
Indexes for Document Retrieval with Relevance?

Wing-Kai Hon1, Manish Patil2, Rahul Shah2,
Sharma V. Thankachan2, and Jeffrey Scott Vitter3

1 National Tsing Hua University, Taiwan. wkhon@cs.nthu.edu.tw
2 Louisiana State University, USA. {mpatil,rahul,thanks}@csc.lsu.edu

3 The University of Kansas, USA. jsv@ku.edu

Abstract. Document retrieval is a special type of pattern matching
that is closely related to information retrieval and web searching. In this
problem, the data consist of a collection of text documents, and given
a query pattern P , we are required to report all the documents (not all
the occurrences) in which this pattern occurs. In addition, the notion of
relevance is commonly applied to rank all the documents that satisfy the
query, and only those documents with the highest relevance are returned.
Such a concept of relevance has been central in the effectiveness and us-
ability of present day search engines like Google, Bing, Yahoo, or Ask.
When relevance is considered, the query has an additional input param-
eter k, and the task is to report only the k documents with the highest
relevance to P , instead of finding all the documents that contains P .
For example, one such relevance function could be the frequency of the
query pattern in the document. In the information retrieval literature,
this task is best achieved by using inverted indexes. However, if the query
consists of an arbitrary string—which can be a partial word, multiword
phrase, or more generally any sequence of characters—we cannot take
advantages of the word boundaries and we need a different approach.
This leads to one of the active research topics in string matching and text
indexing community in recent years, and various aspects of the problem
have been studied, such as space-time tradeoffs, practical solutions, mul-
tipattern queries, and I/O-efficiency. In this article, we review some of
the initial frameworks for designing such indexes and also summarize the
developments in this area.

1 Introduction

Query processing forms a central aspect of databases which in turn is
supported by data structures that are commonly referred to as indexes.
In databases, the notion of queries is semantically well-defined; hence
a tuple (or a record) either qualifies or does not qualify for the query,

? This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)
and US NSF Grant CCF–1017623 (R. Shah and J. S. Vitter) and CCF–1218904 (R.
Shah).

and a database operation will return exactly all those tuples that satisfy
the query conditions. In contrast, information retrieval takes a somewhat
fuzzy approach on query processing. The data are often unstructured and
the notions of precision, recall, and relevance add their flavors to which
tuples are returned. Often the criteria for a tuple to satisfy the query
is not just a binary decision. The notion of relevance-ranking is central
to information retrieval where the output is ranked by relevance score—
which is an indicator of how strongly the tuple (or a web document, in case
of search engines) matches the query. In recent times, various extensions
to the standard relational database model have been proposed to cope
with an increasing need to integrate databases and information retrieval.
Top-k query processing is one such line of research, which adds the notion
of relevance to database query processing.

Formally, a top-k query comes with a parameter k. Amongst all tuples
that satisfy the query, they are ranked by their relevance scores, and
only the k most relevant tuples are reported. In document retrieval and
duplicate elimination (as a part of the projection operation) in databases,
we get multiple occurrences of the same tuple (or key) satisfying the query
and relevance depends on the contribution of each such tuple. In this
case, only one tuple (out of the multiple occurrences) is to be reported
with composite score. A simple example of such a score function is the
frequency —which is number of times a particular attribute occurs in
the query result. In terms of web-search this is known as term-frequency,
which is the number of times the query term occurs in a given document.
There can be even more complex statistical scoring functions, for instance
when one considers OLAP queries (with slice-and-dice type ranges).

In terms of document retrieval, we are given a setD={d1, d2, d3, ..., dD}
of D string documents of total length n. We build an index on this collec-
tion. Then pattern P (of length p) comes as an query, and we are required
to output the list of all ndoc documents in which the pattern P appears
(not all occ occurrences). This is called the document listing problem and
was introduced by Matias et al. [28]. Muthukrishnan [29] gave the first
optimal O(p+ndoc) query time solution in linear space, i.e., O(n) words.
Since then, this has been an active research area [38, 41, 16] with focus
on making the index space-efficient. In top-k document retrieval, there is
a relevance score involved in addition to the uniqueness condition. Let
S(P, di) be the set of occurrences of pattern P in the document di. The
relevance score of P with respect to di is a function w(P, di) that depends
only on the set S(P, di). Now, as a query result, we are required to report

only the top-k highest scoring documents. The formal definition is given
below:

Problem 1 (Top-k document retrieval problem) Let w(P, d) be the
score function capturing the relevance of a pattern P with respect to a
document d. Given a document collection D= {d1, d2, ..., dD} of D docu-
ments, build an index answering the following query: given input P and k,
find k documents d with the highest w(P, d) values in sorted (or unsorted)
order.

This problem was introduced in [18], where they proposed anO(n logD)
words index with query time O(p + k + logD log logD) (works only for
document-frequency as the score function). The recent flurry of activi-
ties [6, 11, 15, 20, 24, 26, 32, 37, 19, 25, 22, 27, 40, 42] came with Hon et al.’s
work [23]. In this survey article, we review the various aspects of top-k
document retrieval as listed below:

– We begin by describing the linear space and optimal time (inter-
nal memory) framework based on the work of Hon et al. [23] and
of Navarro and Nekrich [31].

– In Section 3, we focus on the I/O model [4] solution for top-k docu-
ment retrieval by Shah et al. [39] that occupies almost-linearO(n log∗ n)
space and can answer queries in O(p/B + logB n+ k/B) I/Os.

– In Section 4 we briefly explain the first succinct index that was pro-
posed by Hon et al. [23] occupying roughly twice the size of text with
O(p+ k logO(1) n) query time and also review the later developments
in this line of work.

– We also briefly discuss variants of document retrieval problem in Sec-
tion 5 such as multipattern queries, queries with forbidden pattern,
parameterized top-k queries.

– Finally, we conclude in Section 6 by listing some of the interesting
open problems in this research area.

2 Linear Space Framework

This section briefly explains the linear space framework for top-k docu-
ment retrieval based on the work of Hon, Shah and Vitter [23] and Navarro
and Nekrich [31]. The generalized suffix tree (GST) of a document collec-
tion D= {d1, d2, d3, . . . , dD} is the combined compact trie (a.k.a. Patricia
trie) of all the non-empty suffixes of all the documents. We use n to de-
note the total length of all the documents, which is also the number of

the leaves in GST. For each node u in GST, consider the path from the
root node to u. Let depth(u) be the number of nodes on the path, and
prefix (u) be the string obtained by concatenating all the edge labels of
the path. For a pattern P that appears in at least one document, the locus
of P , denoted as uP , is the node closest to the root satisfying that P is a
prefix of prefix (uP). By numbering all the nodes in GST in the pre-order
traversal manner, the part of GST relevant to P (i.e., the subtree rooted
at uP) can be represented as a range.

Nodes are marked with document-ids. A leaf node ` is marked with
a document d ∈ D if the suffix represented by ` belongs to d. An inter-
nal node u is marked with d if it is the lowest common ancestor of two
leaves marked with d. Notice that a node can be marked with multiple
documents. For each node u and each of its marked documents d, define
a link to be a quadruple (origin, target , doc, score), where origin = u,
target is the lowest proper ancestor4 of u marked with d, doc = d, and
score = w

(
prefix (u), d

)
. Two crucial properties of the links identified

in [23] are listed below.

– For each document d that contains a pattern P , there is a unique
link whose origin is in the subtree of uP and whose target is a proper
ancestor of uP . The score of the link is exactly the score of d with
respect to P .

– The total number of links is bounded by O(n).

We say that a link is stabbed by node u if it is originated in the subtree
of u and targets a proper ancestor of u. Therefore, top-k document re-
trieval can be viewed as the problem of indexing the O(n) links described
above to efficiently report the k highest scored links stabbed by any given
node uP . By mapping each link Li = (oi, ti, doc, scorei) to a 3d point
(xi, yi, zi) = (oi, depth(ti), scorei), the above problem can be reduced to
the following range searching query: report k points with the highest z
coordinate among those points with xi ∈ [uP , u

′
P] and yi < depth(uP),

which is a 4-constraint query. Here u′P represents the pre-order rank of
the right most leaf in the subtree of uP .

While general 4-sided orthogonal range searching is proved hard [7],
the main idea is to make use of the special property that the reduce
subproblem can only have p distinct values, hence it can be decomposed
into p 3-constrained queries (which can be solved optimally). Thus a
linear space index with near-optimal O(p+ k log k) is achieved by Hon et

4 Define a dummy node as the parent of the root node, marked with all the documents.

al. [23]. This query time is improved to optimal O(p+ k) by Navarro and
Nekrich [31].

Theorem 1 There exists a linear space index of O(n)-word space for
answering top-k document retrieval queries in optimal O(p+ k) time.

Nekrich [31] showed that the index space can be reduced toO(n(log σ+
logD + log log n)) bits, if the requirement is to retrieve only the top-
k documents without their associated scores. With term-frequency as
the score they achieved the index that is further compressed occupying
O(n(log σ+logD)) bits. Hon et al. [19] proposed an alternative approach
to directly compress the index to achieve an n(1 + o(1))(log σ + 2 logD)
bits index with O(p+ k log logn+ poly log logn) query time.

3 External-Memory Framework

0

1

1

0 0

0 0 0

0

0

0

0

1

2

1

2

2

1

0

3

3

B = 2

Rank Components

Fig. 1. Rank Components

With the advent of enterprise search, deep
desktop search, and email search technolo-
gies, the indexes that reside on disks (ex-
ternal memory) are more and more im-
portant. Unfortunately, the (linear space)
approach described in the previous sec-
tion cannot lead to an optimal exter-
nal memory solution as it inevitably adds
an extra O(p) additive factor in query
time. Therefore, we need to explore some
other properties that can potentially sim-
plify the problem. In this section, we
briefly describe the I/O-efficient frame-
work by Shah et al. [39]. They showed how
to decompose the 4-constrained query
(as described in the previous section)
into at most log(n/B) (instead of p) 3-
constrained queries, by exploring the fact that, out of four constraints in
the given query, two of them always correspond to a tree range. Here B
denotes the disk block size.

Here we solve a threshold variant of the problem (i.e., among all those
links stabbed by uP , retrieve those with weight at least a given threshold
τ). Note that, both threshold and top-k variants are equivalent due to
the existence of a linear-space structure to compute threshold τ given
(uP , k) in O(1) time such that the number of number of outputs reported

by threshold variant of the problem is between k and k+O(k+ log n). It
is known that no linear-space external memory structure can answer the
(even the simpler) 1d top-k range reporting query in O(logO(1) n+ k/B)
I/Os if the output order must be ensured [2]. We thus turn our attention
to solving the unordered variant of the top-k document retrieval problem.

We start with some definitions: Let size(u) denote the number of
leaves in the subtree of u. We define the rank of u,

rank(u) =

⌊
logdsize(u)

B
e
⌋

Note that rank(·) ∈ [0, blogd nB ec] and nodes with the same rank will
form a contiguous subtree, and we call each subtree a component (see
Figure 1). The rank of a component is defined as the rank of nodes within
it.

We classify the links into the following three types based on the
rank of its target with respect to the rank of query node uP : low-ranked
links: links with rank(target) < rank(uP), high-ranked links: links with
rank(target) > rank(uP), equi-ranked links: links with rank(target) =
rank(uP). The links within each of these categories can be processed sep-
arately as follows:

1. None of the low-ranked links can be an output as their target will not
be an ancestor of uP , hence can be ignored while querying.

2. For a high-ranked link Li, if oi ∈ [uP , u
′
P], then the condition that ti

is an ancestor of uP will be implicitly satisfied. Thus, we are left with
only 3-constraints, which can be modeled as a 3-sided query [3, 5].

3. We group together all the links whose target node ti belongs to com-
ponent C to form a set SC . Further we replace the origin oi in each
of the links by its lowest ancestor si within C (Figure 2). Then, an
equi-ranked link Li ∈ C is an output iff ti < uP ≤ si and scorei ≥ τ ,
which can be modeled as a 3d dominance query [1].

Putting everything together, the top-k document retrieval problem can
be reduced to O(log(n/B)) 3-constraint queries. Thus, by maintaining
appropriate structures for handling such queries, we can obtain a linear-
space index with O(log2(n/B) + k/B) I/Os, which is optimal for k ≥
B log2(n/B). For optimally handling the case when k is small, bootstrap-
ping techniques are introduced (for details we refer to [39]). We summarize
the main result in the following Theorem.

Theorem 2 There exists external memory index of almost-linear O(n log∗ n)
words space for answering top-k document retrieval queries in optimal
O(p/B + logB n+ k/B) I/Os.

Fig. 2. Pseudo Origin

If the score function is monotonic,
the top-k document retrieval problem
can be reduced to the top-k categorical
range maxima query (Top-CRMQ) prob-
lem. Given an integer array A[1...n] and
associated category (color) array C[1...n],
where each A[i] has an associated color
C[i], we apply range top-k query (a, b, k)
to find the top-k (distinct) colors in the
range [a, b]. The notion of top-k asso-
ciates a score with each color c occurring
in the query range, where the score of a
color c in the range [a, b] is max{A[i]|i ∈
[a, b] and C[i] = c}. We can now model
the top-k document retrieval problem into
Top-CRMQ: arrange all links in the as-
cending order of origin, then construct ar-
rays A and C such that A[i] represents the
score of the ith link and C[i] represents
the document to which it belongs. Now,
top-k document retrieval is equivalent to Top-CRMQ on A with [a, b] as
the input range, where [a, b] represents the maximal range of all links
with origin within the subtree of uP . Thus by integrating with the recent
solution for the Top-CRMQ problem by Nekrich et al. [36], an external
memory top-k document retrieval index with space O(nα(B))-words and
query I/O bound O(p/B+ k/B+ logB n+α(B)) can be obtained, where
α(·) is the inverse Ackermann function.

4 Succinct Frameworks

In the succinct framework, the goal is achieve the index space proportional
to the size of text (i.e., n log σ bits). We use the score function to be term-
frequency. We begin this section by briefly explaining the marking scheme
introduced by Hon et al. [23] and then review the later developments in
this line of work.

Marked nodes in GST: Certain nodes in the GST can be identified as
marked nodes with respect to a parameter g called the grouping factor
as follows. The procedure starts by combining every g consecutive leaves
(from left to right) together as a group, and marking the lowest common
ancestor (LCA) of the first and last leaves in each group. Further, we
mark the LCA of all pairs of marked nodes. Additionally, we ensure that
the root is always marked. At the end of this procedure, the number
of marked nodes in GST will be O(n/g). Hon et al. [23] showed that,
given any node u with u∗ being its highest marked descendent (if exists),
number of leaves in GST (u\u∗) (i.e., the number of leaves in the subtree
of u, but not in the subtree of u∗) is at most 2g.

We begin by the describing the data structure for a top-k document
retrieval problem for a fixed k. First, We implement the marking scheme in
GST as described above with g = k log2+ε n, where ε > 0 is any constant.
The top-k documents corresponding to each of the O(n/g) marked nodes
(as the locus) are maintained explicitly in O(k log n) bits, for a total of
O((n/g)k log n) = o(n/ log n) bits. In order to answer a top-k query, we
first find the locus node uP , and then its highest marked descendent node
u∗P . If a document d is in the top-k list with respect to node uP , then either
it is in the top-k list with respect to u∗P as well or there is at least one
leaf in the GST (uP \u∗P) with the corresponding suffix in document d. By
using this observation, we can obtain a set of O(g+k) possible candidate
documents. By computing the term frequencies of each document in the
candidate set, we can identify the documents in the final output. Note
that instead of a GST, we maintain its compressed variant. An additional
|CSA| bits structure is used for computing term-frequency in O(log2+ε n)
time, where CSA represents the compressed suffix array [12, 17] of the
concatenated text of all documents, and |CSA| represents its size in bits.
Thus the query time can be bounded by O(p + k log4+2ε n). In order to
handle top-k queries for any general k, we maintain the above described
data structure for k = 1, 2, 4, 8, ..., with overall space requirement roughly
equal to twice that of the input text.

Theorem 3 There exists a succinct data structure of space roughly twice
the size of text (in compressed form) with query time O(log4+ε n) per
reported document.

A series of work has been done to improve the above succinct in-
dex. The per-document retrieval time is improved to O(log k log2+ε n)
by Belazzougui and Navarro [6], whereas the fastest succinct index is
by Hon et al. [22], where the query time is O(log k log1+ε n). Note that

the space occupancy of all these succinct indexes is roughly twice the
size of text. An interesting open question to design a space optimal in-
dex (i.e., |CSA| + o(n) bits) has been positively answered by Tsur [40],
where the per-document report time is O(log k log2+ε n). Very recently,
Navarro and Thankachan [34] improved the query time of Tsur’s index
to O(log2 k log1+ε n), and is currently the fastest space optimal index.

Instead of using an additional CSA for document frequency computa-
tion of the candidate document, an alternative approach is to use a data
structure called the document array E[1...n], where E[i] denotes the docu-
ment to which the suffix corresponding to ith leftmost leaf in GST belongs
to. The resulting index space is |CSA|+ n logD(1 + o(1)) bits. The first
result of the kind is due to Gagie et al. [15] with per-document report time
is O(log2+ε n), which was improved to O(log k log1+ε n) by Belazzougui
and Navarro [6], and to O((log σ log logn)1+εn) by Hon et al. [19]. Here σ
represents the alphabet size. Culpepper et al. [11] have proposed another
document array-based index. Even though their query algorithm is only
a heuristic (no worst-case bound), it is one of the simplest and most effi-
cient indexes in practice. Another trade-off is by Gagie et al. [15], where
the index space is |CSA|+O(n logD

log logD) bits and query time is O(log3+ε n).
This result is also improved by Belazzougui and Navarro [6], where they
achieved by a per-document report time of O(log k log2+ε n) with an index
space of |CSA|+O(n log log logD) bits.

5 Variants of Document Retrieval

In this section, we briefly describe some of the variants of document re-
trieval problem along with the known results.

5.1 Two-Pattern Document Listing

In this case, the query consists of two patterns P1 and P2 (of length p1
and p2 respectively), and the task is to report all those ndoc documents
containing both P1 and P2. The first solution was given by [29], which
requires Õ(n3/2) space and answers a query in O(p1 + p2 +

√
n + ndoc)

time†. Clearly, this solution is not practical due to its huge space re-
quirement. Cohen and Porat [9] showed that this problem can be re-
duced to set-intersection. Based on their elegant framework for the the
set-intersection problem, they proposed an O(n log n)-word space index

† The notation Õ ignores poly-logarithmic factors. Precisely, Õ(f(n)) ≡
O(f(n) logO(1) n).

with O(p1 + p2 +
√
n× ndoc log2.5 n) query time. Later Hon et al. [20]

improved the space as well as the query time of Cohen and Porat’s in-
dex to O(n)-word and O(p1 + p2 +

√
n× ndoc log1.5 n) respectively. In

addition, Hon et al. [20] extended their solution to handle multipattern
queries (i.e., query input consists of two or more patterns) and also to
top-k queries. Using Geometric-BWT techniques [8], Fischer et al. [13]
showed that in pointer machine model, any index for two-pattern docu-
ment listing with query time O(p1 + p2 + logO(1) n+ ndoc) must require
Ω(n(log n/ log log n)3) bits space.

5.2 Forbidden/Excluded Pattern Queries

A variant of a two-pattern document listing is pattern matching with
forbidden (excluded) pattern. Given two patterns P1 and P2, the goal is
to list all ndoc documents containing P1 but not P2. Fischer et al. [13]
introduced the problem and proposed an index of size O(n1.5) bits with
query time O(p1+p2+

√
n+ndoc). Recently, Hon et al. [21] gave a space-

efficient solution for this problem, occupying linear space of O(n) words.
However, the query time is increased to O(p1 + p2 +

√
n× ndoc log2.5 n).

5.3 Parameterized Top-k Queries

In this case, the query consists of two parameters x and y (x ≤ y) in
addition to P and k and the task is to retrieve the top-k documents
with highest w(P, ·) among only those documents d with Par(P, d) ∈
[x, y], where Par(·, ·) is a predefined function. Navarro and Nekrich [31]
showed that such queries can be answered in O(p + (k + log n) logε n)
time by maintaining a linear-space index. For the case when w(·, ·) is
page rank, Par(·, ·) is term-frequency and y is unbounded, Karpinski and
Nekrich [26] gave an optimal query time data structure with O(n logD)-
word space.

6 Conclusions and Open Problems

In this article, we briefly reviewed some of the theoretical frameworks for
designing top-k document retrieval indexes in different settings. However,
we have not covered the details of practical solutions [25, 37, 27, 33, 35] as
well as some of the other related topics (we recommend the recent article
by Navarro [30] for an exhaustive survey). Even though many efficient
solutions are already available for the central problem, there are still many

interesting variations and open questions one could ask. We conclude with
some of them as listed below:

1. The current I/O-optimal index requires O(n log∗ n)-word space. It is
interesting to see if we can bring down this space to linear (i.e., O(n)
words) without sacrificing the optimality in the I/O bound. Designing
these indexes in the Cache-Oblivious model is another future research
direction.

2. The optimal space-compressed index (by Navarro and Thankachan [34])
takes O(log2 k log1+ε n) query time. The fastest compressed space in-
dex (by Hon et al. [22]) takes twice the size of text. An interesting
problem is to design a space-optimal index, while keeping the query
time the same (or better) as that of the fastest compressed index
known.

3. Top-kth document retrieval: instead of reporting all top-k documents,
report the kth highest-scored document corresponding to the query.

4. Top-k version of forbidden pattern query: the query consists of P1, P2,
and k, and the task is to report the top-k documents based on w(P1, ·)
among all those documents d which does not contain the forbidden
pattern P2.

5. Another space-time trade-off for parametrized top-k query. For exam-
ple, design an optimal query time index using O(n logε n) words of
space.

6. Currently the gap between the upper and lower bound for two-pattern
query problem is huge. It is interesting to see if this gap can be re-
duced. Can we obtain similar (or better) lower bounds for the for-
bidden pattern query problem. We strongly believe that the lower
bounds for this problems are different from the currently known up-
per bounds [13, 21] by at most poly log n factors only.

7. Even though many succinct indexes have been proposed for top-k
queries for frequency or page-rank based score functions, it is still un-
known if such a succinct index can be designed if the score function is
term-proximity (i.e., w(P, d) is the difference between the positions of
the closest occurrences of P in document d). Designing such an index
even for special cases (say, long patterns or allow approximate score,
etc), or deriving lower bounds are interesting research directions.

8. Approximate pattern matching (i.e., allowing bounded errors and
don’t cares) is another active research area [10]. Adding this aspect
to document retrieval leads to many new problems. The following is
one such problem: report all those documents in which the edit (or

hamming) distance between one of its substrings and P is at most π,
where π ≥ 1 is an input parameter.

9. Indexing a highly repetitive document collection (which is highly com-
pressible using LZ-based compression techniques) is an active line of
research. In the recent work by Gagie et al. [14], an efficient document
retrieval index suitable for a repetitive collection is proposed. An open
problem is to extend these results for handling top-k queries.

References

1. P. Afshani. On dominance reporting in 3d. In ESA, pages 41–51, 2008.
2. P. Afshani, G. S. Brodal, and N. Zeh. Ordered and unordered top-k range reporting

in large data sets. In SODA, pages 390–400, 2011.
3. P. Afshani, G. S. Brodal, and N. Zeh. Ordered and unordered top-k range reporting

in large data sets. In SODA, pages 390–400, 2011.
4. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Commun. ACM, 31(9):1116–1127, 1988.
5. L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and

optimal range search indexing. In Proc. 18th Symposium on Principles of Database
Systems (PODS), pages 346–357, 1999.

6. D. Belazzougui and G. Navarro. Improved compressed indexes for full-text docu-
ment retrieval. In SPIRE, pages 386–397, 2011.

7. B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting case.
J. ACM, 37(2):200–212, 1990.

8. Y.-F. Chien, W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Geometric
burrows-wheeler transform: Compressed text indexing via sparse suffixes and range
searching. Algorithmica, 2013.

9. H. Cohen and E. Porat. Fast set intersection and two-patterns matching. Theor.
Comput. Sci., 411(40-42):3795–3800, 2010.

10. R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In STOC, pages 91–100, 2004.

11. J. S. Culpepper, G. Navarro, S. J. Puglisi, and A. Turpin. Top-k ranked document
search in general text databases. In ESA (2), pages 194–205, 2010.

12. P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005.

13. J. Fischer, T. Gagie, T. Kopelowitz, M. Lewenstein, V. Mäkinen, L. Salmela, and
N. Välimäki. Forbidden patterns. In LATIN, pages 327–337, 2012.

14. T. Gagie, K. Karhu, G. Navarro, S. J. Puglisi, and J. Sirén. Document listing on
repetitive collections. In CPM, pages 107–119, 2013.

15. T. Gagie, G. Navarro, and S. J. Puglisi. Colored range queries and document
retrieval. In SPIRE, pages 67–81, 2010.

16. T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet trees and
applications to information retrieval. Theor. Comput. Sci., 426:25–41, 2012.

17. R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching. SIAM J. Comput., 35(2):378–407,
2005.

18. W.-K. Hon, M. Patil, R. Shah, and S.-B. Wu. Efficient index for retrieving top-k
most frequent documents. J. Discrete Algorithms, 8(4):402–417, 2010.

19. W.-K. Hon, R. Shah, and S. V. Thankachan. Towards an optimal space-and-query-
time index for top-k document retrieval. In CPM, pages 173–184, 2012.

20. W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. String retrieval for
multi-pattern queries. In SPIRE, pages 55–66, 2010.

21. W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Document listing for
queries with excluded pattern. In CPM, pages 185–195, 2012.

22. W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Faster compressed top-k
document retrieval. In DCC, 2013.

23. W.-K. Hon, R. Shah, and J. S. Vitter. Space-efficient framework for top-k string
retrieval problems. FOCS ’09, pages 713–722, 2009.

24. W.-K. Hon, R. Shah, and J. S. Vitter. Compression, indexing, and retrieval for
massive string data. In CPM, pages 260–274, 2010.

25. M. P. J. S. Culpepper and F. Scholer. Efficient in-memory top-k document re-
trieval. In SIGIR, 2012.

26. M. Karpinski and Y. Nekrich. Top-k color queries for document retrieval. In
SODA, pages 401–411, 2011.

27. R. Konow and G. Navarro. Faster compact top-k document retrieval. In DCC,
2013.

28. Y. Matias, S. Muthukrishnan, S. C. Sahinalp, and J. Ziv. Augmenting suffix trees,
with applications. ESA ’98, pages 67–78, London, UK, UK, 1998. Springer-Verlag.

29. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In SODA,
pages 657–666, 2002.

30. G. Navarro. Spaces, trees and colors: The algorithmic landscape of document
retrieval on sequences. CoRR, abs/1304.6023, 2013.

31. G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear
space. In SODA, pages 1066–1077, 2012.

32. G. Navarro and S. J. Puglisi. Dual-sorted inverted lists. In SPIRE, pages 309–321,
2010.

33. G. Navarro, S. J. Puglisi, and D. Valenzuela. Practical compressed document
retrieval. In SEA, pages 193–205, 2011.

34. G. Navarro and S. V. Thankachan. Faster top-k document retrieval in optimal
space. In submitted.

35. G. Navarro and D. Valenzuela. Space-efficient top-k document retrieval. In SEA,
pages 307–319, 2012.

36. Y. Nekrich, M. Patil, R. Shah, S. V. Thankachan, and J. S. Vitter. Top-k categor-
ical range maxima queries. In Submitted.

37. M. Patil, S. V. Thankachan, R. Shah, W.-K. Hon, J. S. Vitter, and S. Chan-
drasekaran. Inverted indexes for phrases and strings. SIGIR, pages 555–564, 2011.

38. K. Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms, 5(1):12–22, 2007.

39. R. Shah, C. Sheng, S. V. Thankachan, and J. S. Vitter. On optimal top-k string
retrieval. CoRR, abs/1207.2632, 2012.

40. D. Tsur. Top-k document retrieval in optimal space. Inf. Process. Lett.,
113(12):440–443, 2013.

41. N. Välimäki and V. Mäkinen. Space-efficient algorithms for document retrieval.
In CPM, pages 205–215, 2007.

42. J. S. Vitter. Compressed data structures with relevance. In CIKM, pages 4–5,
2012.

