
Document Listing for Queries with
Excluded Pattern ?

Wing-Kai Hon1, Rahul Shah2, Sharma V. Thankachan2,
and Jeffrey Scott Vitter3

1 National Tsing Hua University, Taiwan. wkhon@cs.nthu.edu.tw
2 Louisiana State University, USA. {rahul,thanks}@csc.lsu.edu

3 The University of Kansas, USA. jsv@ku.edu

Abstract. Let D = {d1, d2, ..., dD} be a given collection of D string
documents of total length n. We consider the problem of indexing D such
that, whenever two patterns P+ and P− comes as an online query, we can
list all those documents containing P+ but not P−. Let t represent the
number of such documents. An index proposed by Fischer et al. (LATIN,
2012) can answer this query in O(|P+|+ |P−|+ t+

√
n) time. However,

its space requirement is O(n3/2) bits. We propose the first linear-space
index for this problem with a worst case query time of O(|P+|+ |P−|+√
n log logn+

√
nt log2.5 n).

1 Introduction and Related Work

Document retrieval is a fundamental problem in information retrieval,
where the task is to index a collection of documents, such that whenever
a pattern (or a set of patterns) comes as an online query, we can efficiently
retrieve those documents which are relevant to the query. An occurrence
of a query pattern in a document makes it relevant to the query. However,
query with excluded patterns is a problem orthogonal to this. That is, the
occurrence of an excluded pattern in a document makes it less relevant
to the query. Such queries are fundamental and important in web-search
applications. For example, the search results from Google for a pattern
”jaguar” consists of many webpages related to “jaguar car”, but one may
be interested in jaguar as a big cat, not as a car. Whereas the search
results for the query “jaguar -car” will be those documents which are
related to “jaguar”, but not to “car”. Here the “-” symbol before the
pattern“car” indicates that it is an excluded pattern.

More formally, we shall define the document listing problem for ex-
cluded pattern queries as follows: given a collection D of D documents
{d1, d2, ..., dD} of total length n, and the query consisting of two patterns
P+ (called included pattern) and P− (called excluded pattern), our task
is to list the set of documents containing P+ but not P−. Traditionally,

? This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)
and US NSF Grant CCF–1017623 (R. Shah).

the documents are split into terms (or words) and then an inverted in-
dex is built over such terms. However, in the case of genome data or
some Asian texts, there may be no natural word demarcation (we may
call such documents as strings), so that the inverted index may provide
only limited searching capabilities or may require too much space. To the
best of our knowledge, the only known index which supports this kind of
queries for string documents is by Fischer et al. [8], which takes O(n3/2)
bits of space and has O(|P+|+ |P−|+ t+

√
n) query time, where t is the

number of documents containing P+ but not P−. We propose the first
linear-space solution for this problem, and our main result is captured in
the following theorem.

Theorem 1 Given a collection of D string documents of total length n,
there exists an O(n)-word data structure that supports listing documents
with P+ but not P− in O(|P+|+ |P−|+

√
n log log n+

√
nt log2.5 n) time,

where P+ and P− are two online query patterns and t represents the
number of such documents.

On a related note, string document retrieval problem for queries with
a single (included) pattern is a well studied problem [21, 26, 27, 20] with
many interesting results. Another fundamental problem which has re-
ceived a lot of attention recently is the top-k document retrieval [20, 22,
18, 1, 5, 9, 12, 23, 24, 15, 14]. Muthukrishnan [21] has studied the problem
where the query consists of an excluded pattern alone, and has given
an optimal-query-time solution. Document listing for queries with two
included-patterns (P1 and P2) is another harder problem, and the follow-
ing are the space-time tradeoffs of the known indexes (here t represents
the number of documents containing both P1 and P2):

– Õ(n3/2)-space† and O(|P1|+ |P2|+
√
n+ t) query time [7].

– O(n log n) words and O(|P1|+|P2|+
√
n(t+ 1) log2.5 n) query time [4].

– O(n) words and O(|P1|+ |P2|+
√
n(t+ 1) log1.5 n) query time [16].

Fischer et al. [8] showed that document listing problem for two-included-
pattern queries is much harder than the one with single-included-pattern
using reduction techniques via Geometric Burrows-Wheeler Transform
(GBWT) [3].

2 Preliminaries

2.1 Suffix Trees and Suffix Arrays

Suffix Tree: Given a text T [1...n], a substring T [i...n] with 1 ≤ i ≤ n is
called a suffix of T . The lexicographic arrangement of all n suffixes of T

† The notation Õ ignores poly-logarithmic factors. Precisely, Õ(f(n)) ≡
O(f(n) logO(1) n).

in a compact trie is called the suffix tree of T [28], where the ith leftmost
leaf represents the ith lexicographically smallest suffix. Each edge in the
suffix tree is labeled by a character string and for any node u, path(u) is
the string formed by concatenating the edge labels from root to u. For
any leaf v, path(v) is exactly the suffix corresponding to v. For a given
pattern P , a node u is defined as the locus node of P if it is the closest
node to the root such that P is a prefix of path(u); such a node can be
determined in O(|P |) time.

Suffix Array: Suffix array SA[1...n] of a text T is an array such that SA[i]
stores the starting position of the ith lexicographically smallest suffix of
T [19]. In SA the starting positions of all suffixes with a common prefix
are always stored in contiguous range. The suffix range of a pattern P
is defined as the maximal range [`, r] such that for all j ∈ [`, r], P is a
common prefix of the suffix which starts at SA[j].

Generalized Suffix Tree: Given a collection D of strings, the generalized
suffix tree (GST) of D is a compact trie which stores all suffixes of all
strings in D. For the purpose of our index, we define an extra array
DA called document array, such that DA[i] = j if and only if the ithe
lexicographically smallest suffix is from document dj .

2.2 Wavelet Tree

Let A[1...n] be an array of length n, where each element A[i] is a sym-
bol drawn from a set Σ of size σ. The wavelet tree (WT) [11] for A is
an ordered balanced binary tree on Σ, where each leaf is labeled with a
symbol in Σ, and the leaves are sorted alphabetically from left to right.
Each internal node Wk represents an alphabet set Σk, and is associated
with a bit-vector Bk. In particular, the alphabet set of the root is Σ, and
the alphabet set of a leaf is the singleton set containing its corresponding
symbol. Each node partitions its alphabet set among the two children
(almost) equally, such that all symbols represented by the left child are
lexicographically (or numerically) smaller than those represented by the
right child. For the node Wk, let Ak be a subsequence of A by retaining
only those symbols that are in Σk. Then Bk is a bit-vector of length |Ak|,
such that Bk[i] = 0 if and only if Ak[i] is a symbol represented by the left
child of Wk. Indeed, the subtree from Wk itself forms a wavelet tree of
Ak. To reduce space requirement, the array A is not stored explicitly in
the wavelet tree. Instead, we only store the bit-vectors Bk, each of which
is augmented with Raman et al.’s scheme [25] to support constant-time
bit-rank and bit-select operations. WT takes n log σ(1 + o(1)) bits space
and can answer the following queries in O(log σ) time.
rankc(i) = number of occurrences of c ∈ Σ in A[1...i]

selectc(i) = −1 if rankc(n) < i, else return j, where A[j] = c and
rankc(j) = i.

Note that by using the n log σ+O(n log σ/ log log σ) bits index by [10],
rankc and selectc can be performed in O(log log σ) time.

2.3 Weight-Balanced Wavelet Tree

Weight-balanced wavelet tree (WBT) is a modified version of WT pro-
posed by Hon et al. [16]. Here the number of 0’s and 1’s in any bit-vector
Bk is made almost equal, which ensures the following property.

Lemma 1 Let Wk be a node in WBT at depth δk, and Bk denote its
associated bit-vector. Let nk = |Bk|. Then we have nk ≤ 4n/2δk .

WBT on an array A[1...n] takes n(log σ + 2)(1 + o(1)) bits of space.
The tree depth of WBT can be of O(log n), so that the worst case query
time (for rankc(i) and selectc(i) for any c ∈ Σ) is O(log n). See Appendix
A and B for more details of WBT.

3 Data Structures for Document Counting

Here we describe an index which can count the number of documents
containing P+ but not P−. We capture the result in the following theorem.

Theorem 2 There exists an O(n)-word index that supports counting the
number of documents with P+ but not P− in O(|P+|+|P−|+

√
n log log n)

time, where P+ and P− are two online query patterns.

Index Construction: The following shows the main components of the
document counting index.

– GST/GSA, the generalized suffix tree/array of D.
– Document array DA, where DA[i] = j if the ith lexicographically

smallest suffix belongs to document dj .
– An 2n + o(n) bits structure, which can compute document-frequency
df(P) of a pattern P in O(1) time from the suffix range of P [26].?

– COUNT matrix, to be defined below.

First, starting from left in GST, we combine every g (called group size,
to be determined later) contiguous leaves together to form a group. Thus,
the first group consists of `1, ..., `g, the next group consists of `g+1, ..., `2g,
and so on, where `j denotes the jth leftmost leaf in GST. Consequently, we
have a total of O(n/g) groups, and for each group we mark the least com-
mon ancestor (LCA) of its first and its last leaves. Moreover, if two nodes

? df(P) = the number of distinct documents in D which has at least one occurrence
of P .

are marked, we mark their LCA as well. The total number of marked
nodes by this scheme can be bounded by O(n/g) [13]. Now suppose for
any node u in GST, with its subtree containing the leaves `x, `x+1, . . . , `y,
then the range [x, y] is referred to as the suffix range corresponding to u.

Lemma 2 [13] The suffix range [L,R] of any pattern P can be split
into a suffix range [L′, R′] corresponding to some marked node u∗, and
two other suffix ranges [L,L′ − 1] and [R′ + 1, R] with L′ − L < g and
R−R′ < g.

Proof. By setting L′ = gdL/ge+ 1 and R′ = gbR/gc, we have L′ − L < g
and R − R′ < g, and the LCA of `L′ and `R′ gives the desired marked
node u∗. ut

Essentially, the suffix range [L,R] of a pattern P corresponds to the
leaves `L, `L+1, . . . , `R in the GST. This set of leaves can be partitioned
into three groups: those which are under the subtree of u∗ (`L′ , `L′+1, . . . , `R′),
and the remaining two with those on the left of `L′ and those on the right
of `R′ . We shall refer to the latter two groups of leaves (`L, `L+1, . . . , `L′−1
and `R′+1, `R′+2, . . . , `R) as fringe leaves, each such group contains fewer
than g leaves.

Let d be a document in D, and u and v be two nodes in GST. Then
we define the following functions:

– F (d, u, v) = 1, if d contains the pattern path(u) but not the pattern
path(v), else 0.

– COUNT (u, v) =
∑

d∈D F (d, u, v), which is the number of documents
containing the pattern path(u) but not the pattern path(v).

Lemma 3 The function F (d, u, v) can be evaluated in O(ψ) time, where
ψ denotes the time for a rankd query on DA.

Proof. Using the tree encoding of GST, the suffix ranges [Lu, Ru] and
[Lv, Rv] corresponding to u and v can be computed in constant time.
Then, the number of occurrences of path(u) in d, called term-frequency
(denoted by tf(path(u), d)) can be computed as follows: tf(path(u), d) =
rankd(Ru)−rankd(Lu−1). Similarly tf(path(v), d) = rankd(Rv)−rankd(Lv−
1). If tf(path(u), d) ≥ 1 and tf(path(v), d) = 0, then F (d, u, v) = 1, else
0. Therefore, the time for computing F can be bounded by O(ψ), where
ψ denotes the time for a rankd query on DA. ut

COUNT matrix is simply anO(n/g)×O(n/g) matrix (of sizeO(n2 logD/g2)
bits), which stores COUNT (u∗, v∗) between all pairs of marked nodes u∗

and v∗ in GST.
Query Answering : The first step is to obtain the locus nodes u and v
(and the corresponding suffix ranges [Lu, Ru] and [Lv, Rv]) of P+ and P−,
respectively. Then, we compute the suffix ranges [L′u, R

′
u] and [L′v, R

′
v] (as

described in Lemma 2), and the corresponding marked LCA nodes u∗ and
v∗. Our objective is to compute COUNT (u, v), where as COUNT (u∗, v∗)
is precomputed and is stored in the COUNT matrix. We have the following
lemma on these values.

Lemma 4 Given COUNT (u∗, v∗), the value COUNT (u, v) can be com-
puted in O(gψ) time, where g is the group size and ψ is the time for a
rankd query on DA.

Proof : Let S(u, v) represent the set of all documents containing the
pattern path(u) but not the pattern path(v), hence COUNT (u, v) =
|S(u, v)|. Note that for those documents dj , with none of its suffix cor-
responding to a fringe leaf (i.e., DA[i] 6= dj for all i ∈ [Lu, L

′
u − 1] ∪

[R′u + 1, Ru] ∪ [Lv, L
′
v − 1] ∪ [R′v + 1, Rv]), dj ∈ S(u∗, v∗) if and only

if dj ∈ S(u, v). From this observation, COUNT (u, v) can be computed
from COUNT (u∗, v∗) by recomputing the membership of only those doc-
uments with suffixes corresponding to a fringe leaf, and the number of
such documents is bounded by 4g. Note that we may not be able to find
the set S(u, v) efficiently as we have not stored S(u∗, v∗), however what
we are interested is in |S(v, v)|, which can be computed from |S(u∗, v∗)|
as follows:

COUNT (u, v)← COUNT (u∗, v∗)
for all distinct documents d corresponding to a fringe
leaf do

if F (d, u, v) = 1 and F (d, u∗, v∗) = 0 then
COUNT (u, v)← COUNT (u, v) + 1

else if F (d, u, v) = 0 and F (d, u∗, v∗) = 1 then
COUNT (u, v)← COUNT (u, v)− 1

end if
end for
return COUNT (u, v)

The time for evaluating F is O(ψ), and the number of such distinct
documents is bounded by 4g. This completes the proof of the lemma. ut

Therefore document counting query can in general be answered in
O(|P+|+ |P−|+ gψ) time. However, we need to handle the following two
special cases as well.

1. When Ru−Lu + 1 < 2g, the marked node u∗ may not exist. Then we
shall retrieve all (at most g) distinct documents corresponding to the
suffixes in [Lu, Ru], and eliminate those documents which has a suffix
in [Lv, Rv] as well. This can be verified in O(ψ) time per document,
hence the total time can be bounded by O(|P+|+ |P−|+ gψ).

2. When Rv − Lv + 1 < 2g the marked node v∗ may not exist.. There-
fore, we first retrieve all (at most g) distinct documents correspond-
ing to the suffixes in [Lv, Rv]. These are the documents (say excluded
documents) which do not contribute to COUNT (u, v). Now, we com-
pute the number of excluded documents which have an occurrence
of P+ as well using DA in O(gψ) time. By subtracting this num-
ber from df(P+) (the number of distinct documents where P+ oc-
curs), we get COUNT (u, v), and the total time can be bounded by
O(|P+|+ |P−|+ gψ).

The space and time bounds in Theorem 2 can simultaneously be achieved
by choosing g =

√
n, and by maintaining DA using the data structure

in [10], where ψ = O(log logD) = O(log log n).

4 Data Structures for Document Listing

Our index supporting document listing consists of the following compo-
nents:

– GST of D.
– Weight-balanced wavelet tree (WBT) over document array DA.
– Let Wk represent an internal node in WBT, Dk be the set of distinct

documents represented by the leaf nodes in the sub-tree of Wk and
nk =

∑
dj∈Dk |dj |. At every internal node Wk, we maintain the index

(from Section 3) for answering document counting query for the corre-
sponding document collection Dk. However, to save space, we do not
maintain the generalized suffix tree GSTk of Dk; instead, we main-
tain only its tree encoding4 along with marked nodes information and
the 2nk + o(nk) bits data structure for finding document-frequency.
Moveover we do not need to maintain separate document array for
this collection, since the subtree of Wk in WBT is a weight-balanced
wavelet tree (WBTk) on Dk. We choose the group size gk =

√
nk log n

and since we are using WBT , the time for a rankd query on DA is
ψ = O(log n).

Index space: The total index space can be computed as follows: GST
takes O(n log n) bits, WBT takes O(n logD) bits. The bit vector Bk
associated with the node Wk is of length nk. Therefore the tree encoding
(along with the marked nodes information and the data structure for
computing df(P)) of GSTk takes O(nk) bits space. The COUNT matrix

4 Any n-node ordered tree can be represented in 2n + o(n) bits, such that if each
node is labeled by its pre-order rank in the tree, any of the following operations
can be supported in constant time [17]: parent(i), which returns the parent of node
i; lca(i, j), which returns the lowest common ancestor of two nodes i and j; and
lmost-leaf(i)/rmost-leaf(i), which returns the leftmost/rightmost leaf of node i.

associated with data structure in node Wk takes O(n2k logD/g2k) = O(nk)
bits by choosing gk =

√
nk log n. Note that

∑
k |nk| is the size of WBT

(in bits). Thus the total space is O(n log n) bits = O(n) words.
Query Answering : Query answering is performed as follows: After com-
puting the locus nodes of P+ and P− in GST, we perform a document
counting query on D. This is performed using the count structure asso-
ciated with the root node in WBT . If the count is non-zero, we do a
multi-way search in both child nodes, which correspond to searching two
partitions of D. This procedure is continued recursively until we reach a
leaf node in the binary tree, thus the document corresponding to that leaf
can be listed as an output. At any node, if the count is zero, we do not
need to continue the recursive step further in its subtree.

Let [L,R] be the suffix range of a pattern P in GST . Then, the suffix
range of P in GSTk can be computed in O(ψ) time by translating the
range [L,R] to the node Wk by navigating the WBT . Once we get the
suffix range of a pattern, its locus node (and the corresponding marked
node) in GSTk can be computed in constant time using the tree encod-
ing [17]. Therefore, we need to perform the pattern searching only once
(in GST), and the count queries at each internal node Wk of the WBT
can be performed in O(gkψ) time, instead of O(|P+|+ |P−|+ gkψ) time.
The overall query time consists of the following components and can be
analyzed as follows:

– Count Queries: The count query at an internal nodeWk takesO(gkψ) =
O(
√
nk log n log n) time. Since WBT ensures that nk ≤ 4n/2δk , where

δk is the depth of Wk, so the overall time for count queries will be
bounded by:

O

 ∑
Wk∈WBTvisited

√
nk log n log n


= O

√n log3/2 n
∑

Wk∈WBTvisited

2−δk/2


= O

√n log3/2 n

√ ∑
Wk∈WBTvisited

12
√ ∑
Wk∈WBTvisited

2−δk

 (1)

= O
(√

n log3/2 n
√
t log n

√
log(1 + # of nodes in WBTvisited)

)
(2)

= O
(√

nt log2.5 n
)
,

where Equation (1) is by Cauchy-Schwarz’s inequality,‡ while Equa-
tion (2) is by the following fact: In a binary tree T with a total

‡ ∑n
i=1 xiyi ≤

√∑n
i=1 x

2
i

√∑n
i=1 y

2
i .

of z nodes, and the depth of a node u ∈ T is given by δu, then∑
u∈T 2−δu ≤ log(1 + z)§.

– Initial pattern matching : This is the time for searching P+ and P− in
GST and computing the locus nodes u and v, respectively, which can
be bounded by O(|P+|+ |P−|).

– WBT tree traversal : Let t = COUNT (u, v) be the number of outputs.
Now, consider a binary tree structure WBTvisited, which is a subtree of
WBT with only those nodes visited when we answer the query. Since
each internal node in WBTvisited must be on the path from the root
to some document in the output set, and since the height of WBT is
O(log n), the number of internal nodes in WBTvisited is bounded by
O(t log n). As WBTvisited is a binary tree, the total number of nodes
(i.e., leaves and internal nodes) is bounded by O(t log n). Thus, the
tree traversal time can be bounded by O(t log n), since it takes only
constant time to traverse from a node to its child node.

Note that even if t = 0, we need to spend O(
√
n log3/2 n) time for count

query at the root note of WBT . Putting all things together, we get a
query time of O(|P+| + |P−| +

√
n log3/2 n + t log n +

√
nt log2.5 n) =

O(|P+|+ |P−|+
√
n log3/2 n+

√
nt log2.5 n). The O(

√
n log3/2 n) term can

be improved to O(
√
n log log n) by maintaining an additional O(n)-word

data structure (described in Theorem 2) for performing the first count
query, just in case t = 0. This completes the proof of Theorem 1.

5 Concluding Remarks

In this paper, we give the first linear space index for two-pattern queries
with one included pattern and one excluded pattern. The technique used
in this paper is similar to that in [16], where we define a different COUNT
matrix for solving the two-pattern queries problem with positive patterns
only. However, there are some subtle differences. In particular, the han-
dling of the fringe leaves, and the analysis of the query time in document
listing, are much trickier. For further work, we hope to extend the study
to the top-k version of this problem, though we suspect that it may not
be easily solved with the existing techniques in the literature for positive
patterns. Finally, the authors wish to thank Travis Gagie for providing
his manuscript [8] on the first solution to this problem.

§ This fact can be proven by induction: When T contains a single node this is trivially
valid (δroot = 0). And for a general tree, we can split T as the root, and two binary
trees T1 and T2 of z1 and z2 nodes respectively, where z = 1 + z1 + z2. Then∑
u∈T 2−δu = 1 + 1

2
(
∑
u∈T1

2−δu +
∑
u∈T2

2−δu) ≤ 1 + 1
2
(log(1 + z1) + log(1 + z2)) ≤

log(2
√

(1 + z1)(1 + z2) ≤ log(1 + z1 + 1 + z2) = log(1 + z).

References

1. D. Belazzougui and G. Navarro. Improved Compressed Indexes for Full-Text Doc-
ument Retrieval. In SPIRE, pages 386–397, 2011.

2. M. A. Bender and M. Farach-Colton. The LCA Problem Revisited. In LATIN,
pages 88–94, 2000.

3. Y.-F. Chien, W.-K. Hon, R. Shah, and J. S. Vitter. Geometric Burrows-Wheeler
transform: Linking range searching and text indexing. In DCC, pages 252–261,
2008.

4. H. Cohen and E. Porat. Fast Set Intersection and Two Patterns Matching. Theor.
Comput. Sci., 411(40-42): pages 3795–3800, 2010.

5. S. Culpepper, G. Navarro, S. Puglisi, and A. Turpin. Top-k Ranked Document
Search in General Text Databases. In ESA, pages 194–205, 2010.

6. P. Ferragina, R. Giancarlo, and G. Manzini. The Myriad Virtues of Wavelet Trees.
Inf. and Comp., 207(8): 849–866, 2009.

7. P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava. Two-dimensional
substring indexing. J. Comput. Syst. Sci., 66(4): 763–774, 2003.

8. J. Fischer, T. Gagie, T. Kopelowitz, M. Lewenstein, V. Mäkinen, L. Salmela and
N. Välimäki. Forbidden Patterns. To appear in LATIN, 2012.

9. T. Gagie, G. Navarro, and S. J. Puglisi. Colored Range Queries and Document
Retrieval. In SPIRE, pages 67–81, 2010.

10. A. Golynski, J. I. Munro and S. S. Rao. Rank/select operations on large alphabets:
a tool for text indexing. In SODA, pages 368–373, 2006.

11. R. Grossi, A. Gupta, and J. S. Vitter. High-Order Entropy-Compressed Text
Indexes. In SODA, pages 841–850, 2003.

12. W. K. Hon, M. Patil, R. Shah, and S.-B. Wu. Efficient Index for Retrieving Top-k
Most Frequent Documents. Journal of Discrete Algorithms, 8(4):402–417, 2010.

13. W. K. Hon, R. Shah, and J. S. Vitter. Space-Efficient Framework for Top-k String
Retrival Problems. In FOCS, pages 713–722, 2009.

14. W. K. Hon, R. Shah, and J. S. Vitter. Compression, Indexing, and Retrieval for
Massive String Data. In CPM, pages 260–274, 2010.

15. W.-K. Hon, R. Shah, and S. Thankachan. Towards an optimal space-and-query-
time index for top-k document retrieval. CoRR, arXiv:1108.0554, 2011.

16. W. K. Hon, R. Shah, S. V. Thankachan and J. S. Vitter. String Retrieval for
Multi-pattern Queries. In SPIRE, pages 55–66, 2010.

17. J. Jansson, K. Sadakane, and W. K. Sung. Ultra-succinct Representation of Or-
dered Trees. In SODA, pages 575–584, 2007.

18. M. Karpinski and Y. Nekrich. Top-K Color Queries for Document Retrieval. In
SODA, pages 401–411, 2011.

19. U. Manber and G. Myers Suffix Arrays: A New Method for On-Line String
Searches. In SICOMP, 22(5):935–948, 1993.

20. Y. Matias and S. Muthukrishnan and S. C. Sahinalp and J. Ziv Augmenting Suffix
Trees, with Applications. In ESA, pages 67–78, 1998.

21. S. Muthukrishnan. Efficient Algorithms for Document Retrieval Problems. In
SODA, pages 657–666, 2002.

22. G. Navarro and Y. Nekrich Top-k document retrieval in optimal time and linear
space. In SODA, pages 1066–1077, 2012.

23. G. Navarro and S. J. Puglisi. Dual-Sorted Inverted Lists. In SPIRE, pages 309–321,
2010.

24. M. Patil, S. V. Thankachan, R. Shah, W. K. Hon, J. S. Vitter, and S. Chan-
drasekaran. Inverted Indexes for Phrases and Strings. In SIGIR, pages 555-564,
2011.

25. R. Raman, V. Raman, and S. S. Rao. Succinct Indexable Dictionaries with Appli-
cations to Encoding k-ary Trees, Prefix Sums and Multisets. TALG, 3(4), 2007.

26. K. Sadakane. Succinct Data Structures for Flexible Text Retrieval Systems. JDA,
5(1):12–22, 2007.

27. N. Välimäki and V. Mäkinen. Space-Efficient Algorithms for Document Retrieval.
In CPM, pages 205–215, 2007.

28. P. Weiner. Linear Pattern Matching Algorithms. In Proc. Switching and Automata
Theory, pages 1–11, 1973.

A Proof of Lemma 1

Let W` and Wr denote the left and the right children of Wk, respectively.
Let B` and Br be their corresponding bit-vectors, and n` and nr be their
lengths. Thus nk = n` + nr. Let Lk denote the number of occurrences of
the least frequent symbol σ′ (i.e., σ1) represented by Wk, and similarly L`
and Lr. By the partitioning property, we can easily show that nr−Lr ≤ nl
and n`−L` ≤ nr. Also, Lk ≤ L` (resp., Lr). Combining these, 2(nr−Lr) ≤
n` + nr − Lr ≤ nk − Lk (similar is true for n` − L`). Thus, we get that
the quantity nk −Lk goes down by at least the factor of half as we go to
a child node.

Thus, nk−Lk ≤ n/2δk . Now for any node which has at least two leaves
in its subtree, Lk ≤ (1/2)nk and thus nk ≤ 2n/2δk . Taking leaf nodes into
account, we get nk ≤ 4n/2δk . This completes the proof of Lemma 1.

B Space of a WBT

Lemma 5 The space of a weight-balanced wavelet tree of an array A
of size n is n(H0(A) + 2)(1 + o(1)) bits, where H0(A) is the 0th-order
empirical entropy of A.

Proof. Let the depth of a leaf corresponding to the symbol σi be δi.
Then σi contributes fi bits in each bit-vector corresponding to the nodes
from root to this leaf (excluding the leaf). Hence the contribution of σi
towards the total space is fi · δi. By Lemma 1, δi ≤ log(4n/fi). Therefore,
the total size of a weight-balanced wavelet tree is at most (1+o(1))

∑
fi ·

(log(n/fi) + 2) = n(H0(A) + 2)(1 + o(1)) bits. This completes the proof
of Lemma 5. ut

