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The Complexity of Hashing with Lazy Deletion 

Christopher J. Van Wyk 1 and Jeffrey Scott Vitter 2"3 

Abstract. We examine a version of the dynamic dictionary problem in which stored items have 
expiration times and can be removed from the dictionary once they have expired. We show that under 
several reasonable assumptions about the distribution of the items, hashing with lazy deletion uses 
little more space than methods that use eager deletion. The simple algorithm suggested by this 
observation was used in a program for analyzing integrated circuit artwork. 
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1. Introduction. A sequence of items arrives to be stored in a dynamic diction- 
ary. Besides the key used when searching for items, each item includes two times, 
a starting t ime and an expiration time. Items arrive in order of their starting 
times. Each time an item arrives, any items in the dictionary whose expiration 
times precede the incoming item's starting time can be deleted from the diction- 
ary: they no longer represent valid search results. 

Given data structures and algorithms for maintaining and searching the dic- 
tionary, two appropriate criteria by which to judge their performance are: 

�9 time complexity: the time to insert, search for, or delete an item; and 
�9 space complexity: the number of items stored by the data structure. 

Lower bounds on the expected or the worst-case space complexity depend on 
assumptions about the input data distribution. Since the time to operate on 
dictionary structures usually depends on the size of the dictionary, these assump- 
tions also affect the expected and worst-case time complexity of the algorithm. 

One solution to this problem that has good  space complexity is to store the 
items in a balanced search tree and in a priority queue (see [1], for example). 
Many  data structures can be used for the search tree and the priority queue to 
give worst-case time complexity that is logarithmic in the size of the dictionary. 
Moreover,  the priority queue makes it possible to delete items from the diction- 
ary as soon as their expiration is implied by the entry of a new item, so the 
dictionary is always kept as small as possible; that is, this algorithm has optimum 
space complexity. 
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But balanced trees onty offer logarithmic time complexity; besides, they are 
complicated to implement and require several pointers per item. So we might 
decide to replace the search tree in the above solution by a separate-chaining hash 
table [1]. With a suitable number of buckets, this solution offers constant expected 
search times, although its overall time complexity is still logarithmic because of 
the priority queue operations. Meanwhile, the separate chains make deletion easy, 
so the associated priority queue still makes it possible to attain optimum space 
complexity. 

Suppose we go one step further and eliminate the priority queue as well, relying 
instead on a strategy of lazy deletion. That is, we keep the chains in each hash 
bucket sorted by expiration time; when inserting an element, we delete any 
elements in its hash bucket whose expiration times precede its starting time. What 
are the time and space complexities of this algorithm? 

The answer obviously depends on the size of the hash table. If there is only one 
bucket, the algorithm degenerates to storing the items in an ordered linked list, so 
space complexity is optimum, but time complexity is linear in the size of the 
dictionary. If there are as many buckets as items, expected time complexity is 
constant, but expected space complexity is nearly all of the items, which may well 
be much larger than the optimum. To summarize, unlike other applications of 
hashing in which one seeks to minimize the number of collisions not caused by 
successful searches, in hashing with lazy deletion we hope that enough collisions 
happen so the table is kept mostly free of expired items. 

In this paper we present hashing with lazy deletion formally and analyze its 
complexity. Our results indicate that the expected time and space complexities are 
simultaneously optimum, up to a constant factor. The expected time complexity is 
inversely proportional to the number of hash buckets, while average space used in 
excess of the optimal amount is equal to the number of hash buckets. 

2. Application. Suppose that two sequences of nonvertical line segments with 
integral endpoints are given, each sorted by the x-coordinate of their left 
endpoints. The problem is to report, for each line segment in one sequence, all 
line segments in the other sequence that intersect it with positive length (i.e., at 
more than a point). Hashing with lazy deletion can be used to solve this problem: 
the hash key is computed by taking the segment's y-intercept modulo the size of 
the hash table, so collinear segments hash to the same bucket. The expected time 
complexity is a small constant. 

In one application dealing with VLSI artwork analysis [2], using hashing with 
lazy deletion resulted in saving both time and space over the theoretical alterna- 
tives mentioned in the introduction. The data for each segment occupies six bytes, 
including one byte that is used for maintaining a free list. So the only space cost 
of hashing with lazy deletion is for the hash table, whose size can be kept quite 
modest while retaining constant expected search times. On the other hand, a 
balanced tree and priority queues require an overhead of several pointers per 
segment; since the principal concern in this application was to use as little 
memory as possible, this was not acceptable. 
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3. Algorithm. The sequence of items is ( xill _< i < M }, where each item x i is of 
the form (k s, si, t~), with key k~, starting time si, and expiration time t i. We 
assume that items have positive lifetimes, so si < t~ for each 1 _< i < M. The 
inequalities s~ < s~+l for each 1 < i < M express the fact that items arrive in 
order of starting times. 

Suppose the hash table has N buckets and uses hash function ~/. The insertion 
of element x~ proceeds as follows: 

1) Compute h = ~l(ki). 
2) Remove from the hash chain in bucket h any items xj with t; < s~. 
3) Add x i so the chain in bucket h remains sorted by termination time. 

The analyses below use the following quantities: 

�9 Need(t)  = [(xils i < t < ti}[, the number of items that must be in the data 
structure at time t; 

�9 Waste(t)  = [{xAt i < t and there exist no x: such that rt(ki) = Tt(kj) and 
t~ < S~ < t }l, the number of expired items still in the dictionary at time t 
after any insertions required at that time have been performed; and 

�9 Use(t) = N e e d ( t ) +  Waste(t), the number of items in the hash table at 
time t. 

We also define Needj(t), Waste/(t), and Usej(t), for each 1 < j  _< N, to count 
only those items in the jth bucket. That is, we have 

Need( t )  = ~_, Need/( t ) ,  Waste (t)  = ~_, Waste/(t) ,  
1 <j<_ N 1 <_j< N 

Use(t)  = ~.~ Usej(t). 
I <_j<_N 

We shall denote the expected value and standard deviation of Need(t) by 
E(Need( t ) )  and StDev(Need(t)); similar notation will be used for the other 
quantities. Even if the hash function ~ is constant, which reduces to the 
one-bucket case, the functions Need and Use do not coincide, because expired 
items remain in the dictionary until a new item arrives. 

We assume that each assigned hash bucket ~(ki), for 1 < i < M, is uniformly 
distributed in the range 1 < j  _< N and is independent of the other bucket 
assignments. For  each 1 < j < N, we assume that the number of items that are 
assigned to bucket j (i.e., ] (x i l r l ( k i )= j } [ )  is Poisson distributed with mean 
M / N .  (This implies that the number of items M is Poisson distributed; for 
convenience, with a slight abuse of notation, we shall denote its mean by M.) 
These assumptions are well justified in practice. The independence allows us to 
concentrate our analysis on what happens in each bucket separately. 

The term Use(t) is the algorithm's space complexity at time t. The time 
complexity at time t for all operations can be bounded by the number of elements 
in the accessed bucket, namely, Usej(t) when the jth bucket is accessed. By our 
assumptions above, the random variables Usej(t), 1 <_j < N, are independently 
and identically distributed, as are the random variables Needj(t)  and the random 
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variables Wastej(t). In particular, we have E(Usej(t)) = E(Use(t))/N. The ex- 
pected time and space complexities are thus E(Use(t)) /N and E(Use(t)), 
respectively. In the next two sections, we analyze hashing with lazy deletion by 
determining E(Use( t )). 

4. Analysis--Stationary Case. Let us suppose initially that ~ is constant, so that 
essentially there is only one bucket in the hash table. We assume that the starting 
and expiration times of items that hash to the bucket in question are drawn from 
the limiting distribution of a random process. Suppose that 

�9 the starting times (si} form a Poisson process with intensity ~; i.e., the 
probability of an item starting in an interval of length At is }, At, as At ~ 0; 
and 

�9 the lifetimes { t i -  si} are independent and exponentially distributed with 
expectation r ;  i.e., the probability that an unexpired item at time t does not 
expire before time t + At is e -At~#. 

With these assumptions, the random variable Need(t) corresponds to the 
conventional memoryless birth-death process with parameters )% ft. For a suffi- 
ciently short interval length At, the following transitions within a single bucket 
are of interest: 

�9 no items arrive and none expire; i.e., Need(t + A t ) - - N e e d ( t )  and 
Waste(t + At) = Waste(t); 

�9 one item expires, i.e., Need(t + At) = Need(t) - 1 and Waste(t + At) = 
Waste (t) + 1; and 

�9 an item arrives and all expired items are removed; i.e., Need(t + A t ) =  
Need(t) + 1 and Waste(t + At) = 0. 

Other transitions are also possible, such as the arrival of two items or the arrival 
of one item and the expiration of another, but their probabilities are each o(At). 

Let pm, n(t) = Prob( Need(t) = m, Waste(t) = n). If we define pm,,(t) = 0 if 
min{m, n} < 0, then the following recurrence relation for p .... is valid for all 
integers m and n: 

p ..... (t + At) = [(1 - hAt) (e -A~/~) '+  o(At)]p  .... (t) 

+ [ ( 1 - 2 ~ A t ) ( m + l ) ( l - e  ~ /#)  

•  + o(At)] pm+l,,_l(t) 

(1) + At + o(At)] E Pm-l,j(t) + o(At). 
j~>O 

By rewriting e At~# as 1 - At/fi  + o(At), rearranging (1), and taking the limit as 
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At --* 0, we obtain: 

(2) + < , 0 x  E pm-,,~(t). 
.j~O 

In the stationary (or limiting) distribution, p,,, , ( t )  is constant and independent 
of t, so its derivative on the left hand side of (2) is zero. To emphasize the 
independence of p,,, ~ from t, we omit t from all terms in the rest of this section. 
To find the distribution p,~, ~, we use generating functions. Let us define 

(3) P( z, w) = Z Zpm,,,z'w". 

Multiplying (2) by z'w", summing over all m and n, and rewriting in terms of 
(3), we obtain 

(z - w) a 
(4) P(z,w) = - X P ( z , w )  + )tzP(z,1). 

B Oz 

Manipulating (4) can tell us several things about Need, Waste, and Use. 
The coefficient of z "  in P ( z , ] )  is Prob{Need = m}. Substituting 1 for w in 

(4) gives a differential equation whose solution is 

(5) P ( z , l )  = e x~(~ i) 

This gives us the well-known result [3, eq. XVII-(7.4)] that Need is Poisson 
distributed with 

Prob{Need=m}= m! e-X~; 

E( Need) -- Xfi; 

(6) StDeu( Need ) = ~ .  

We are really interested in information about Use, and this can also be 
obtained from (4). The coefficient of z k in P(z, z) is Prob{Use = k] .  Replacing 
w by z in (4) causes its left hand side to vanish. By (5), we obtain 

(7) P(z, z) = zP(z, 1) = ze x/~(z-al, 
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so we find that Use - I is Poisson distributed with 

P r o b ( U s e = k )  - ( k  - l ) !  e-~'~; 

E(Use)  = 1 + Aft; 

(s) StDev ( Use ) = ~V/~. 

Note  that this implies that E(Waste)  = E(Use)  - E ( N e e d )  = 1. 
The analysis in this section applies to Need, Waste, and Use for the case 

N = 1, in which there is a single hash bucket. The assumptions of independence 
allow us to generalize to the case N > 1, giving the following theorem: 

THEOREM 1. When the input to hashing with lazy deletion using N hash buckets 
is drawn from the stationary distribution of the memoryless birth-death process 
defined in (1), then Need and Use - 1 are Poisson distributed with mean )~fl; 
hence, we have E(Use) = N + )tfl. 

PROOF. The starting times of items assigned to bucket j are a Poisson process 
with intensity X/N .  As shown in Section 3, the expected time and space 
complexities are E ( U s e ) / N  and E(Use). The results (8) for the case N = 1 show 
that Needj and U s e j -  1 are both Poisson distributed with mean Xf l /N .  The 
theorem follows by independence. �9 

In the VLSI application mentioned above, the value of Need is proportional to 
v~M -. We model this situation on the unit interval by ~ = M and fl = c~ ~/M, for 
some constant c. The analysis above shows that 

E (N eed )  = c A  ; 

E (Use )  = N + cv/-M; 

(9) StDev (Need )  = StDev ( Use ) = ~/-cM 1/4. 

If  we choose N = d f M ,  the expected time and space complexities are 1 + c / d  
and (d  + c ) ~ -  = E(Need)(1  + d /c) ,  which are simultaneously optimum, up to 
a constant factor. 

5. Analysis--Non-Stationary Case. Suppose the starting times s i and expiration 
times t i are in the unit interval [0,1]. In some applications, the value of Need(t ) ,  
the number  of items that must be in the data structure at time t, tends to peak at 
some t ~ (0, 1). The following two models have that property: 

1) Each pair  (si, ti) is constructed by generating two uniform random variates x 
and y in the unit interval and setting si := min(x ,  y}, t i := max{x,  y ) .  



Complexity of Hashing with Lazy Deletion 23 

2) Each s i is a uniform random variate in the unit interval, and the correspond- 
ing t~ is a uniform random variate in [si, 1]. 

All the r andom variates are generated independently. Model 1 is symmetric about 
t ime t = 1 /2 ;  it is easy to see that E(Need(t)) attains its maximum value M / 2  at 
t ime t = 1 /2 .  For Model 2, which is biased toward higher values of t, E(need(t)) 
attains its max imum M/e  at time t = 1 - 1 / e  = 0.63. 

In this section we determine E(Use(t)) and the value t ,  that maximizes 
E(Use(t)) for Model 1; the results for Model 2 are similar and are stated without 
proof  at the end of the section. We study Use(t) by decomposing it into the sum 
Need(t) + Waste(t). Let us further decompose Need(t) and Waste(t) into the 
sum of 0-1 random variables 

Need(t) = ~_~ Needi(t) and Waste(t) = E Wastei(t), 
l < i < _ M  l<_i<_M 

where Needi(t) = 1 iff the ith item must be in the data structure at time t (i.e., 
s i < t < t~), and Waste~(t) = 1 iff the ith item has expired but is still in the data 
structure at t ime t. For purposes of analysis, let us suppose that the indices of the 
M items are randomly permuted, so that the starting times of the M items are in 
r andom order, rather than nondecreasing order. Note that the random variables 
Need~(t) and Waste~(t), 1 < i <_ M, are quite different from the random variables 
Needj(t) and Wastej(t), 1 < j < N, defined in Section 3. 

The random variables Needi(t), 1 < i < M, are independently and identically 
distributed with 

(10) Prob{Needi(t)--  1} = E(Need ' ( t ) )=  2t(1 - t ) .  

By summing, it follows that 

(11) E(Need(t))  = 2Mt(1 - t ) .  

The hard part  of the analysis is to get an asymptotic approximation for 
E (Waste (t)). By our randomness assumptions, the random variables Wastei(t), 
1 < i _< M, are identically distributed, which implies that E(Waste(t)) = M • 
E(Wastei(t)), for any fixed i. Without loss of generality, we consider the case 
i = 1 and derive E(Wastel(t)). 

In our derivations we assume that t is bounded away from 0 and 1, which is 
justified by the fact that the area of interest is t ~ 1/2 .  For x < t and i 4= 1, we 
have 

(12) Prob{x <_ t I ~_ X + d x }  --~ 2xdx, as dx -~ O; 

(13) Prob{x < s, < t} : (1 - x)  z - (1 - t)  2. 

Suppose that the first item has expiration time x (i.e., t I = x). The probabili ty 
that the insertion of the ith item into the data structure causes the first item to be 
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deleted before  t ime t is the quant i ty  given in (13) divided by  N, since there is a 
1/N chance  that  ~(ki) = ~/(kl). By independence,  the probabi l i ty  that  none  of 
the i tems i, 2 < i < M, causes the first i tem to be deleted by  t ime t is 

(14) 
(1 x)2 ,1 

C o m b i n i n g  (14) and  (12) gives 

E(Waster(t)) = Prob (Wastel(t) = 1 ) 

= f o r ( l -  (l - x ) 2 -  ( 1 -  t)2) 2xdx 

X 2 -- (1 -- t )  2 t M-1 
= [yt 1 - } 2(1 - x )  dx. (15) 

l - t \  N 

The  last  line follows by the subst i tut ion x *- 1 - x. The  me thod  of approx imat -  
ing (15) depends  on the relative values of N and M. 

The Case N = o(M). We assume that  N < rM for some constant  0 < r < 1. 
Lap lace ' s  M e t h o d  (see [4], for example)  gives an asympto t ic  expression for  (15) 
tha t  is mos t  useful  when N = o(M). The derivat ion is quite instructive, so we 
shall give the basic  steps, culminat ing in the final approx imat ion  (17). We rewrite 
(15) a s  

(16) 2 f  I exp((M-1)ln(1 - x2- (1- t)2 

The  main  cont r ibut ion  of this integral occurs in the ne ighborhood of x = 1 - t; 
the in tegrand  decreases exponent ial ly  for x > 1 -  t. By Taylor ' s  theorem, 
expand ing  the logar i thm and the 1 - x terms around x = 1 - t, we get 

exp l 2(1 - t )  

N 
- - ( x  - (1 - t ) )  

1( 2(1- t):) 
1 + ( x  -- (1 -- /,))2 

N N 

,))3)]) 
+ o y ~  ( t  - ( ~  - (1 - t ) ) )  d~ .  

Subst i tu t ing y ~ 2 ( M -  1)(1 - t)(x - (1 - t))/N and using the expansion e z 



Complexity of Hashing with Lazy Deletion 25 

= 1 + z + O(z2), for small z, gives 

NY 2 
N f2(M-1)tO-t)/Nexp-Y-4(M 1)(1 t) 2 

( M -  1)(1 - t)  -0 - - 

X ( l + 2 ( 1 - - t ) 2  + 0 (  Ny3 )}(,- 
( M T 1 )  2 2 ( M - 1 ) ( 1 - t ) )  dy 

i- 
Nt  f2( M- 1)t(1 - t)/N e _y 11 

( M -  1)(1 - t )00 L 
Ny 

2 ( M -  1)t(1 - t)  

4 ( M - 1 ) ( 1 - t )  2 1 + 

2(1 - t)  2 [ N Z y  3 )] 

+ ol- - f f~ ay 

- + O  

(17) M(1 - t)  1 2Mt(1 - t)  2 M-2 " 

The last line follows from the formula f~yke-Y dy = k!; the error incurred by 
extending the integrals to oo is O(e -CM/N) = O(N2/M2), for N < M and some 
constant c. 

Multiplying (17) by M gives an asymptotic expression for E(Waste (t)). Adding 
the result to (11) yields a formula for E(Use(t)): 

(18) E(Use(t)) = 2 M t ( 1 - t )  + ( l - - - t )  1 2Mt(1-t)  2 + O ~ . 

THEOREM 2. When the input to hashing with lazy deletion using N hash buckets 
is M items whose endpoints are drawn from a uniform distribution (Model 1), 
then the maximum value of E(Use(t)) is achieved at t = t,, where 

(19) 
1 

t , = ~ + ~ + o  

M 4 N 2 N  ( N  3 ) 
(20)  E ( U s e ( t , ) )  = T + N M M + 0 -MS �9 

PROOF. We can bound E(Use(t)) from below and from above by replacing the 
O(N2/M 2) term in (18) by ClN2/M 2 and c2NZ/M 2, respectively, for some 
constants r < c2. Let U/(t), for i = 1, 2, be (18) with O(NZ/M 2) replaced by 



26 

c i N 2 / M  2. We have 
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(21) Ul(t ) <_ E(Use( t ) )  <_ U2(t ). 

We can maximize U,,(t), for i = 1, 2, by setting 

d N [ 3N ci N2 
~TUi(t)  = 2 M -  4Mt + (1 - t) ~ [1 2M(1 - t) 2 + 

which has the solution t = tv, where 

1 N [ 3N ciN 2 

(22) tv, = ~- + 4M(1 ~ tu~) 2 [1 - 2M(1 - tu,) 2 + ~ T -  

= 0 ,  

We can get an asymptotic expression for tv, by iteratively improving estimates via 
a bootstrapping process. To prime the pump, we know that tvi < 1 - e, for some 
e > 0. Substituting this bound into the right hand side of (22) and simplifying, we 
get tv, = 1 /2  + O ( N / M ) .  Substituting our new estimate of tv~ into the right 
hand side, we get 

(23) tu ,=  ~- + ~ + O , 

for i = 1, 2. Substituting this into the definition of Ui(t ), we find that U,(t.), for 
i = 1, 2, is of the form given by the right hand side of (20). Formula (20) then 
follows from the two-way bound (21). 

We shall prove (19) by contradiction. Suppose that (19) is not true; that is, 
suppose 

1 N c ( N , M ) N  2 
t , = - + - - +  

2 M M 2 

where c(N, M )  is an unbounded function. Substituting this into (18), we find that 
E(Use(t . ))  is not equal to the right hand side of (20), which is a contradiction. 
This proves (19). �9 

Note that we can compute tui up to terms of order O ( N 3 / M  3) by another 
iteration of bootstrapping; but without greater accuracy in (18), that would not 
give a better estimate for t.. 

The Case N = rM, for Any Constant 0 < r < 1. Theorem 2 is also valid when 
N = rM, for fixed r, but we can get a better approximation using the following 
approach. Substituting the approximation ln(1 + y) = y  + O(y2), for small y, 
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into (16), we get 

27 

E(Wastel(t))  = 2 f l  e x p l ( 1 - t ) 2  
1- t  ~ r 

X2 
+ O (1 - x )  dx 

k 1- t  " l - t  q- O 1 
= 2e(l_t)2/r ( f l  e_x2/rdx - fl xe xZ/rdx)[1 ( r - ~ ) ]  

= 2 e  I1 O2/r[v~Tgt((1-- t) 2 ~ / r ,  2 ~ )  

+ + 0  1 (24) 2 ( e  1 / ' - e  (1 t)2/r)][ 1 ( r ~ ) ] '  

where 9t(a, b) is the normal distribution function 1/2x/27fbe x2/2 dx. Let f i t )  
denote the expression given in (24) without the (1 + O(1/(r2M))) term; that is, 
E(Wastel(t)) = f(t)(1 + O(1/(r2M))). We define t' = min{1.0, t/}, where t / >  
0.5 is defined implicitly by the formula 

N 
(25) f ( t f )  - M - r. 

We have tf < 1 when r < 0.84. If we multiply formula (24) by M, we get an 
asymptotic expression for E(Waste(t)). Adding (11) to the result gives us 
E (Use (t)). By techniques similar to those we used for proving Theorem 2, we can 
show that E(Use(t)) is maximized at time t = t,, where 

 t,,l 

0( 1 ) t ,  = t '  + " ~  . 

Substituting our results, we find that 

E(Waste(t ,))  = f ( t , ) M  [1 + 

(26) = rM [1 

Hence, E(Waste(t)) - rM = N when 
E(Need(t,)) to (26) gives the final result: 

O 1 , + 

E(Use(t)) is maximized. Adding 
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THEOREM 3. When M items whose endpoints are drawn from a uniform 
distribution (Model 1) are input to hashing with lazy deletion using N = rM hash 
buckets, then the maximum value of E(Use(t)) is achieved at t = t,, where 

o( 1 ) 
t* = tf + r-M ; 

E (Use ( t , ) )  = 2 M t , ( 1 - t , )  + r M [ l +  O ( r 2 - ~ )  ], 

where t i is defined implicitly by (25). 
Comparing this with (20) for the case N = rM, for fixed r, reveals that the 

error term O(1 / r )  is much smaller for large M than the O(M)  error term from 
our previous approach. For r = 0.1, we have t ,  ~ tf ~ 0.59; hence, E(Use(t ,))  
2M(0.59)(0.41) + 0.1m = 0.584M. 

Model 2. Model 2 can be analyzed in a similar way. We have 

E ( N e e d ( t ) )  = - ( 1  - t ) l n ( 1  - t ) M ;  

x - (1 - t ) )  M-1 
(27) E(Waste(t)) = Mf 1-t 1 U (-ln x)dx. 

By Laplace's Method and analysis similar to that above, we find for N = o(M)  
that 

1 
t ,  - 1 - - ;  

e 

M 
E ( N e e d ( t , ) )  ~ - -  

e 

(28) E(Waste ( t , ) )  - N. 

The techniques for the case N = rM, for fixed r, can also be applied to get similar 
results. 

6. Conclusion. We have shown that under several different assumptions about 
the input data distribution, the average excess space used by hashing with lazy 
deletion is equal to the number N of hash buckets. This makes hashing with lazy 
deletion a practical algorithm even when space complexity is as much of concern 
as time complexity. 

Hashing with lazy deletion is a simple algorithm for dynamic dictionaries 
whose occupants expire spontaneously. It is also compatible with the need to 
accommodate explicit user requests to delete elements. Even if the expiration 
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times of active occupants change, one can use hashing with lazy deletion: if 
expiration times only increase, they can be changed by moving items further 
down hash chains; if they may also decrease, they may need to move back in their 
hash chain or even be deleted immediately. (An alternative would be to forget 
about keeping the hash chains in expiration-time order; this would make updat- 
ing expiration times simpler, and would not change the asymptotic time complex- 
ity.) Expired occupants cannot be resurrected, though, except by explicit 
re-insertion. 

In this paper we have derived expressions for E(Use(t)) and max t { E(Use(t))}. 
An interesting open problem is to compute E(max t { Use (t)}), which corresponds 
to the total space complexity of hashing with lazy deletion over the course of the 
algorithm; this has direct relevance to queueing theory. In typical applications of 
hashing with lazy deletion, we have E(max t { Use(t)) ~ max,{ E(Use(t))}. 

One approach to getting good upper and lower bounds on E(max, { Use(t)}) is 
to study a potentially easier problem. Starting from equilibrium at t = 0 in the 
stationary model for the one-bucket case, we have maxsjzt<r{Use/(t)} = 
max~.<t<r{Needi(t)}, for 1 < j  < N, where sj > 0 is the minimum positive 
starting time over all intervals that hash to bucket j,  and T is positive and finite. 
We believe that E (max 0 _<, _< T { Usej (t) }) ~ E (max o _<t _< r ( Needj (t) }) as T get s 
large. If this were true, it would suffice to compute E(max 0_<t_< T{ Needj(t))), 
because multiplying this by N would give an asymptotic upper bound on 
E(max 0 _<, < r { Use(t)}). 

With respect to obtaining a lower bound, note that if we can evaluate 
E(maxo<~<r{Needj(t)} ), then we can also evaluate E(maxo<,<r{Need(t)}), 
since Needj and Need are both birth-and-death processes, with intensities X/N 
and ?t, respectively. If the above conjecture is true, then E (max 0 <, _< r { Need(t) }) 
gives a tight lower bound on E(maxo< 2< r{Use(t)}) �9 A similar approach could 
be used for the non-stationary models. 
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