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Abstract. Parallel algorithms for several graph and geometric problems are presented, including
transitive closure and topological sorting in planar st-graphs, preprocessing planar subdivisions for
point location queries, and construction of visibility representations and drawings of planar graphs.
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1. Introduction. Planar st-graphs, which include series-parallel graphs as a
special case, were �rst introduced by Lempel, Even, and Cederbaum [34] in con-
nection with a planarity testing algorithm, and they have subsequently been used in
a host of applications, dealing with partial orders [30], planar graph embedding [6],
[14], [49], graph planarization [37], graph drawing [13], [15], 
oor planning [57], planar
point location [19], [39], visibility [36], [42], [52], [54], [58], [59], motion planning [41],
and VLSI layout compaction [57].

In this paper, we present a new technique for constructing in parallel an implicit
representation of the transitive closure of a planar st-graph. This technique is further
applied to obtain optimal parallel algorithms for the following problems:

(1) transitive closure, reachability, and topological sorting in planar st-graphs;
(2) preprocessing planar subdivisions for point location queries;
(3) construction of visibility representations and drawings of planar graphs.
We adopt the standard parallel random-access machine (PRAM) model of compu-

tation, in which processors concurrently access a shared memory [29]. Communication
costs are not taken into account by this model; the time to access a memory loca-
tion is constant for each processor. An exclusive-read exclusive-write (EREW) PRAM
prohibits concurrent access to the same location of the shared memory. A concurrent-
read exclusive-write (CREW) PRAM allows concurrency for reads but not for writes.
A concurrent-read concurrent-write (CRCW) PRAM allows concurrent reading and
concurrent writing, under various conventions for concurrent writing. Our algorithms
use the most restrictive EREW PRAM.

Computing the transitive closure of a digraph G with n vertices can be done
sequentially in linear time, but the best known parallel algorithms require O(log2 n)
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time on an EREW PRAM and O(logn) time on a CREW PRAM with M (n) pro-
cessors [29], where the best known upper bound on M (n) is currently M (n) =
O(n2:376) [10]. Transitive closure is a fundamental problem, and as a result much
attention is given to reducing the required number of processors. The best previous
results on the related problems of deciding the reachability of a vertex v from a ver-
tex u (transitive closure query) and of computing a topological ordering of the vertices
of an acyclic digraph G have the same time/processor bounds as transitive closure.

In the next section we discuss some important properties of planar st-graphs.
In particular, we recall that a planar st-graph G admits two total orders on the
set V [ E [ F , where V , E, and F are the sets of vertices, edges, and faces of G,
respectively. Such total orders, denoted <L and <R, provide an implicit representation
of the transitive closure of G. Also, any such order yields a topological ordering of
the vertices when restricted to V [51].

In x 3 we give an optimal O(logn)-time, (n= logn)-processor algorithm for con-
structing the orders <L and <R of an n-vertex planar st-graph G. This algorithm can
be used as a preprocessing step to set up an O(n)-space data structure that supports
transitive closure queries in O(1) sequential time. Alternatively, we can construct
within the same bounds a fully dynamic data structure that supports queries and up-
dates (insertions/deletions of vertices and edges) in O(logn) sequential time. Using
a di�erent data structure, updates take O(1) time with n processors and queries take
O(1) time with one processor. Since the publication of the conference version of this
paper, Kao and Klein [28] have developed a transitive closure algorithm for general
planar graphs that runs in O(log3 n) time using n processors on a CRCW PRAM.

Section 4 considers the classical problem of point location in a planar subdivision,
a fundamental searching primitive for a variety of geometric algorithms. We show how
to preprocess a monotone subdivision in O(logn) time with n= logn processors on an
EREWPRAM to obtain anO(n)-space data structure (the bridged separator tree [19],
[33]) that supports point location queries in O(logn) time. Our technique can also
be extended to construct a fully dynamic data structure for point location. Queries
in the bridged separator tree can be done in optimal O

�
(logn)= log p)

�
time using a

p-processor CREW PRAM [56]. Nonmonotone subdivisions can be handled by our
techniques by �rst applying a triangulation step, which takes O(logn) time using an
n-processor CREW PRAM [3], [60].

Our results improve certain aspects of the previous best results [3], [9], [11],
[12]. Atallah, Cole, and Goodrich [3] give an algorithm to construct a suboptimal
O(n logn)-space point location data structure in O(logn) time with n processors on
a CREW PRAM. Dadoun and Kirkpatrick [11] show that the O(n)-space hierarchical
point location data structure of Kirkpatrick [31] for triangulations can be constructed
in O(logn log� n) worst-case time and O(logn) expected time on a CREW PRAM
with n processors. A recent result of Cole and Zajicek [9] shows that the worst-
case time can be reduced to O(logn) with n= logn processors at the expense of large
constant factors. The hierarchical data structure can be modi�ed so that it can
process point location queries in O

�
(logn)= logp) time, but the required preprocessing

takes O(log2 n) time using O(n3) processors on a CREW PRAM [12]. An empirical
analysis of the performance of several point-location data structures shows that the
hierarchical point location data structure does not perform well in practice since the
constant factors hidden behind the big-oh notation are large, whereas the bridged
separator-tree constructed by our algorithm is very e�cient [18].

In x 5, we investigate the problem of constructing visibility representations of
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planar graphs, where the vertices are represented by horizontal segments and the
edges by vertical segments. Such representations �nd applications in VLSI layout,
motion planning, and graph drawing, and their combinatorial properties have been
extensively investigated [16], [42], [52], [54], [58], [59]. We give algorithms for con-
structing visibility representations of planar st-graphs and undirected planar graphs
in O(logn) time with n= logn processors. Also, we show that algorithms for drawing
planar graphs that are based on the intermediate construction of visibility represen-
tations can be e�ciently parallelized. We present algorithms that construct planar
drawings with vertices placed at integer coordinates and asymptotically optimal area
in O(logn) time with n= logn processors. This improves substantially over the algo-
rithm of Ja'Ja' and Simon [26], which uses M (n) processors to construct in O(log2 n)
time a planar drawing with vertices placed at real coordinates and no known bound
on the area.

As a �nal remark, our parallel algorithms appear to be simple to implement and
eminently practical.

2. Planar st-graphs.

Definition 2.1. A planar st-graph G is a planar acyclic directed graph G with
exactly one source vertex s and exactly one sink vertex t, which is embedded in the
plane such that s and t are on the boundary of the external face.

An example is pictured in Fig. 1. We assume in this paper, as stated in De�ni-
tion 2.1, that the input graph representation is embedded, that is, for each vertex the
cyclical ordering of its neighbors is given. The embedding is represented in standard
form by doubly-connected edge lists [38]. If the embedding information is not avail-
able, but a planar straight-line drawing is given, the embedding can be determined on
an EREW PRAM in O(logd) time with n processors by sorting, where d is the maxi-
mum vertex degree [7]. This is optimal in the worst case, since sorting can be reduced
to computing the embedding. If neither the embedding nor a drawing is given, the
embedding can be determined as follows: We �rst add the directed edge (s; t) to G if

it does not already exist. Let bG be the undirected planar graph corresponding to G.
We can compute an embedding of bG on a CRCW PRAM in O(logn) time using the
same number of processors needed to determine graph connectivity and to do bucket
sorting in O(logn) time [40]; the best known processor bound for this uses n log logn
processors deterministically [8], [24]. The resulting embedding is consistent with hav-

ing any particular edge of bG appear on the external face, so we can assume that the

edge (s; t), and thus vertices s and t, are on the external face. If the edge (s; t) was

added in our construction earlier, it can be removed from bG, and the orientations of
the edges can be reintroduced to get an embedding of the planar st-graph G.

Following the development of Tamassia and Preparata [51], we will consider a
planar embedding of G with s as the lowest vertex and t as the highest vertex, and
with all edges directed upwards. Planar st-graphs have the following important prop-
erties [34], [52]:

(1) Every vertex is on a directed path from s to t.
(2) The incoming edges for each vertex appear consecutively around the vertex,

and so do the outgoing edges. The face separating the incoming and outgoing
edges of vertex v in the clockwise direction is called left(v), and the face
separating them in the counterclockwise direction is called right(v). (See
Fig. 2(a).)

(3) The boundary of each face f consists of two directed paths enclosing f , each
starting from the unique lowest vertex low(f) and ending at the unique high-
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Fig. 1. A planar st-graph G (solid lines) and its dual graph G� (dashed lines).

est vertex high(f). (See Fig. 2(b).)
The terminology can be extended by de�ning vertices low(x) and high(x) and

faces left(x) and right(x) for all elements in V [E[F , where V is the set of vertices,
E is the set of edges, and F is the set of faces of G. For each vertex v, we de�ne
low(v) = high(v) = v and left(v) and right(v) as above. For each edge e = (u; v), we
de�ne low(e) = u, high(e) = v, and we de�ne left(e) to be the face to the left of e and
right(e) to be the face to the right of e. For each face f , we de�ne low(f) and high(f)
as above and left(f) = right(f) = f .

Definition 2.2. The dual graph G� of a planar st-graph G is the directed graph
formed as follows: For each face of G, there is a vertex of G�. In addition, the external
face of G corresponds to two vertices s� and t� of G�, which represent the \left" and
\right" external faces of G. For each edge e in G, there is an edge (left(e); right(e))
in G�. (See Fig. 1.)

It is easy to show that the dual graph G� is also a planar st-graph. Partial orders
" and ! can be de�ned on V [E [ F as follows:

Definition 2.3. We say x is below y (denoted x " y) if there is a path from
high(x) to low(y) in G, and we say x is to the left of y (denoted x! y) if there is a
path from right(x) to left(y) in the dual graph G�.

For example, in Fig. 1, we have e2 " f3 " t and e1 ! f3 ! v2. For each
x; y 2 V [E [F , exactly one of the following relations hold: x " y, y " x, x! y, or
y ! x [51]. This allows us to de�ne the following two total orders:

Definition 2.4. The total orders <L and <R are de�ned as

x <L y () x " y or x! y;

x <R y () x " y or y ! x:

We de�ne the left sequence of G to be the sequence of elements of V [E [ F sorted
with respect to <L, and the right sequence of G to be the sequence of elements of
V [E [ F sorted with respect to <R.
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Fig. 2. Parallel construction of the left sequence. (a) The order relations e1 <L v <L e2 formed

by Rule 1. (b) The order relations e1 <L f <L e2 formed by Rule 2. (c) The left sequence in list

form shown for the graph G in Fig. 1.
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For example, the left and right sequences for the graph in Fig. 1 are respectively
f0v0 e1f1 e2v1 e5v3 e6v5 e9f2 e7f3e4f4 e3v2 e8v4 e10v6f5,

and
f5v0 e3f4 e2v1 e4v2 e8f3 e5v3 e7v4e10 f2 e6f1 e1v5 e9v6f0.

This left sequence is also pictured as a path in Fig. 2(c). The formal underpinning of
the orders <L and <R can be found in the theory of planar lattices [27], [30].

The importance of the total orders <L and <R is that they can be used to answer
transitive closure queries:

Theorem 2.5. [51] There is a path from vertex u to vertex v in a planar

st-graph G if and only if u precedes v in both the left and right sequences of G.

3. Transitive closure. The transitive closure query problem for a digraph G

consists of answering queries of the form \Is there a path from vertex u to ver-
tex v in G?". In the dynamic problem, the digraph can be updated by insertions
and deletions, and the queries can be interspersed with the updates. In this sec-
tion, we exploit the properties of planar st-graphs and give EREW PRAM algo-
rithms for constructing the fully dynamic (sequential) data structure of Tamassia and
Preparata [51] in O(logn) time with n= logn processors. The data structure consists
of a pair of balanced trees associated with the left and right sequences and requires
O(n) space. When used sequentially, it is fully dynamic and handles queries and
updates in O(logn) time. We also give parallel algorithms for dynamic queries and
updates.

Theorem 3.1. Let G be a planar st-graph with n vertices. A fully dynamic

data structure for the transitive closure query problem for G can be constructed by an

EREW PRAM in O(logn) time using n= logn processors, which is optimal.

Proof. Our algorithm constructs the data structure of Tamassia and
Preparata [51] based on the left and right sequences of G. By Theorem 2.5, we
can determine if there is a path from u to v in G by checking whether u is before v in
both sequences. Each sequence is stored in the leaves of a balanced red-black tree [22].
Dynamic updates require a sequence of splits and splices in the tree.

Without loss of generality, let us restrict our attention to computing the left se-
quence of G. First we construct the dual graph G�. The edges on the right boundary
(respectively, left boundary) of each face f can identify a common representative
vertex, say vertex low(f), in parallel simultaneously for each face f , as follows: We
construct a local order relation among the edges. If an edge is the leftmost (rightmost)
edge incoming into a vertex, its successor is de�ned as the leftmost (rightmost) edge
outgoing from that vertex. This order relation induces a set of ordered paths, corre-
sponding to the right boundaries (left boundaries) of the faces. By list ranking [2],
[8], the edges in the right boundary (left boundary) of each face can simultaneously
identify a common vertex in O(logn) time with O(n= logn) processors.

To construct the left sequence of G, we note that, except for the very beginning
and very end of the sequence, every other element in the sequence is an edge. We
can form the sequence in O(logn) time with O(n= logn) processors by creating the
following local order relations:

(1) Each vertex v 6= s; t constructs the order relations e1 <L v <L e2, where e1 is
the rightmost incoming edge of v, and e2 is the leftmost outgoing edge of v.
(See Fig. 2(a).)

(2) Each interior face f constructs the two order relations e1 <L f <L e2, where
e1 is the topmost left edge of f , and e2 is the bottommost right edge of f .
(See Fig. 2(b).)
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The source vertex s constructs the order relations s� <L s <L e2, where e2 is the
leftmost outgoing edge of s, and t forms the order relations e1 <L t <L t

�, where e1
is the rightmost incoming edge of t. List ranking is then done to combine the order
relations into a fully ordered sequence, as shown in Fig. 2(c). Lemma 3.2 below shows
that this sequence is the left sequence of G. The right sequence can be constructed
analogously.

Given the left and right sequences of G, the dynamic data structure of Tamassia
and Preparata [51] can be constructed easily in parallel. It consists of two balanced
search trees, whose leaves consist of the elements of V [E [F . In one tree the leaves
are ordered from left to right according to the left sequence, and in the other tree the
leaves are ordered according to the right sequence.

Lemma 3.2. List ranking of the above local order relations produces the left

sequence of G.

Proof. The local order relations produced above do not induce any cycles, since
each order relation is consistent with the total order <L. The rest of the proof consists
of showing by contradiction that the order relations induce a linear order on V [E[F .
Suppose, during the application of the above two rules, that some edge e is chosen
twice as the head of two di�erent subsequences. One of the subsequences must be
formed by rule 1 above, and the other subsequence by rule 2, since two di�erent
vertices cannot have the same outgoing left edge, and two di�erent faces cannot have
the same bottommost right edge. Let us denote these two subsequences by e0 v e and
e00 f e, for some vertex v 6= s and some interior face f . By rule 1, e is the leftmost
outgoing edge of v. By rule 2, e is the bottommost right edge of an interior face f ,
which implies that low(f) = v. This means that e is to the right of f , but there are
no edges to the left of f , and hence f is not an interior face | a contradiction. We
can show in a similar way that an edge cannot be chosen as the tail of two di�erent
subsequences.

The fact that the total order <L is an extension of the partial order " imposed
by the directed edges of the graph gives us the following corollary:

Corollary 3.3. A topological ordering of the n vertices of a planar st-graph G

can be computed in O(logn) time using n= logn processors on an EREW PRAM,

which is optimal. Speci�cally, we can compute the rank of each vertex in the vertex

subsequence of the left or right sequence of G.

Proof. First we compute the left-sequence (or right-sequence) of G, and then we
extract the subsequence consisting of all the vertices by list ranking.

Series-parallel graphs are a subclass of planar st-graphs, and thus we get the
following corollary, which is an improvement over the O(log2 n)-time, n-processor
CREW PRAM algorithm given by Afrati, Goldin, and Kanellakis [1]:

Corollary 3.4. Reachability in series-parallel graphs can be computed on an

EREW PRAM in O(logn) time with n= logn processors.

Our technique can be extended to solve the following problem posed by Kao:
Given a planar st-graph G, compute for each vertex v the number of vertices reachable
from v by paths in G. By associating each vertex v with a point p(v) in the plane
whose x- and y-coordinates are given by the ranks of v in the left and right sequences,
respectively, we �nd that a vertex w is reachable from v if and only if the x- and
y-coordinates of p(w) are both greater than the corresponding ones of p(v). Hence,
we can apply the algorithm of Atallah, Cole, and Goodrich [3] for two-set dominance
counting and obtain the following theorem.

Theorem 3.5. Given a planar st-graph G with n vertices, the number of vertices
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reachable from each vertex can be computed by an EREW PRAM in O(logn) time

using n processors.

The contact chain query problem for a convex subdivision and a direction � con-
sists of questions of the form: \If region r0 is pushed in direction �, will region r00 be
moved?" [5]. Without loss of generality, assume that � is the horizontal direction. By
orienting the edges of the convex subdivision from bottom to top, and denoting by s

and t the lowest and highest vertices, respectively, we get a planar st-graph G. (The
subdivision is perturbed slightly if necessary to ensure that there are no horizontal
edges.) It is easy to see that pushing r0 will cause r00 to be moved if and only if there
is a path from r0 to r00 in the dual graph G�. By Theorem 3.1 for the dual graph G�,
we get the following corollary.

Corollary 3.6. A fully dynamic O(n)-space O(logn)-sequential time data

structure for the contact chain query problem along a �xed direction � in an n-vertex

convex subdivision can be constructed by an EREW PRAM in O(logn) time using

n= logn processors, which is optimal.

An alternate simple data structure for parallel use stores the left and right se-
quences as linear arrays. In array form, the shifts and swaps needed for dynamic
maintenance can clearly be done in constant time using n processors. If n� processors
are available for updates, where 0 < � < 1, the arrays can be replaced by B-trees [4]
with nodes of degree �(n�) and hence O(1=�) height. This gives us the following
result.

Theorem 3.7. Let G be a planar st-graph with n vertices. For any constant

0 < � � 1, a data structure for the transitive closure query problem for G can be

constructed by an EREW PRAM in O(logn) time using n= logn processors, such that

a transitive closure query can be answered on an EREW PRAM in O(1=�) time with

one processor, and dynamic updates can be done in O(1=�) time with n� processors.

Corollary 3.8. Let G be a planar st-graph with n vertices. After the prepro-

cessing of Theorem 3.7, the subgraph H consisting of all paths from a vertex u to a

vertex v can be generated in O(logn) time using n= logn processors on an EREW
PRAM, and in constant time with n processors on a CREW PRAM.

Proof. We assign one processor to each vertex and edge in the graph and broadcast
the positions of u and v in <L and <R to all the processors. We form the desired
subgraph H by including all the vertices and edges such that there is a path from u

to v using that vertex or edge. This can be done using Theorem 2.5, by including all
vertices and edges that come between u and v with respect to both <L and <R.

The shorter of the leftmost and rightmost paths from u to v can be generated in
O(logn) time on an EREW PRAM, and in O(logk) time on a CREW PRAM, where
k is the length of the path. We form the dual graph H� of H. For each edge e in H,
we test to see if it is on the leftmost (respectively, rightmost) path in H by checking
if left(e) (respectively, right(e)) is not between u and v in either <L or <R. This
identi�es the edges along the two paths. The shorter of the two paths can then be
found by doing list ranking in parallel for each path.

4. Planar point location. In this section, we present fast parallel algorithms
for constructing data structures to handle point location queries. The queries them-
selves can be done either serially or in parallel using concurrent read. The reader is
referred to the book of Preparata and Shamos [38] for the geometric terminology used
in this section and a description of various point location techniques. Our approach
is based on the separator-method for point location [19], [33].
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Definition 4.1. A monotone chain is a polygonal chain such that each hori-
zontal line intersects it in at most one point. A polygon is monotone if its boundary
is partitionable into two monotone chains. A (planar) subdivision S is a partition
of the entire plane into polygons, called the regions of S. We assume a standard
representation for the subdivision S and its embedding, such as a doubly-connected
edge list representation [38]. A monotone subdivision is such that all its regions are
monotone polygons.

A monotone subdivision S is therefore associated with a planar st-graph G, where
each edge is directed according to increasing ordinate, and s and t are associated with
the vertices at �1 and +1 of S. That is, an upward (respectively, downward) ray
of S originating at vertex v corresponds to edge (v; t) (respectively, (s; v)) of G.

Definition 4.2. Given a monotone subdivision S, a separator � of S is a
monotone chain of S between vertices at in�nity, that is, a directed path of G from s

to t. Given separators �1 and �2, we say that �1 is to the left of �2 if every horizontal
line intersects �1 at or to the left of �2.

Let r1, r2, . . . , rp be the regions of S, sorted according to some total order
compatible with relation !, that is, ri ! rj implies i < j. The common boundary
of the regions with index � i and of the regions with index > i is a separator of S,
which we denote �i. Clearly, �i is to the left of �j, for i < j.

One approach to point location is to perform a type of binary search on the set of
separators � = f�1; � � � ; �p�1g, where each separator �i is assigned to a node (called
node �i) of a balanced binary tree T (called the separator tree), whose leaves are the
regions of S [33]. The sequence of the nodes of T in symmetric order is r1, �1, r2,
�2, . . . , �p�1, rp. An edge (u; v) of S belongs to the interval of separators �i, �i+1,
. . . , �k such that ri = left(u; v) and rk+1 = right(u; v); but for reasons of space
e�ciency (u; v) is stored only once, at node �j = lca(ri; rk+1), the lowest common
ancestor of leaves ri and rk+1. The edges stored at a node �i, which are a subset of
the edges of separator �i, are called the proper edges of �i. An example is shown in
Fig. 3.

The separator tree uses O(n) space and supports point location queries in
O(log2 n) time, where n is the number of vertices of S [33]. To perform a query,
we trace a path in the separator tree from the root to the leaf ri containing the query
point q. At each internal node �i we discriminate q against separator �i and branch
left or right according to whether q is to the left or right of �i. The discrimination
of q against �i is performed by searching for the smallest value � y(q) in the catalog
of �i. The catalog consists of the y-coordinates of the proper edges of �i, along with
the dummy value +1. Each catalog entry is associated with the proper edge e (if
it exists) whose top vertex has that y-coordinate. If the search for y(q) returns the
y-coordinate associated with edge e, then e is horizontally visible from q; we branch
left if q is to the left of e, and right otherwise. When there is no edge associated with
the y-coordinate returned, then y(q) is in a \gap" between two proper edges of �i.
In this case, the branching direction is determined as follows: If y(q) is immediately
above (respectively, below) proper edge e of �i, let �k be the ancestor of �i in the
separator tree that stores the �rst nonproper edge of �i above (respectively, below) e.
We branch left if �i is to the left of �k, and right otherwise. This information can be
precomputed and stored in the catalog. Thus, the necessary branching can always be
determined in constant time from the information associated with the y-coordinate
returned as a result of the search in the catalog. Point location in this context consists
merely of a sequence of catalog searches.

9



Fig. 3. Construction of the separator tree for a regular subdivision: (a) Regular subdivision S

with the chains of proper edges visualized. (b) Separator tree for S.
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By applying the fractional cascading technique to the catalogs of the separator
tree, we obtain a bridged separator tree (also called layered dag), which still uses O(n)
space and supports queries in O(logn) time, which is optimal [19]. (Our method
in the previous paragraph for determining the branching in \gaps" yields a slight
simpli�cation of the algorithm.)

Definition 4.3. A regular subdivision is a monotone subdivision having no
pair of regions r and r0 such that r " r0. (See Fig. 3.)

It follows that in a regular subdivision the relation ! is a total order. Below,
we show how to e�ciently construct in parallel the bridged separator tree for a reg-
ular monotone subdivision, and then we extend the technique to arbitrary monotone
subdivisions and general nonmonotone subdivisions.

Lemma 4.4. Each vertex of a regular subdivision has either indegree 1 or outde-

gree 1.
Proof. If some vertex v of a regular subdivision has indeg(v) � 2 and outdeg(v) �

2, then there are regions r and r0 such that v = high(r) = low(r0), which implies
r " r0, a contradiction.

The following algorithm constructs a bridged separator tree for a regular subdivi-
sion S. Without loss of generality, we assume that the number of regions p is a power
of two.

(1) Construct the planar st-graph G associated with S, and compute its left and
right sequences. Also, compute indeg (v) and outdeg(v) for each vertex v, and
store with each edge (u; v) the indices i and j of the regions ri = left(u; v)
and rj = right(u; v).

(2) Form a complete binary tree T whose leaves are associated with the regions
of S (the faces of G), sorted from left to right according to their order in
the left sequence of G. Hence, region ri is the ith leaf from left to right.
Also, construct an array of pointers to the internal nodes of T such that the
ith element of the array points to the internal node of T associated with
separator �i.

(3) Form the sets of proper edges of the internal nodes of T , as follows:
foreach edge (v; w) do begin

if indeg(v) = 1
then begin

let (u; v) be v's only incoming edge;

if lca(left(u; v); right(u; v)) = lca(left(v; w); right(v; w))
then connect (u; v) to (v; w) bidirectionally

end;

if outdeg(w) = 1
then begin

let (w; z) be w's only outgoing edge;
if lca(left(w; z); right(w; z)) = lca(left(v; w); right(v; w))

then connect (w; z) to (v; w) bidirectionally
end

end;
(4) Store each doubly-connected list of edges obtained in Step 3 into the node

of T that is the lowest common ancestor of the regions to the left and right
of all the edges in the list. Each list is the set of proper edges of that node,
sorted from bottom to top.

(5) Convert the lists of proper edges into arrays, called catalogs, by means of list
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ranking. Establish bridges between the catalogs stored in adjacent nodes
of T , according to the fractional cascading scheme of Atallah, Cole, and
Goodrich [3].

The correctness of the algorithm follows from Lemma 4.4. Step 1 is performed
using the techniques developed in the previous section. Step 2 can be easily done
in O(logn) time with n= logn processors. In Step 3, we use a simple technique for
computing in O(1) time the inorder rank of the lowest common ancestor of two leaves
of a complete binary tree, given the ranks of such leaves in their left-to-right order [19].
Hence, the test

lca(left(u; v); right(u; v)) = lca(left(v; w); right(v; w))

can be done in O(1) time using only the indices of the regions to the left and right
of (u; v) and (v; w). By Step 1, such indices are stored locally at the edges (u; v)
and (v; w). Since the iterations of the for-loop are independent, we conclude that
we can allocate one processor per group of logn edges and perform the computation
of Step 3 in O(logn) time with n= logn processors. In Step 4, the assignment of
the lists of proper edges to the corresponding internal nodes of T is done as follows.
First, we pick any edge (u; v) of the list and compute in O(1) time the rank of node
lca(left(u; v); right(u; v)) in the symmetric order [19]. Next, from the rank, we access
the node using the array constructed in Step 2. Such computation can be performed
in O(logn) time with n= logn processors.

The parallel fractional cascading technique of Atallah, Cole, and Goodrich [3]
takes O(logn) time with n= logn processors to complete the construction of the
bridged separator tree. This technique can be applied because, as described earlier,
point location consists precisely of a series of catalog searches, where each node �i in
the separator tree contains a catalog of y-coordinate values. One property of a regular
subdivision is that the proper edges of each separator in the separator tree are con-
nected, so that there are no \gaps" in the middle of a separator, but only at the top
and bottom [39]. Thus, all but the �rst and last catalog entries are associated with a
proper edge e of �i, and this simpli�es the algorithm. This proves the following.

Lemma 4.5. Let S be a regular subdivision with n vertices. The bridged separator

tree for point location in S can be constructed by an EREW PRAM in O(logn) time

using n= logn processors, which is optimal.

Definition 4.6. We call two regions r0 and r00 vertically consecutive if r0 " r00

and there is no region r with r0 <L r <L r
00. It can be shown that there is a unique

monotone chain from high(r0) to low(r00), called a channel , and that all channels are
vertex disjoint [39].

If the subdivision S is monotone, but not regular, we transform S into an equiva-
lent regular subdivision by duplicating some edges [39]. Given two vertically consec-
utive regions r and r0, we can imagine duplicating the channel from r to r0, viewing
the measure-zero region delimited by the two replicas as a degenerate polygon join-
ing r and r0 and merging them into a new region r [ r0. By merging all sequences
of vertically consecutive pairs in this way we obtain a regular subdivision S� whose
regions are clusters of regions of S. (See Fig. 4.)

The algorithm for constructing subdivision S� is as follows:
(1) Construct the planar st-graph G associated with S, and compute its left and

right sequences.
(2) Extract the subsequence r1, r2, � � � ; rp of regions from the left sequence and

determine the vertically consecutive pairs.

12



Fig. 4. (a) A monotone subdivision S and (b) the corresponding regular subdivision S�. Notice

the clusters of regions r4 [ r5 and r8 [ r9.
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(3) For each vertically consecutive pair (ri; ri+1), mark the vertices and edges
that are between high(ri) and low(ri+1) in the left sequence.

(4) Duplicate all the vertices and edges that are marked and update the subdi-
vision accordingly.

The transitive closure algorithm referred to in Theorem 3.1 is used for the prepro-
cessing in Step 1. The subsequence of regions can be formed using a standard binary
tree communication scheme. We can verify whether two regions ri and ri+1 are ver-
tically consecutive by comparing the y-coordinates of vertices high(ri) and low(ri+1).
The remaining computations in the algorithm can be done easily in parallel. This
proves the following.

Lemma 4.7. The regular subdivision S� associated with a monotone subdivision S

with n vertices can be computed by an EREW PRAM in O(logn) time with n= logn
processors.

The complete algorithm for preprocessing a monotone subdivision S consists of
constructing S� from S, and then building the bridged separator tree T � for S�. In
practice, Step 1 for constructing the bridged separator tree can be bypassed, since the
ordered list of regions in S�, sorted according to the left sequence, can be obtained
directly from the corresponding list in S by contracting regions that are merged
together into a cluster. The indegrees and outdegrees can be obtained directly also.
Each leaf � of T � corresponds to a region of S�, which in turn consists of some cluster
of regions r01, r

0

2, . . . , r
0

k of S. We add to each leaf � of T � a pointer to a balanced
search tree that stores the regions r01, r

0

2, . . . , r
0

k, sorted from bottom to top.
To perform point location in S, we �rst determine the cluster � containing the

query point q by searching in T �. Next, we search in the balanced tree pointed to by
leaf � in order to determine which region ri of � contains q. Hence, by combining the
results of Lemmas 4.5 and 4.7, we obtain the following theorem.

Theorem 4.8. Let S be a monotone subdivision with n vertices. An O(n)-space
data structure supporting O(logn)-time point location queries in S can be constructed

by an EREW PRAM in O(logn) time using n= logn processors, which is optimal.

The algorithm used in Theorem 4.8 can be modi�ed to construct the fully dy-
namic point location data structure of Preparata and Tamassia [39] within the same
time/processor bounds.

For subdivisions that are represented without embedding information (e.g., by
unsorted lists of vertices and edges), we need a preliminary step to compute its em-
bedding, which consists of sorting the neighbors of each vertex v in clockwise order
around v. This can be done in O(logn) time using n processors [7]. Note that if the
embedding of S is not given as part of the input, there is an 
(n logn) lower bound
on the amount of work needed to compute the embedding in the worst case [32].

For nonmonotone subdivisions we perform a preliminary triangulation step and
then apply the technique for monotone subdivisions. Triangulation can be performed
by a CREW PRAM in O(logn) time with n processors [3], [60].

We get the following theorem.
Theorem 4.9. Let S be a subdivision with n vertices. An O(n)-space data

structure supporting O(logn)-time point location queries in S can be constructed by a

CREW PRAM in O(logn) time using n processors.

The bridged separator tree data structure can also be used to process the queries
in parallel. We show in a companion paper [56] that an O(n)-space data structure
can be constructed with an EREW PRAM in O(logn) time using n= logn processors
such that, for any 2 � p � n, point location queries can be done in O

�
(logn)= log p

�
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time using a CREW PRAM with p processors. This algorithm improves upon the one
of Dadoun and Kirkpatrick [12]. It achieves the same query time, but it is simpler
and uses less preprocessing. The query time of O

�
(logn)= logp

�
is optimal since we

can reduce the problem of dictionary searching to planar point location, and thus the
lower bound of Snir [46] applies.

5. Visibility representations and graph drawing. The concept of visibility
plays a fundamental role in a variety of geometric problems and applications, such as
art gallery problems [35], VLSI layout [25], [44], [57], motion planning [23], [41], and
graph drawing [13], [53].

Definition 5.1. Given a collection H of horizontal segments in the plane, the
(vertical) visibility graph of H is the graph G whose vertices are the segments of H
and whose edges are pairs of segments that see each other in the vertical direction.
The edges of G can be oriented from bottom to top to yield an acyclic digraph.

Definition 5.2. A visibility representation � for a directed graph G maps each
vertex v of G to a horizontal segment �(v) and each edge (u; v) to a vertical segment
�(u; v) that has its lower endpoint on �(u), its upper endpoint on �(v), and does
not intersect any other horizontal segment. (See Fig. 5(a).) If G is an undirected
planar graph, a visibility representation for G is de�ned as a visibility representation
for some orientation of G.

Besides having many applications, visibility graphs and representations are also of
intrinsic theoretical interest, and their combinatorial properties have been extensively
investigated [16], [52], [54], [58], [59].

The visibility graph of a set of n segments can be computed in O(n logn) sequen-
tial time and O(n) space [44], which is optimal. It can also be constructed in parallel
by an EREW PRAM in O(logn) time and O(n logn) space with n processors [3], or
in O(log2 n) time and O(n) space with n= logn processors [43]. As regards visibility
representations, there are sequential O(n)-time algorithms for their construction [13],
[42], [52].

Theorem 5.3. Let G be a planar st-graph with n vertices. A visibility represen-

tation for G with integer coordinates and O(n2) area can be computed by an EREW
PRAM in O(logn) time using n= logn processors, which is optimal.

Proof. A visibility representation for G can be constructed by the following vari-
ation of previous algorithms [13], [42], [52].

(1) Compute a topological ordering Y (v) of the vertices of G.
(2) Compute a topological ordering X(f) of the vertices of G�, the dual graph

of G.
(3) Draw each vertex-segment �(v) at ordinate Y (v) and between abscissae

X(left(v)) and X(right(v)) � 1.
(4) Draw each edge-segment �(e) at abscissa X(left(e)) and between ordinates

Y (low(e)) and Y (high(e)).
By Corollary 3.3, Steps 1 and 2 take O(logn) time using n= logn processors. The
parallel computation of Steps 3 and 4 within the same bounds is straightforward.

Given a 2-connected embedded undirected planar graph G, we choose s and t

to be two adjacent vertices (which we can assume to be on the external face) and
orient the edges of G so that the resulting digraph is a planar st-graph, and then we
apply the previous theorem. Such an orientation of G can be computed by an EREW
PRAM in O(logn) time with n= logn processors using the st-numbering algorithm of
Gazit [21].

Theorem 5.4. Let G be a 2-connected embedded (undirected) planar graph with
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Fig. 5. (a) Visibility representation for a planar st-graph G. (b) A planar upward polyline grid

drawing of G. (c) A planar orthogonal grid drawing of an undirected graph.

16



n vertices. A visibility representation for G with integer coordinates and O(n2) area
can be computed by an EREW PRAM in O(logn) time using n= logn processors.

A number of data presentation problems involve drawing graphs so that they are
easy to read and understand. Examples include circuit schematics, algorithm anima-
tion, and diagrams for information systems analysis and design. The literature on
graph drawing algorithms is spread over the broad spectrum of computer science [17],
[50]. This problem has received increasing theoretical interest in recent years (cf. [15],
[20], [45]).

Definition 5.5. A drawing of a graph maps each vertex into a point of the
plane, and each edge (u; v) into a simple open curve between the points associated with
the vertices u and v. A planar drawing has no crossing edges. A straight-line drawing

is such that every edge is drawn as a line segment. In a polyline drawing, every edge
is drawn as a polygonal chain. An orthogonal drawing is a polyline drawing whose
edges are chains of horizontal and vertical segments. A grid drawing is a polyline
drawing such that the vertices and the bends of the edges have integer coordinates.
An upward drawing for an acyclic digraph G is such that every edge (u; v) is a curve
monotonically increasing in the vertical direction. (See examples in Figs. 5(b),(c).)

An edge (u; v) of a digraph is said to be transitive if there exists a directed path
from u to v that does not contain the edge (u; v). A digraph is said to be reduced

if it has no transitive edges. A reduced planar st-graph G admits a planar upward
straight-line drawing such that the x- and y-coordinates of a vertex v are the ranks of v
in the restriction to the vertices of the left- and right-sequence of G , respectively [15].
Hence, a reduced planar st-graph can be e�ciently drawn in parallel from the result
of Corollary 3.3.

To draw a nonreduced planar st-graph we insert a new dummyvertex v along each
transitive edge (u;w) and draw the resulting reduced planar st-graph G0 considering
the dummy vertices as bends. To identify transitive edges in parallel we use the
following lemma, where we say that edge (u; v) is the long edge of face f if u = low(f)
and v = high(f).

Lemma 5.6. An edge e of a planar st-graph is transitive if and only if it is the

long edge of either left(e) or right(e).
By Euler's formula a planar graph has at most 2n � 5 interior faces, so that

Lemma 5.6 implies that a planar st-graph has at most 2n� 5 transitive edges.
Hence, we have the following theorem:
Theorem 5.7. Let G be a planar st-graph with n vertices. A planar upward

polyline grid drawing for G with 2n� 5 bends and O(n2) area can be computed by an

EREW PRAM in O(logn) time using n= logn processors, which is optimal.

Now, we consider planar orthogonal drawings of undirected graphs. Such drawings
are typical of circuit layout, and are widely used in data presentation applications
because of their regularity. Sequential algorithms for planar orthogonal drawings are
given by Storer [47], Tamassia [48], and Tamassia and Tollis [53].

Theorem 5.8. Let G be a 2-connected embedded (undirected) planar graph with

n vertices, each of degree at most four. A planar orthogonal grid drawing for G with

O(n) bends and O(n2) area can be computed by an EREW PRAM in O(logn) time

using n= logn processors.

Proof. As shown by Tamassia and Tollis [53], a planar orthogonal grid drawing
can be constructed from a visibility representations by local replacements performed
at each vertex. Because of its locality, this transformation can be easily parallelized.
Hence, the result follows from Theorem 5.4.

17



The bounds on the area and the number of bends are asymptotically optimal [47].
The bound on the number of bends can be improved to the exact worst-case opti-
mal 2n+ 4 and the algorithm can be extended to 1-connected graphs [55].

Our results improve upon the previous parallel drawing algorithm presented by
Ja'Ja' and Simon [26], which constructs a straight-line planar drawing in O(log2 n)
time with M (n) processors, using real arithmetic for the computation of the coor-
dinates of the vertices. It is not known whether this algorithm can be modi�ed to
construct grid drawings with area bounded by a polynomial in n.

Acknowledgments. We would like to thank the referees for several useful com-
ments and suggestions.
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