
Parallel Processing Letters

c World Scienti�c Publishing Company

A Parallel Algorithm for

Planar Orthogonal Grid Drawings

ROBERTO TAMASSIA

Center for Geometric Computing

Department of Computer Science, Brown University

Providence, R.I. 02912{1910, U.S.A.

and

IOANNIS G. TOLLIS

Computer Science Department, University of Texas at Dallas

Richardson, TX 75083, U.S.A.

and

JEFFREY SCOTT VITTER�

Center for Geometric Computing

Department of Computer Science, Duke University

Durham, N.C. 27708{0129, U.S.A.

Received December 22, 1997

Revised June 15, 2000

Communicated by Michel Cosnard

ABSTRACT

In this paper we consider the problem of constructing planar orthogonal

grid drawings (or more simply, layouts) of graphs, with the goal of minimizing

the number of bends along the edges. We present optimal parallel algorithms

that construct graph layouts with O(n) maximum edge length, O(n2) area,

and at most 2n + 4 bends (for biconnected graphs) and 2:4n + 2 bends (for

simply connected graphs). All three of these quality measures for the layouts

are optimal in the worst case for biconnected graphs. The algorithm runs

on a CREW PRAM in O(log n) time with n= log n processors, thus achieving

optimal time and processor utilization. Applications include VLSI layout,

graph drawing, and wireless communication.

Keywords: graph drawing, grid drawing, planar graph, layout, parallel algo-

rithms, parallel processing

1 Overview

The problem of producing automated drawings of graphs has several important

applications in the areas of circuit layout and data presentation [5]. In this pa-

per we consider planar orthogonal grid drawings. By \planar," we mean that the

�Part of the work was done while the author was at Brown University.

1



drawing lies in the plane with no crossing edges. \Orthogonal" means that each

edge in the drawing is a polygonal chain consisting of alternating horizontal and

vertical segments. \Grid" means that the vertices and the bends of the edges have

integer coordinates. Such drawings, which we shall refer to simply as layouts, have

numerous applications in VLSI and graphics.

In VLSI and graphic applications, the main quality measures for a layout that

we want to minimize are its area, edge length, and number of bends. Minimizing the

number of bends has applications to readability and aesthetics, to communication

by light or microwave, and to transportation problems. The problems of minimizing

the area and total edge length in layouts are NP-complete [6,9]. In contrast, layouts

with a minimum number of bends can be constructed in polynomial time [10]. In

recent work [14], we have shown several lower bounds on the number of bends

required in layouts.

In this paper, we consider the problem of constructing optimal layouts in parallel.

We present an optimal parallel algorithm that constructs a layout of an n-vertex

graph in O(logn) time using a CREW PRAM with n= logn processors. The layout

has O(n) maximum edge length, O(n2) area, and at most 2n+4 bends if the graph

is biconnected and at most 2:4n+ 2 bends otherwise. This is optimal in the worst

case for biconnected graphs. Previously, Aggarwal et al. [1] considered a variation of

grid embeddings, called rake embeddings, and showed an algorithm that constructs

rake embeddings with O(n2) area and at most six bends per edge.

The parallel algorithm follows the general scheme of [12], which consists of two

phases: orthogonalization and compaction. The orthogonalization phase determines

the \shape" of the layout, that is, the angles formed by the edges and bends. The

compaction phase assigns grid coordinates to the vertices and bends. In previous

work, Tamassia and Vitter [15] parallelized a simpler version of the technique of [12]

that avoids compaction and produces layouts having at most 6n bends.

We present a novel approach to the compaction phase, based on the concept of

\symbolic decomposition" of a rectilinear polygon whose shape is �xed but whose

geometry (vertex coordinates) is not fully speci�ed a priori. Previous compaction

algorithms were inherently sequential [8,10,16]. Parallelizing the compaction of a

layout was left as an interesting open problem [8]. An earlier and abbreviated

version of our work appears in [13].

2 Layouts

An orthogonal drawing of a graph is a drawing in which each edge is represented

by a polygonal chain consisting of alternating horizontal and vertical segments, as

shown in Figure 1. A graph has an orthogonal drawing if and only if its maximum

vertex degree is 4. Orthogonal drawings are used often in circuit schematics and

software engineering diagrams. A drawing is planar if no two edges intersect. A

drawing is a grid drawing if the vertices and the bends have integer coordinates.

The topology of a planar orthogonal drawing is described by its embedding, which

gives for each vertex the sequence of its incident edges arranged in counterclockwise

order according to the drawing. We assume that the embedding is speci�ed along

2



Fig. 1: A planar orthogonal drawing with eight bends.

with the graph and that the drawing has to preserve the embedding. Given an

embedded planar graph G, a layout for G is a planar orthogonal grid drawing of G

that preserves the embedding.

There are two types of angles in layouts: those formed at the vertices by con-

secutive incident edges (in the counterclockwise order), and those formed by the

segments that represent individual edges. An orthogonal representation of a graph

is a symbolic description of the shape of the layout, in which the orientation of each

angle is speci�ed but the locations of the vertices and bends are not given.

Let � be a layout of a graph G and C an oriented closed simple curve drawn

onto �. Curve C de�nes an elementary transformation of � if at each intersection

of C with �, the angle � on the side that C enters from is 180 or 270 degrees. The

elementary transformation is performed by bending G by �90 degrees at each place

where C crosses G, as illustrated in Figure 2. An elementary transformation that

passes through a bend in an edge causes the bend to be removed, and an elementary

transformation that passes through a straight segment of an edge causes a bend to

be introduced.

3 Parallel Construction of Layouts

Our main result is an optimal parallel algorithm, called GraphLayout , that con-

structs high-quality layouts of n-vertex biconnected graphs and multigraphs. We

discuss later how to extend the algorithm to handle graphs that are not biconnected.

The algorithm, which we give below, consists of several transformations, begin-

ning in Step 1 with the construction of the \visibility representation." A visibility

representation � for a planar graph G maps every vertex v of G to a horizontal seg-

ment �(v) and every edge (v; u) to a vertical segment �(v; u) that has its endpoints

on �(v) and �(u) and does not intersect any other horizontal segment. The visibil-

ity representation of the biconnected graph in Figure 3(a) is given in Figure 3(b).

The construction of the visibility representation in Step 1 can be done in O(logn)

time by an EREW PRAM with n= logn processors [15]. In the process, the edges

can be oriented from bottom to top, giving a directed graph on G.

3



(a) (b)

C

Fig. 2: An elementary transformation, de�ned by the closed curve C on left. The resulting layout

has two fewer bends.

Algorithm GraphLayout

f Layout of a biconnected planar graph G with n vertices in the grid. g

1. Construct a visibility representation for G. (See Figures 3(a) and (b).)

2. Transform the visibility representation for G into a preliminary orthogonal

embedding � by substituting a grid point for each vertex segment and appro-

priately changing its connections with the incident edges. (See Figure 3(c).)

3. Let H be the orthogonal representation for �. Apply successively the three

local elementary transformations described in [12] to reduce the number of

bends in H . (See Figure 3(d).)

4. From the orthogonal representation H , construct a layout using the com-

paction algorithm described below. (See Figure 3(e).)

We can easily convert a visibility representation into an orthogonal representa-

tion in Step 2 by replacing horizontal segments by vertices and vertical segments

by edges with bends. Many of the bends that are introduced are subsequently

eliminated in Step 3. For example there is an an elementary transformation T that

reduces the number of bends on edges that have both left and right bends, as shown

in Figure 2, where the number of bends in edge e is reduced from 2 to 1. It is im-

portant to note that T is local in nature and can be implemented easily in parallel.

The three types of local elementary transformations given in [12] su�ce to achieve

a worst-case optimal number of bends. The elementary transformations in Steps

2 and 3 require only local computations and can be done in constant time using

one processor per vertex/edge. In the directed version, the direction that each edge

emanates from a vertex can be maintained by local updates.

The hard part of algorithm GraphLayout is Step 4, in which the orthogonal

representation H is embedded without introducing any new bends. Step 4 is the

most di�cult to parallelize and is discussed in the remainder of this section.

4



(a) (b)

(c)(d)

(e)

Fig. 3: (a) A biconnected graph G. (b) Visibility representation for G. (c) Orthogonal embedding

obtained from (b) by local substitutions. (d) Orthogonal representation of the embedding in (c)

obtained after the bend-reducing transformations. (e) Final layout obtained by compaction of the

constraints obtained from (d).

Our approach for Step 4 is to \parse" the optimal orthogonal representation H

in order to construct the �nal layout. We �rst break up the orthogonal represen-

tation H into its individual polygonal faces. At each vertex v in H , we form all

possible pairs of edges (e1; e2), where e1 and e2 are consecutive in the counterclock-

wise ordering of v's incident edges. By parallel list ranking on these edge pairs [3],

we get the ordered cycle of edges associated with each polygonal face.

Each face of H is a rectilinear polygon P for which only the angles are speci�ed,

5



e1
e2

e3e4

e5

e6

e7

e8

e11

e10

e9

e12

e13

e14

e15

e0≡e16

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10e11e12e13e14e15e16

−
0

−
−1

+
−2

−
−1

+
−2

+
−1

+
0

−
1

−
0

−
−1

+
−2

+
−1

+
0

+
1

+
2

+
3

−
4

ei

turn(i)
rot(i)

Fig. 4: The rectangles formed from the polygon P by SymbolicDecomposition .

while the coordinates of the vertices are left undetermined. We call such polygons

symbolic polygons. The construction of a layout from the orthogonal representation

can be viewed as the process of assigning coordinates to a collection of symbolic

polygons (the faces of H) that share vertices and edges. The goal is to make the

resulting layout relatively compact.

To construct the layout, we generate an appropriate set of embedding con-

straints, which we later process in a global manner to compute the actual coor-

dinates of the layout. We generate the constraints by individually processing the

symbolic polygons of H . For the moment, let us consider only the symbolic poly-

gons that form the interior faces of H ; we describe later how to process H 's exterior

face. For each internal face P , we apply the subroutine SymbolicDecomposition to

decompose P into a set of symbolic rectangles (as shown in Figure 4).

Algorithm SymbolicDecomposition

f Symbolic decomposition of an internal orthogonal polygon P into rectangles g

1. The edges of P are oriented in a counterclockwise orientation, that is, given

any directed edge, the polygon P lies to its left.

2. For each i, set turn(i) := +1 if ei and ei+1 form a left turn, and otherwise set

turn(i) := �1 if ei and ei+1 form a right turn.

3. For each i, compute the pre�x sums rot(i) :=
Pi�1

j=0 turn(j). (Note that the

total sum of turns
P

j turn(j) over all edges in P must be equal to +4, since

P is an interior face of H .)

4. For each i, �nd the �rst edge ej going in a counterclockwise direction from ei

such that rot(j) = rot(i) + 1, and set front(i) := j.

5. For each i such that turn(i) = �1, make a \cut" by extending edge ei until

6



it touches edge efront(i). If front(i) = front(k) = j, then the cuts extending

ei and ek touch the same edge ej ; in this case the contact point of ei is

made to follow the one of ek along ej if and only if ei precedes ek going in a

counterclockwise direction from ej .

Lemma 1 The cuts computed by algorithm SymbolicDecomposition induce a con-

sistent decomposition of the interior symbolic polygon P into symbolic rectangles.

Proof. We show that no two cuts intersect and that each cut partitions a poly-

gon P into two subpolygons P 0 and P
00 with rot(P 0) = rot(P 00) = 4 An inductive

argument can then applied to construct a drawing of P with the given decomposi-

tion.

Suppose, for purposes of obtaining a contradiction, that the cuts extending

edges ei and ej intersect. Without loss of generality, assume that ei is directed

rightward, and ej is directed downward (see Figure 5), so that rot(i) = rot(j) + 1.

By connectivity arguments, it follows that ei precedes efront(j) going in a coun-

terclockwise direction from ej . This contradicts the de�nition of front(j), since

rot(i) = rot(front(j)).

Let us consider the two subpolygons created by a cut. Without loss of generality,

we can assume that the edge forming the cut is e0. Let i = front(0). For the

polygon P 0 to the right of the cut, we have rot(P 0) = rot(i)+2+1. Since rot(i) = 1,

we have rot(P 0) = 4. A similar argument shows that rot(P 00) = 4. 2

Lemma 2 Algorithm SymbolicDecomposition decomposes an m-vertex interior

symbolic polygon P into symbolic rectangles in O(logm) time on a CREW PRAM

with m= logm processors.

Proof. Step 1 of SymbolicDecomposition can be done in the desired time and

processor bounds using an optimal list ranking algorithm [3]. Step 2 takes constant

time, given the list ranking of edges. Step 3 involves a parallel pre�x computation,

ei

ej

efront(j)

efront(i)

Fig. 5: The cuts at edges ei and ej cannot intersect.

7



e13

e14

Fig. 6: The rectangles formed from the external face P . The edges extended are e14 and e13.

which can be done in the desired time and processor bounds [4].

In Step 4, we make use of the subroutine described in [2] for �nding the \next-

larger" of each element of a list. In a list of numbers, the next-larger of a given

element x is de�ned to be the �rst element following x in the list that has a value

larger than x's value. We run the next-larger algorithm on the array rot . In Step 5,

we need to �nd the \next-equal" of each element in the array rot for which turn(i) =

�1, which is simply the next-larger of the (i + 1)st element. The subroutine for

�nding next-largers is the only part of the algorithm that uses the power of the

CREW PRAM instead of the weaker EREW PRAM. 2

The external face of H can be re�ned by essentially transforming it into internal

faces as follows: We add a bounding rectangle around the external face and traverse

the external face so that the external face is to the left during the traversal. Consider

some three consecutive outside edges ei+1, ei, ei�1 that form two consecutive right-

hand turns. We project ei+1 and ei onto the sides of the rectangle. This operation

transforms the external face into two internal faces, as shown in Figure 6; one

is a rectangle, and the other can be decomposed into rectangles using algorithm

SymbolicDecomposition.

In order to compute the coordinates of an actual layout, we process the horizon-

tal and vertical adjacency edge constraints (or cuts) that we constructed in Steps 4

and 5 of SymbolicDecomposition for the interior faces (and that we constructed in a

similar way for the exterior faces). First let us consider the horizontal constraints.

We can make the horizontal constraints more explicit by representing them as a

planar st-graph, which is a planar acyclic directed graph with one source s and one

sink t, both on the external face. We represent each maximal group of vertically

connected vertices in the collection of symbolic rectangles as a single node; each

group can be found via list ranking. We put a directed edge from node a to node b

if there is a directed horizontal rectangle edge between a vertex represented by a

and a vertex represented by b. We add dummy nodes for s and t if there are more

than one source or sink. We can topologically sort the nodes of the planar st-graph

8



in time O(logn) time using n= logn processors on an EREW PRAM [15]. The re-

sulting total order gives the x-locations of of the �nal layout: For each node a, we

assign to all the vertices in the vertical group represented by node a the x-location

given by the index of a in the total ordering.

We can determine the y-locations for the vertices in the layout in a similar way.

In particular, we group together maximal groups of horizontally connected vertices

and form the corresponding planar st-graph, where the edges represent vertical cuts.

The rest of the construction proceeds symmetrically.

Since each vertex has x and y coordinates in the set f1, 2, 3,. . . , ng, the resulting

layout has area O(n2). The algorithm is of the same type introduced in [12], so the

bounds proved there for number of bends and maximum edge length carry forward

to our case. The total running time is O(log n) using n= logn processors on a CREW

PRAM. Our result is summarized in the following theorem:

Theorem 1 For an n-vertex biconnected graph, the algorithm GraphLayout con-

structs a layout having O(n) maximum edge length, O(n2) area, and at most 2n+4

bends. It runs in time O(log n) on a CREW PRAM with n= logn processors.

If the graphG is not biconnected, but rather is only simply connected, we modify

Step 1 of Algorithm GraphLayout as follows: We decompose the input graph G into

its biconnected components, which can be done optimally in parallel [4,7]. We then

construct a visibility representation of G by merging suitably constructed visibility

representations of the biconnected components of G using the technique in [12,11],

which can be easily parallelized. We obtain the following theorem, where the bound

on bends follows from the argument in [12].

Theorem 2 A layout of an n-vertex simply connected graph can be constructed

having O(n) maximum edge length, O(n2) area, and at most 2:4n+2 bends. It runs

in time O(logn) on a CREW PRAM with n= logn processors.

4 Conclusions

We have shown how to produce planar orthogonal grid drawings that are optimal in

the worst case in terms of the parallel time and processor utilization and in terms

of the number of bends produced in the drawing.

Our algorithm uses the subroutine in [2] for �nding next-smallers, which is de-

signed for a CREW PRAM. We expect that this subroutine can be modi�ed to run

in the same time and processor bounds on an EREW PRAM, by use of appropri-

ate pipelining techniques. With such an improvement, our planar orthogonal grid

drawing algorithm would run with the same time and processor bounds as before

but on an EREW PRAM.

Acknowledgements

Support for Prof. Tamassia was provided in part by by the O�ce of Naval Research

and the Defense Advanced Research Projects Agency under contract N00014{91{

J{4052, ARPA order 8225, and by a research grant from Cadre Technologies, Inc.

Support for Prof. Tollis was provided in part by the Texas Advanced Research

9



Program under Grant No. 3972. Support for Prof. Vitter was provided in part

by National Science Foundation grants CCR{9007851 and CCR{9522047, and by

the O�ce of Naval Research and the Defense Advanced Research Projects Agency

under contract N00014{91{J{4052, ARPA order 8225.

References

1. A. Aggarwal, M. Klawe, D. Lichtenstein, N. Linial, and A. Wigderson. Multi-layer

grid embeddings. In Proc. 26th Annu. IEEE Sympos. Found. Comput. Sci.,

186{196, 1985.

2. O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly paral-

lelizable problems. In Proc. 21st ACM Symp. on Theory of Computing, 309{319,

1989.

3. R. Cole and U. Vishkin. Approximate parallel scheduling, part i: the basic technique

with applications to optimal parallel list ranking in logarithmic time. SIAM J.

Comput., 17(1), 128{142, 1988.

4. R. Cole and U. Vishkin. Approximate parallel scheduling. II. applications to

logarithmic-time optimal parallel graph algorithms. Information and Computation,

92, 1{47, 1991.

5. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing

graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4, 235{282,

1994.

6. D. Dolev, F. T. Leighton, and H. Trickey. Planar embedding of planar graphs. In

F. P. Preparata, editor, Advances in Computing Research, volume 2, 147{161. JAI

Press, Greenwich, Conn., 1985.

7. H. Gazit. Optimal EREW parallel algorithms for connectivity, ear decomposition,

and st-numbering of planar graphs. Manuscript, Duke University, 1990.

8. F. Ho�mann and K. Kriegel. Embedding rectilinear graphs in linear time. Infor-

mation Processing Letters, 29, 75{79, 1988.

9. J. A. Storer. On minimal node-cost planar embeddings. Networks, 14, 181{212,

1984.

10. R. Tamassia. On embedding a graph in the grid with the minimum number of bends.

SIAM J. Comput., 16(3), 421{444, 1987.

11. R. Tamassia and I. Tollis. A provably good linear algorithm for embedding graphs

in the rectilinear grid. Technical Report Technical Report ACT-64, Coordinated

Science Lab, University of Illinois, December 1985.

12. R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans.

on Circuits and Systems, CAS-36(9), 1230{1234, 1989.

13. R. Tamassia, I. G. Tollis, and J. S. Vitter. Lower bounds and parallel algorithms

for planar orthogonal grid drawings. In Proc. IEEE Symposium on Parallel and

Distributed Processing, 386{393, 1991.

14. R. Tamassia, I. G. Tollis, and J. S. Vitter. Lower bounds for planar orthogonal

drawings of graphs. Inform. Process. Lett., 39, 35{40, 1991.

15. R. Tamassia and J. S. Vitter. Parallel transitive closure and point location in planar

structures. SIAM J. Comput., 20(4), 708{725, 1991.

16. G. Vijayan and A. Wigderson. Rectilinear graphs and their embeddings. SIAM J.

Comput., 14, 355{372, 1985.

10


