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Abstract

In recent years, I/O-e�cient algorithms for a wide variety of problems have

appeared in the literature. Thus far, however, systems speci�cally designed to

assist programmers in implementing such algorithms have remained scarce. TPIE1

is a system designed to �ll this void. It supports I/O-e�cient paradigms for

problems from a variety of domains, including computational geometry, graph

algorithms, and scienti�c computation. The TPIE interface frees programmers

from having to deal not only of explicit read and write calls, but also the complex

memory management that must be performed for I/O-e�cient computation.

In this paper, we discuss applications of TPIE to problems in scienti�c compu-

tation. We discuss algorithmic issues underlying the design and implementation

of the relevant components of TPIE and present performance results of programs

written to solve a series of benchmark problems using our current TPIE prototype.

Some of the benchmarks we present are based on the NAS parallel benchmarks [5],

while others are of our own creation.

We demonstrate that the CPU overhead required to manage I/O is small and

that even with just a single disk the I/O overhead of I/O-e�cient computation

ranges from negligible to the same order of magnitude as CPU time. We conjecture

that if we use a number of disks in parallel this overhead can be all but eliminated.
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1 Introduction

The Input/Output communication between fast internal memory and slower secondary

storage is the bottleneck in many large-scale applications. The signi�cance of this bot-

tleneck is increasing as internal computation gets faster and parallel computing gains

popularity [18]. CPU bandwidth is currently increasing at an annual rate of 40{60 per

cent, versus an annual increase in bandwidth of 7{10 per cent for disk drives [19]. Main

memory sizes are also increasing, but not fast enough to meet the needs of many large-

scale applications. Additionally, main memory is roughly two orders of magnitude more

expensive than disks. Thus, if I/O-e�cient code can be written so as to provide per-

formance near that obtained by solving the same problem on a machine with a much

larger RAM, a great deal of money can be saved.

Up to this point, a great many I/O-e�cient algorithms have been developed. The

problems that have been considered include sorting and permutation-related problems

[1, 2, 15, 16, 23], computational geometry [3, 4, 12, 24] and graph problems [8]. Until

recently, there had been virtually no work directed at implementing these algorithms.

Some work has now begun to appear [7, 20], but to the best of our knowledge no

comprehensive package designed to support I/O-e�cient programming across multiple

platforms and problem domains has appeared. One goal of our ongoing research is to

remedy this problem. Towards that end, we are developing TPIE, a transparent parallel

I/O environment designed to facilitate the implementation of I/O-e�cient programs.

In this work, we describe a series of experiments we have run using a prototype

implementation of the TPIE interface. The experiments were chosen as models of com-

mon operations in scienti�c codes. Several of the experiments are on NAS parallel

benchmarks designed to model large-scale scienti�c computation [5]. The results of our

experiments demonstrate that I/O-e�cient programs can be written using a high-level,

portable, abstract interface, yet run e�ciently.

In Section 2, we introduce the parallel I/O model of computation on which the al-

gorithms that TPIE implements are based. In Section 3, we describe the TPIE system

itself and the structure of our current prototype. In Section 4, we discuss the bench-

marks we implemented, the algorithms that TPIE uses, and the performance of our

implementations. Finally, we list a number of open problems worthy of examination in

the continued pursuit of I/O-e�cient computation.

2 The Parallel I/O Model of Computation

The algorithms TPIE uses are typically based on those designed for the parallel I/O

model of computation [23]. This model abstractly represents a system having one or

more processors, some �xed amount of main memory, and one or more independent disk

drives. It is described by the following parameters:

N = # of items in the problem instance

M = # of items that can �t into main memory

B = # of items per disk block

D = # of disks:
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We de�ne an I/O operation, or simply an I/O for short, to the be process of transferring

exactly one block of data to or from each disk. The I/O complexity of an algorithm is

simply the number of I/Os it performs.

In discussing the I/O complexity of algorithms, we make every e�ort to avoid the use

of big-Oh asymptotic notation. Instead, we are interested in as exact a �gure as possible

for the number of I/Os an algorithm will use for a given problem size and run-time

environment. In some cases, the relative e�ect of rounding up certain quantities to the

their integral ceilings can be signi�cant, for example, when quantities round to small

natural numbers. This e�ect is typically ignored when big-Oh notation is used. We are

careful in this work to consider ceilings explicitly when their e�ect is signi�cant; we use

the ceiling notation dxe to denote the smallest integer that is � x.

3 TPIE: A Transparent Parallel I/O Environment

TPIE [21, 22] is a system designed to assist programmers in the development of I/O-

e�cient programs for large-scale computation. TPIE is designed to be portable across

a variety of platforms, including both sequential and parallel machines with both single

and multiple I/O devices. Applications written using TPIE should continue to run

unmodi�ed when moved from one system that supports TPIE to another. In order

to facilitate this level of portability, TPIE implements a moderately sized set of high-

level access methods. The access methods were chosen based on their paradigmatic

importance in the design of I/O-e�cient algorithms. Using these access methods, we can

implement I/O-e�cient algorithms for many problems, including sorting [2, 16, 17, 23],

permuting [9, 10, 11, 23], computational geometry problems [3, 4, 12, 24], graph-theoretic

problems [8]. and scienti�c problems [9, 14, 23].

Because such a large number of problems can be solved using a relatively small num-

ber of paradigms, it is important that the access method implementations remain 
exible

enough to allow application programs a great deal of control over the functional details

of the computation taking place within the �xed set of paradigms. To accomplish this,

TPIE takes a somewhat non-traditional approach to I/O. Instead of viewing computa-

tion as an enterprise in which code reads data, operates on it and then writes results,

we view it as a continuous process in which program objects are fed streams of data

from an outside source and leave trails of results behind them. The distinction is subtle,

but signi�cant. In the TPIE model, programmers don't have to worry about making

explicit calls to I/O subroutines or managing internal memory data structures in a run-

time dependent environment. Instead, they merely specify the functional details of the

computation they wish to perform within a given paradigm. TPIE then choreographs

an appropriate sequence of data movements to keep the computation fed.

TPIE is implemented in C++ as a set of templated classes and functions and a

run-time library. Currently, a prototype implementation supports access to data stored

on one or more disks attached to a workstation.2 In the future, we plan to port the

interface to larger multiprocessors and/or collections of workstations connected to a

high-speed LAN. From the programmer's perspective, very little will change when the

2The following workstation/OS combinations are supported: Sun Sparcstation/SunOS 4.x, Sun

Sparcstation/Solaris 5.x, DEC Alpha/OSF/1 1.x and 2.x, HP 9000/HP-UX.



3

system moves to parallel hardware. All the same access methods will continue to exist,

and applications will still be written with a single logical thread of control, though they

will be executed in a data parallel manner.

The current TPIE prototype is a modular system with three components. The Access

Method Interface (AMI) provides the high-level interface to the programmer. This is

the only component with which most programmers will need to directly interact. The

Block Transfer Engine (BTE) is responsible for moving blocks of data to and from the

disk. It is also responsible for scheduling asynchronous read-ahead and write-behind

when necessary to allow computation and I/O to overlap. Finally, the Memory Manager

(MM) is responsible for managing main memory resources. All memory allocated by

application programs or other components of TPIE is handled by the MM. In the case

of application programs, this is facilitated through the use of a global operator new()

in the TPIE library.

The AMI supports access methods including scanning, distribution, merging, sort-

ing, permuting, and matrix arithmetic. In order to specify the functional details of a

particular operation, the programmer de�nes a particular class of object called a scan

management object. This object is then passed to the AMI, which coordinates I/O

and calls member functions of the scan management object to perform computation.

Readers interested in the syntactic details of this interaction are referred to the TPIE

Manual, a draft version of which is currently available [22].

4 TPIE Performance Benchmarks

The benchmarks we implemented work with four of the basic paradigms TPIE supports:

scanning, sorting, sparse matrices, and dense matrices. The benchmarks illustrate im-

portant characteristics not only of the TPIE prototype and the platform on which the

tests were run, but also of I/O-e�cient computation in general. In the exposition that

follows we will discuss both.

Two of the benchmarks are based on the NAS parallel benchmarks set [5], which

consists of kernels taken from applications in computational 
uid dynamics. Besides

being representative of scienti�c computations, these benchmarks also provide reference

output values that can be checked to verify that they are implemented correctly. In

addition to the NAS benchmarks, there are two new benchmarks designed to further

exercise TPIE's matrix arithmetic routines.

Each of the benchmarks is accompanied by a graph illustrating the performance of

one or more TPIE applications written to execute it. The graphs show both overall wall

time and CPU time on the y-axis, as plotted against various problem sizes on the x

axis. Given adequate and appropriately utilized I/O bandwidth, the wall time and CPU

time curves would be identical; therefore, getting them as close together as possible is

an important performance goal.3

All of the benchmarks were run on a Sun Sparc 20 with a single local 2GB SCSI disk.

3One obvious way to bring these curves together is to increase the CPU time by performing additional

or less e�cient computation. Clearly, this is not the mechanism of choice. Instead, we seek to reduce

the overall time by reducing the amount of I/O and/or improving increasing the overlap between

computation and asynchronous I/O.
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The operating system was Solaris 5.3. Aside from the test application being run, the

system was idle. In all cases, TPIE was con�gured to restrict itself to using 4 megabytes

of main memory. I/O was performed in blocks of 64KB, with read-ahead and write-

behind handled by a combination of TPIE and the operating system. The reason we

used such a large block size was so that our computations would be structurally similar,

in terms of recursion and read/write scheduling, to the same applications running on a

machine with D = 8 disks and a more natural block size of 8KB. On such a system,

I/O performance would increase by a factor of close to 8, whereas internal computation

would be essentially una�ected.

4.1 Scanning

The most basic access method available in TPIE is scanning, which is implemented by

the polymorphic TPIE entry point AMI_scan(). Scanning is the process of sequentially

reading and/or writing a small number of streams of data. Essentially any operation

that can be performed using O(N=DB) I/Os can be implemented as a scan. This

includes such operations as data generation, pre�x sums, element-wise arithmetic, inner

products, Graham's scan for 2-D convex hulls (once the points are appropriately sorted),

selection, type conversion, stream comparison, and many others. The functional details

of any particular scan are speci�ed by a scan management object.

4.1.1 Scanning Benchmark

Because scanning is such a generic operation, we could have chosen any of a very wide

variety of problems as a benchmark. We chose the NAS benchmark NAS EP [5] for

two reasons: it was designed to model computations that actually occur in large-scale

scienti�c computation; and it can be used to illustrate an important class of scan opti-

mizations called scan combinations.

The NAS EP benchmark generates a sequence of independent pairs of Gaussian

deviates. It �rst generates a sequence of 2N independent uniformly distributed deviates

using the liner congruential method [13]. Then, it uses the polar method [13] to generate

approximately (�=4)N pairs of Gaussian deviates from the original sequence of uniform

deviates.

Performance of our TPIE implementation of NAS EP is shown in Figure 1. There

are three sets of curves, labeled \TPIE, 2 Scans," \TPIE, Optimized," and \Single

Variable."

The distinction between the 2-scan TPIE curves and the optimized TPIE curves

is that in the former, two separate scans are performed (one to write the uniformly

distributed random variates and the other to read the uniformly distributed random

variates and write the Gaussian pairs), whereas in the latter, the two steps are combined

into a single scan. As expected, the optimized code outperforms the unoptimized code.

This di�erence is signi�cant not so much because it tells programmers they should

combine scans, as because of the fact that scan combination is a relatively straightfor-

ward optimization that can be automated by a preprocessor. Such a preprocessor would

parse the C++ text of a program and, where possible, construct hybrid scan manage-

ment objects. The scans would then be replaced by a single scan using the hybrid object.
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Figure 1: NAS EP Benchmark.

Additionally, scans can often be piggy-backed on many other types of operations, such

as merges, distributions, sorts, and permutations.

Returning to Figure 1, the single variable curve plots the CPU performance of a C++

program that does not perform any I/O at all, using TPIE or any other system. Instead,

each pair of random variates is simply written over the previously generated pair in main

memory. The purpose of this curve is to illustrate a fundamental lower bound on the

CPU complexity of generating the variates. By comparing this to the CPU curves of the

TPIE implementations, we can see that the CPU overhead associated with scheduling

and performing I/O, communicating between the components of TPIE, and interacting

with the user supplied scan management object is quite small. In the optimized case it

amounts to approximately 20 per cent.

4.2 Sorting

Sorting is a fundamental subroutine in many computations. There are a tremendous

number of sorting algorithms which support many di�erent models of computation and

assumptions about input format and/or key distribution. In this section we discuss a

number of issues related to sorting in external-memory, both theoretical and practical.

4.2.1 I/O-E�cient Sorting Algorithms

Most I/O-e�cient comparison sorting algorithms fall into one of two categories: merge

sort and distribution sort. Merge sort works from the bottom up, sorting small sub�les

and then combining them into successively larger sorted �les until all the data is in

one large sorted �le. Distribution sort works from the top down by computing medians



6 4 TPIE PERFORMANCE BENCHMARKS

in the data and then distributing the data into buckets based on the median values.

The buckets are then recursively sorted and appended to one another to produce the

�nal output. The I/O structure of radix sort resembles that of distribution sort, except

that the entire set of keys is involved in O((lgN=M)=(lgM=DB)) large O(M=DB)-way

distribution steps.

One common technique for dealing with multiple disks in parallel is to stripe data

across them so that the heads of the D disks are moved in lock step with one another,

thereby simulating a single large disk with block size DB. On a striped disk system, the

I/O complexity of merge sorting N objects is

2
N

DB

�
1 + log(M=2DB)

N

M

�
= 2

N

DB

&
1 +

lg(N=M)

lg(M=2DB)

'
: (1)

Each item is read once and written once in each pass, and all reads and writes are fully

blocked. The logarithmic factor is the number of levels of recursion required to reduce

merge subproblems of size M into the �nal solution of size N . Each stream is double

bu�ered, hence we can merge M=2DB streams at a time. If we are able to compute

medians perfectly with no additional cost, as in the case where the keys are uniformly

distributed, we can perform distribution sort in this same bound.

Asymptotically, the I/O bound (1) is not optimal for sorting. By using the D disks

independently, we can do distribution sort in

2k
N

DB

&
1 +

lg(N=M)

lg(M=2B)

'
(2)

I/Os, where k � 1 is a constant whose value depends on the complexity of �nding

the medians, the quality of the medians as partitioning elements, and how evenly the

buckets are distributed over the D disks. Although the denominator lg(M=2B) in (2) is

larger than the denominator lg(M=2DB) in (1) by an additive term of lgD, the leading

constant factor in (2) is larger than that of (1) by a multiplicative factor of k. A number

of distribution sort algorithms exist that use independent disks in a theoretically optimal

way [16, 17, 23, 1], with values of k ranging from approximately 3 to 20.

Before implementing an external sort on parallel disks, it is useful to examine the

circumstances under which the I/O complexity (2) for using the disks independently is

less than the I/O complexity (1) with striping. If we neglect the ceiling term for the

moment, algebraic manipulation tells us that it is better to use disks independently when

�
M

2B

�(k�1)=k

< D:

Thus, D must be at least some root of M=2B. The critical issue now becomes the value

of k. If k = 1 (i.e., if we do not need extra I/Os to computeM=2B medians that partition

the data evenly and if each resulting bucket is output evenly among the D disks), it is

better to use disks independently. However, if k = 4, we need D > (M=2B)3=4 in order

for using disks independently to be worthwhile, which is not the case in current systems.

For this reason, TPIE implements both merging and distribution in a striped manner.

Another important aspect of the behavior of I/O-e�cient algorithms for sorting con-

cerns the behavior of the logarithmic factor dlg(N=M)= lg(M=2DB)e in the denominator
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of (1). The logarithmic term represents the number of merge passes in the merge sort,

which is always integral, thus necessitating the ceiling notation. The ceiling term in-

creases from one integer to the next when N=M is an exact power ofM=2DB. Thus over

very wide ranges of values of N , of the formM i=(2DB)i < N=M �M i+1=(2DB)i+1, for

some integer i � 1, the I/O complexity of sorting remains linear in N . Furthermore, the

possibility of i � 3 requires an extremely large value of N if the system in question has

anything but the tiniest of main memories. As a result, although the I/O complexity of

sorting is not, strictly speaking, linear in N , in practice it often appears to be. Practical

techniques on how to use disks independently in merge sort so as to outperform disk

striping have recently been developed in [6].

4.2.2 Sorting Benchmark

The NAS IS benchmark is designed to model key ranking [5]. We are given an array of

integer keys K0; K1; : : :KN�1 chosen from a key universe [0; U), where U � N . Our goal

is to produce, for each i, the rank R(Ki), which is the position Ki would appear in if the

keys were sorted. The benchmark does not technically require that the keys be sorted

at any time, only that their ranks be computed. As an additional caveat, each key is

the average of four random variates chosen independently from a uniform probability

distribution over [0; U). The distribution is thus approximately normal. 10 iterations of

ranking are performed, and at the beginning of each iteration an extra key is added in

each distant tail of the distribution.

In order to rank the keys, we sort them, scan the sorted list to assign ranks, and

then re-sort based on the original indices of the keys. In the �rst sort, we do not have a

uniform distribution of keys, but we do have a distribution whose probabilistic structure

is known. Given any probabilistic distribution of keys with cumulative distribution

function (c.d.f.) FK, we can replace each key value ki by k0i = FK(ki) in order to get

keys that appear as if chosen at random from a uniform distribution on [0; 1]. Because

the keys of the NAS IS benchmark are sums of four independent uniformly distributed

random variates, their c.d.f. is a relatively easy to compute piecewise fourth degree

polynomial.

For the sake of comparison, we implemented this �rst sort in four ways, using both

merge sort and three variations of distribution sorting. One distribution sort, called

CDF1, assumed that the keys were uniformly distributed. The next CDF4, used the

fourth degree c.d.f. mentioned above to make the keys more uniform. Finally, as a

compromise, CDF2 used a quadratic approximation to the fourth degree c.d.f. based on

the c.d.f. of the sum of two independent uniform random variables.

In the second sort, the indices are the integers in the range [0; N), so we used a

distribution sort in all cases. The rationale behind this was that distribution and merging

should use the same amount of I/O in this case, but distribution should require less CPU

time because it has no need for the main-memory priority queue that merge sorting

requires.

The performance of the the various approaches is shown in Figure 3. As we ex-

pected, merge sort used more CPU time than any of the distribution sorts, and the

more complicated the c.d.f. we computed, the more CPU time we used. When total

time is considered, merge sort came out ahead of the distribution sorts. This appears to
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Key Frequency in the Sample NAS IS Benchmark
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Figure 2: Key frequency in the sample NAS IS benchmark.

be the result of imperfect balance when the keys are distributed, which causes an extra

level of recursion for a portion of the data. Interestingly, the quality of our c.d.f. approx-

imation had little e�ect on the time spent doing I/O. We conjecture that this would not

be the case with more skewed distributions, such as exponential distributions. We plan

experiments to con�rm this. The jump in the total time for the merge sort that occurs

between 8M and 10M is due to a step being taken in the logarithmic term in that range.

If the cost of every I/O were the same, as assumed in the theoretical model, we would

not expect these �ndings. The reason is that when we merge, TPIE prefectches blocks

from all of the input streams that are being merged. When writing streams, however,

TPIE does not currently allocate space ahead of what is actually required. Thus, some

I/O overhead is incurred each timeDB records are written. If we are reading one stream

and writing many, as in distribution, this overhead is much higher than if we are reading

many streams and writing one, as in merging. This appears to be a good argument for

an aggressive allocate-ahead mechanism for output streams that would be analogous to

read ahead for input streams. We plan to implement such a strategy in TPIE in the

future in order to evaluate its performance.

4.3 Sparse Matrix Methods

Sparse matrix methods are widely used in scienti�c computations. A fundamental oper-

ation on sparse matrices is that of multiplying a sparse N�N matrix A by an N -vector x

to produce an N -vector z = Ax.
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Figure 3: NAS IS benchmark performance.

(1) z  0;

(2) foreach nonzero element e of A do

(3) z[row(e)] = z[row(e)] + value(e)� x[col(e)];
(4) endforeach

Algorithm 1: An algorithm for computing z = Ax where A is a sparse N � N matrix

and x and z are N -vectors.

4.3.1 Sparse Standard Matrix Multiplication

Before we can work with sparse matrices in secondary memory, we need a way of repre-

senting them. In the algorithms we consider, a sparse matrix A is represented by a set of

nonzero elements E. Each e 2 E is a triple whose components are row(e), the row index

of e in A, col(e), the column index of e in A, and value(e), the value of A[row(e); col(e)].

In main memory, sparse matrix-vector multiplication can be implemented using Al-

gorithm 1. If the number of nonzero elements of A is Nz, then Algorithm 1 runs in

O(Nz) time on a sequential machine.

In secondary memory, we can also use Algorithm 1, but I/O performance depends

critically on both the order in which the elements of A are processed and which of

components of z and x are in main memory at any given time. In the worst case, every

time we reference an object it could be swapped out. This would result in 3Nz I/Os.

In order to guarantee I/O-e�cient computation, we reorder the elements of A in

a preprocessing phase. In this preprocessing phase, A is divided into N=M separate
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// Preprocessing phase:

(1) foreach nonzero element e of A do

(2) Put e into Abrow(e)=Mc;

(3) endforeach

(4) for i 0; N=M do

(5) Sort the elements of Ai by column;

(6) endfor

// Main algorithm:

(7) Allocate a main memory bu�er zM of M words;

(8) for i 0 to dN=Me do
(9) zM  0;

(10) foreach nonzero element e of Ai do

(11) zM [row(e)� iM ] = zM [row(e)� iM ] + value(e)� x[col(e)];
(12) endforeach

(13) Write zM to z[iM : : : (i+ 1)M � 1];

(14) endfor

Algorithm 2: An I/O-e�cient algorithm for computing z = Ax where A is a sparse

N �N matrix and x and z are N -vectors.

M �N submatrices Ai, called bands. Band Ai contains all elements of A from rows iM

to (i+1)M�1 inclusive. Although the dimensions of all the Ai are the same, the number

of nonzero elements they contain may vary widely. To complete the preprocessing, the

elements of each of the Ai are sorted by column.

Once A is preprocessed into bands, we can compute the output subvector

z[iM : : : (i+ 1)M � 1]

fromAi and x using a single scan, as shown in Algorithm 2. If we ignore the preprocessing

phase for a moment and assume that the elements of x appear in order in external

memory, the I/O complexity of Algorithm 2 is Nz=DB + dN=MeN=DB +N=DB. The

entire preprocessing phase can be implemented as a single sort on the nonzero elements

of A, with band index being the primary key and column being a secondary key. This

sorting takes 2Nz=DB
l
1 +

lg(Nz=M)

lg(M=2DB)

m
I/Os, as explained in Section 4.2.1. However,

the preprocessing only has to be done a single time for a given matrix A. After the

preprocessing, the main phase of the algorithm can be executed repeatedly for many

di�erent vectors x. This phenomenon is a common occurrence in iterative methods.

4.3.2 Sparse Matrix Benchmarks

TPIE supports sparse matrices at a high level as a subclass of AMI streams. The nonzero

elements of a sparse matrix are stored in the stream as (row, column, value) triples as

described in the preceding section. AMI entry points for constructing sparse matrices

as well as multiplying them by vectors are provided.
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Figure 4: SMOOTH Benchmark.

In order to test the performance of TPIE sparse matrices, we implemented two

benchmarks. The �rst benchmark, which we call SMOOTH, models a �nite element

computation on a 3-D mesh. The second is the NAS CG benchmark [5], which solves

an unstructured sparse linear system by the conjugate gradient method.

The SMOOTH Benchmark. The SMOOTH benchmark implements sparse matrix-

vector multiplication between a N �N matrix with 27N nonzero elements and a dense

N -vector. The result is then multiplied by the matrix again. 10 iterations are performed.

The performance of SMOOTH is shown in Figure 4. Although we do 10 iterations

of multiplication, and only one preprocessing step, the total time with preprocessing is

signi�cantly higher that that of the multiplication iterations alone. As expected, I/O is

not a major contributor to this di�erence, because sorting only requires a small number

of linear passes through the data. The big di�erence is in CPU time. The additional

CPU time used in preprocessing the sparse matrix is roughly twice the CPU time used

in all 10 iterations of the multiplication.

The NAS CG Benchmark. NAS CG, which is fully speci�ed in [5], uses the inverse

power method to �nd an estimate of the largest eigenvalue of a symmetric positive

de�nite N � N sparse matrix with a random pattern of non-zeroes. The benchmark

consists of 15 iterations of an outer loop, which solves a sparse linear system Az = x.

The sparse linear solver consists of 25 iterations, each of which does a sparse matrix-

vector multiplication followed by a small number of element-wise vector additions and

inner product computations.

The input to NAS CG is generated by a sequential FORTRAN program supplied by
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Problem Matrix Nonzero Time Time

Class Dimension Entries (CPU) (Wall)

Sample 1,400 78,148 187 189

Class A 14,000 1,853,104 3271 8353

Table 1: NAS CG Benchmark Timings.

NAS [5]. Unfortunately, we were unable to get this program to run for systems as large

as we would have liked to test. For N = 28; 000, the program crashed at run-time, and

for N = 75; 000, the f77 compiler ran out of memory. TPIE results for the problem

sizes we were able to generate and solve are summarized in Table 1.

For the smaller of the two problem instances (N = 1; 400), there is essentially no

I/O overhead, since the entire problem �ts in main memory; thus TPIE never writes any

intermediate data to the disk. The larger problem (N = 14; 000) more accurately re
ects

the relative I/O and CPU costs that we expect to see in larger problem instances. Once

the sparse matrix has been preprocessed, all matrix-vector multiplications are essentially

scans, with at most two 
oating point operations performed per scanned value. The

performance of our implementation is summarized in the graph shown in Figure 5.

4.4 Dense Matrix Methods

Dense matrices appear in a variety of computations. Like sparse matrices, they are often

multiplied by vectors, and banding techniques similar to those discussed in the previous

section can by used. Another fundamental operation is multiplication of two K � K

matrices A and B to produce C = AB.

4.4.1 Dense Matrix Algorithms

Asymptotically I/O-optimal multiplication of two K �K matrices over a quasiring can

be done in �(K3=
p
MDB) I/Os [23]. There are at least two simple algorithms that

achieve this bound. The �rst algorithm, Algorithm 3, uses a recursive divide-and-conquer

approach. The second algorithm, Algorithm 4, also partitions the input matrices, but

all partitioning is done up front in a single permutation of each matrix, using the block

decomposition in Figure 7. The matrix product is then produced iteratively, and a

single �nal permutation returns it to canonical order. Both algorithms assume the input

matrices are stored in row major order.

The I/O complexity of Algorithm 3 is

12
p
3K3

p
MDB

;
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Figure 5: NAS CG Benchmark.

while that of Algorithm 4 is

2
p
3K3

p
MDB

+ prep(K);

where prep(N) is the I/O complexity of the preprocessing and postprocessing steps,

which can be done by sorting the K2 elements of the three matrices, giving us

prep(K) = 6
K2

DB
� 2

&
1 +

lg(K=M)

lg(M=2DB)

'
:

In special circumstances, when B, D, K, and
p
M are all integral powers of two, the

pre- and post-processing are bit-matrix multiply complement permutations, which can

be performed in fewer I/Os than sorting [11].

4.4.2 Dense Matrix Benchmark

TPIE has high-level support for dense matrices over arbitrary user-de�ned quasirings.

Operations supported include initialization, element-wise arithmetic, and matrix-matrix

multiplication. Matrix-matrix multiplication uses Algorithm 4. Separate AMI entry

points are available for the preprocessing permutation and the iterative multiplication

itself, allowing a matrix to be preprocessed once and then multiplied by a number of

other matrices.

We implemented a benchmark, called DENSE, which constructs two K�K matrices,

preprocesses them, and then multiplies them. Times were recorded for both the total
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(1) if 3K2 � M then

(2) Read A and B into main memory;

(3) Compute C = AB in main memory;

(4) Write C back to disk;

(5) else

(6) Partition A at row K=2 and column K=2;

(7) Label the four quadrant submatrices A1;1, A1;2, A2;1, and A2;2 as shown in Figure 6;

(8) Partition B into B1;1, B1;2, B2;1, and B2;2 in a similar manner;

(9) Permute all submatrices of A and B into row major order;

(10) Perform steps (11){(14) using recursive invocations of this algorithm:

(11) C1;1  A1;1B1;1 + A1;2B2;1;

(12) C1;2  A1;1B1;2 + A1;2B2;2;

(13) C2;1  A2;1B1;1 + A2;2B2;1;

(14) C2;2  A2;1B1;2 + A2;2B2;2;

(15) Reconstruct C from its submatrices C1;1, C1;2, C2;1, and C2;2;

(16) Permute C back into row major order;

(17) endif

Algorithm 3: A recursive divide-and-conquer approach to matrix multiplication. Two

K �K input matrices A and B are multiplied to produce C = AB.

A1;1 A2;1

A2;1 A2;2

Figure 6: Partitioning a matrix into quadrants, as used in Algorithm 3.

benchmark and for the multiplication only. The results are shown in Figure 8. As

expected, the CPU time required to multiply the matrices follows a cubic path. Because

of read-ahead, I/O is almost fully overlapped with computation, making the CPU and

total time curves virtually indistinguishable. The cost of preprocessing the matrices is

approximately one third of the cost of multiplying them. Thus if several multiplications

are done with the same matrix amortization greatly reduces this cost.

5 Conclusions

We have presented a series of results demonstrating that I/O-e�cient computation can

be made practical for a variety of scienti�c computing problems. This computation

is made practical by TPIE, which provides a high level interface to computational

paradigms whose I/O complexity has been carefully analyzed. Using TPIE results in
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(1) partition A into K=
p
M=3 rows and K=

p
M=3 columns as shown in Figure 7;

(2) Partition B in a similar manner to A;

(3) Permute all Ai;j and Bi;j into row major order;

(4) foreach i; j do

(5) Ci;j  
P

k Ai;kBk;j;

(6) endforeach

(7) Reconstruct C from all Ci;j;

(8) Permute C back into row major order;

Algorithm 4: An iterative approach to matrix multiplication.

only a small CPU overhead versus entirely in core implementation, but allows much

larger data sets to be used. Additionally, for the benchmarks we implemented, I/O

overhead ranged from being negligible to being of the same order of magnitude as inter-

nal computation time.

If we replace the single disk on which the tests were run with D disks, where D is on

the order of 8, we conjecture that the I/O time required in our computations could be

reduced by a factor very close to D. In applications like DENSE, where I/O overhead

is already negligible, little would change, but in applications like NAS IS and NAS EP,

we would see a dramatic reduction in I/O overhead. As discussed in Section 4, CPU

time should not change appreciably. Recalling that a portion of the I/O that would be

reduced by a factor of D is already overlapping with computation, we expect that in

many case the I/O overhead (the portion that does not overlap with CPU usage) could

be eliminated. We plan to assemble a parallel disk system to evaluate this conjecture

experimentally.

In addition to the problems discussed here, there are many other scienti�c computa-

tions that we believe can bene�t from careful analysis and I/O-e�cient implementation.

These include LUP decomposition, FFT computation, and multi-grid methods, all of

which we plan to explore as the TPIE project continues. We also plan to investigate the

construction of a scan combining preprocessor as described in Section 4.1.1.

Complementing this high level work, there are a number of potentially interesting

I/O related research topics concerning how environments like TPIE should interact with

operating systems. These include models of application controlled virtual memory and

the behavior of TPIE applications in multiprogrammed environments where the main

memory available to a given process may vary over time.

In closing, we are encouraged by the results we have presented, which demonstrate

that I/O e�cient computation using an abstract, high level model is practical. It is

important to realize, however, that this research is only in its infancy, and that many

more questions, both theoretical and practical, remain to be answered.
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A1;1 A1;2 A1;3

A2;1 A2;2

A2;1
. . . A��2;�

A��1;��1 A��1;�

A�;��2 A�;��1 A�;�

Figure 7: Partitioning a matrix into submatrices in step (1) of Algorithm 4. Each

submatrix Ai;j has
p
M=3 rows and

p
M=3 columns; the number of submatrices across

and down A is � = K=
p
M=3. Permuting is done so that the entries in each submatrix

are stored contiguously on disk.
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