
E�cient 3-D Range Searching in External Memory

Darren Erik Vengro��

fBrown, Dukeg University

dev@cs.duke.edu

Je�rey Scott Vittery

Duke University

jsv@cs.duke.edu

Abstract

We present a new approach to designing data

structures for the important problem of external-

memory range searching in two and three dimen-

sions. We construct data structures for answering

range queries in O((log log logB N) logB N +K=B)

I/O operations, where N is the number of points

in the data structure, B is the I/O block size, and

K is the number of points in the answer to the

query. We base our data structures on the novel

concept of B-approximate boundaries, which are

manifolds that partition space into regions based

on the output size of queries at points within the

space.

Our data structures answer a longstanding open

problem by providing three dimensional results

comparable to those provided by [8, 10] for the

two dimensional case, though completely new tech-

niques are used. Ours is the �rst 3-D range search

data structure that simultaneously achieves both

a base-B logarithmic search overhead (namely,

(log log logB N) logB N) and a fully blocked out-

put component (namely, K=B). This gives us an

�Supported in part by the U.S. Army Research O�ce

under grant DAAH04{93{G{0076 and by the National Sci-

ence Foundation under grant DMR{9217290. Portions of

this work were conducted while visiting the University of

Michigan.
ySupported in part by the National Science Foundation

under grant CCR{9522047, and by the U.S. Army Research

O�ce under grant DAAH04{93{G{0076.

overall I/O complexity extremely close to the well-

known lower bound of
(logB N + K=B). The

space usage is more than linear by a logarithmic or

polylogarithmic factor, depending on type of range

search.

1 Introduction

A range search data structure is a data structure

that stores points in d-dimensional space and an-

swers orthogonal range queries. Each such query

is speci�ed as a hyper-rectangle of the form � =

[x1; x
0

1
]� [x2; x

0

2
]�� � �� [xd; x

0

d]. The output of the

query is the set of points in the data structure that

are contained in �.

Range searching is a fundamental primitive

in several large-scale applications, including spa-

tial databases and geographic information systems

(GIS) [1, 4, 6, 9, 11], graphics [3], indexing in

object-oriented databases [5, 7], and constraint

logic programming [7]. When the data are too

large to �t in main memory and must reside on

disk, the Input/Output (I/O) communication can

become a very severe bottleneck.

In d-dimensional space, we de�ne a (s1; s2; : : : ; sd)-

sided range query, where each si 2 f1; 2g, to

be an orthogonal range query with si sides in

the xi dimension. For example, the range query

[3; 5] � [4;1] is a (2; 1)-sided range query, since

there are two sides in the x1 dimension (namely,

3 � x1 and x1 � 5) but only one side in the x2 di-

mension (namely, x2 � 4). In the two-dimensional

cases studied in [5, 8, 10], the authors use the terms

\two-sided," \three-sided," and \four-sided" range

query to mean what we call (1; 1)-sided, (2; 1)-

sided, and (2; 2)-sided queries, respectively. Range

search data structures, both for the general case

of range queries and for the various special cases

de�ned above, have several important systems and

database applications, as discussed in the previous

references.

The I/O-e�ciency of external-memory query

data structures is measured in terms of the number

of blocks of data that have to be transferred from

the disk to the main memory in order to compute

the answer to a query. Each block that is trans-

ferred contains B items from contiguous locations

within a track on the surface of the disk. We as-

sume that the entire data structure initially resides

on disk.

The primary challenge in devising e�cient data

structures for range searching is twofold; we want

a query overhead logarithmic (with base B) in the

number of points stored in the data structure, and

an output complexity of O(K=B) when K points

are output, thus taking full advantage of block-

ing. Results of this form have been achieved for

two dimensions [8, 10], but the techniques used

are inherently grounded in the two dimensional-

ity of the problem and do not generalize to three

dimensions. It has thus remained an open prob-

lem whether I/O-optimal data structures for range

searching in higher dimensions exist. In this work,

we present a new approach that, for the �rst time,

combines nearly optimal query overhead with fully

blocked output. The complexity of processing a

query with our new data structures is

O

�
(log log logB N) logB N +

K

B

�
;

which is within very close range of the well known

lower bound of
(logB N + K
B
):

2 Data Structures for Open Queries in

Two and Three Dimensions

An open query in d dimensions is a range query

that is one-sided in all d dimensions. We assume

without loss of generality that a query that is open

in a dimension xi is open in the positive xi direc-

tion. A (1; 1; : : : ; 1)-sided query can thus be spec-

i�ed by a single corner point q. The answer to

the query is the set of all stored points that dom-

inate q. We say that a point p0 = (x0
1
; x0

2
; : : : ; x0d)

dominates a point p = (x1; x2; : : : ; xd) if x
0

i � xi

for all 1 � i � d. We say that p0 strictly domi-

nates p if all the inequalities are strict, that is, if

x0i > xi for all 1 � i � d. As will be seen in Sec-

tion 3, our data structure for answering all forms of

range queries in three dimensions relies heavily on

the availability of an e�cient data structure for an-

swering (1; 1; 1)-sided open queries. Our construc-

tion of a data structure for (1; 1; 1)-sided queries re-

lies on the fundamental notion of a B-approximate

boundary. We discuss the structure, construction,

and applications of B-approximate boundaries in

Sections 2.1{ 2.4.

2.1 B-Approximate Boundaries in Two Di-

mensions

A B-approximate boundary in d dimensions is a

(d � 1)-dimensional, monotone, orthogonal mani-

foldM that partitions a set S of N points into two

sets S+ and S�, such that

� Every point on M is dominated by at least B

points in S+.

� Every point onM is strictly dominated by no

more than 2B points in S+.

� Every point in S� is dominated by some point

on M.

An example of a B-approximate boundary in two

dimensions is shown in Figure 1.

Clearly, a B-approximate boundary is not a

unique structure. A set of points may be parti-

tioned appropriately by any one of a large number

of manifolds. Algorithm 1 is an algorithm which

constructs one such boundary for a given set of

points. It does so by moving a point in the plane

in a stair-step fashion such that it never dominates

too many or too few points. The B-approximate

boundary shown in Figure 1 was constructed using

Algorithm 1 with B = 4.

A B-approximate boundary M in 2-D con-

structed using Algorithm 1 has a number of im-

portant properties, which are summarized in the

following lemmas:

Lemma 1 The number of inward corners in M is

at most jS+j=B.

Proof : An inward corner is formed in Algorithm 1

each time we begin to move p in the positive y

direction in Step (4) 1 and at the end when x = 0.

(1) p (0; 0);
(2) Move p in the positive x direction until it dominates � 2B points;
(3) while p:x 6= 0 do

(4) Move p in the positive y direction as long as p is dominated by � B points;
(5) Let D be the set of points of the form (x; y0);
(6) Move in the negative x direction until p is dominated by � 2B points not in D;
(7) od

(8) M the path traced out by p in steps (3){(7);

Algorithm 1: An algorithm for generating a B-approximate boundary for a set of points S in two dimen-

sions. We assume, without loss of generality, that all points in S lie in the �rst quadrant of the (x; y)

plane. If this is not the case, simple translation su�ces to make it so.

S+

S�

y

xa

bc

de

fg

hi
M

Figure 1: A B-approximate boundary in two di-

mensions. In this example, B = 4. Every point

m 2 M is dominated by between four and eight

points in S+. The points of S \on" or \to the

right of" M are in S+, and points in S \to the left

of" M are in S�. Corners a, c, e, g, and i are in-

ward corners, and the other corners b, d, f , and h

are outward corners.

Step (4) can be executed at most once for every B

points in S+. The result follows easily.

Lemma 2 We can block the elements of S+ into

blocks of size B such that for any query point m 2

M, there is a set of at most d2K=Be blocks that

contain the K points of S+ that dominate m. The

total space used for the blocking is at most 4jS+j=B

blocks.

Proof : For each inward corner c = (x; y) of M,

we group the � 2B points that strictly dominate

c into at most two blocks. In addition, we block

together the points that dominate c and have the

same x or y value as c. All such points are associ-

ated with only one inward corner w.r.t. x and one

w.r.t. y; we block the horizontal points separately

from the vertical points, in order of decreasing dis-

tance from c. By Lemma 1, there are at most

jS+j=B inward corners. Thus at most 2jS+j=B

blocks are used for strictly dominating points and

another 2jS+j=B blocks for the dominating points

sharing a common x or y value. The total number

of blocks is therefore at most 4jS+j=B.

Any query point m in S+ dominates some in-

ward corner c whose output we have explicitly

blocked. To answer the query at m, we read the

two blocks of points that strictly dominate c and

report those that dominate m. If m shares the

same x or y value as c, we also read the appropriate

blocks of such points that dominate c, ordered by

decreasing distance from c. The number of blocks

read is thus at most d2K=Be.

2.2 A Data Structure for (1; 1)-Sided 2-D

Queries

A single B-approximate boundary can only answer

a very speci�c set of (1; 1)-sided queries. A care-

fully chosen set of B-approximate boundaries, how-

ever, can be used to answer general (1; 1)-sided

queries. We de�ne a set of layered approximate

boundaries to be a set of 2iB-approximate bound-

aries, one for each i 2 f0; 1; 2; : : : ; blg(N=B)cg.

Each such boundary is constructed by the method

described in the proof of Lemma 2. Let S+i be

the set of points in S that dominate one or more

points on the 2iB-approximate boundary and let

S�

i = S � S+i . Let P+

i be the region of the plane

consisting of all points which dominate some point

on the 2iB-approximate boundary. Let P�

i be the

set of points in the plane not contained in P+

i .

Note that S+i � P+

i and S�

i � P�

i .

The total space used by a set of layered approx-

imate boundaries is given by the following lemma:

Lemma 3 The total space usage for a complete set

of layered approximate boundaries in two dimen-

sions is O(N
B
log N

B
) blocks.

Proof : For each i, S+i can be blocked optimally

in O(jS+i j=2
iB) blocks of size 2iB, as shown by

Lemma 2. Each block of size 2iB can clearly be

represented by 2i blocks each of size B; thus S+i
can be represented in O(jS+i j=B) blocks of size B.

Any particular point in S can appear in S+i for any

number of the approximate boundaries, but since

there are only O(log N
B
) approximate boundaries,

we have
P

i jS
+

i j = O(N log N
B
). Thus the total

space usage is O(N
B
log N

B
) blocks of size B.

We can use a set of layered approximate bound-

aries to answer a (1; 1)-sided range query de�ned

by corner point q using a very simple algorithm

that performs a search over the layers. The goal

of the search is to �nd a value of i such that

q 2 P+

i and q 2 P�

i�1. We denote by M� the

2iB-approximate boundary for such a value of i,

as illustrated in Figure 2.

To determine M� we �rst check, via a B-

way search using logB N I/Os, as described be-

low, whether q 2 P+

i for i = lg logB N . If

q 2 P+

i we do a binary search over the lg logB N

layers between the B-approximate boundary and

the (logB N)B-approximate boundary to �ndM�.

Otherwise, if q 62 P+

i , we check i = 1 + lg logB N ,

i = 2 + lg logB N , i = 3 + lg logB N , and so on,

until we �nd a 2iB-approximate boundaryM� for

which q 2 P+

i .

In order to determine whether q 2 P+

i for a

given approximate boundary M, we use a B-tree

over the y coordinates of the corners of M. Us-

ing this B-tree, we locate the two consecutive cor-

ners between which the y coordinate of q falls, and

then test whether the x coordinate of q is greater

than their shared x coordinate. If so, then q 2 P+

i .

���

4B8B 2B B

c

c�

n=2 x

y

Figure 2: Determining M� by locating the small-

est i such that c dominates some point on the 2iB-

approximate boundary. In this case, i = 3 andM�

is the 8B-approximate boundary.

TheB-tree search for a given layer takes O(logB N)

I/Os, since a boundary can have up to N=B cor-

ners, and �(B)-way branching is used.

Once the appropriate layer M� has been lo-

cated, we pick an inward corner (call it c�) of M�

that the query point q dominates, as illustrated in

Figure 2. We can determine a suitable c� based

on the outcome of the B-tree search. Given c�, we

produce a list of all points in S+i that are in the

answer to a query with corner c�. We then exam-

ine each of these points, reporting only those that

lie inside the original query region (with corner q).

Because q 2 P�

i�1, the answer to the query at q

contains at least 2i�1B points. We can thus exam-

ine all 2iB points that strictly dominate c�, and

at least half of them will be outputs to the query

at q. In addition, if q has the same x value (respec-

tively, y value) as c�, we examine the points in S+i
with the same x value (respectively, y value) as c�

that dominate c�. Furthermore, all outputs to the

query at q will be outputs to a query at c�; thus

there is no need to look elsewhere.

The following lemma summarizes the resulting

time and space bounds:

Lemma 4 A (1; 1)-sided range query can be an-

swered in O((log log logB N) logB N +K=B) I=Os

using O(N
B
log N

B
) blocks of space.

Proof : The space usage follows from Lemma 3.

y

x

z

(4)

(4)

(4)

(4)

(8)

(8)

(8)

(8)

(9)-(14)

(9)-(14)

(9)-(14)

(9)-(14)

(13)

Figure 3: Building a B-approximate boundary in three dimensions. Portions of the boundary are labeled

to indicate which step(s) of Algorithm 2 produced them. For clarity, the points outside the boundary are

not shown.

If q 2 P+

i for i = lg logB N then the binary

search uses O((log log logB N) logB N) I/Os. Re-

porting the output takes O(K=B) I/Os, as men-

tioned above.

If instead q 62 P+

i for i = lg logB N then we

search iteratively for the smallest j � 1 for which

q 2 P+

i+j . Each of the j additional searches requires

a B-tree search; thus, all j searches take a total

of O(j logB N) I/Os. Reporting takes �(K=B) =

�(2j logB N) I/Os. Because the cost of the addi-

tional searches is smaller than the cost of reporting

the output, it does not enter into the overall I/O

complexity of answering the query.

2.3 B-Approximate Boundaries in Three

Dimensions

In three dimensions, the construction of the B-

approximate boundary consists of forming a series

of level ridges. Each ridge is a zigzag path in a

plane parallel to the x; y plane. Unlike the case

in 2-D, the boundaries in 3-D can have O(jS+j)

inward corners and thus we cannot store the out-

puts associated with each inward corner explicitly,

or else we would use O(jS+j) disk blocks, which

is excessive by a factor of B. The fundamental

challenge is to develop an e�cient mechanism for

storing the outputs in some other manner.

First, let us consider how we will construct a

B-approximate boundary in 3-D. This is done by

running Algorithm 2 on S. Algorithm 2 creates a

series of ridges, each with a at top, as shown in

Figure 3. Portions of each ridge may coincide with

the ridge of the previous level, as indicated by the

dashed parts of Figure 3 created during Step 13.

We call each such portion, which starts at an out-

ward corner and extends to an inward corner, a

crooked horizontal edge. The points shown in the

shaded region of Figure 4 are associated with the

crooked inward corner c at the end of a crooked

horizontal edge; the points along the top portion

of the shaded wedge region are not included, but

the points along the vertical edge are included.

As mentioned above, we cannot e�ciently rep-

resent the outputs of the queries at all inward cor-

ners of the B-approximate boundary by storing

each corner's outputs explicitly, because the stor-

age space may be nonoptimal by the large factor

of B. Our only hope, therefore, to obtain optimal

linear storage is to use an implicit representation,

where duplication is avoided by use of pointers.

We store the output associated with each inward

corner in one of two ways:

(1) f Let R be the current ridge. g
(2) R the single point(0; 0;1);
(3) while true do

(4) Let R descend in the �z direction until some point on R is dominated by 3B points in S or z = 0;
(5) if R:z = 0 then return �;
(7) p the point on R with y = 0;
(8) Move p in the positive x direction until it dominates � 2B points;
(9) while p:x 6= 0 do

(10) Move p in the positive y direction as long as p is dominated by � B points;
(11) Let D be the set of points of the form (x; y0);
(12) Move in the negative x direction until p hits R or p is dominated by � 2B points not in D;
(13) if p hit R then

(14) p follows R until it hits the x; z plane or dominates � 2B points �
(15) od;
(16) R the path traced out by p in Steps (8){(14)
(17) od

Algorithm 2: An algorithm for generating a B-approximate boundary for a set of points S in three

dimensions.

c

x

y

Figure 4: A crooked corner c. The solid line repre-

sents the (i � 1)st ridge, and the dashed line rep-

resents the edge being constructed on ridge i. The

bold path is the crooked horizontal edge of the ith

ridge, which meets and runs along the (i�1)st ridge

until the crooked corner c. The shaded area is the

output area associated with the crooked corner c.

1. An explicit blocking of the outputs.

2. A pointer to an inward corner on a previ-

ous ridge whose outputs are explicitly blocked.

Each inward corner that is explicitly blocked

also has an extra block A containing auxiliary

points, for use as described below.

Usually the output size of an inward corner is 2B,

but if there are several points with the same x

value, this value can be arbitrarily high.

When constructing ridge i, we must decide

which storage method to use for each inward cor-

ner. When considering an inward corner c on

ridge i, let c� be the inward corner on ridge i � 1

with maximum y value less than or equal to that

of c. If c� does not have its outputs explicitly

stored, we rede�ne c� to be the corner on a pre-

vious ridge pointed to by c�. Let D be the outputs

of c that are not included in c�'s output or in the

auxiliary block A for c�.

If there is more than one inward corner c that

maps to the same c�, we explicitly block the out-

puts of all such c. Otherwise, if there is room, we

add D to the auxiliary block A and set c to point

to c�. If there isn't enough room then we explicitly

block the outputs of c.

The following key lemma, based on a neat com-

binatorial analysis, shows that our method for stor-

ing the outputs of the B-approximate boundary is

optimal for storage and query I/Os:

Lemma 5 The outputs for all queries on a B-

approximate boundary in three dimensions can be

represented in O(jS+j=B) blocks of size B so that

all points in S that dominate any given point on

the boundary are contained in O(1) blocks.

Proof : For each inward corner c, the elements of D

(the outputs of c not previously encountered on the

preceding level) are fully blocked, either explicitly

or in an auxiliary block. Therefore, for the pur-

poses of proving our storage bound, it su�ces to

show that the sum over all inward corners c of the

sizes of the setsD isO(jS+j). Let us call the sum �;

we need to show that � = O(jS+j).

Consider each point p when it �rst \appears" in

an output of some point on a ridge. Let ridge i

be the �rst ridge for which p is an output point.

Suppose that p appears in the outputs of k di�erent

inward corners on ridge i, as in in Figure 5; that

is, p contributes k to � in order to represent p in

k di�erent outputs. If k < 5, then p contributes

less than 5 to �. If k � 5, then we call p a \heavy

contributor."

Our goal now is to prove that the total number

of points contributed to � by heavy contributors

is always small enough that � remains within the

O(jS+j) bound that we are trying to prove. The

lemma below, which we prove later, shows that

the existence of a heavy contributer implies the

existence of many other points in S+:

Lemma 6 Suppose that ridge i is the �rst ridge for

which point p appears as an output, and suppose

the p appears in the output of k inward corners on

ridge i. Then the number of points in S+ whose

x; y projection lies in the shaded region pictured in

Figure 5 is at least (k � 3)B. When k � 5, the

number of points is at least 2

5
kB.

Assuming for the moment the correctness of

Lemma 6 (its proof will be given after the rest of

the proof of Lemma 5 is completed), let r � 2

5
kB

be the number of points in the shaded region de-

�ned by p, as in Lemma 6. We charge each of

the r points the value k=r � 5=2B, which pays for

p's contribution of k to �. We now claim that each

point accumulates at most �ve units of charge, and

thus � = O(jS+j).

Suppose some point q accumulates more than

�ve units of charge. Then the number of times

it was charged is > 5= 5

2B
= 2B. Consider the

last ridge of M for which q was an output. The

fundamental observation is that the ridge's inward

� �
�

ck

c3

c2

c1

ck�1

ck�2

Ridge i

py

x

Figure 5: A point p (appearing for the �rst time as

an output on ridge i) that dominates k � 5 inward

corners on ridge i. See Lemmas 5 and 6.

corner that is dominated by q contains q and all the

points p that caused q to be charged, which consists

of more than 2B points. This is a contradiction

by the construction of the ridge. (This yields a

contradiction even for those inward corners that

have more than 2B points, that is, when several

points have the same x and z value.)

Now all that remains to be done in order to com-

plete the proof of Lemma 5 is to prove Lemma 6.

This is done as follows:

Proof of Lemma 6: Suppose we extend the shaded

region of Figure 5 in the positive y direction to in-

�nity. Now we divide it into vertical strips Si at

the x coordinates of the corners c1; : : : ck�1. This

is shown in Figure 6. Each strip contains at least

B points. Thus, all the strips together contain at

least (k� 2)B points. Now consider the portion of

the strips whose y coordinate exceeds that of ck,

namely, the portion above the dotted line in Fig-

ure 6. This entire region contains no more than B

points that dominate the outward corner labeled c�

in Figure 6. Since the shaded region contains all

the points in the strips that do not dominate c�, it

contains at least (k�3)B points. Whenever k � 5,

we have (k � 3)B � 2

5
kB.

�� �

ck

c3

c2

c1

ck�1

ck�2

y

x

S1S2Sk�2

c�

Figure 6: Strips used to compute a lower bound on

the number of points that must exist to engender

a single \heavy contributor." See Lemma 6.

2.4 A Data Structure for (1; 1; 1)-Sided 3-D

Queries

To convert the B-approximate boundary into a full

data structure for answering (1; 1; 1)-sided queries

in three dimensions, we can use an approach simi-

lar to that used for two dimensions, namely form-

ing a set of layered approximate boundaries. The

di�erence is that when we attempt to generalize the

binary search over the set of O(log N
B
) boundaries

we �nd that determining whether or not the query

corner q lies inside or outside a given approximate

boundary is more di�cult.

In 2-D we used a B-tree to locate q in one of

the two dimensions of the layer, and then tested

to see which side of the layer boundary it fell on.

In 3-D, we need to locate q in two of the three

dimensions before we can use a simple test in the

third dimension.

The problem of locating q in the �rst two di-

mensions can be reduced to the problem of point

location in a rectilinear decomposition of the plane.

This can be done by projecting the edges of each

ridge in an approximate boundary onto the x; y

plane. Each region in the projected planar de-

composition corresponds to a speci�c ridge, against

whose z value we can test q's z value to determine

whether q is above or below the ridge. It follows

from the proof of Lemma 5 that the total number

of non-crooked inward corners on a B-approximate

boundary is O(S+) = O(N). Thus the number of

outward corners is also O(N). Every corner of our

rectilinear decomposition is located at the projec-

tion onto the x; y plane of one of these corners;

thus the complexity of the decomposition is O(N).

The point location problem can be thus solved in

O(logB N) I/Os with a persistent B-tree [2] occu-

pying O(N=B) blocks.

Using techniques analogous to those of Sec-

tion 2.2, we can build a set of layered approxi-

mate boundaries in three dimensions and to answer

(1; 1; 1)-sided queries. Following the proof tech-

niques used for two dimensions, we can prove the

following lemma:

Lemma 7 (1; 1; 1)-sided queries can be answered

in

O

�
(log log logB N) log

N

B
+K=B

�

I/Os, where K is the number of points in the query

region. The space used is O(N
B
log N

B
) blocks.

3 Closed Queries

Up to this point, we have only considered queries

that are bounded on one side in each dimension.

We now show that with additional space, using

techniques of [10], we can handle queries that

bounded on both sides in one or more dimensions

without additional asymptotic complexity.

The data structure we use for closed queries is

called a segmented layer tree because it resembles a

segment tree. A segmented layer tree for (2; 1; 1)-

sided queries is a balanced binary tree over the x

coordinates of the points is contains. Each leaf is a

block containing B points with consecutive x coor-

dinates. Internal nodes are grouped together into

blocks of B nodes descending from a single node

and occupying lgB levels of the tree. Each internal

node v of the binary tree contains a pointer to two

layered B approximate boundary data structures,

one of which answers queries open in the positive x,

y, and z directions and one which answers queries

open in the negative x and positive y, and z direc-

tions. The points represented in these structures

are those appearing in leaves below v. A segmented

layer tree is illustrated in Figure 7.

lg N
B

lgB

� � �

v

Figure 7: A segmented layer tree for answering (2; 1; 1)-sided queries. Each leaf holds B points and is

stored in a single block. The shaded regions are examples of sets of B internal nodes that are stored

together in the same block. Each internal node v points to two layered B-approximate boundary data

structures over the points in leaves below v. One of them is open in the positive x direction and one in

the negative x direction.

a

T� T+

`� `+

a+a�

Figure 8: Searching a segmented layer tree to answer a (2; 1; 1)-sided query. Searching the layered approx-

imate boundaries pointed to by a� and a+ �nd all the points in the subtrees T� and T+ respectively that

are in the original query. All points in the original query are found in either T� or T+, thus all are found.

In order to answer a (2; 1; 1)-sided query using

a segmented layer tree, we locate a pair of layered

approximate boundaries that cover the query re-

gion and then search both of them. This is done

by searching the main binary tree for the upper

and lower bounds of the x range of the query. Let

`� and `+ respectively be the leaves these searches

travel to. Let a be the least common ancestor of `�

and `+, and let a� and a+ be the left and right chil-

dren of a. The layered approximate boundaries we

search are the one open in the positive x direction

pointed to by a� and the one open in the negative

x direction pointed to by a+. The query process is

illustrated in Figure 8. The I/O complexity of per-

forming a search is given by the following lemma:

Lemma 8 We can perform (2; 1; 1)-sided range

queries in O((log log logB N) logB N +K=B) I/Os

using a segmented layer tree. The space required is

O(N
B
log2 N

B
).

We can further extend the idea of a segmented

layer tree to handle (2; 2; 1)-sided queries by replac-

ing the pointers to layered approximate boundaries

by pointers to segmented layer trees for (2; 1; 1)-

sided queries. The space requirement increases by

another factor of O(logB N), but the asymptotic

I/O complexity increases by only a constant fac-

tor. In a similar manner, we can extend the re-

sult to (2; 2; 2)-sided queries with another factor of

O(logB N) space overhead.

Lemma 9 (2; 2; 1)-sided range queries can be per-

formed in O((log log logB N) logB N +K=B) I/Os

using a segmented layer tree. The space required is

O(N
B
log3 N

B
).

Lemma 10 (2; 2; 2)-sided range queries can be

performed in O((log log logB N) logB N + K=B)

I/Os using a segmented layer tree. The space re-

quired is O(N
B
log4 N

B
).

4 Conclusions and Open Problems

We have, for the �rst time, presented data struc-

tures capable of answering range queries in three

dimensions using

O

�
(log log logB N) logB N +

K

B

�

I/Os. These results rely on a new data structuring

technique, B-approximate boundaries. Previously

known results typically required either an O(logN)

query overhead or a O(K) output term.

The most obvious open problems are whether

our techniques can be augmented in order to re-

move the small O(log log logB N) multiplicative

factor on the query time overhead in order to

make the search complexity optimal and whether

the space usage can be reduced to linear. Ad-

ditional open problems include dynamizing these

data structures, which are all currently static, and

extending the results to higher dimensions.

References

[1] R. F. Cromp. An intellegent information fusion
system for handling the archiving and querying of
terabyte-sized spatial databases. Technical Report
TR{93{99, CESDIS, 1993.

[2] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. J. Com-

put. Sys. Sci., 38:86{124, 1989.

[3] J. D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes. Computer Graphics: Principles and Prac-

tice. Addison-Wesley, second edition, 1990.

[4] L. M. Haas and W. F. Cody. Exploiting extensible
DBMS in integrated geographic information sys-
tems. In O. G�unther and H.-J. Schek, editors, Ad-
vances in Spatial Databases, Lecture Notes in Com-

puter Science 525, pages 423{450. Springer-Verlag,
1991.

[5] P. C. Kanellakis, S. Ramaswamy, D. E. Vengro�,
and J. S. Vitter. Indexing for data models with
constraints and classes. In Proc. 12th ACM Symp.

on Principles of Database Systems, pages 233{243,
1993.

[6] R. Laurini and A. D. Thompson. Fundamentals

of Spatial Information Systems. A.P.I.C. Series,
Academic Press, New York, NY, 1992.

[7] S. Ramaswamy and P. C. Kanellakis. OODB index-
ing by class division. In Proc. 1995 ACM Interna-

tional Conference on Management of Data, 1995.

[8] S. Ramaswamy and S. Subramanian. Path caching:
a technique for optimal external searching. Proc.

13th ACM Symposium on Principles of Database

Systems, 1994.

[9] H. Samet. Applications of Spatial Data Structures:

Computer Graphics, Image Processing, and GIS.
Addison Wesley, MA, 1989.

[10] S. Subramanian and S. Ramaswamy. The p-range
tree: A new data structure for range searching in
secondary memory. In Proc. Sixth Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA

'95), Jan. 1995.

[11] M. J. van Kreveld. Geographic information sys-
tems. Technical Report INF/DOC{95{01, Utrecht
University, 1995.

