for short) required to serve the re-
quest sequence Σ. As noted earlier, prefetching blocks is a
necessity. To prefetch effectively, the scheduling algorithm
is provided with the lookahead which, at the point when a
particular block b in Σ is referenced, consists of the request
sequence consisting of the next L distinct blocks after b.

When Σ consists exclusively of unique blocks (i.e., with no
repetitions), it is called a read-once sequence. Otherwise, it
is called a read-many sequence. Given a request sequence Σ,
the problem is to construct a minimum-I/O read schedule.
The solution in the offline setting, when the lookahead is in-
finite (i.e., at least as long as the request sequence), appears
in [12, 13, 11], which is briefly described in section 2.3. In
the online case, when lookahead is smaller than the request
sequence, the scheduling algorithm may not achieve an I/O
schedule as short as that of the offline problem.

Under the deterministic settings, the maximum (over the
entire request sequence) ratio of the length of schedule ob-
tained by an online algorithm A with bounded lookahead L
to the length of optimal offline schedule, is the competitive
ratio obtained by the online algorithm A. The competi-
tive ratio obtained by any algorithm forms an upper bound
for the competitive ratio of the problem. If for a given on-
line algorithm for a problem there is some request sequence
such that the length of the schedule generated is at least c
times that of the offline optimum, then c is the lower bound

for the competitive ratio of the problem. In a randomized
setting, this competitive ratio is the ratio of the expected
length of the online algorithm’s schedule to that of the the
optimum offline’s schedule. Randomized online algorithms
have better competitive ratios for many problems under the
oblivious adversary model, where the request sequence is
predetermined.

The competitive ratio in general assumes that both the
offline and online algorithms use the same amount of buffer
space, namely, M . We also consider the case when the online
algorithm has buffer space 2M , and we compare its perfor-
mance to that of the offline algorithm with buffer space M .
We achieve a competitive algorithm for this case.

All our algorithms are phase-wise. A phase is a contiguous
subsequence of the full request sequence Σ = (b1, b2, . . . , bn).
The phases partition Σ into contiguous groups of blocks.
The size of the phase is the same as the lookahead. That is,
the first phase consists of the blocks (b1, b2, . . . , bj) where j
is the minimum index such that (b1, b2, . . . , bj) consists of L
distinct blocks. This is also the lookahead available to the
algorithm initially. Phase i consists of blocks (bk, . . . , bl),
where bk−1 is the last block of phase i − 1 and l is the
least index such that (bk, . . . , bl) consists of L distinct blocks.
During the schedule, the I/Os for phase i start after the I/O
in which the last block of phase i−1 is fetched and referenced
and end with the I/O when all blocks of the phase i are
referenced.

2.2 Lower bounds and motivating examples
Since read-once is a particular case of read-many, the

lower bounds on the competitive ratio for the read-once case
also apply to the read-many case. The lower bound for the
read-once case when the lookahead is of size M is Ω(

√
D).

Intuitively, this can be visualized as follows: Consider the
alternating sequence of good phases and bad phases. A good
phase consists of M requests striped equally on each disk. A
bad phase consists of M/

√
D requests on one particular disk,

called the bad disk, and other requests striped equally. Con-
sider a series of

√
D such good and bad phases. An offline

algorithm can prefetch all the blocks on bad disks (in their
respective bad phases) during the first bad phase, while the
online algorithm has no idea what these blocks are. Hence,
the offline algorithm does (M/

√
D +M/D) I/Os in the first

pair of phases and then 2M/D in the remaining 2
√

D − 2

phases, while the online algorithm incurs M/
√

D I/Os in
every bad phase. For the formal proof and illustration see
[5].

This lower bound can be easily extended to the case when
the lookahead L is greater than M . In this case, M/

√
D is

replaced by
p

ML/D, and hence there are
p

MD/L pairs
of phases, thus giving a lower bound of Ω(

p

MD/L) on the

competitive ratio [12]. In our case we assume a lookahead of
L + M , making this lower bound Ω(

p

MD/(M + L)). This
is the same as Ω(

p

MD/L) in the asymptotic sense when
L ≥ M/ε, for any constant ε.

When designing single disk online algorithms with looka-
head, LRU turns out to be the best deterministic policy [1].
In the case of parallel disks, however, this is not exactly
true. Consider the following example: Let the lookahead be
2M . Let Σ1 be the request sequence of 3M distinct refer-
ences all striped equally on D disks. Let Σ2 consist of M
distinct references on disk 1. Let all the requests in Σ2 be
distinct from those in Σ1. Now, the request sequence con-
sists of many (possibly infinite) repetitions of Σ1Σ2. Simple
LRU will fault M +3M/D times on each repetition, while if
we only cache the blocks in Σ2, we fault M + 3M/D times
for first occurrence but roughly only 3M/D times in each
subsequent repetition. Thus, LRU can be off by a factor
of O(D). (This is basically the essence of the algorithm in
[13].) However, some good combination of parallelization
with LRU might give better bounds.

2.3 Optimal offline algorithms and duality
In this section, we discuss optimal offline algorithms known

in literature. We shall use these algorithms as subroutines in
our online solutions. We additionally show how to compute
an optimal read schedule for a given sequence of accesses, as-
suming that we already have some of the required blocks in
memory. The notion of duality and the proofs of optimality
can be found in [11].

2.3.1 Read-Once case
The algorithm for achieving a minimum number of par-

allel read I/Os can be obtained by duality [11]. The dual-
ity reduces the read problem on the request sequence Σ to
the write problem on the request sequence ΣR, which has
a simple greedy optimal solution. The greedy solution (see
Theorem 2 of [11]) involves the repetition of the two steps

1. Insert as many blocks as possible into buffer to make
it full.

2. Write blocks to as many disks as possible in a single
I/O step.

until all the blocks are issued, after which we finally flush all
the blocks remaining in the buffer onto the disks. For each
disk, it uses a FIFO discipline for writing. By duality, this
greedy writing translates to lazy prefetching for the read-
once problem, giving an optimal number of read I/O steps
for the request sequence. For illustrative examples of how
simple heuristics like greedy reading perform worse than lazy
prefetching, we refer the reader to [11].

2.3.2 Read-Many case
When blocks are no longer distinct, they may be retained

in the buffer even after they are accessed, for referencing
them in the future without future I/Os. The correspond-
ing write-many problem is formulated as follows: Write the
blocks in ΣR onto the disk so that the latest instance of
each block is either on its assigned disk or in the buffer pool
during the schedule. The final instance of each block must
be written to its assigned disk. We may not need to write
the intermediate instances of blocks onto disk as long as we
have them in the buffer.

The solution is that, in each write step, instead of follow-
ing FIFO to write a block onto disk, the block that is written
(among the blocks for that disk) is the one whose next ref-
erence in the string is the latest. This is like Belady’s MIN
heuristic [6, 11] but done in the disk wise sense. The reverse
of this gives the optimal read schedule (see Theorem 4 of
[11]).

2.3.3 Read-Many case with initial memory condition
Our algorithm will be a combination of the optimal algo-

rithm above within a phase and an efficient caching policy
across phases. We consider a slight modification of the op-
timal algorithm in the read-many case that will be useful
later on. The problem is: Given an initial memory buffer
containing a set S of ≤ M blocks and given the request se-
quence Σ to read, what is the optimal schedule? Note that
in the previous case, the initial memory S is empty.

By duality, this problem can be done by the write schedule
on ΣŜ where Ŝ is any arbitrary ordering of blocks in S and
the final instance of blocks in S need not be written to the
disk.

3. ALGORITHMS
In this section, we describe our online algorithm for inte-

grated caching and prefetching. Before we describe our final
algorithm, we start with two simple algorithms (Sections 3.1
and 3.2), which will lead us towards the final algorithm in
Section 3.3. All our algorithms are phase-wise algorithms
as compared with priority-controlled sliding window algo-
rithms in literature [12, 13]. By phase-wise, we mean that
the request sequence is broken into phases and we treat the
request sequence one phase at a time. The phase is as big
as the lookahead.

3.1 Read-once case
In this section, we consider the read-once case, in which

every block appears only once in the request sequence, as
in [12]. We describe a simple phase-wise algorithm which
achieves the same competitive ratio as [12] but keeps the
analysis simpler using a potential function.

Let the lookahead size be L and the request sequence be
Σ = (b0, b1, . . . , bn−1). We shall assume n to be an integral
multiple of the lookahead size L. We break up the request
sequence into phases of size L, where phase i consists of
blocks Σi = (biL, biL+1, . . . , , b(i+1)L−1). There are a total
of n/L phases Σ0, . . . , Σn/L−1.

Our algorithm A will treat each phase independently. For
each phase, the algorithm will be able to see the entire re-
quest sequence for that phase at the beginning of the phase.
The algorithm A empties its memory before starting the
new phase. It then finds the best possible I/O schedule for
each phase, using the optimal duality-based scheduling al-
gorithm [11]. We shall compare the competitiveness of this
algorithm with the optimal offline algorithm O that knows
the entire request sequence in advance.

Theorem 1. The algorithm A is O(
p

MD/L) competi-
tive.

Proof. Let Mi be the memory of O at the beginning of
the phase i. We shall define the potential Φi at the beginning
of phase i (we can break the execution of O into phases also–
a phase end when O serves the last block in that phase) to

reflect this memory state of O as follows: Let Md
i be the

number of blocks in Mi that come from disk d. Then,

Φi =
D

X

d=1

max(Md
i −

p

ML/D, 0)

We call this potential function Φ a threshold potential
function, where the threshold size t is set to be equal to
p

ML/D. One important point is that at most
p

MD/L
disks can contribute a positive quantity to this potential
function. (Otherwise, since each such disk must have at

least
p

ML/D blocks in memory, the total number of blocks
in memory would be more than M .) Let oi be the number
of I/Os that O does in the phase i. (Phase i starts after
the last I/O of phase i − 1 and ends with the I/O in which
the last block of phase i is fetched.) Let ai be the number
of I/Os done by our algorithm in phase i. The memory of
our algorithm A is empty before the start of the phase, and
given an empty starting memory, A is optimal in phase i.
However, O may do fewer I/Os in phase i because it has
already prefetched some blocks in the memory before the
beginning of phase i.

Let’s consider the case oi < ai. It follows that the con-
tents Mi of memory include ai−oi blocks accessed in phase i
from some disk, say, disk d. (Otherwise A can obtain a
shorter schedule in phase i by prefetching the blocks of Mi

referenced in phase i and then simulating O’s schedule re-
stricted to phase i). By the read-once property, at the end
of phase i, we can assume that O deletes from memory all
the blocks used in phase i. In particular, Mi+1 loses at least
ai − oi blocks that belonged to disk d. During phase i, O
can prefetch at most oi from each disk to be used in later
phases.

The net effect of these changes in memory content is that
during phase i the potential function decreases by at least
ai − oi −

p

ML/D and increases by at most oi

p

MD/L.
Therefore, we have

Φi+1 ≤ Φi − (ai − oi −
p

ML/D) + oi

p

MD/L.

Summing up over all the phases and using the fact that
Φ0 = ΦN/L+1 = 0, we get

n/L
X

i=0

ai ≤
n/L
X

i=0

oi(1 +
p

MD/L) +

n/L
X

i=0

p

ML/D.

The last term on the right-hand side sums up to n
p

M/LD.
Since O does at least n/D I/Os over the course of the entire
algorithm, we have

Pn/L
i=0 oi

p

MD/L ≥ (n/D)
p

MD/L =
n

p

M/LD. Substituting this into the previous equation, we
get

X

ai ≤
X

oi(1 + 2
p

MD/L).

This implies that A is O(
p

MD/L) competitive.

The threshold potential function Φ captures two main
ideas in order to achieve competitive ratio of

p

MD/L:

1. The online algorithm A can have
p

ML/D I/Os in
each phase “for free” without violating the desired
competitiveness ratio. The cost of these I/Os is paid
by the fact that O on average spends at least L/D I/Os
in each phase. Based on these free I/Os we shall de-
velop our threshold-LRU algorithm, where the thresh-

old t is set to be equal to number of free I/Os allowed
in each phase.

2. In each phase, only
p

MD/L disks can contribute sig-

nificantly (i.e., more than
p

ML/D to the difference
between O and A).

These observations will motivate our approach for the read-
many case where caching along with prefetching will play a
significant role in the competitive analysis.

3.2 An algorithm for read-many case with sep-
arate caching and prefetching storage

Here, we assume that our algorithm A has a memory
buffer of size 2M : a prefetching storage space P of size M
and a caching storage space C of size M . We shall compare
this algorithm with the optimal offline algorithm O that uses
a memory of size M . We assume that the lookahead for the
online algorithm A is M + L, by which we mean that the
algorithm can look ahead into the request sequence until it
finds M + L distinct block references. The actual number
of page references in the lookahead can be arbitrarily larger
than M + L because of repetitions. As before, we use a
phase-wise approach, so our algorithm only uses the looka-
head as it exists at the beginning of each phase. We shall
achieve the competitive ratio of O(

p

MD/L).
Because we may need to access a given block multiple

times in the read-many sequence, it is important to design
some policy for caching the blocks already visited. Other-
wise, as seen in examples earlier, the competitive ratio can
be arbitrary. We cannot afford to have an empty memory
state between phases as in the previous subsection. Our
algorithm, called threshold-LRU (tLRU), will be motivated
from the two observations of the previous subsection and the
competitiveness of LRU algorithms for the single disk case
[18, 1]. Here, we shall set the threshold size t =

p

ML/D.
In each phase, the main idea is to cache blocks from disks
that are above this threshold. That is, during the phase, we
cache only from disks that have more than t new blocks, and
we leave aside (i.e., do not cache) t blocks from each such
disk.

Our algorithm A works as follows: Let Ci be the caching
memory of our algorithm at the start of phase i. Let Li be
the lookahead (which shows the request sequence up to the
end of phase i). We first update the LRU queue positions
of the blocks in Ci according to Li. That is, we move the
blocks in Li ∩ Ci to the bottom of the LRU eviction queue.
We order them by LRU order as seen at the end of phase
i. As in the previous section, let Mi be the set of memory
blocks in the memory of O at beginning of the phase i.

At the beginning of each phase, we first prefetch the blocks
from Li − Ci to arrive at new caching memory state Ci+1,
with the following caveats: While doing this, we only prefetch
the blocks from those disks on which Li − Ci has at least
p

ML/D blocks. Each such disk is called contributing disk.
Also while arriving at Ci+1, we do not prefetch all the blocks
from contributing disks but we leave out those

p

ML/D
blocks on every contributing disk whose last occurrence at
the end of phase i is the earliest. These blocks are called
left-out blocks. To make space for these new incoming blocks
we replace the blocks in Ci in LRU order as seen from the
end of phase i.

If all these new blocks don’t fit into C, then it means that
Ci+1 ⊆ Li but Li −Ci+1 had more than

p

ML/D blocks on

some disk. In this case we can be sure that any algorithm
will incur at least

p

ML/D I/Os in this phase. We simply
try to hold as many blocks as we can in Ci+1 by LRU order
as seen from the end of phase i, in this case.

We denote by xi the number of blocks prefetched by A at
the beginning of phase i. At the end of this process, we refer
to the resulting configuration of cache as Ci+1. We denote
the number of I/Os required by A to do this prefetching
stage as pi, the prefetching cost. Note that pi ≤ xi ≤ M .

In order to process the request sequence, we use a static
cache consisting of the blocks in Ci+1 which have already
been prefetched. For those blocks in the request sequence
that are not in Ci+1, we serve the request sequence by us-
ing the optimal duality-based algorithm [11], using separate
memory storage P and using the blocks in Li −Ci+1 as the
lookahead.

We denote the number of I/Os required by A to do the
duality scheduling of Li − Ci+1 as the serving cost si. Let
the number of I/Os done by the optimal algorithm O in this
phase be oi.

Lemma 1. Either oi >
p

ML/D or si ≤ oi +
p

ML/D.

Proof. Let Mi be the memory of O before the phase i.
If oi ≤

p

ML/D, then Li −Mi has no more than
p

ML/D
blocks on any disk. This also means that all the blocks
in Li (excluding left-out blocks) prefetched by A can be
maintained in Ci+1. Our algorithm A will not have to throw
away any blocks which are in Li as a part of replacement
policy. Hence, Li −Ci+1 has no more than

p

ML/D blocks
on any disk. One way for A to serve the requests is to
prefetch blocks in (Mi∩Li)−Ci+1 into prefetching storage P

using at most
p

ML/D I/Os and then to mimic the behavior
of O in phase i. Since A uses the optimal duality-based
schedule, it always does at least this well. Hence, we get
si ≤ oi +

p

ML/D.

Lemma 2. si ≤ 2oi

p

MD/L.

Proof. Since the lookahead is M +L, we have oi > L/D.

If oi ≤
p

ML/D, then by Lemma 1 we get the required in-

equality. If oi >
p

ML/D, then our algorithm (during pro-
cessing the phase) can mimic the initial memory condition of
O using at most M I/Os and then continue processing as O.
However, our algorithm being optimal in the phase means
si ≤ oi + M . Since oi >

p

ML/D, we get the identity.

Lemma 3. For every sequence of phases i, i + 1, . . . , j, in
which xi +xi+1+ · · ·+xj ≥ M , the optimal offline algorithm

O does at least
p

ML/D I/Os.

Proof. Consider the memory Mi of O at the beginning of
phase i. Let L = Li∪Li+1∪. . .∪Lj . Let x = xi+xi+1+· · ·+
xj . Since x ≥ M and we use LRU as a policy to evict blocks,
L consists of at least M different blocks that our algorithm
A paid for as a prefetch cost plus at least

p

ML/D more
blocks (the left-out blocks) on each contributing disk that
algorithm A did not prefetch. Hence, whatever the state of
Mi, there is at least one disk such that L − Mi has more
than

p

ML/D blocks. Thus, O has to do at least
p

ML/D
I/Os.

The total cost of our algorithm is ai = pi + si. We can
assume that O initially does at least

p

ML/D I/Os for A

to start paying prefetch costs. Lemma 3 indicates that the
amortized prefetch cost is never more than 2

p

MD/L times
the cost for optimal algorithm. This is because every min-
imal sequence of phases where xi + xi+1 + · · · + xj ≥ M
satisfies xi + xi+1 + · · ·+ xj ≤ 2M . Thus the I/O cost of A

is at most 4
p

MD/L times that of O.

Theorem 2. The competitive ratio of tLRU, with looka-
head L + M and buffer memory 2M , is O(

p

MD/L) when
compared against optimal offline algorithm having buffer mem-
ory M .

When L > M/ε, the O(
p

MD/L) upper bound on the
competitive ratio is tight, with a similar lower bound within
a constant factor. In the particular case when L = M
(i.e., lookahead of size 2M), the threshold t becomes M/

√
D

(instead of
p

ML/D) and we get the competitive ratio of

O(
√

D) (instead of O(
p

MD/L)).

3.3 The online algorithm for integrated caching-
prefetching

In this section, we give our main algorithm for the read-
many case. Unlike the last section, we no longer assume
separate memory storage for prefetching and caching. Our
online algorithm will only have one buffer of size M . We
shall build upon the algorithm in the previous subsection,
the crux of the new algorithm being how to carefully sep-
arate the buffer into caching and prefetching parts while
maintaining the competitive ratio. We may not be able to
preserve all the blocks we have cached because we have to
make space for servicing the phase. The service cost will
be higher if less memory space is allowed for servicing. The
idea, then, is to maintain as many cached blocks as possible
without penalizing the service cost too much.

Our competitive ratio is not as tight as we obtained in the
previous subsection, mainly because of the following caching
scenario: Consider comparing an online algorithm that uses
LRU with the algorithm that knows the request sequence in
advance and can change all its blocks using just one page
fault. If k is the memory size, then LRU is k-competitive
in this scenario. This is because by the time LRU faults
k times, if the benchmark algorithm has yet to incur any
page faults, then LRU’s memory becomes exactly the same
as that of the benchmark algorithm. This fact is what our
previous result uses.

However, in our case at hand, we add one more constraint,
namely, changing memory size. Consider comparing LRU
with a similar algorithm but now with the new constraint
that memory size can shrink or grow at any time by any
amount. Both the algorithms use the same memory size at
all times, but the memory size may be variable. In addition,
the benchmark algorithm can load/change as many pages as
it wants using just one page fault. The question arises: Is
LRU still k-competitive? The answer is no! Every time
the available memory is permanently reduced, LRU can be
cheated into making a whole new sequence of page faults.
However, the memory can permanently shrink only k times.
This makes LRU O(k2)-competitive.

When the caching memory has to be shared with process-
ing, some phases might need more processing memory. In
this case, the algorithm may not be able to carry all the
blocks it cached to the next phase (i.e., it may have to drop
some). In this case, the emphasis of algorithm is still on
carrying as many blocks as possible.

However, this doesn’t mean that all the advantage is lost.
We can now have the threshold size t = M/(MD/L)1/3 and

achieve an algorithm which is O((MD/L)2/3) competitive
when the lookahead is M + L.

The processing of the phase algorithm tLRU works as fol-

lows: Update Ci to C
′

i (we call it C
′

i here and not Ci+1) as

in the previous algorithm using prefetching. Order C
′

i by
LRU as seen at the end of phase i. That is, the block of

C
′

i whose last access is the latest appears last. Let CL
i be

the subset of C
′

i consisting of those t blocks from each disk
whose last occurrence is the earliest as seen at the end of
phase i. In case a disk has fewer than t blocks in C

′

i , CL
i

contains all the blocks from that disk. Let Di = C
′

i − CL
i .

The blocks in Di are ordered by their last occurrence in Li

(the latest block first). Suppose that, given the initial mem-

ory condition C
′

i , algorithm A takes y I/Os to process the
phase using duality. Then, we define an ordered sequence
Pi as the largest prefix of Di such that the lookahead LiPi

can be served by A in at most y + t I/Os.
During the servicing part of the phase, we run the dual-

ity based algorithm with LiPi as lookahead (and also the

request sequence) and C
′

i as the initial memory condition.
The blocks in Pi become part of Ci+1 at the end of the
phase. If Pi = Di, then we do t more I/Os to restore the
blocks in CL

i into Ci+1. Else, we carry the t extra blocks

from each disk from C
′

i − Pi chosen by the LRU order. In
this case we call phase i as a downsizing phase.

Lemma 4. Either oi > t or si ≤ oi + 3t.

Proof. Same as Lemma 1. From Lemma 1, we have
y ≤ oi + t and our service cost here is at most y + 2t.

Lemma 5. Consider any sequence of phases i, i + 1, ..., j,
where xi + xi+1 + .. + xj ≥ M and there is no downsizing
phase among these where our algorithm is forced to lose some
blocks which appear during these phases. Then O must do
at least t I/Os over these phases.

Proof. Same as lemma 3. Here, L = Li ∪ Li+1 ∪ .. ∪ Lj

consists of at least M distinct blocks plus at least t blocks
on each disk which was contributing disk during one of these
phases. Hence, whatever Mi was, O must see at least t new
blocks on one of the disks.

A downsizing phase is called effective downsizing phase
if it allows fewer blocks to pass through than the previous
effective downsizing phase l or it occurs after more than z
pages are accessed as a part of cache (i.e., in some Ci) after
the phase l, where z is the number of blocks allowed to pass
through by the phase l. Note that algorithm tLRU need
note be aware whether a downsizing phase is effective or
not. This is only for analysis.

Lemma 6. Let i be a downsizing phase allowing z blocks.
Let i + 1, ..., j be the sequence of phases where there is no
effective downsizing phase and xi+1 + .. + xj ≥ z. Then, O
must do at least t I/Os over the phases i, .., j.

Proof. If i allows z blocks to pass through, O has no
more than z old blocks when it enters phase i + 1, unless it
does some I/Os during the phase i to carry over the blocks.
O has to serve at least z blocks plus t blocks per each of the
contributing disks. Hence, O must do at least t I/Os (this
includes I/Os in phase i) over these phases.

Consider a maximal sequence of phases i, ..., j where O
does at most t/2 I/Os. Let’s call this sequence a super-
phase. Now L = Li ∪ ... ∪ Lj consists of at most M blocks
plus t/2 blocks on each disk. There can be at most 2M/t
contributing disks in this superphase. Hence, there are at
most 2M blocks altogether in a superphase which occur on
any of the contributing disks, and there are at most M block
fetches O can do during the superphase using only t/2 I/Os
involving the blocks on the contributing disks.

During the effective downsizing phase, if A loses some
blocks from the current superphase, then we shall show
that O must lose at least t/2 blocks from the contribut-
ing disks of the current superphase. Thus, within a super-
phase, there cannot be more than 4M/t effective downsizing
phases. On each subsequence of the superphase where there
is no effective downsizing, A can do at most 2M prefetching
I/Os. Hence, the total prefetch cost of A within a phase is

≤ 8M2/t. Again, choosing t = M/(MD/L)1/3, the prefetch

cost is bounded by 8M(MD/L)1/3. The cost of O is at least

M/(2(MD/L)1/3) (i.e., t/2) during phases i, ..., j, j+1. The
cost of O in phase j +1 can be counted twice so that it pays
for the previous superphase as well as the new superphase,
which starts with j + 1. This gives a competitive ratio of
O((MD/L)2/3) on prefetch cost. As seen earlier, the com-
petitive ratio for the service cost is O(t/(L/D)), since oi is at

least L/D in any phase. Again choosing t = M/(MD/L)1/3,

this competitive ratio becomes O((MD/L)2/3).
What remains to be proven is that during effective down-

sizing, where A loses some blocks from the current super-
phase, O loses at least t/2 blocks from the superphase.

Consider the processing of the phase. Let X = Li ∩ C
′

i ,

Y = (C
′

i −Li)∩L and Z = C
′

i −L. We have C
′

i = X∪Y ∪Z,
and the blocks in X ∪ Y appear before the blocks in Z in
the reverse LRU order. Since Pi is the largest prefix in
the reverse LRU order, it prefers the blocks in X ∪ Y over
Z, and there is no other subset W ⊆ (X ∪ Y) − CL

i such
that |W | > |Pi| and that (W) can be maintained (without
ever losing the blocks from W , during the processing of the
phase) at the end of the phase using less than t I/Os during
the phase. This uses the LRU property of Pi and the fact
that if such a W existed then the blocks of W could be ex-
changed for the blocks occurring later to make |Pi| larger.
Ultimately, after restoring t more blocks from each disk, if
our algorithm loses a few blocks in X∪Y , then any other al-
gorithm which does less than t/2 I/Os (i.e., it cannot restore
more than t/2 blocks per disk) loses at least t/2 blocks in
X ∪ Y on some disk. This finishes the argument and yields
the following theorem.

Theorem 3. The competitve ratio of tLRU, with looka-
head L + M , is O((MD/L)2/3).

In the particular case where lookahead is 2M , the thresh-
old t becomes M/D1/3 and we get the competitive ratio of

O(D2/3).

3.3.1 Tight Example
In this section, we show that the competitive ratio of

threshold-LRU is indeed Θ((MD/L)2/3). We shall begin
with the case L = 2M . Let the threshold size of the algo-
rithm be t. We shall first describe the sequence where this
tight bound occurs. Let us say we have 1 + M/12t + D/2
disks in total. Disks 1, 2, . . . , M/12t contain 6t blocks la-

These are used to force the downsize

Blocks from one of the disks are evicted by O

pagefaults in B (below) between each downsize

in each downsize, causing A to do series of

M/12t disks with 6t blocks on each

D/2 disks with 4M/D blocks each (I)

M/2 blocks on single disk (B)

Figure 1: Tight Example

beled bi,j where 1 ≤ i ≤ M/12t and 1 ≤ j ≤ 6t. Let B
consist of the set of M/2 blocks on disk M/12t + 1 ordered
arbitrarily. Let B(i, j) denote the ordered sequence of blocks
i, i + 1, .., j from B. The remaining D/2 disks each contain
4M/D blocks ordered in round-robin fashion across the D/2
disks. Let’s call this set I, the set of idle blocks. We have
|I| = 2M . We define I(i, j) similarly to B(i, j)

Now let’s say phase 1 contains L1 as I(1, M), B, b1,1, ..,
b1,6t, ..., bM/12t,1, .., bM/12t,6t. Then O does at most M/2 +
M/D I/Os while A spends M/2 − t as the prefetch cost. A
prefetches blocks B(t+1, M/2), b1,t+1, ..., b1,6t, ..., bM/12t,t+1,
.., bM/12t,6t. So this set is C1. Let the final memory state
M1 of O be equal to C1. |M1| = |C1| = 11M/12 − t.

Let phase 2 consist of L2 = I(M + 5t + 1, 2M), B(t +
1, M/2), b1,t+1, .., b1,6t; [b2,t+1, .., bM/12t,6t; I(1, M/12+6t)]M .
Here, the last part of the sequence in square brackets is re-
peated M times. This repetitive sequence consist of M/2+t
blocks. These blocks necessarily reside in the memory to-
gether. Hence, at least 4t blocks amongst B(t+1, M/2), b1,t+1,
.., b1,6t have to be dropped by O. O drops b1,t+1, .., b1,6t

while A following LRU order drops B(t + 1, 6t + 1). How-
ever, since A is allowed t extra I/Os during the processing
of the phase and t at the end of the phase to carry over 2t
blocks, A ends up losing only 2t blocks which are B(t+1, 3t).

We define L3 = I(M/2+3t+1, .., 2M), B(t+1, 3t), [b2,t+1,
.., bM/12t,6t, I(1, M/12 + 6t)]M .

Then, by LRU order it does t I/Os, fetches B(2t + 1, 3t),
and then after processing the phase it carries over B(4t +
1, 6t) and drops B(3t + 1, 4t). In next lookahead these
dropped blocks occur along with B(t + 1, 2t). Thus, in each
subsequent phase, A does t prefetching I/Os while O does
at most 4M/D I/Os. This will go on till A does M/2 − 3t
I/Os in M/2t − 3 next phases.

Then, the next phase will again be similar to phase L2

and cause further downsizing, where O will emit the blocks
from disk 2 and the following M/2t − 3 phases A will do
M/2 − 3t prefetch I/Os. This repeats until we finally have
blocks from only B in both Ci and Mi. At this point, O will
do 5t I/Os and repeat the whole sequence all over again.

Over each run of the sequence A does at least (M/2 −
3t)(M/12t) I/Os in (M/2t−3+1)(M/10t) phases. Hence, O
does at most (M/2t−2)(M/12t)(4M/D) I/Os. If A chooses

t < M/D1/3, O (adversary) can still assume t = M/D1/3

and if A chooses higher t its competitive ratio only gets
worse. Putting t = M/D1/3 we find that A does Ω(MD1/3)

I/Os while O does O(M/D1/3) I/Os. Thus, on this sequence

A is Ω(D2/3) competitive.
When the lookahead is M +L, the adversary can choose t

as M/(MD/L)1/3 . This shows that whatever the choice of

threshold, algorithm tLRU is Ω((MD/L)2/3) competitive.

3.4 Randomized algorithm against oblivious
adversary

In the traditional (single disk) paging models, algorithm
MARK [10] (also [7] Sec 4.3) gives the expected competi-
tive ratio of 2HM using randomization against an oblivious
adversary. In the parallel disk case, the prefetching lower
bound also applies. Hence, we cannot hope to achieve dras-
tic improvement over the deterministic (against adaptive of-
fline adversary) algorithm. However, the effect of downsiz-
ing phases to the competitive ratio can be reduced by al-
lowing randomization. The lower bound in this case is still
Ω(

p

MD/L). We shall give an algorithm threshold MARK
(or tMARK) based on the Marking algorithm of Fiat et
al. [10, 7] which achieves a near optimal competitive ratio
of O(

p

(MD/L) log(MD/L)).
The algorithm tMARK works exactly as that in section 3.3,

except for the replacement policy. A block becomes marked
either whenever it enters the cache (i.e., becomes a part of
Ci), or when it is unmarked and is accessed in the cur-
rent phase. When all the stored blocks are marked, all

the marks are erased. This happens when C
′

i is created
from Ci during prefetching phase; subsequently all pages in
Ci+1 are unmarked. For replacement, we randomly remove
from among unmarked blocks. A phase is called effective
downsizing if it allows fewer blocks to pass through than
the previous effective downsizing phase or if there were at
least as many marked pages in the cache as allowed by the
previous effective downsizing phase sometime between these
two phases. Whenever an effective downsizing phase is en-
countered, all the marks are erased and as many blocks as
possible are pushed through such a phase by LRU order.
On other downsizing phases, blocks are pushed according to
LRU ordering but their marks are left as they are. If all
the blocks get marked, the marks erased. Note that, in con-
trast to tLRU in the previous subsection, tMARK is aware
of effective downsizing.

The algorithm chooses t =
p

(ML/D) log(MD/L) as the
threshold. Let k = M/t. Now, in any phase i, during the
prefetching phase, if no disk has more than 2t blocks in

Li−Ci then the I/Os during this prefetching part (to get C
′

i)
are charged to “free I/Os” (since these are less than t I/Os,
these will count as service cost) else these I/Os are charged
as caching I/Os (i.e., charged to prefetch cost). Hence, in
any phase if caching I/Os are charged, they involve caching
at least t blocks. We shall compare our algorithm tMARK
with optimal offline algorithm O.

Lemma 7. Let i, i+1, ..., j be the sequence of phases such
that (1) none of them is downsizing (2) in phase i all the
blocks in Ci are unmarked and (3) in phase j all the blocks

in C
′

j get marked. Then, O does at least t I/Os over these
phases.

Proof. In Ci no block is marked. The blocks appearing
in Li ∪ ...∪Lj are marked as they are accessed. Since there

is no downsizing phase, no mark gets deleted until all the
blocks are marked. No marked block is evicted until this
point. Let l ≤ j be the first phase where all the blocks get
marked. Then, Li ∪ .. ∪ Ll had M blocks plus at least t
blocks on each disk. Thus, similar to lemma 5, O must do
at least t I/Os during these sequence of phases.

Lemma 8. Let i, i+1, ..., j be the sequence of phases such
that (1) i is effective downsizing allowing z blocks to pass
through (2) none of the other phases are effective downsizing

(3) in phase j at least z blocks in C
′

j get marked. Then O
must do at least t I/Os over these phases.

Proof. Similar to lemmas 6 and 7.

For any set of blocks S, we define (similar to Section 3.1)

Φ(S) =
PD

d=1 max(Sd − t, 0), where Sd is the number of
blocks in S which belong to disk d. A block which enters a
cache, i.e., becomes a part of some Cl, i ≤ j, is called new
over the phases i, .., j if it was not a part of Ci.

Lemma 9. Let i, i + 1, ..., j be the sequence phases such
that there is no effective downsizing phase among them and
all blocks Ci are unmarked. If Φ(Li ∪ .. ∪ Lj) ≤ |Ci| and
Φ(Li ∪ ..∪Lj −Ci) ≤ p then the expected number of caching
I/Os during this sequence of phases is ≤ O(p ln k).

Proof. If Φ(Li ∪ ...∪Lj −Ci) ≤ p then there are at most
p new blocks that can enter the cache of tMARK during
these phases and at most p blocks in Ci are useless. Let
x ≤ p be the number of new blocks entering the cache. The
worst case for tMARK comes when all the requests to these
x blocks precede the request to other |Ci|−x blocks. Hence,
we may delete some of the useful blocks from Ci. Following
analysis of [7], the access to the jth block (in order they
are first accessed) in Ci ∩ (Li ∪ .. ∪ Lj) incurs fault with
probability x/(|Ci|− j +1). Summing this up, the expected
number of faults is at most x(HM − Hx + 1) where Hl is
lth harmonic number. If x ≤ t then none of these faults are
charged as caching I/Os. Hence, number of faults charged
on caching I/Os is no more than x(HM − Ht + 1). This is
less than O(p(ln(M/t) + 1)) which is O(p ln k).

Theorem 4. The competitive ratio of tMARK, with looka-
head M + L, is O(

p

(MD/L) log(MD/L)).

Proof. Consider a maximal sequence of phases i, ..., j
which form a superphase. That is O can do at most t/2 I/Os
during these phases, regardless of the contents of its initial
memory Mi. During each downsizing phase since our algo-
rithm pushes as many blocks as possible in the LRU order,
the only way O can have pushed more blocks through the
downsizing phase is by spending I/Os, to carry the blocks
forward. Since O does less than t/2 I/Os during these
phases Φ(Li ∪ ... ∪ Lj) ≤ M . Now, if there was a down-
sizing phase l during the superphase and if tMARK lost x
blocks, then O must also lose x blocks unless it replaces
some of the lost blocks by doing I/Os. In this case, it will
have those many less I/Os allowed during the superphase.
Hence, Φ(Ll ∪ .. ∪ Lj) − Φ(Ll+1 ∪ .. ∪ Lj) ≥ x. That is if
we lost x blocks, the Φ value of remaining lookahead during
the superphase also decreases by at least x.

Let phases d1 < ... < ds be s effective downsizing phases
during this superphase where number of blocks allowed through

the phase dl is less than those allowed during dl−1 for any
l between 2 and s. Let z1, ..., zs be the number of blocks
lost during these downsizing phases. Let p1, p2, ..., ps+1 be
the number of new requests served by the tMARK during
phases (i..d1), (d1 + 1..d2), ..., (ds..j) respectively. Let P be
the maximum number of new requests tMARK has to serve
during the superphase in the worst case assuming no down-
sizing during the superphase. Then, if tMARK serves p1

new request during phases (i..d1) the expected caching cost
is O(p1 ln k) (by lemma 9), for the part of superphase con-
sisting of phases d1 + 1, ..., j the maximum number new
requests can be P − p1 + z1. Summing this up we get,
ps+1 ≤ P − Ps

l=1 pl +
Ps

l=1 zs. This means, the total ex-
pected caching cost O(ln k

Ps+1
l=1 pl) is at most O(ln k(P +

Ps
l=1 zl)). Since both P and summation of xl’s are bounded

above by M , we get that total expected caching cost paid by
tMARK during the superphase is no more than O(M ln k).

Now, O pays at least t/2 I/Os during the phases i, .., j +1
(this will count cost of O for phase j + 1 twice which is
allowed in asymptotic sense). Hence, the competitive ra-
tio is the maximum of O((M/t) log k) and t/(M/D) (due
to service cost). Recall that k = M/t and by choosing
t =

p

(ML/D) log(MD/L) we get the competitive ratio of
O(

p

(MD/L) log(MD/L)).

4. CONCLUSIONS AND OPEN PROBLEMS
Ours is the first set of online algorithms that achieve good

parallelism for the problem of caching/prefetching on paral-
lel disks. This has remained elusive for a long time. There
are many issues related to this model that remain open: The
first is to close the gap between the lower and upper bounds.
The second is to extend this result for lower ranges of looka-
head. We discussed earlier that there is no hope for better
results if lookahead is less than M −D. But this holds only
for the deterministic case. We can hope that randomiza-
tion will help. However, the main difficulty of thresholding
remains. Any algorithm which falls under the marking cat-
egory (see [7]) will not work without something like thresh-
olding. In the lower set of lookaheads, fewer free I/Os are
allowed and they may not sufficiently pay for thresholding.
Ideas like adaptive thresholding (i.e., threshold as much as
can be paid by free I/Os) are worth exploring. The third
is to make the algorithms more practical. Many constant
factors in our algorithms are purely for analysis and ease of
presentation. In practice, we do not need separate prefetch-
ing and servicing phases. The algorithm can also be made
to work with a sliding window of lookahead using a prior-
ity based mechanism. Finally, thresholding (i.e., purposely
throwing away blocks from cache) doesn’t have to be done
explicitly. We can still keep track of thresholded blocks in
the cache and give them lower priority. We believe that the
results herein form an essential stepping stone for further
progress (practical as well as theoretical) on this problem.

5. REFERENCES
[1] S. Albers. On the influence of lookahead in

competitive paging algorithms. Algorithmica,
18(3):283–305, 1997.

[2] S. Albers and M. Büttner. Integrated prefetching and
caching in single and parallel disk systems. In SPAA,
pages 109–117, 2003.

[3] S. Albers, N. Garg, and S. Leonardi. Minimizing stall
time in single and parallel disk systems. In In Proc. of

30th Annual ACM Symp. on Theory of Computing
(STOC 98), pages 454–462, 1998.

[4] S. Albers and C. Witt. Minimizing stall time in single
and parallel disk systems using multicommodity
network flows. In RANDOM-APPROX, 2001.

[5] R. Barve, M. Kallahalla, P. J. Varman, and J. S.
Vitter. Competitive parallel disk prefetching and
buffer management. In In Proc. of Fifth Workshop on
I/O in parallel and Distributed Systems, pages 47–56,
Nov 1997.

[6] L. A. Belady. A study of replacement algorithms for
virtual storage computers. IBM Systems Journal,
5:78–101, 1966.

[7] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press,
1998.

[8] D. Breslauer. On competitive online paging with
lookahead. TCS, 290(1-2):365–375, 1998.

[9] P. Cao, E. W. Felton, A. R. Karlin, and K. Li. A
study of integrated prefetching and caching strategies.
In In Proc. of the joint Intl. Conf. on measurement
and modeling of computer systems, pages 188–197,
May 1995.

[10] A. Fiat, R. Karp, M. Luby, L. McGoech, D. D.
Sleator, and N. E. Young. Competitive paging
algorithms. Journal of Algorithms, 12(4):685–699, Dec
1991.

[11] D. A. Hutchinson, P. Sanders, and J. S. Vitter.
Duality between prefetching and queued writing with
application to integrated caching and prefetching and
to external sorting. In ESA, 2001.

[12] M. Kallahalla and P. J. Varman. Optimal read-once
parallel disk scheduling. In In Proc. of Sixth ACM
Workshop on I/O in Parallel and Distributed Systems,
pages 68–77, 1999.

[13] M. Kallahalla and P. J. Varman. Optimal prefetching
and caching for parallel i/o systems. In SPAA, 2001.

[14] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D.
Sleator. Competitive snoopy caching. Algorithmica,
3(1):79–119, 1988.

[15] T. Kimbrel, P. Cao, E.W. Felten, A. R. Karlin, and
K. Li. Integrated parallel prefetching and caching. In
SIGMETRICS, 1996.

[16] T. Kimbrel and A. R. Karlin. Near optimal parallel
prefetching and caching. In FOCS, pages 540–549,
1996.

[17] L. A. McGeoch and D. D. Sleator. A strongly
competitive randomized paging algorithm.
Algorithmica, 6:816–825, 1991.

[18] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of the list update and paging rules. Communications
of the ACM, 28:202–208, November 1985.

[19] J. S. Vitter. External memory algorithms and data
structures: Dealing with massive data. ACM
Computing surveys, 33(2):209–271, June 2001.

[20] N. Young. Competitive paging and dual-guided on-line
weighted caching and matching algorithms. In Ph.D.
thesis. Princeton University, 1991. CS-TR-348-91.

