
Algorithmica (1996) 15:154-171 Algorithmica
�9 1996 Springer-Verlag New York Inc.

Optimal Cooperative Search in Fractional Cascaded
Data Structures I

R. Tamassia 2 and J. S. Vitter 3

Abstract. Fractional cascading is a technique designed to allow efficient sequential search in a graph with
catalogs of total size n. The search consists of locating a key in the catalogs along a path. In this paper we
show how to preprocess a variety of fractional cascaded data structures whose underlying graph is a tree so that
searching can be done efficiently in parallel. The preprocessing takes O(log n) time with n/log n processors
on an EREW PRAM. For a balanced binary tree, cooperative search along root-to-leaf paths can be done in
O((log n)/log p) time using p processors on a CREW PRAM. Both of these time/processor constraints are
optimal. The searching in the fractional cascaded data structure can be either explicit, in which the search
path is specified before the search starts, or implicit, in which the branching is determined at each node. We
apply this technique to a variety of geometric problems, including point location, range search, and segment
intersection search.

Key Words. Parallel computing, Fractional cascading, PRAM, Search, Cooperative search, Point location,
Computational geometry.

1. Introduction. Fractional cascading is a preprocessing technique that allows effi-
cient searching of the same key in a collection of catalogs (sorted lists) [3], [4]. More
formally, there is a catalog associated with each node of a graph G. Given a search ar-
gument y and a search path in G, the goal is to find the smallest entry >__ y in each of the
catalogs of the nodes on the search path. The search path can be either explicit, in which
it is specified before the search starts, or implicit, in which the branching is determined
at each node. In many important applications of fractional cascading the graph G is a
balanced binary tree and the search path is from the root to a leaf.

Assume for simplicity that the graph G has bounded degree. Each entry in each node's
catalog has a "bridge" pointer to an entry in the catalog of each adjacent node. Searching
proceeds as follows: Starting at the first node on the path, the desired entry is found via
a binary search in the node's catalog. The bridge from this entry to the next catalog on
the search path points to an entry within a constant-time walk of the desired entry in that
catalog. This last step is iterated for the remaining nodes on the search path. The search

1 An earlier version of this work appears in Proceedings of the 2nd Annual ACM Symposium on Parallel
Algorithms and Architectures, July 1990, pp. 307-316. The first author's support was provided in part by
National Science Foundation Grant CCR-9007851, by the U.S. Army Research Office under Grants DAAL03-
91-G-0035 and DAAH04-93-0134, and by the Office of Naval Research and the Advanced Research Projects
Agency under Contract N00014-91-J-4052, ARPA Order 8225. This research was performed while the second
author was at Brown University. Support was provided in part by an NSF Presidential Young Investigator
Award CCR-9047466, with matching funds from IBM, by National Science Foundation Grant CCR-9007851,
by the U.S. Army Research Office under Grant DAAL03-91-G-0035, and by the Office of Naval Research and
the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA Order 8225.
2 Department of Computer Science, Brown University, Providence, RI 02912-1910, USA. rt@cs.brown.edu.
3 Department of Computer Science, Duke University, Durham, NC 27708-0129, USA. j sv @ cs.duke.edu.

Received June 5, 1993; revised April 21, 1994. Communicated by M. Snir.

Optimal Cooperative Search in Fractional Cascaded Data Structures 155

time is thus O (log n + m), where n is the total size of the catalogs and m is the length
of the search path.

The search described above in the fractional cascaded data structure is sequential in
nature. In this paper we consider a rooted tree T with O (n) nodes storing catalogs of
total size n, and explore optimum ways to preprocess T so that searches along root-to-
leaf paths can be performed optimally in parallel. Our data structures support efficient
cooperative search with p processors for any value of p in the range 1 < p < n. In a
cooperative search, all p processors work together in parallel on the same search. The
preprocessing takes O (log n) time with n~ log n processors on an EREW PRAM. For a
balanced binary tree, cooperative search along explicit or implicit root-to-leaf paths can
be done in O ((log n)/log p) time using p processors on a CREW PRAM. Both of these
time/processor tradeoffs are optimal.

One motivation for this work is the problem of cooperative point-location search
in an n-vertex planar subdivision. Dadoun and KirkpaVick [7] show how to perform
cooperative point location on their hierarchical data structure [12] in O ((log n)/log p)
time, which is optimal. Unfortunately, the preprocessing requirements are high: they
use O(log: n) time with O(n 3) processors on a CREW PRAM. In [17] we show how to
construct the bridged separator tree data structure [13], [9] for a monotone subdivision in
O (log n) time using n/log n processors on an EREW PRAM. The bridged separator tree
is very efficient in practice [8]. The search path used to process a point-location query
is "highly" implicit, due to the space-saving nature of the bridged separator tree, which
makes cooperative search seem especially difficult. In this paper we show how to modify
the bridged separator tree data structure of [17] within the same optimal time-processor
bound so that it supports optimal cooperative point location.

In the next section we sketch our cooperative search algorithm for trees. We focus on
balanced binary trees since the majority of applications of fractional cascading fall into
this category. In Section 3 we give optimal preprocessing and cooperative search algo-
rithms for planar point location, and we extend them to spatial point location. In Section 4
we sketch algorithms for orthogonal range search, orthogonal segment intersection, and
point enclosure. Finally, open problems are discussed in Section 5.

2. Cooperative Search in Trees. In this section we show how to preprocess a rooted,
ordered, balanced binary tree T with O (n) nodes storing catalogs with a total of n items
into a fractional cascaded data structure, so that cooperative searches with p processors
can be done in optimal O ((log n)/log p) time.

For ease of exposition, we distinguish two types of search paths in the tree T: explicit
and implicit. An explicit search path is a path in tree T that is determined before the
search begins. In an implicit search the search path is not specified beforehand, but rather
each branch taken is determined by the result of a secondary comparison.

Each node in the tree T contains an ordered sequence of distinct catalog entries; for
convenience, we let each catalog contain the terminal entry +c~. The total number of
catalog entries is n, although individual catalogs may contain as many as | entries.
Given a search argument y and a node v in T, we denote hyfind(y, v) the smallest entry
in v's catalog that is not smaller than y. The output of the search is the list of catalog
entriesfind(y, v), for each node v on the search path.

156 R. Tamassia and J. S. Vitter

In the basic form of implicit search, each catalog entry is associated with a primary
value, as before, but it also contains auxiliary secondary information. The search argu-
ment is a pair q ----- (x, y). The search starts at the root. The branch taken at each node v
on the search path is determined by the function call branch(q,find(y, v)), which returns
either left or right, based on the secondary information of the catalog entryfind(y, v).
If branch returns left, the left branch is taken; otherwise branch returns right, and the
fight branch is taken. We make the following consistency assumption for basic implicit
search: for each node w not on the search path, branch(q,find(y, w)) returns right if the
search path is to the right of w and left if the search path is to the left of w, and at the
leaf node v on the search path, branch returns left.

More intricate forms of implicit search can be used, in which the branching at the
current node also depends on the previous branches taken and the consistency assumption
does not hold. This is the case for point location, which we discuss in Section 3.

The following theorem states the main result of this section.

THEOREM 1. A balanced binary tree with catalogs of total size n and O(n) nodes can
be preprocessed in 0 (log n) time using n~ log n processors on an EREW PRAM so that
subsequent cooperative searches (either explicit or implicit) along root-to-leaf paths
can be done in 0 ((log n)/log p) time using a CREW PRAM with p processors, for any
1 <_ p <<_ n, on an 0 (n)-space data structure.

The time O ((log n)l log p) for the cooperative search is optimal, since we can reduce
the problem of dictionary searching to cooperative search in a binary tree with catalogs,
and thus the lower bound from [16] applies. If cooperative search is done within the
EREW PRAM model, the lower bound increases to f2(log(n/p)).

Intuitively we form a preprocessed version T' of T by starting with the fractional
cascaded data structure constructed by [1] and introducing certain substructures. For
cooperative searches, we use p processors to traverse | (log p) levels of the appropriate
substructure in constant time, by simulating p-way branching. The hard part is applying
this idea to a tree with catalogs, in which the key value in each tree node is not a single
value, but rather a variable number of catalog entries. The fact that the catalogs can have
a variable number of entries is the main downfall of our first approach at a solution in
Section 2.1.

2.1. Preprocessing. In this section we describe the preprocessing needed for convert-
ing the balanced binary tree T into the cooperative search data structure T'. The prepro-
cessing can be done in O (log n) time with n~ log n processors on an EREW PRAM. It
consists of two main steps:

Step 1. Form the fractional cascading data structure of [1].

Step 2, Form [log log n] - 1 search substructures T/, for 0 _< i _< [loglog n] - 1.
Each data structure T/is designed to handle cooperative searches for values of p in the

. 2 / + 1 range 2 2' < p < 2 , so that the log p speedup factor does not vary by more than a
multiplicative factor of 2 in each range,

Optimal Cooperative Search in Fractional Cascaded Data Structures 157

Step 1 can be done within the desired time bounds [1]. The rest of this subsection is
devoted to the design and analysis of Step 2.

The difficulty in implementing Step 2 is twofold: The first problem is how to modify
the fractional cascading data structure of [1] so that t0(log p) levels can be traversed
in one "hop" in constant time, even when the search is implicit and thus the path is
not known a priori. The second problem is that individual catalogs may be large, even
though the total size of all catalogs is O(n), and this impacts the space needed for the
data structures.

Let S be the fractional cascaded data structure constructed by the parallel algorithm
of [1] when applied to a bidirectional version of tree T, in which each parent-to-child
edge is replaced by two directed edges. For convenience, we use S to refer to the portion
of S corresponding only to parent-to-child directed edges. The tree S has auxiliary nodes
that are not in T, but it can be regarded, with a slight compression of levels, as a directed
tree with the same node and edge sets as T, in which each catalog is augmented with
"dummy" catalog entries.

From now on, we use the term "catalog" to refer to the augmented catalogs that
include the dummy entries. For each node v, edge (v, w), and catalog entry c in v's
catalog, there is a "bridge" bridge[v, w, c] that points to a catalog entry in w's catalog.
The fractional cascaded data structure has the following properties:

1. ("Fan out" property) There is some positive constant b such that, given any two nodes
v and w consecutive on a possible search path, find(y, w) is within b entries in w's
catalog from bridge[v, w, f ind(y ; v)].

2. An implication of property 1 is that any two adjacent entries c and c' in v's catalog
have bridge pointers to entries at most 2b + 1 entries apart in w's catalog.

3. Bridges do not "cross over" one another; that is, if c < c', where c and c' are two
entries in the catalog for some node v, then bridge[v, w, c] < bridge[v, w, c t] for
each neighbor w of v.

First Approach. We begin with a naive attempt to construct T~, the search structure
used when p is in the range 2 2~ < p < 2 2i+1. We construct T/ by first partitioning S
into subtrees of height hi = [ot2ij = to(logp), for some sufficiently small constant
0 < a < 1, rooted at the nodes in S at levels O, hi, 2hi The idea is to traverse S by
traversing O ((log n)/log p) of these subtrees, each in constant time.

Let U be one of these subtrees of height hi ; we denote U's root by u. We assume that
we know the catalog entry c = find(y, u). (If u is the root of S, we can determine c by
a parallel binary search in O (logp n) = O ((log n)/log p) time [16]; otherwise, we will
be able to determine c as a result of the search of the ancestor subtree of U.) We define
the reach in U of catalog entry c, denoted by reach(c, U), to be the set of all possible
catalog entries that can be returned during a search in U; more formally, reach(c, U)
consists of all (c', u'), where c' is an entry in the catalog of some u' 6 U, such that there
is some search argument y in which find(y, u I) = c ~ and find(y, u) = c. By the "fan
out" property of fractional cascading, the reach of c has size O((2(2b + 1))h0, which
for any 13 < 1 is O (y) , ifo~ is made sufficiently small, by definition of hi. The reach of
c is pictured in Figure 1.

If we store reach(c, U) for each catalog entry c in U's root u, then we might be able to
traverse U in constant time by exhaustively assigning the p processors to each element

158 R. Tamassia and J. S. Vitter

(~ lo~

Fig. 1. The reach in U of catalog entry c, denoted reach(c, U), consists of O(p ~) catalog entries, with 13 < 1.

in reach(c, U). The problem that arises, however, is that the reaches of adjacent catalog
entries c and c r in u 's catalog can overlap, and the resulting space usage might be tO (nZ),
which is nonoptimal by a multiplicative factor of n. The space usage would be O(n)
if the number of catalog entries in each node were the same, namely, O(1). In reality,
however, the number of catalog entries per node can be quite variable, subject to the
constraint that the total number of catalog entries is O (n).

In addition we need [log log n] - 1 data structures, one for each value of i, which
further increases the space usage by a multiplicative factor of log log n.

Second Approach. A possible remedy to reduce the space of T/is to prune the reach
sets so that each entry (c', u') is stored physically in the pruned reach set of only one
catalog entry in u 's catalog, as illustrated in Figure 2. Instead of processing only the
pruned reach(c, U) during a search, we must now also process the pruned reach(E, U)
of O (p • catalog entries c' preceding c, for some y < 1, in order to guarantee that each
entry in the nonpruned reach(c, U) is processed.

However, a new problem now arises: In order to assign processors to a pruned reach
set in constant time, the pruned reach set must be stored contiguously in memory, such

p? c

N ~eaeh(e, U)
Fig. 2. The reaches of the catalog entries in u's catalog are pruned to avoid ovedap, so that each entry is stored
in only one pruned reach set.

Optimal Cooperative Search in Fractional Cascaded Data Structures 159

as in depth-first or breadth-first order, for example. Such representations seem to be
difficult to construct efficiently in parallel, since the pruned sets are defined naturally by
a sequential process, as shown in Figure 2. In addition, as pointed out at the end of our
first approach, the space usage can still be off by a multiplicative log log n factor.

Our FinalApproach. To construct the search substructure T/, we limit ourselves to the
hypothetical subtree S' consisting of levels 0, 1, 2 r(1 - 2 -i) log n] of S. This trun-
cation of the lower levels reduces the cumulative space used for the [log log n] - 1 search
substructures T/to at most a small constant factor times the size of the largest substruc-
ture Trloglognl_b as discussed later in Lemma 2. For each i, the truncated lower levels
can be traversed sequentially (with one processor) in O (2 -i log n) = O ((log n)/log p)
time. Similar truncation ideas appear often in the parallel computing literature, for ex-
ample, in evaluating n-node complete binary trees in optimal O(log n) time with n/log n
processors, and in a cooperative search context in [7].

The problem that remains is how to reduce the storage requirement for each individual
Ti. As in our first two approaches we consider the complete binary subtrees of S' of height
hi --- Lot2ij -- | p), rooted at the nodes in S' on levels 0, hi, 2hi (The subtrees
rooted on the lowermost level might be truncated and have height less than hi .) The value
of the fixed constant 0 < ot < 1 will be specified later.

Let U denote one of the subtrees of S ~, having root u, and let t >_ 1 be the number of
catalog entries in u's catalog. We denote the catalog entries by

C l , C 2 , . . . , C t ,

where ct = +c~. We define si to be (2b+2) (2b+ 1) h~ , where b is the fractional cascading
parameter and hi = [t~2iJ = | We choose the fixed constant ot > 0 so that
(2(2b + 1)2)" = 2; in particular, it follows that 0 < 0t < 0.25, si = |
si = f2 (p(1-~)/4), and si = 0 (pO-,)/2).

One solution to the problem arising in our second approach is to store the nonpruned
reaches in an implicit way. We "store" reach(c, U) by associating with each node u' 6 U
a single catalog entry; the other entries in the catalog of u' that are in c's reach are
sufficiently close to this single catalog entry. It is still possible, though, for the stored
entries for reach(c, U) and reach(c', U) to overlap, resulting in the same worst-case
storage inefficiency as bes For example, if node u' c U contains only one catalog
entry, then that entry will be stored as part of reach(c, U) for every entry c in the catalog
of u.

Our final solution is to store the implicitly stored reach sets of only a sample of the
catalog entries of u. We use the value of st defined above as our "sampling factor." We
form m = [t/si] complete binary trees UI, U2 Um having the same skeleton as
U (that is, the same shape and nodes), but without catalogs at each node, as illustrated
in Figure 3. Each node in each tree has a key value equal to some catalog entry in the
corresponding node in U. Let key[z, Uj] denote the key value of node z in Uj. The key
values of the root nodes of UI, U2 Um are chosen to form an equally spaced sample
of the t catalog entries of the root of U:

Cjsi if l <_ j < m,
key[u, Uj] ----- | +oo if j = m.

160 R. Tamassia and J. S. Vitter

si=O(p(1--a)/2)

Fig. 3. The key values of the roots of trees U1, U2 Urn are evenly spaced entries from the catalog of
U's root u, where U is a subtree of S of height hi. For each node z in U, the key values of z's node in
U1, Uz Urn are distinct, although the reaches of the roots of Ui, U2 Urn may stiU overlap.

If m = 1, then the catalog of U ' s root is too small to sample, and we refer to Ul 's
root node, which has key value +c~, as a sparse node. The remaining key values for
each Uj are induced by the bridge structure: for each child w of z in Uj, we define
key[w, Uj] := bridge[z, w, key[z, Uj]], which is the entry in w's catalog in U pointed
to by the bridge pointer from the entry key[z, Uj] in z 's catalog in U.

The purpose of the sampling is to guarantee that the m trees U1, U2 Um are
disjoint:

LEMMA 1. Let z be any node in U, and let key[z, Uj] denote the key value of z when
considered as a node in Uj. Then the values key[z, U1], key[z, [/2] key[z, Urn] are
distinct entries from z's catalog in U.

PROOF. Let w be a node in U and let c ' 1 and c~ be two entries that are r entries apart
in w's catalog. Let cl and c2 be entries in w's parent v whose bridges point to c]
and c~, respectively. Let Yl and Y2 be search arguments so that Cl = find(y1, v) and
c2 = find(y2, v). We designate c)' = find(yl, w) and c~ = find(y2, w). By property I of

,i and i are at most b entries apart in w's catalog, and similarly fractional cascading, c 1 c 1
c~ and c~ are at most b entries apart in w's catalog. By property 2, the reverse bridge
pointers in the bidirectional version of S (which we do not use in T 1) link adjacent entries
in w's catalog to entries at most 2b + 1 apart in v's catalog. Figure 4 illustrates that the
entries cl and c2 are at most (2b + 1)(2b + r + 1) - 1 entries apart in v's catalog.

To complete the proof, we consider a node z in U that has the same key value in
two different binary trees Uj and Uk; that is, key[z, Uj] = key[z, Uk]. By the formula
we derived in the preceding paragraph, with r = 0 and c~ = c~ = key[z, Uj] =
key[z, Uk], we find that the entries in the catalog of z 's parent that point to c~ and c~,
respectively, are at most (2b + 1) 2 - 1 entries apart. Again reapplying the formula, with
r = (2b q- 1) 2 - 1, the entries in the catalog of z 's grandparent that point to c] and
c~ are at most (2b + 1) 3 + (2b + 1) z - (2b + 1) - 1 entries apart. By continuing this
argument for the maximum hi levels, we find that any two entries in u 's catalog whose
bridge pointers lead to a common entry at most hi levels down in z 's catalog must be

Optimal Cooperative Search in Fractional Cascaded Data Structures 161

b 2b+l 2b+1 b

node w b r b

Fig. 4. Proof of Lemma 1. The two catalog entries cl and c2, whose bridges point to entries cll and c~ that are
r entries apart in w's catalog, can be at most (2b + 1)(2b + r + 1) - 1 entries apart in node v's catalog, since
each consecutive pair of the 2b + r reverse bridges from w's catalog can "fan out" to entries at most 2b + 1
entries apart in v's catalog.

at most

(2b + 1) h*+l q- (2b + 1) hi - (2b + 1) - 1 < (2b + 2)(2b + l) h~ < si

entries apart in u's catalog. Since the sampled entries in u's catalog are at least si entries
apart, the nodes corresponding to z in two different binary trees Uj and Uk cannot have
the same key value. This proves the lemma. []

We store each of the m trees in compacted form, for example, by using a heap (breadth-
first search) ordering. The search substructure Ti consists of the compacted depth-first
search forest U1, U2 U,, described above, for each subtree U of S'. There is a pointer
to the root nodes of each compacted forest from the corresponding catalog entry in S,
and each node in the forests points to the corresponding node in S.

The following main lemma shows that the sizes of the substructures T/sum geomet-
rically to O(n):

LEMMA 2. The total storage space used for T' is 0 (n).

PROOF. First we consider the storage space used by T/. The total size of the trees Uj hav-

ing a sparse root is bounded by the total number of nodes in S', which is O (2 (1-2-') log,) =
O(n]-2-'). The total size of trees Uj with nonsparse roots is bounded by the product
of the total number of sampled catalog entries, which is O(n[si) = O(n]2 (1-a)2i-~),
times the storage space for each Uj, which is O (2 h~) ----- O (2a2i). Thus, the total storage
required for Ti is

n

Since ot < 0.25, summing on 0 < i < [loglogn] - 1 gives O(n). []

By Lemmas 2 and 1, the compacted trees in T' can be formed easily using an EREW
PRAM in O (log n) time with n/log n processors.

162 R. Tamassia and J. S. Vitter

2.2. Explicit Cooperative Search. Searching the data structure T' is confined to the
substructure Ti for which the number of processors satisfies 2 2' < p < 2 2i+~ . First we
consider explicit searches with query point y. We discuss how to handle implicit searches
in Section 2.3. The search procedure works as follows, using a CREW PRAM:

Step 1. Set u to the root of S. We do a cooperative binary search for y in u's catalog to
ge t? =find(y, u).

Step 2. [Move to next sampled catalog entry.] Let U be the hypothetical subtree of
height hi rooted at u. We set c to the smallest sampled catalog entry > ~. This can be
done by assigning si = O(p 1-~) processors to ~ and its si - 1 successors in u's catalog.
Exactly one will be a sampled catalog entry. We denote by Uj the compacted tree whose
root has key value c.

Step 3. [Jump hi = | p) levels.] We assign processors to ranges of catalog entries
for each of the nodes v on the search path in U. For v ~ U on level l, we assign a total
of si (2b + 1) / processors, one processor to each of the following catalog entries of v:

C k - q - r , C k - q - r + l ~ �9 . . ~ C k , �9 . . , C k + q ,

where ck = key[v, Uj], q = �89 + 1) l - 1), and r = (si - 1)(2b + 1) I. The processor
assigned to catalog entry Cg tests whether Cg-l < y < cg. The entry of the unique
processor whose test succeeds is returned as find(y, v),

Step 4. Let u be the leaf of U on the search path. If u is a leaf of S', we go to Step 5.
Otherwise, we set ? to be u's catalog entry returned forfind(y, w), and we return to
Step 2.

Step 5. Search the remainder of the path sequentially in the fractional cascaded data
structure S from u to the leaf.

The following lemma shows that in Step 3 each catalog entry in reach(c, Uj) corre-
sponding to a node along the search path is assigned a processor.

LEMMA 3. In Step 3 of the explicit search procedure, for each node v on the search
path in U, there is a processor assigned to each possible catalog entry that is a candidate
value of find(y, v).

PROOE For any node u in U and u's left or right child w, the bridge pointers from
two catalog entries that are r entries apart in the u's catalog can point to entries in w's
catalog that are at most 2b + 1 entries apart. The parameter q is chosen large enough to
compensate for the "fan out" of fractional cascading search. The parameter r biases the
assignment of processors to the left to compensate for the fact that we shifted right from

to c because of the sampling. []

We finish this section by completing the proof of Theorem 1 for the case of explicit
cooperative search. The total number of processors used in Step 3 is

Z s i (2 b + l) l < 2 s i (2 b + l) h~ <s/2.
l <<_l <_hi

Optimal Cooperative Search in Fractional Cascaded Data Structures 163

By definition of ct, this bound is O (p(i-~)) = O (p). The cooperative binary search in
Step 1 takes O ((log n)/log p) time on a CREW PRAM. In Steps 2-4 a subtree of height
hi = Lot2/J = | p) is processed in constant time. The total number of iterations is
O ((log n)/log p). In Step 5 the number of nodes in the search path searched sequentially
using S is at most 2 -i log n < (log n)/log p, thus giving us the desired running time.

2.3. lmplicit Cooperative Search. In the basic form of implicit search, as defined in
Section 2, the search path is defined implicitly. For search argument q = (x, y), the left
bridge is taken at node v if the function call branch(q,find(y, v)) returns left; otherwise,
branch(q,find(y, v)) returns right, and the right branch is taken.

The search procedure in Step 3 in Section 2.2 is modified as follows: Processors must
be assigned to all nodes of U. The function evaluations branch (q, find(y, v)) for the nodes
are stored in an array. By the consistency assumption for basic implicit search, as stated
in Section 2, the node on the search path at level l can be identified as the unique node
v on level l for which branch(q,find(y, w)) = right and branch(q,find(y, v)) = left,
where w is the leaf node preceding v. This can be determined in constant time on a
CREW PRAM.

The number of processors needed increases to

Si21+l,(2b + 1) / < 2hls 2.
l <l <_h~

By definition of~, this bound is O(p~p (1-~)) = O(p).
More complicated forms of implicit search, such as the type that arises in point

location, are discussed in Section 3.

2.4. General Trees. First, we consider trees with bounded degree.

THEOREM 2. A bounded-degree rooted tree with catalogs of total size n and O (n) nodes
can be preprocessed in 0 (log n) time using n~ log n processors on an EREW PRAM so
that a subsequent explicit cooperative search along a path of length k can be done in
time 0 ((log n)/ log p + k/(p 1-~ log p)) using a CREW PRAM with p processors,for any
1 < p < n, on an O(n)-space data structure (foranypositive constantO < e < 1).

PROOF. We partition the search path into k~ log n subpaths of length log n each. We
assign pC processors to each subpath, so that a group of pl-~ subpaths can be
searched concurrently in time O ((log n)/log pS) = O ((log n)/log p). Since there are
[k/(p 1-~ logn)] groups of subpaths, the total time complexity is O((logn) / logp +
k/(p 1-8 log p)). []

When the maximum degree d of the tree is not bounded, we can use standard tech-
niques (see, for example, [1]) to replace each level of the tree by log d levels of a binary
tree. This gives us the following modifications of Theorems 1 and 2:

THEOREM 3. Trees of degree d can be preprocessed as in Theorems 1 and 2, except that
the cooperative search time increases to 0 (log n(log d)/log p) and O((log n)/log p +
k(log d)/(p 1-E log p)), respectively.

164 R. Tamassia and J. S. Vitter

3. Point Location. In this section we consider the fundamental point-location problem
of computational geometry. We first discuss planar point location, and then extend our
results to spatial point location.

3.1. Planar Point Location. The well-known planar point-location problem is defined
as follows:

P L A N A R POINT LOCATION. Let S be a planar subdivision with n vertices. Find the
region of S containing a given query point q = (x, y).

We assume that the subdivision S is monotone and is given with a standard representation
such as doubly connected edge lists [15]. Nonmonotone subdivisions are handled via
a preliminary triangulation that takes O(log n) time using a CREW PRAM with n
processors [1], [18], [10], or a CRCW PRAM with nt logn processors [11]. Parallel
triangulation can also be performed using a randomized CREW PRAM algorithm that
runs in O (log n log log n) time and does O (n) expected work [6], [5].

The bridged separator tree [13], [9] uses O(n) space and supports point-location
queries in S in O (log n) time. It is a balanced binary tree T with catalogs where searches
are performed implicitly. We recall that a separator a of S is a monotone chain from
- ~ to +oo in the vertical direction. Let rl, re r f be the regions of S numbered
such that i < j whenever region ri shares an edge with rj and is to the left of rj (see
Figure 5(a)). The common boundary of the regions with index < i and of the regions
with index > i is a separator of S, which we denote ai (see Figure 5(a)). Each leaf of
T represents a region of S, and each internal node represents a separator, such that the
inorder sequence of the nodes of T is given by (see Figure 5(b))

rl, al , r2, 0"2 O ' f _ l , rf.

We denote with a0 and af fictitious separators at -cx~ and +c~ in the horizontal direction,
respectively, which represent the left and right boundary of S (see Figure 5(a)). For
convenience, we often equate a node of T with the corresponding separator or region.

Point location in S can be done sequentially by tracing a path in 7" from the root to the
leaf ri containing the query point q = (x, y). At each internal node 0-j we discriminate q
against separator 0-j and branch left or right according to whether q is to the left or right
of aj (see Figure 5(b)). The discrimination of q against aj is performed by locating y in
the set of y-coordinates of the edges of aj, which identifies the edge of aj horizontally
visible from q.

Each edge e of S belongs to a range of separators {aj : i < j _< k - 1 }, where r i and
rg are the regions to the left and right of e, respectively. For space efficiency, edge e is
stored only once at the least common ancestor at of r i and rk in 7", and is called a proper
edge of at. (Node (7 l is also the least common ancestor of nodes crj, for i < j < k - 1.)
The set of proper edges of a separator consist of a collection of chains and "gaps," sorted
from bottom to top. Figure 5(a) shows the sets of proper edges for each separator. The
catalog of a node aj of T is the set of y-coordinates of the proper edges of aj.

By Euler's formula, f = O(n), so that 7" has O(n) nodes. Each edge of $ is stored
only once as a proper edge, so that the overall size of the catalogs stored at the nodes of
7" is O (n). Hence, the bridged separator tree 7" uses O (n) space.

Optimal Cooperative Search in Fractional Cascaded Data Structures 165

r16

(a) r / j ;~ r9

1~16

Irlll r: r ~ l r l a l l r 1 4 1 l r . 1 5 1 1 r N

Fig. 5. Example of sequential point-location data structure. (a) Monotone subdivision and a query point
q = (x, y). The edges whose vertical span includes y are drawn with thick lines. The sets of proper edges for
each separator are displayed as (contiguous) chains. (b) Bridged separator tree for the subdivision of part (a).
Each node represents a separator and stores the proper edges of that separator, which are displayed as a chain
in part (a). The search path and the active nodes for point q are shown with thick lines. The values of the
branch function computed for point q are shown next to each node. Note that this branch function does not
satisfy the consistency assumption, which is violated at nodes ~r4, ors, ~r I 3, and crt 5.

Given a query point q = (x, y), we say that an internal node ~rl of 7- is active if
separator crl has a proper edge whose vertical span includes y, i.e., the catalog entry

find(y, crl) represents a proper edge, and we denote such an edge with el(q). If instead
al has a gap at the horizontal level of q, we say that node or1 is inactive, and denote such

a gap with gl (q). In the example of Figure 5 the active nodes are cry, a2, or3, ors, a9, ~rt2,

and o"14.
The branch funct ion for an active node ai is easily computed in constant t ime from q

and e/(q) . In a sequential point - locat ion search the branch funct ion for an inactive node
crj can be stored in every gap of crj. Namely, if the search has reached the inactive node ~rj,

the query point q has already been discr iminated earlier on against separator crj. Hence,

the value branch(q,find(y, aj)) depends only on the gap gj (q) given byfind(y, aj), as
follows. Let ak be the lowest ancestor of aj such that some edge of gap gj (q) is a proper

166 R. Tamassia and J. S. Vitter

edge of Crk. We set branch = left if j < k, and branch = right if j > k. See the example
of Figure 5.

However, the implicit cooperative search technique of Section 2.3 cannot be immedi-
ately applied to the bridged separator tree since the consistency assumption is not verified
by the aforementioned branch function. For example, in Figure 5(b) node 0-4 is to the
left of the search path for point q but its branch function returns left instead of right,
and node 0-13 is to the right of the search path for point q but its branch function retums
right instead of left. We now discuss how to overcome this obstacle, and show how to
compute a different branch function that verifies the consistency assumption.

Following the general approach of Section 2, the location of a query point consists
of a sequence of "hops," each of which allocates processors to all the nodes of a subtree
U Of T of depth | p). We store with each edge e of S the minimum and maximum
indices of the separators containing e, denoted rain(e) and max(e), respectively. Let
q = (x, y) be the query point. During the search we keep track of indices L and R such
that q is between separators 0-L and ~rR. Initially, L = 0 and R = f .

Let S(U) denote the planar subdivision determined by the proper edges stored at the
nodes of U. A hop is performed with the following steps (see Figure 6):

1. Allocate processors to all the nodes of U, and compute catalog entriesfind(y, 0-1), for
each node crl of U. Catalog entryfind(y, 0-~) identifies either proper edge el (q) or gap
gl(q), depending on whether node 0-1 is active or inactive.

2. The processor allocated to an active node 0-i discriminates q againstproperedgeei(q)
of 0-i and sets branch(q,find(y, 0-i)) equal to left or right depending on whether q is
to the left or to the right of ei (q).

3. Allocate processors to all the pairs of nodes of U U {CrL, 0-R } and determine the unique
pair of nodes (~ri, c 9) such that:
(a) Both cri and 0-j are active, with i < j .
(b) ei(q) and ej(q) are on the boundary of the same region of S(U).
(c) branch(q,find(y, cri)) = right, branch(q,find(y, o-j)) = left.

4. S e t L : = i a n d R : = j .
5. Allocate processors to all the nodes of U. For each inactive node 0-k of U, the pro-

cessor allocated to 0-k compares index k w~th max(eL (q)). If k < max(eL (q)), it sets
branch(q,find(y, o-g)) := right; else, it sets branch(q,find(y, Crk)) := left.

6. A unique pair of nodes of U (consecutive in the inorder sequenceof U) is determined
whose branch functions evaluate to right and left, respectively. Such a pair of nodes
identifies the search path within the subtree U.

We apply this algorithm to the example of Figure 6. Each region of S(U) is the union
of regions r2i-1 and r2i of ,_q, i = 1,. �9 -, 8. The active nodes computed in Step 1 are
era, 0-8, 0-12, and 0-14, and are drawn with thick lines. The branch function computed
at the active nodes in Step 2 is shown in a bold font. The pair of nodes (0"8, 0-12) and
their associated proper edges computed in Step I are drawn with extra-thick lines. In
Step 4 we set L = 8 and R = 12. The branch function computed at the inactive
nodes in Step 5 is shown in an italic font. For instance, the branch function at node
Crl0 is left since max(eL(q)) = max(es(q)) = 8. Finally, the pair of nodes (0-8, ~rl0)
is computed in Step 6, which identifies the search path within the subtree U, drawn
with arrows.

Optimal Cooperative Search in Fractional Cascaded Data Structures 167

/

r3

(a) r l ~

(b) ri, ht ri=h,,ertS,.rt I

Fig. 6. Example of a parallel point-location data structure. (a) Monotone subdivision and a query point
q = (x, y). The sets of proper edges of each node of the tree are displayed as chains. The edges whose vertical
span includes y and that are proper edges of a node of U are drawn with thick lines. The edges that verify
condition 3(b) are drawn with extra-thick lines. (b) Bridged separator tree for the subdivision of part (a) and
subtree U. The search path and the active nodes of U for point q are shown with thick lines. The values of the
branch function computed for point q at the nodes of U are shown next to'each node. Note that this branch
function satisfies the consistency assumption.

THEOREM 4. A planar subdivision S with n vertices can be preprocessed in 0 (log n)
time on a CREW PRAM with n processors (or a CRCW PRAM with n / log n processors) so

that subsequent cooperative point-location queries can be done in time 0 ((log n) l log p)
using a CREW PRAM with p processors, f o r any 1 < p <_ n, on an 0 (n)-space data
structure. I f the subdivision S is monotone, the preprocessing can be done with n~ log n
processors on an E R E W PRAM.

PROOF. Each step is executed in O (1) time. We only discuss Step 3, since the remaining
steps are straightforward to analyze. The allocation of processors in Step 3 can be done

by suitably reducing the parameter ot that controls the size of U (see Section 2). Condi-
tion 3(b) of Step 3 can be tested in O(1) time by one processor without precomputing
the embedding of S (U) , as follows. Note that each region of S (U) is the union of 2 h

168 R. Tamassia and J. S. Vitter

consecutive regions of S, for some integer h that depends on U, i.e., the region of S (U) to
the right of ~ri_l is the union ofri , ri+l r/+2h_ 1 (in the example of Figure 6, h = 1).
Hence, the region of S(U) immediately to the right of ei (q) is the same as the region of
S(U) immediately to the left of ej (q) if and only if min(ej (q)) - max(e/(q)) ___ 2 h . The
parallel construction of the data structure uses a variation of the techniques described
in [17]. []

3.2, Spatial Point Location. The result of Theorem 4 can be extended to spatial point
location in a cell complex such that the vertical dominance relation among the cells
is acyclic. This problem was previously solved using an O(n)-space data structure
(called a canal tree) that supports sequential point-location search in O (log s n) time [2].
For cooperative search we use a data structure based on separating surfaces, a three-
dimensional extension of separators. This data structure can be efficiently constructed
in parallel if a topological ordering of the ceils (with respect to the dominance relation)
is available.

THEOREM 5. Let C be a spatial cell complex with n facets such that the vertical dom-
inance relation on the cells is acyclic, and assume that a topological ordering of the
cells according to the vertical dominance relation is given. An 0 (n)-space data struc-
ture supporting cooperative point-location queries in O((log 2 n)/log 2 p) time with a
p-processor CREW PRAM (for any 1 < p < n) can be constructed in O(logn) time by
a CREW PRAM with n processors (or a CRCW PRAM with n~ log n processors).

PROOF. The data structure is a three-dimensional extension of the separator tree. Let
q , c z , . . . , Cr be the cells of C, labeled according to the topological ordering. We define
Xi as the set of facets f such that the cell below f has index < i and the cell above f
has index > i. It can be shown that Xi is a continuous surface such that any vertical line
intersects Xi in at most one point. Hence, we call X/a separating surface o f t . Let T be a
balanced binary tree with n leaves. The ith leaf of T from left-to-right is associated with
cell ci, and each internal node is associated with a separating surface Xj of C. Whenever
convenient, we use the same name for a node of T and the associated cell or separating
surface of C. A facet f belongs in general to a nonempty interval of separating surfaces.
However, f is assigned to the least common ancestor ;(j of the cells above and below f ,
respectively, and is called a proper facet of Xj.

Using T, spatial point location can be done analogously to the planar case by tracing
a path from the root to a leaf, where at each internal node)fj we determine whether
the query point is above or below the separating surface Xj. Discriminating the query
point with respect to Xj can be done by means of planar point location. Since each facet
is stored exactly once, the space requirement is O (n). The parallel construction of the
above data structure is performed in two steps as follows:

1. We construct the sets of proper facets of each internal node of C. This can be done by
performing least common ancestor queries in T.

2. For each j we consider the planar subdivision Sj generated by the projection of
the proper facets of Xj on the xy-plane, and we construct for Sj the cooperative
point-location data structure of Theorem 4.

Optimal Cooperative Search in Fractional Cascaded Data Structures ! 69

The cooperative search consists of a sequence of O ((log n)/log p) hops, each travers-
ing | (log p) levels of T within a subtree U. Each hop is performed in O ((log n)/log p)
time by doing in parallel cooperative point-location queries in the planar subdivisions
stored at the nodes of the current subtree U. []

COROLLARY 1. Let C be the cell-complex with n facets induced by the Voronoi diagram
of a set of sites in three-dimensional space. An O(n)-space data structure supporting
cooperative point-location queries in O((log 2 n)/log 2 p) time, for any 1 <_ p < n, can
be constructed by an EREW PRAM in O(logn) time using n processors.

PROOF. The cell complex induced by a Voronoi diagram is acyclic and a topological
ordering of the cells can be obtained by sorting the associated sites according to their
z-coordinates. []

4. Fur ther Applications. The cooperative search technique described in Section 2
can be applied to a variety of geometric retrieval problems, including the ones defined
below:

ORTHOGONAL RANGE SEARCH. Let P be a set of n points in the plane. Report the
points of P inside a given query range r (rectangle with sides parallel to the Cartesian
axes).

ORTHOGONAL SEGMENT INTERSECTION. Let V be a set of n vertical segments in the
plane. Report the segments of V intersected by a given horizontal query segment h.

POINT ENCLOSURE. Let R be a set of n ranges in the plane. Report the ranges of R
containing a given query point q.

We consider two models of cooperative retrieval: direct retrieval consists of marking
the items to be reported; indirect retrieval consists of returning a pointer to a linked list
of the items to be reported.

THEOREM 6. There are 0 (n log n)-space data structures for the above problems that
can be constructed in time 0 (log n) on an EREW PRAM with n processors, such that
cooperative retrieval can be done with the following time bounds, where k is the number
of items reported:

1. O ((log n)/log p + log log n + k/p) for direct retrieval on a CREW PRAM with p
processors.

2. O((log n)/log p) for indirect retrieval on a CRCW PRAM with p processors.

PROOF. All of these problems can be solved by using data structures consisting of a
balanced binary tree with O(n) nodes, each containing a catalog, such that the overall
size of the catalogs is O (n log n) [15].

170 R. Tamassia and J. S. Vitter

We describe only the data structure for the Orthogonal Segment Intersection Problem.
The data structures for the other problems are constructed with a similar approach. We
set up a segment tree T on the y-coordinates of the segments in V. Each node of T
stores the catalog of the segments allocated to that node, sorted from left to right. The
retrieval algorithm consists of identifying a root-to-leaf path by means of a dictionary
search on the y-coordinate of the query segment h, andthen performing two explicit
iterative searches along such paths on the x-coordinates of the extremes of the endpoints
of h. By Theorem 1, this procedure allows us to identify the range of items to be reported
in each of the catalogs of the search path in time O ((log n)/log p).

For direct retrieval we need to compute a prefix sum to allocate processors to the items
to be reported, which takes O (log log n) time. Note that if p = o((log n)/log log n), the
prefix sum computation can be done in time O ((log n log log n)/(p log log n)), which
is O ((log n)/log p). For indirect retrieval, we identify the catalogs that do not contain
items to be reported in order to link the list correctly. Whenever p = f2 (log 2 n), we use
concurrent write to do this in O (1) time. Otherwise, we perform a prefix computation,
which takes O ((log n)/log p) time. []

The result of Theorem 6 can be extended to higher dimensions.

COROLLARY 2. For constant d >__ 1, there are 0 (n log a-1 n)-space data structures for
orthogonal range search and point enclosure in d dimensions that can be constructed in
time 0 (log d-1 n) on an EREW PRAM with n processors, such that cooperative retrieval
can be done with the following time bounds, where k is the number of items reported:

1. O (((log n)/ log p)e-1 + log log n + k/ p) for direct retrieval on a CREW PRAM with
p processors.

2. O (((log n)/ log p)d-1) for indirect retrieval on a CRCW PRAM with p processors,

PROOF. We outline the data structure for range searching. The data structure for point
enclosure is similar. If d = 2, we use the result of Theorem 6. Otherwise (d > 2)
we construct a balanced tree T storing the points sorted by their first coordinate. Each
node/z of T has a pointer to a (d - 1)-dimensional range-searching data structure for
the points in the subtree of /z projected along the first coordinate axis. The retrieval
algorithm consists of | ((log n)/log p) phases, each of which jumps ot log p levels of T
by recursively and concurrently solving p" (d - 1)-dimensional subproblems associated
with the nodes of a subtree of T of height ~ log p. []

5. Conclusions. We have presented efficient algorithms for cooperative search in frac-
tional cascaded data structures whose underlying graph is a rooted tree. Also, we have
given applications of our results to a variety of geometric search problems. Open prob-
lems include:

1. Develop optimal techniques for search paths of length f2 (log n).
2. Extend the results to acyclic or general graphs with catalogs, without sacrificing

storage or search efficiency.

Optimal Cooperative Search in Fractional Cascaded Data Structures 171

3. Extend the results to generalized search paths (the catalogs to be searched are at the
nodes of a subgraph).

4. Study cooperative update in dynamic data structures. Dynamic fractional cascading
can be done sequentially with update time O (log log n) [14].

References

[1] M.J. Atallah, R. Cole, and M. T. Goodrich. Cascading divide-and-conquer: a technique for designing
parallel algorithms. SIAMJ. Comput., 18:499-532, 1989.

[2] B. Chazelle. How to search in history. Inform. Control, 64:77-99, 1985.
[3] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica,

1:133-162, 1986.
[4] B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1:163-191, 1986.
[5] K.L. Clarkson, R. Cole, and R. E. Tarjan. Erratum: Randomized parallel algorithms for trapezoidal

diagrams. Internat. J. Comput, Geom. Appl., 2(3):341-343, 1992.
[6] K.L. Clarkson, R. Cole, and R. E. Tarjan. Randomized parallel algorithms for trapezoidal diagrams.

Internat. J. Comput. Geom. Appl., 2(2):117-133, 1992.
[7] N. Dadoun and D. G. Kirkpatrick. Cooperative subdivision search algorithms with applications. Proc.

27th Allerton Conf. on Communication, Control, ahd Computing, pp. 538-547, 1989.
[8] M. Edahiro, I. Kokubo, and Ta. Asano. A new point-location algorithm and its practical efficiency:

comparison with existing algorithms. ACM Trans. Graph., 3:86-109, 1984.
[9] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision. SIAM J.

Comput., 15:317-340, 1986.
[10] M.T. Goodrich. Triangulating a polygon in parallel. J. Algorithms, 10:327-351, 1989.
[i 1] M.T. Goodrich. Planar separators and parallel polygon triangulation, Proc. 24th ACM Symp. on Theory

of Computing, pp. 507-516, 1992.
[12] D.G. Kirkpatrick. Optimal search in planar subdivisions. SlAM J. Comput., 12:28-35, 1983.
[13] D.T. Lee and E P. Preparata. Location of a point in a planar subdivision and its applications. SlAM J.

Comput., 6:594-606, 1977.
[14] K. Mehlhonl and S. Naher. Dynamic fractional cascading. Algorithmica, 5:215-241, 1990.
[15] E P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag, New

York, 1985.
[16] M. Snir. On parallel searching. SIAM J. Comput., !4(3):688-708, 1989.
[17] R. Tamassia and J. S. Vitter. Parallel transitive closure and point location in planar structures. SIAMJ.

Comput., 20(4):708-725, 1991.
[18] C.K. Yap. Parallel triangulation of a polygon in two calls to the trapezoidal map. Algorithmica, 3:279-

288, 1988.

