
Distribution Sort with Randomized Cycling

JEFFREY SCOTT VITTER

Purdue University

AND

DAVID ALEXANDER HUTCHINSON

Carleton University

Abstract. Parallel independent disks can enhance the performance of external memory (EM) algo-
rithms, but the programming task is often difficult. Each disk can service only one read or write request
at a time; the challenge is to keep the disks as busy as possible. In this article, we develop a randomized
allocation discipline for parallel independent disks, called randomized cycling. We show how it can be
used as the basis for an efficient distribution sort algorithm, which we call randomized cycling distri-
bution sort (RCD). We prove that the expected I/O complexity of RCD is optimal. The analysis uses a
novel reduction to a scenario with significantly fewer probabilistic interdependencies. We demonstrate
RCD’s practicality by experimental simulations. Using the randomized cycling discipline, algorithms
developed for the unrealistic multihead disk model can be simulated on the realistic parallel disk model
for the class of multipass algorithms, which make a complete pass through their data before accessing
any element a second time. In particular, algorithms based upon the well-known distribution and
merge paradigms of EM computation can be optimally extended from a single disk to parallel disks.

Categories and Subject Descriptors: E.1 [Data Structures]: distributed data structures; F.2.2 [Anal-
ysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—sorting
and searching; H.3.2 [Information Storage and Retrieval]: Information Storage—file organization

General Terms: Algorithms, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: sorting, external sorting, distribution, external memory, input/
output, merging, multiple disks, multipass algorithms, parallel disks, randomization, sorting

A preliminary version of this article appeared under the same title in Proceedings of the 12th Annual
SIAM/ACM Symposium on Discrete Algorithms (Washington, DC, Jan.). ACM, New York, 2001.

Most of this work was done while the authors were at Duke University.

Support for J. S. Vitter was provided in part by the Army Research Office through grant DAAD19-01-
1-0725 and by the National Science Foundation through grants CCR-9877133, CCR-0082986, and
IIS-0415097.

Support for D. A. Hutchinson was provided in part by the National Science Foundation through grant
CCR-0082986.

Authors’ addresses: J. S. Vitter, Department of Computer Sciences, Purdue University, West Lafayette,
IN 47907-2066. e-mail: jsv@purdue.edu. Web: http://www.science.purdue.edu/jsv/; D. A. Hutchin-
son, Department of Systems and Computer Engineering, Carleton University, Ottawa, Ont., Canada
K1S 5B6, e-mail: David Hutchinson@pteran.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0004-5411/06/0700-0656 $5.00

Journal of the ACM, Vol. 53, No. 4, July 2006, pp. 656–680.

Distribution Sort with Randomized Cycling 657

1. Introduction

External memory (EM) algorithms are designed to be efficient when the problem
data are too numerous to fit into the high-speed random access memory (RAM)
of a computer and must reside on external devices such as disk drives. In order to
cope with the high cost of accessing data, efficient EM algorithms exploit locality
in their design. They access a large block of B contiguous data elements at a time
and perform the necessary algorithmic steps on the elements in the block while
in the high-speed memory. The speedup obtained by accessing blocks rather than
random data elements can be very significant.

A second effective strategy for EM algorithms is the use of multiple parallel
disks; whenever an input/output operation is performed, D blocks are transferred
in parallel between memory and each of the D disks (one block per disk). An easy
way to convert an EM algorithm designed for a single disk into an EM algorithm
that utilizes parallel disks is the well-known technique of disk striping, in which
the D blocks that are accessed at any given time reside at the same offset on each
of the D respective disks. Disk striping can be shown to be equivalent to having
a single disk with larger block-size BD, and its I/O performance for problems like
sorting is suboptimal when D is large. An optimal EM algorithm for such problems
thus requires independent access to the D disks, in which each of the D blocks in
a parallel I/O operation can reside at a different offset on its disk [Vitter 2001].

Designing algorithms for independent parallel disks has turned out to be ad hoc
and relatively difficult; see, for instance Vitter and Shriver [1994], Nodine and Vitter
[1993, 1995], Barve et al. [1997], Barve and Vitter [2002], Dehne et al. [2002, 2003],
Arge et al. [2007], Arge and Vitter [2003], and Vitter [2001]. In practice, the added
overhead often makes the algorithms slower than those based upon disk striping.
It is therefore highly desirable to develop efficient techniques for converting serial
EM algorithms into EM algorithms that use parallel disks independently.

In this article, we develop a randomized distribution sort algorithm motivated by
the simple randomized merge sort (SRM) algorithm [Barve et al. 1997; Knuth 1998;
Barve and Vitter 2002], but with provably optimal performance for all parameter
settings. We show how these techniques can be generalized to provide optimal
speedup for the class of multipass EM algorithms when run on parallel disks. In
particular, our results provide practical techniques that permit algorithms based
upon the well-known distribution and merge paradigms of EM computation to be
optimally extended from a single disk to parallel disks. Before we elaborate on
these contributions, let us first review past work.

1.1. PREVIOUS WORK. Sorting is a heavily used application and subroutine in
external memory computing. Vitter [2001] provides an extensive survey of sorting
algorithms and external memory techniques. The two main approaches to sorting are
merge sort and distribution sort. Merge sort consists of two phases: the run formation
phase and the merging phase. During run formation, the N input elements are input
one memory-load at a time; each memory-load is sorted and written to the disks as
a “run”. In the merge phase, the sorted runs are merged together �(M/B) at a time
(where M is the internal memory size and B is the block size) in a round-robin
manner until a single sorted run remains. In distribution sort, the approach is to
partition the data into S approximately equally sized subfiles (or “buckets”). In a
splitter selection phase, we judiciously choose S − 1 = min{(M/B)�(1), 2N/M}

658 J. S. VITTER AND D. A. HUTCHINSON

splitter elements from the data. In the subsequent distribution phase, the input data
are read sequentially and partitioned via the splitters into buckets. The blocks of
each bucket are stored on the disks as they are formed. The splitter selection and
distribution phases are repeated recursively until the buckets are small enough to be
sorted in internal memory. The individual buckets are then concatenated together
to form the desired output.

Barve et al. [1997], Knuth [1998], and Barve and Vitter [2002] develop a sorting
algorithm for parallel disks called simple randomized merge sort (SRM). SRM is
noticeably faster than merge sort with disk striping, even when the number of disks
is small. Randomization is used to choose a disk on which the first block of each
run is located. Subsequent blocks in that run follow a simple round-robin order
over the disks. The blocks input from the disks at each step of the merge phase tend
to be distributed evenly among the disks, but for some values of the parameters
an effect akin to the maximum bucket occupancy in statistics [Vitter and Flajolet
1990] results in a provably uneven distribution, and the I/O performance of SRM
is suboptimal.

The two strategies of blocked access and parallel block transfer were proposed
in the I/O model of Aggarwal and Vitter [1988]. The model permits D blocks to
be accessed at arbitrary locations in a single I/O operation, which is convenient
for algorithm design, although unrealistic. In order to support D simultaneous
I/O operations, the more realistic parallel disk model of Vitter and Shriver [1994]
requires that each of the D blocks accessed in an I/O must reside on a separate disk.
Recently, Sanders et al. [2000] proposed an elegant and provably good randomized
simulation technique for converting algorithms designed for the Aggarwal–Vitter
model to the more realistic parallel disk model with only a constant factor slowdown.
Their technique involves creating multiple copies of the disk blocks and randomly
allocating each block to one of the D disks. The resulting disk occupancies are not
completely independent since the number of blocks is fixed, but they are negatively
correlated, which encourages an even distribution. (A summary of the derivation is
given in Section 3.)

A number of important EM algorithms have been proposed with support for
blocked access to external memory but without support for parallel independent
disks. These include distribution sweeping and a variety of geometric algorithms
based upon distribution sweeping [Goodrich et al. 1993], trapezoidal decompo-
sition, triangulation of a simple polygon, red-blue line intersection in GIS [Arge
et al. 2007], and spatial join [Arge et al. 1998]. In many cases, the algorithms can
be adapted to use parallel disks on an ad hoc basis by applying techniques from the
previously developed parallel-disk sorting algorithms, such as those by Vitter and
Shriver [1994], Nodine and Vitter [1993, 1995], and Dehne et al. [2002, 2003], but
in practice these techniques are often slower than simpler approaches based upon
disk striping. TPIE (Transparent Parallel I/O Environment) [Vengroff 1994; TPIE
1999] is a C++ workbench designed to facilitate experiments with EM algorithms.
It provides streaming primitives for implementing multipass algorithms such as dis-
tribution sweeping. The techniques of this article will permit such implementations
to be easily extended so that they can make optimal use of multiple disks.

1.2. OUR CONTRIBUTIONS. In this article, we develop a simple, practical and
provably optimal randomized algorithm for distribution sort with parallel disks. Our
method is motivated by the simplicity and practicality of the SRM approach for

Distribution Sort with Randomized Cycling 659

merge sort. We therefore examine simple randomization schemes that promise to
be practical and efficient. The key point in distribution sort is that the writing in the
distribution phase can be done in a lazy manner. There is no need for all D blocks
specified in one write operation to actually be written to disk before the blocks
specified in the next write operation are written. As long as there is buffer space
to temporarily cache the buckets waiting to be written to the disks, the writing can
proceed optimally (up to a constant factor). There is thus no suboptimal effect akin
to maximum bucket occupancy as there is with SRM, as mentioned in Section 1.1.

In Section 2, we define our notation and propose randomized variants of distri-
bution sort that are simple and practical to implement, but their analysis is difficult
because of extensive dependencies between the random variables in question. We
also present our main result (proven later in Section 4), which shows that our
randomized cycling distribution sort (RCD) variant has optimal expected I/O com-
plexity. In Section 3, we discuss in detail the fully randomized distribution sort
(FRD) variant, to which the analysis of Sanders et al. [2000] can be applied. FRD is
sometimes nonoptimal in terms of I/O and it is somewhat complicated to implement,
although it is optimal in terms of write operations.

In Section 4, we analyze RCD, our substantially simpler variant. We give a
novel reduction to show that the number of write operations are bounded by those
of FRD, and the number of read operations is trivially optimal. In Section 5, we
present simulation results that support the practical performance of RCD and the
other variants.

In Section 6, we discuss some interesting applications. Using RCD, algorithms
developed for the unrealistic multihead disk model can be simulated on the realis-
tic parallel disk model for the large class of multipass algorithms, which make a
complete pass through their data before accessing any element a second time. As in
the more general simulation technique of Sanders et al. [2000], we sometimes need
multiple copies of blocks, but the randomization is always simpler to implement
and can be done in a local manner, which is useful to exploit locality in algorithm
design. In many cases, however, we need only one copy of each data block. In
particular, we show that algorithms based upon the distribution paradigm of EM
computation can be optimally extended from a single disk to parallel disks without
duplication of blocks. Hutchinson et al. [2005] have applied our analysis of RCD to
optimal design and analysis of merge sort for parallel disks. Their results imply that
multipass merge algorithms can also be extended to parallel disks without duplicate
blocks.

Finally, in Section 7, we make our concluding remarks and suggest open
problems.

2. Randomized Distribution Sort

The distribution paradigm involves examining a stream of data items in turn and
directing them to one of a given set of buckets based on pivot elements that define
the bucket boundaries. We will study the use of multiple disks in a particular
distribution-based application, namely distribution sort. The main difficulty is in
ensuring that the writing of multiple output streams in one pass and the reading
of these output streams individually in the next pass can both be done using fully
parallel I/O operations.

660 J. S. VITTER AND D. A. HUTCHINSON

FIG. 1. Distribution phase for the case of D = 3 disks. The blocks are formed during the bucket
partitioning process and are assigned to disk queues according to the allocation discipline.

We first consider the write component of the distribution phase of distribution
sort. Each disk has an associated first-in first-out disk queue, and the D queues
share a common buffer pool of internal memory, capable of holding W blocks
collectively. The S output buckets in the distribution phase issue blocks of data to
the disk queues, as shown in Figure 1. The algorithm variants FRD, SRD, RSD,
and RCD, introduced below, differ primarily in their allocation discipline, which is
the method by which their buckets allocate blocks to the disk queues. In each disk
write cycle, up to D blocks, at most one per disk, are removed from the queues
and physically written to the disks. Since the queue space is limited, we consider
a collective block-arrival rate to the queues of (1 − ε)D per disk write cycle, for
some 0 ≤ ε < 1.

Fully Randomized Distribution Sort (FRD). In FRD, each bucket selects a sep-
arate, randomly chosen disk for each block that it issues. While this variant is not
considered for distribution sorting in Sanders et al. [2000], their analysis does apply
to the writing phase for this variant. FRD is complicated to implement because of
the bookkeeping necessary during the partitioning; each bucket must keep a list of
its blocks on each disk so that they can be linked together. Another disadvantage
of FRD is that the blocks being read during the reading phase (which correspond
to a bucket in the previous pass) are not striped on the disks or perfectly evenly
distributed. When N is relatively small or M/BD = o(log D), the algorithm is
nonoptimal, and we get a noticeably uneven distribution.

Simple Randomized Distribution Sort (SRD). Each bucket issues its blocks to
consecutive positions in a simple, round-robin manner. The disk selected for the
first block is called the starting point and is chosen uniformly randomly.

Randomized Striping Distribution Sort (RSD). Each bucket issues its blocks to
consecutive positions in a simple, round-robin manner, but a new random starting
point is chosen after every D blocks. This technique was suggested in Sanders et al.
[2000] for distribution sorting, but no analysis or experiments were provided.

Randomized Cycling Distribution Sort (RCD). Each bucket chooses a random
cycle order of the disk numbers (among the D! possible permutations) and allocates
its blocks to disks in a round-robin manner according to the cycle order.

The advantage of SRD, RSD, RCD is that they are easy to implement and
the blocks from each bucket are striped together for reading in the next phase.

Distribution Sort with Randomized Cycling 661

The blocks actually written in a single I/O are therefore to different stripes,
since the blocks for a given bucket go to a certain stripe. If a RAID system is
used and parity information is maintained for error recovery, an extra parity block
for each bucket can be maintained in internal memory. At any given time, the parity
block is the parity for the blocks written so far in the current stripe for that bucket.
When we write the (D − 1)st block of the stripe, we can then write out the parity
block as the Dth block of the stripe.

By contrast, in FRD, writing is done by stripes. However, the blocks in a bucket
are not situated together in stripes; they appear at various locations on the disks,
and as a result the extra bookkeeping is needed by FRD to link together the blocks
in the bucket. If desired, the FRD method of striped writing but non-striped reading
can also be supported by SRD, RSD, and RCD.

We define the following important random variables that govern the behavior of
these methods. The main difficulty with the analysis of SRD, RSD, RCD (which
is still open for SRD and RSD), is the extensive dependence between the random
variables in question.

Definition 2.1. (Queuing Model). For purposes of our analysis, we assume the
following definitions and sequence of events during each time step t and for each
queue 0 ≤ i ≤ D − 1:

(1) We define the queue length Q(t)
i to be the size of queue i at the beginning of

time step t before any arrivals or consumption occur for that time step. We let
Q(t) = ∑

0≤i<D Q(t)
i denote the total of the queue sizes (or simply the total

queue size) at time t .
(2) The consumption process removes a block, if any exist, from queue i at time

step t and writes it to the corresponding disk.

(3) Some number A(t)
i of new blocks arrive for queue i at time step t (after the

consumption for that time step). The total number of arrivals at time t among
all the queues, namely, A(t) = ∑

0≤i<D A(t)
i , is D(1 − ε).

The above order of events, in which consumption is done before arrivals, is easier
to analyze than the reverse, and results in a slightly more conservative analysis.

So far we haven’t discussed what happens if the buffer pool of size W overflows.
To handle that case, we insert the following event as event (2.5) to occur between
events (2) and (3) above:

(2.5) while Q(t) + A(t) > W do
Remove a block from queue i and write it to the corresponding disk
enddo

We define I (t)(b) to be the number of blocks issued by bucket b in time step t .
In particular, we have

∑
b I (t)(b) = A(t) = D(1 − ε).

Definition 2.2. (Cycle Order). For SRD, RCD, and RSD, we define the cycle
order of a bucket to be the permutation 〈i0, i1, . . . , iD−1〉 of queue indices that
specify the round-robin order in which the bucket places blocks into the queues. In
other words, the j th block of the bucket is issued to queue i j mod D. For RCD, the
cycle order of a bucket can be an arbitrary permutation of {0, 1, . . . , D − 1}. For
SRD, we have i j+1 = i j + 1 mod D, where i0 can be any value 0 ≤ i0 < D.

662 J. S. VITTER AND D. A. HUTCHINSON

Definition 2.3. (Configuration of a Bucket). The configuration of a bucket b
specifies the schedule I (1)(b), I (2)(b), . . . of blocks issued by the bucket and its
cycle order 〈i0, i1, . . . , iD−1〉. In other words, Q(t) and each Q(t)

i are deterministic
functions of the configurations of the buckets.

There are two important issues for I/O efficiency in distribution sort: reading
in the blocks using the parallel disks, and writing the blocks using parallel disks.
Both must be done optimally. Our main result, which we prove in Section 4, is
Theorem 2.4. It shows for RCD that the conditional consumption step will very
seldom be needed, and the expected number of parallel write operations will be
linear in the number of queuing events.

THEOREM 2.4. Consider the queuing model of Definition 2.1 and the allocation
discipline of RCD. Let n(t) be the number of parallel writes executed in time step t.
Then for buffer pool size W = (ln 2 + δ)D/ε, for some constant δ > 0, we have
E(n(t)) = 1 + e−�(D).

We conjecture that similar bounds hold for the write I/Os in SRD and RSD, as
suggested by the experiments in Section 5. In RCD, SRD and RSD, the blocks
are striped on the disks, so their reading components are automatically optimal.
We show in Section 3 that FRD satisfies the same write bound as does RCD in
Theorem 2.4, but that the reading component is nonoptimal.

3. FRD: Almost Independent Scenario

The writing component of the distribution phase of FRD is optimal and satisfies
the same bound given for RCD in Theorem 2.4. The analysis of the writing com-
ponent of FRD is given by Sanders et al. [2000]. In particular, with the appropriate
setting of the buffer size, they show that the probability that the buffer overflows
is exponentially small. We summarize the derivation below. We then demonstrate
that the reading component of FRD is not optimal.

In FRD, each bucket contributes only one block in total; that is,
∑

t I (t)(b) = 1
for all buckets b. Therefore, the assignment of a bucket’s single block to a queue
is independent from the assignments of all other blocks. The only (very limited)
dependence arises because there are a total of D(1 − ε) blocks issued collectively
by the buckets in step t ; that is,

∑
b I (t)(b) = A(t) = D(1 − ε) for all time steps t .

Let us define the notation Q̂(t) and Q̂(t)
i to denote Q(t) and Q(t)

i for the special case
of FRD.

The size of queue i at time t + 1 can be expressed recursively by

Q̂(t+1)
i = Q̂(t)

i − 1 + [
Q̂(t)

i = 0
] + A(t)

i .1 (1)

where A(t)
i is the number of blocks that arrive for queue i at time t . In the steady

state t = ∞, we get the recurrence

Q̂(∞)
i = Q̂(∞)

i − 1 + [
Q̂(∞)

i = 0
] + A(∞)

i . (2)

1 We use the notation [condition] to denote 1 if condition is true and 0 otherwise.

Distribution Sort with Randomized Cycling 663

Let us define the probability generating functions

Q̂i (z) =
∑
t≥0

Prob
{

Q̂(∞)
i = k

}
zk ; (3)

Ai (z) =
∑
t≥1

Prob
{

A(∞)
i = k

}
zk . (4)

The recurrence relation (2) translates into the following equation on the generating
functions:

Q̂i (z) =
(

1

z
Q̂i (z) + Q̂i (0) − 1

z
Q̂i (0)

)
Ai (z), (5)

whose solution, by simple algebra, is

Q̂i (z) = Q̂i (0)
(
1 − 1

z

)
Ai (z)−1 − 1

z

. (6)

The random variable A(∞)
i is the sum of (1 − ε)D independent binary random

variables, each with probability 1/D of having value 1 and probability 1 − 1/D of
having value 0. Therefore, Ai (z) is the product of (1 − ε)D generating functions
of the form 1

D z1 + (1 − 1
D)z0:

Ai (z) =
(

z

D
+ 1 − 1

D

)(1−ε)D

. (7)

We can solve for Q̂i (0) in (6) by taking the limit of (6) as z → 1. Since Q̂i (z)
is a probability generating function, we have Q̂i (1) = 1. By L’Hôpital’s rule and
by plugging in (7) for Ai (z), we get Q̂i (0) = ε. Substituting this into (6) and
simplifying, we get the following closed form:

Q̂i (z) =
(
1 − 1

z

)
ε

Ai (z)−1 − 1
z

= (1 − z)ε

1 − zAi (z)−1

= (1 − z)ε

1 − z/(z
d + 1 − 1

d)(1−ε)D
. (8)

Let W denote the total buffer pool size. We get a Chernoff-like tail bound on
the probability of buffer overflow by starting with Markov’s inequality applied
to exp (s Q̂(t)):

Prob{Q̂(t) > W } = Prob{exp (s Q̂(t)) > exp (sW)}
< exp (−sW)E(exp (s Q̂(t))). (9)

By definition of Q̂(t), the expected value term is

E(exp (s Q̂(t))) = E

(
exp

(∑
0≤i<D

s Q̂(t)
i

))

= E

(∏
0≤i<D

exp
(
s Q̂(t)

i

))
. (10)

664 J. S. VITTER AND D. A. HUTCHINSON

If the random variables 〈Q̂(t)
i 〉0≤i<D were independent, the expected value operator

could be moved inside the product and thus the right-hand-side of (10) would be
replaced by ∏

0≤i<D

E
(
exp

(
s Q̂(t)

i

)) = (
E
(
exp

(
s Q̂(t)

1

)))D
. (11)

The random variables 〈Q̂(t)
i 〉0≤i<D are not independent, but fortunately they are

negatively associated,2 which allows the right-hand-side of (10) to be bounded
by (11).

We are now ready to bound Prob{Q̂(t) > W } using (9). Choosing s = ε and

using the fact that E(exp (s Q̂(t))
1) < E(exp (s Q̂(∞))

1) = Q̂1(exp(s)), we get

Prob{Q̂(t) > W } < exp (−εW)(Q̂1(exp (ε))D. (12)

By applying L’Hôpital’s rule to (8), we find that Q̂1(exp(ε)) < 2, and hence we get

Prob{Q̂(t) > W } < exp (−(εW − D ln 2)) = exp (−δD) (13)

when W = (ln 2 + δ)D/ε. In other words, a conditional consumption step is only
executed with a probability that is exponentially small in δD. If such a rare event
occurs, the number of conditional consumption steps needed to eliminate overflow
can be conservatively bounded by D(1 − ε) + W , since after that number of steps
the queues would be empty. Therefore, the total expected number E(n(t)) of parallel
write operations made by FRD at step t is bounded by

1 + (
D(1 − ε) + W

)
Prob{Q̂(t) > W } < 1 + O(D) exp (−δD)

= 1 + exp (−�(D)), (14)

which is the bound used in Theorem 2.4 for RCD.
Although this shows that the writing component of FRD is optimal, the reading

component of FRD can be nonoptimal by a factor of ln D/ ln ln D when D is
large because of unbalanced I/O operations [Vitter and Flajolet 1990]. Consider
the following example: Let the block size be large, say 250 KB to amortize the
seek latency over many data elements. Let the number of disks be D = 400,
and let the memory size be 250 MB. Let the problem size be 400 MB (i.e., 1600
blocks) and let the number of buckets be 4, giving about 400 blocks per bucket.
For each bucket, the expected maximum occupancy of its blocks on the disks is
≈ (ln 400)/ ln ln 400 ≈ 3.3, even though the average number of blocks per disk is
only 1. The reading is thus about three times slower than if the input file were striped,
which would be the case with SRD, RCD, and RSD. The amount of imbalance can
be reduced somewhat by choosing smaller block sizes, but then the I/O costs would
increase because of the increased number of random accesses to disk [Vitter 2001].

FRD requires that lists be maintained to link together the blocks in each bucket
on each disk, and this bookkeeping complicates the implementation. For similar
effort, a better approach would be to use Phase I of the algorithm of Vitter and

2 Discrete random variables X1, X2, . . . , Xn are negatively associated [Dubhasi and Ranjan 1998]
if, for any nondecreasing functions f and g and any disjoint subsets I and J of [1, n], we have
E(f (Xi , i ∈ I) g(X j , j ∈ J)) ≤ E(f (Xi , i ∈ I)) E(g(X j , j ∈ J)). Intuitively, if Xi is large, then
X j tends to be small.

Distribution Sort with Randomized Cycling 665

FIG. 2. The bucket transformation steps.

Shriver [1994], where data are written to the disks in stripes and the buckets tend
to be more evenly distributed.

4. Analysis of the Total Queue Size Q(t) in RCD

In this section, we give a proof of Theorem 2.4. Our objective is to derive a type
of Chernoff bound on the total queue size Q(t) of RCD during its writing phase.
This bound is the same one given in (9)–(11) for FRD, which has substantially
more independence. After we derive the Chernoff bound, the rest of the proof of
Theorem 2.4 proceeds as in (13) and (14) for FRD.

Our strategy for getting the desired bound on E(exp (s Q(t))) is to do a series of
transformation steps on an instance of RCD, after which all buckets are singleton
buckets (which corresponds to FRD). We reduce an instance of RCD to an instance
of FRD via the series of bucket transformation steps shown in Figure 2.

Definition 4.1. A bucket b is a singleton bucket if it issues a total of one block
over all time steps; that is,

∑
t ′ I (t ′)(b) = 1.

As mentioned ((10) and (11) in Section 3), Sanders et al. [2000] have shown that
the total queue size Q̂(t) for FRD (the situation in which all buckets are singletons)
satisfies E(exp (s Q̂(t))) ≤ ∏

0≤i<D E(exp (s Q̂(t)
i)) = (E(exp (s Q̂(t)

i)))D. The right-
hand-side is the corresponding quantity for the case in which the queues sizes are
completely independent. In the remainder of Section 4, we shall show that each
bucket transformation step causes E(exp (s Q(t))) to increase or remain the same.
The net result is that

E(exp (s Q(t))) ≤ E(exp (s Q̂(t))) ≤
∏

0≤i<D

E
(
exp

(
s Q̂(t)

i

))
= (

E
(
exp

(
s Q̂(t)

i

)))D
, (15)

which establishes a Chernoff-type bound for Q(t) that is bounded by the Chernoff-
type bound for FRD. Once (15) is established, the remainder of the proof of Theo-
rem 2.4 will follow from (13) and (14) applied to RCD.

4.1. MAIN LEMMAS. The bucket transformations of Figure 2 iteratively convert
an instance of RCD into an instance of FRD. Our objective is to show that (15) holds
when the tranformations of Figure 2 are applied. First, we define f (x) = esx so that

666 J. S. VITTER AND D. A. HUTCHINSON

FIG. 3. A queue with a critical starting point: Removing the arrival at time r will reduce Q(t)
i by one

block; in fact, Q(t ′)
i gets reduced by 1 for each r < t ′ ≤ t .

the left-hand-side of (15) is E(f (Q(t))). Lemma 4.2 below is our main lemma. It
shows that the bucket transformations of Figure 2 have the desired effect.

LEMMA 4.2. Each bucket transformation step described in Figure 2, in which
one block at time step r is removed from the bucket and a new singleton
bucket is created with one block at the same time step, causes the quantity
E(f (Q(t))) = E(exp (s Q(t))) to either increase or stay the same. In other words,
for each transformation step in Figure 2, E(f (Q′′(t))) − E(f (Q(t))) ≥ 0.

We shall prove Lemma 4.2 in Section 4.2. Critical blocks and critical starting
points are key concepts used to prove Lemma 4.2.

Definition 4.3. (Critical block). Consider an arbitrary bucket b which issues
one or more block(s) at time step r < t , and consider any fixed configurations for
the other buckets. Consider the following two scenarios:

(1) One of the blocks issued at time step r from bucket b is placed into queue i .
Let Q(t) be the total size of the queues at time step t .

(2) Same as case 1, except that we remove the block that bucket b contributes to
queue i at time r (without moving the times or placements of any of the other
blocks). Let Q′(t) be the resulting total size of the queues at time step t .

We say that the block issued to queue i is a critical block for bucket b with respect
to time step t if

Q′(t) = Q(t) − 1. (16)

Note that it is always true that Q(t) − 1 ≤ Q′(t) ≤ Q(t). Criticality means that the
first “≤” is actually an equality.

Definition 4.4. (Critical Starting Point). Consider the case where the first block
issued by bucket b (say, to queue i) is a critical block for bucket b with respect to
time step t . We say that queue i is a critical starting point for bucket b with respect
to time step t .

Lemmas 4.5–4.7 are useful for reasoning about the effect of block arrivals upon
the sizes of queues. Please refer to Figure 3.

LEMMA 4.5. The following conditions are equivalent:

(1) Initially, we have Q(t ′)
i ≥ 1, for all r < t ′ < t .

(2) If we add a new block to queue i at time step r , then Q(t ′)
i increases by 1 at each

time step t ′, for r < t ′ ≤ t .

Distribution Sort with Randomized Cycling 667

PROOF. Consider the addition of a single new block to queue i at time step r ,
and assume that this new block increases Q(t)

i . It must be true that a block is already
consumed from queue i in every time step t ′, where r < t ′ < t ; otherwise, the
new block would simply be consumed at some step where previously no block was
consumed from queue i , thus not affecting Q(t)

i . Recall that in our model Q(t)
i is the

queue size at the beginning of time step t , and consumption occurs prior to arrival
of blocks in each time step. Therefore, prior to the addition of the new block, we
have Q(t ′)

i ≥ 1, for each time step t ′, for r < t ′ < t .
Conversely, by a similar argument, if Q(t ′)

i ≥ 1, for all r < t ′ < t , then one
block is consumed at each time step t ′. Thus, adding a new block to queue i at time
step r will propagate through all the time steps and increase Q(t ′)

i by 1 for each
r < t ′ ≤ t .

LEMMA 4.6. Consider an arbitrary bucket b with starting point i whose first
block(s) appear at time step r < t . The following conditions are equivalent:

(1) The starting point i is critical for bucket b with respect to time step t.
(2) Initially, we have Q(t ′)

i ≥ 2, for all r < t ′ < t .
(3) If we remove the block from queue i at time step r , then Q(t ′)

i decreases by 1 for
each time step t ′, for r < t ′ ≤ t .

PROOF. Conditions (1) and (3) are easily seen to be equivalent. Conditions (2)
and (3) are equivalent to the two conditions in Lemma 4.5, but in reverse order of
time; that is, they deal with removal of a block rather than addition of a block. All
three conditions are therefore equivalent.

One way to think about critical starting points is by an analogy between the queue
size and the water level in a lake. Suppose that each day the sun removes a gallon
of water from a lake. Then, later in the evening, it may rain, in which case the lake
gets replenished with one or more gallons of water. If the lake always has at least
two gallons at the start of each day, then if we remove a gallon of water early one
morning in April, the lake will contain one gallon less in September than it would
normally have. On the other hand if the lake has only one gallon at the start of June
15, then the sun will empty the lake. In this case, if we remove a gallon in April,
there will be no change in September, since all the water in September must have
been added after June 15. In other words, in order for a removal in April to have an
effect in September, the water level of the lake must be sufficiently high each day
in between and never go dry. The same is true for a queue with a critical starting
point. Removing a block at time r will decrease the queue size by 1 at a later time t
when there are initially two or more items in the queue at the beginning of each
time step.

Using similar ideas, we can show that the closer to time step t that a block is
inserted, the more likely it will affect the queue size at time step t .

LEMMA 4.7. If a block arrival at queue i is changed from time step r to instead
be at time step r ′, where r < r ′ < t , without moving the times or placements of any
of the other blocks, then Q(t)

i either increases by 1 or stays the same.

4.2. PROOF OF LEMMA 4.2. To prove Lemma 4.2, let us consider the effect of a
single bucket transformation step (see Figure 2) applied to bucket b at time step r .
We assume that b does not issue any blocks before time r . We let the configurations

668 J. S. VITTER AND D. A. HUTCHINSON

of the other buckets be arbitrary and fixed. Let the cycle order for bucket b be 〈i0,
i1, . . . , iD−1〉. Recall that the cycle order of a bucket is a permutation of the queue
indices (see Definition 2.2). We consider for the moment a fixed starting point i0 for
the cycle order before the transformation, and after the transformation we assume a
shifted cycle order 〈i1, . . . , iD−1, i0〉. The reason for the shifted cycle order is that,
after the transformation, the blocks of the bucket are issued to the same queues as
before the transformation, except for the single block that was removed.

We can express the total queue size Q′′(t) after the transformation by

Q′′(t) = Q′(t) + [new bucket increases queue size].

Recall that Q(t), Q′(t) and Q′′(t) are defined in the description of Figure 2.
If bucket b’s starting point i0 is critical (refer to Definition 4.3), then Q′(t) =

Q(t) − 1. Suppose that c of the D possible starting points for bucket b are critical
with respect to time step t . The new singleton bucket issues its single block to a
randomly chosen queue, just like any other RCD or FRD bucket. The key point
is that if the new singleton bucket issues its block to one of the c critical starting
points, which happens with probability c/D, then by Lemmas 4.5 and 4.6, that
queue size will be incremented and we shall have Q′′(t) = Q′(t) + 1 = Q(t). If the
new bucket issues its block to one of the D − c noncritical starting points, which
happens with probability 1 − c/D, then by Lemmas 4.5 and 4.6, we shall have
Q′′(t) ≥ Q′(t) = Q(t) − 1.

With the notation f (x) = exp (sx) from Section 4.1, the above relations give us
the following lower bound on the conditional expectation, given that the starting
point of bucket b is critical:

E(f (Q′′(t)) | starting point is critical)

≥
(

1 − c

D

)
E(f (Q(t) − 1) | starting point is critical)

+ c

D
E(f (Q(t)) | starting point is critical), (17)

where the expectation is over the starting point of the new bucket.
If instead b’s starting point i0 is noncritical, then by similar reasoning either

Q′′(t) = Q(t) or Q′′(t) = Q(t) + 1, and we get the conditional expectation

E(f (Q′′(t)) | starting point is noncritical)

≥
(

1 − c

D

)
E(f (Q(t)) | starting point is noncritical)

+ c

D
E(f (Q(t) + 1) | starting point is noncritical). (18)

Using identities E(f (X+1)) = f (1) E(f (X)) and E(f (X−1)) = E(f (X))/ f (1),
we can rewrite (17) and (18) as

E(f (Q′′(t)) | starting point is critical)

≥
((

1 − c

D

) 1

f (1)
+ c

D

)
× E(f (Q(t)) | starting point is critical); (19)

Distribution Sort with Randomized Cycling 669

E(f (Q′′(t)) | starting point is noncritical)

≥
((

1 − c

D

)
+ c

D
f (1)

)
× E(f (Q(t)) | starting point is noncritical). (20)

Since there are c critical starting points and D − c noncritical starting points, we
can remove the conditioning as follows: Before the transformation, we have

E(f (Q(t))

= c

D
E(f (Q(t)) | starting point is critical)

+
(

1 − c

D

)
E(f (Q(t)) | starting point is noncritical). (21)

After the transformation we get

E(f (Q′′(t)))

≥ c

D

((
1 − c

D

) 1

f (1)
+ c

D

)
× E(f (Q(t)) | starting point is critical)

+
(

1 − c

D

) ((
1 − c

D

)
+ c

D
f (1)

)
× E(f (Q(t)) | starting point is noncritical). (22)

Combining (21) and (22), we get

E(f (Q′′(t))) − E(f (Q(t)))

≥ − 1

f (1)

(
c

D
(f (1) − 1) − c2

D2
(f (1) − 1)

)
× E(f (Q(t)) | starting point is critical)

+
(

c

D
(f (1) − 1) − c2

D2
(f (1) − 1)

)
× E(f (Q(t)) | starting point is noncritical). (23)

The following lemma shows that the left-hand-side of (23) is nonnegative, thereby
finishing the proof of Lemma 4.2.

LEMMA 4.8. We have

E(f (Q(t)) | starting point is noncritical)

≥ 1

f (1)
E(f (Q(t)) | starting point is critical).

PROOF. Consider the effect of modifying the cycle order of an arbitrary
bucket b, keeping the cycle orders of the other buckets fixed. Consider a cycle
order 〈i0, i1, . . . , iD−1〉 for bucket b in which the starting point i0 is one of the c
critical starting points with respect to time step t . Now exchange i0 with one of
bucket b’s D − c noncritical starting points i j to give the cycle order 〈i j , i1, . . . ,
i j−1, i0, i j+1, . . . iD−1〉.

670 J. S. VITTER AND D. A. HUTCHINSON

FIG. 4. The mapping from critical to noncritical starting points for bucket b induces a directed
bipartite graph. The figure depicts the case for c = 2 (indegree) and D − c = 3 (outdegree).

Each cycle order with a critical starting point maps into D − c cycle orders with
noncritical starting points. Similarly, each cycle order with a noncritical starting
point is mapped into by c cycle orders with critical starting points. As illustrated
in Figure 4, the net effect is that the set of all such exchanges (mappings) induces
a directed bipartite graph in which the two vertex sets are as follows:

(1) the c(D − 1)! cycle orders of bucket b for which the starting point is critical,
and

(2) the (D − c)(D − 1)! cycle orders of bucket b for which the starting point is
noncritical.

The outdegree of each vertex in set 1 is D − c, and the indegree of each vertex
in set 2 is c. Therefore, a uniform distribution on vertex set 1, when a random
exchange is applied, is mapped into a uniform distribution on vertex set 2.

To prove the lemma, we compare the expected value of f (Q(t)) = exp (s Q(t))
conditioned on a critical starting point with the value of f (Q(t)) = exp (s Q(t))
conditioned on a noncritical starting point. We shall shortly show that
each exchange mapping can decrease the queue size Q(t) at time step t
by at most 1. Since the mappings preserve a uniform distribution,
this will imply E(f (Q(t)) | starting point is noncritical) ≥ E(f (Q(t) − 1)|
starting point is critical). Using the fact that f (x) = exp (sx) and thus f (Q(t)−1) =

1
f (1)

f (Q(t)), we shall get the desired result that E(f (Q(t)) | starting point

is noncritical) ≥ 1
f (1)

E(f (Q(t)) | starting point is critical).

The rest of the proof consists of showing the claim that each exchange can
decrease the queue size Q(t) at time step t by at most 1. In each exchange, the only
queues whose sizes are affected are i0 and i j .

Suppose first that the number of arrivals � at queue i0 before time step t does
not change under the new cycle ordering. We can decompose our proposed swap

Distribution Sort with Randomized Cycling 671

in the queue order of b’s cycle as follows: Consider the �′th time through the cycle
order, for �′ = 0, 1, . . . , �. In the original cycle order, let the time steps at which
a block is contributed to queue i0 be denoted r�′ , and let the time steps at which a
block is contributed to queue i j be denoted as s�′ . For each �′ = 0, 1, . . . , �, we do
the following two steps:

(1) Remove the block that bucket b contributes at time r�′ to queue i0, without
moving the times or placements of any of the other blocks.

(2) Insert a block into queue i0 at later time s�′ .

By the definition of a critical starting point, the effect of Step (1) will be to
decrease the final queue size Q(t)

i0
at time step t by 1. By Lemma 4.6, for each

r�′ < t ′ < t , we have Qt ′
i0

≥ 2 before the removal, and thus Qt ′
i0

≥ 1 after the
removal. By Lemma 4.5, the effect of Step (2) will be to make Qt ′

i0
≥ 2, for each

s�′ < t ′ < t , and increase the final queue size Q(t)
i0

by 1 back to its original value.
Therefore, each iteration of Steps (1) and (2) does not change Q(t)

i0
.

Similarly to the above analysis, we can analyze the effect of the cycle reordering
on the size of Q(t)

i j
. As before, we can decompose the reordering into � iterations

of a two-step procedure. For each �′ = 0, 1, . . . , �, using the prior definitions of r�′

and s�′ , we do the following two steps:

(1) Remove the block that bucket b contributes at time s�′ to queue i j , without
moving the times or placements of any of the other blocks.

(2) Insert a block into queue i j at the earlier time r�′ .

By Lemma 4.7, the effect of each iteration of Steps (1) and (2) will be to make Q(t)
i j

decrease by 1 or stay the same. Suppose that the �′th iteration of Steps (1) and (2)
causes Q(t)

i j
to decrease by 1. We shall now show that all subsequent iterations

of Steps (1) and (2) do not further decrease Q(t)
i j

. By Lemma 4.6, before the �′th
iteration, we have Q(t ′)

i j
≥ 2 for time steps s�′ < t ′ < t , and afterwards we have

Q(t ′)
i j

≥ 1. Now let’s consider any subsequent iteration of Steps (1) and (2), say, the
�′′th iteration. Step (1) may cause Q(t ′)

i j
to decrease by 1 for s�′′ < t ′ ≤ t ′′, for some

t ′′ > t ′; that is, before Step (1), it must be the case that Q(t ′)
i j

≥ 2, for s�′′ < t ′ < t ′′,
and after Step (1) we have Q(t ′)

i j
≥ 1, for s�′′ < t ′ < t ′′. Thus, immediately before

Step (2), we have Q(t ′)
i j

≥ 1, for s�′′ < t ′ < t ′′. By Lemma 4.5, Step (2) will cause
Q(t ′)

i j
to increase for each r�′′ < t ′ ≤ t ′′, and thus the values of Q(t ′)

i j
for r�′′ < t ′ < t

will be restored to how they were before the �′′th iteration. Therefore, the net effect

of all � iterations of Steps (1) and (2) is that Q(t)
i j

may decrease by 1 or stay the same.

Since Q(t)
i0

does not change, the sum Q(t)
i0

+ Q(t)
i j

either decreases by 1 or stays the
same.

By a similar analysis, we can show that if the number of arrivals at queue i0

before time step t decreases by 1 under the new cycle ordering, then Q(t)
i0

decreases
by 1 and Q(t)

i j
either increases by 1 or remains the same. As before, Q(t)

i0
+ Q(t)

i j
never

decreases by more than 1 decreases by 1 or remains the same.

Substituting the bound of Lemma 4.8 into (23) and simplifying, we find that (23)
is nonnegative, which completes the proof of Lemma 4.2. As noted earlier, the rest
of the proof of Theorem 2.4 follows from (13) and (14) applied to RCD.

672 J. S. VITTER AND D. A. HUTCHINSON

5. Experimental Results

In this section, we describe the results of simulation experiments designed to in-
vestigate the behavior of the different allocation disciplines outlined in Section 2.
As the theoretical analysis provides useful guidance primarily when D is large,
we were especially interested in the performance for smaller, practical numbers of
disks. We conducted experiments with two types of input files: (1) randomly per-
muted, and (2) balanced, in that the buckets issue their blocks in turn (i.e., bucket
b(i+1)modS issues a block immediately after bucket bi). We also considered allowing
a bucket to issue multiple blocks in its turn, but this becomes “embarrassingly easy”
for the cyclic variants we favor in this article.

We constructed a simulation program in C++ that repeatedly executed the fol-
lowing general procedure:

(1) Create a “block” and assign it to one of the S buckets.

(2) Assign the block to a queue, depending on the bucket and the queue management
discipline in place.

(3) Every D(1 − ε) blocks on average, do the following:

(a) Remove the first block, if any, from each queue and “consume it.”
(b) Measure the total number of blocks in the queues and increment a corre-

sponding frequency histogram counter.

This basic procedure is repeated for each block that is generated. The collected data
was graphed using gnuplot.

Figures 5–7 show the memory usage frequency distributions for FRD, SRD,
RSD, and RCD for case (1), with the ε values 0.3, 0.2, and 0.1, 10 queues, 50
buckets, and 2 × 106 total blocks. Also shown (Figures 8–9) are the curves for
SRD, RSD and RCD when ε = 0.01 and ε = 0.001, respectively. We wait for
a period of time, 1000 write cycles in this case, for the system to reach a steady
state before beginning the measurements. No conditional consumption steps were
performed. The curves for SRD and RCD are nearly identical for ε values 0.01 to
0.3. RCD is noticeably better than RSD and FRD. FRD’s memory usage is worse
in all cases than those of SRD and RCD, and it could not be shown for ε = 0.01
since its memory consumption went off the scale of the graphs. The graphs indicate
that the mean and variance of all of the variants increase with decreasing ε, but for
FRD more so than for SRD or RCD.

Figures 10–14 show the memory usage frequency distributions for case (2). RCD
performs better than the other variants.

6. Applications

While FRD is an elegant method to analyze, it is not ideal for use in sorting because
of the large amount of randomness required. In addition, as pointed out in Section 3,
it is theoretically nonoptimal for sorting because buckets can be distributed in an
unbalanced way across the disks. RCD is provably optimal and seems to be the
most efficient striping discipline in practice. Our analysis of RCD has subsequently
been applied, using the notion of duality, to optimal design and analysis of merge
sort for parallel disks [Hutchinson et al. 2005].

The FRD-based parallel disk simulation technique of Sanders et al. [2000] has
some practical constraints. Each block must be duplicated and each copy randomly

Distribution Sort with Randomized Cycling 673

FIG. 5. (Randomly permuted input file.) The distribution of memory usage is shown for each variant
when ε = 0.3. FRD is slightly worse (i.e., tends to need more memory) than the other variants, which
have similar performance.

FIG. 6. (Randomly permuted input file.) The distribution of memory usage is shown for each variant
when ε = 0.2. FRD is slightly worse (i.e., tends to need more memory) than the other variants. All
the variants tend to use more memory than when ε = 0.3 (Figure 5).

674 J. S. VITTER AND D. A. HUTCHINSON

FIG. 7. (Randomly permuted input file.) The distribution of memory usage is shown for each variant
when ε = 0.1. FRD is slightly worse (i.e., tends to need more memory) than the other variants. All
the variants tend to use more memory than when ε is larger (Figures 5–6).

FIG. 8. (Randomly permuted input file.) The distribution of memory usage is shown for each variant
except FRD when ε = 0.01. The consumption of FRD was much larger for this case and goes off the
graph to the right. All of the variants tend to use more memory than when ε is larger (Figures 5–7).

Distribution Sort with Randomized Cycling 675

FIG. 9. (Randomly permuted input file.) The distribution of memory usage is shown for each variant
except FRD when ε = 0.001. The consumption of FRD was much larger for this case and goes off the
graph to the right. All of the variants tend to use more memory than when ε is larger (Figures 5–8).

FIG. 10. (Round-robin bucket order.) The distribution of memory usage is shown for each variant
when ε = 0.3.

676 J. S. VITTER AND D. A. HUTCHINSON

FIG. 11. (Round-robin bucket order.) The distribution of memory usage is shown for each variant
when ε = 0.2. All of the variants tend to use more memory than when ε is larger (Figure 10).

FIG. 12. (Round-robin bucket order.) The distribution of memory usage is shown for each variant
when ε = 0.1. All of the variants tend to use more memory than when ε is larger (Figures 10–11).

Distribution Sort with Randomized Cycling 677

FIG. 13. (Round-robin bucket order.) The distribution of memory usage is shown for each variant
except FRD when ε = 0.01. The consumption of FRD was much larger for this case and goes off the
graph to the right. All of the variants tend to use more memory than when ε is larger (Figures 10–12).

FIG. 14. (Round-robin bucket order.) The distribution of memory usage is shown for each variant
except FRD when ε = 0.001. The consumption of FRD was much larger for this case and goes off
the graph to the right. All of the variants tend to use more memory than when ε is larger (Figures
10–1311111).

678 J. S. VITTER AND D. A. HUTCHINSON

relocated. Moreover, in order for the analysis to be valid, before each write of a
block, all the copies of the block must be re-mapped using a directory structure, and
the old copies must be deallocated on disk. This rather severe restriction is made
in order to guarantee that any two writes are to independent disks.

A more practical simulation technique was proposed in Sanders et al. [2000] using
the notion of randomized striping (which is the allocation discipline of RSD). We
conjecture that a similar alternative, based instead upon a modification of RCD,
will also work. Neither method has been analyzed theoretically for the general case
of simulating an arbitrary multiheaded disk algorithm by using instead a collection
of D separate disks. We conjecture that they do allow optimal simulation.

The RCD technique can be generalized to simulate an important class of multi-
headed disk algorithms. This class includes all multipass algorithms, by which we
mean that the algorithms read and write the data in passes; all of the data elements
are read and written once before being read and written a second time, and so on.
Duplication is done as before, but the duplicate blocks do not need to be individu-
ally remapped to a random disk. Instead, the ordering of the D blocks in each stripe
is randomly scrambled (thus allowing the algorithm to take advantage of locality
optimizations on the disks for extra speed). The analysis is an extension of the
analysis of Section 4. The notion of “bucket” is replaced by the notion of “track”.

THEOREM 6.1. Multipass algorithms for the multiheaded disk I/O model can
be emulated on independent disks with only a constant factor slowdown in terms
of I/O cost.

The multipass property is present in a large number of EM algorithms, including
those based upon the data stream model of computation [Henzinger et al. 1998].
An even simpler approach with no duplication of blocks is possible for the impor-
tant subclass of the class of multipass algorithms that are based upon the stream
paradigms of distribution and distribution sweeping [Vengroff and Vitter 1995;
Vitter 2001] and, by duality, merging [Hutchinson et al. 2005; Vitter 2001]. For
these algorithms, the RCD method works almost exactly as described for distribu-
tion sort, and the same analysis applies. No duplicate copies of blocks are needed.
In particular, algorithms based upon the distribution and merge paradigms can
be optimally extended from a single disk to parallel disks without duplication of
blocks. Relevant algorithms include orthogonal line segment intersection, all near-
est neighbors of a point set and a variety of other geometric algorithms [Goodrich
et al. 1993], trapezoidal decomposition, triangulation of a simple polygon, red-blue
line intersection in GIS [Arge et al. 2007], and spatial join [Arge et al. 1998].

7. Conclusions

In this article we showed that randomized cycling distribution sort RCD is theoret-
ically optimal for sorting with parallel disks, and it is practical for implementation.
We conclude by mentioning some open problems.

We observed that the distribution sort variants SRD and RSD performed similarly
to RCD in our experiments. We conjecture that they have similar behavior in general,
but proof of their I/O complexity is open.

There is an interesting relation between hashing with linear probing [Knuth 1998]
and the total queue size of SRD. For the case in which there are S = D(1 − ε)

Distribution Sort with Randomized Cycling 679

buckets and each of the S buckets issues one block per time step, which seems to
be a “hard” instance of SRD, the expected queue size in the limit is precisely the
average number of probes for all S possible successful searches in hashing with
linear probing, where the hash table size is D and the number of inserted elements
is S. Asymptotically, this quantity is (S/2)

(
1+1/(1−S/D)

) = 1
2

D(1−ε)(1+1/ε).
This correspondence suggests that the I/O performance of SRD may also be optimal
up to a constant factor for any fixed ε > 0.

In our analysis of RCD, the configuration of a single bucket was modified while
the configurations of the other buckets were fixed. An interesting question is whether
a more general approach, in which the configurations of the other buckets are
allowed to vary over all the possible configurations, would work for the analysis of
SRD or RSD. We conjecture that the answer is yes.

We also conjecture that a striped variant of RCD admits an optimal general
simulation of a multiheaded disk algorithm on the parallel disk model.

ACKNOWLEDGMENTS. The authors would like to thank Rakesh Barve and Peter
Sanders for interesting discussions about the SRD and RSD algorithms. We also
appreciate the feedback from the anonymous referees.

REFERENCES

AGGARWAL, A., AND VITTER, J. S. 1988. The Input/Output complexity of sorting and related problems.
Commun. ACM 31, 9, 1116–1127.

ARGE, L., PROCOPIUC, O., RAMASWAMY, S., SUEL, T., AND VITTER, J. S. 1998. Scalable sweeping-based
spatial join. In Proceedings of the International Conference on Very Large Databases (New York), vol. 24.
Morgan, Kaufmann, San Francisco, CA, 570–581.

ARGE, L., VENGROFF, D. E., AND VITTER, J. S. 2007. External-memory algorithms for processing line
segments in geographic information systems. Algorithmica. to appear.

ARGE, L., AND VITTER, J. S. 2003. Optimal dynamic interval management in external memory. SIAM J.
Comput. 32, 6, 1488–1508.

BARVE, R. D., GROVE, E. F., AND VITTER, J. S. 1997. Simple randomized mergesort on parallel disks.
Parall. Comput. 23, 4, 601–631.

BARVE, R. D., AND VITTER, J. S. 2002. A simple and efficient parallel disk mergesort. ACM Trans.
Comput. Syst. 35, 2 (Mar./Apr.), 189–215.

DEHNE, F., DITTRICH, W., AND HUTCHINSON, D. 2003. Efficient external memory algorithms by simu-
lating coarse-grained parallel algorithms. Algorithmica 36, 87–122.

DEHNE, F., HUTCHINSON, D., AND MAHESHWARI, A. 2002. Bulk synchronous parallel algorithms for the
external memory model. Theory Comput. Syst. 35, 567–597.

DUBHASI, D., AND RANJAN, D. 1998. Balls and bins: A study in negative dependence. Rand. Struct.
Algor. 13, 99–124.

GOODRICH, M. T., TSAY, J.-J., VENGROFF, D. E., AND VITTER, J. S. 1993. External-memory computational
geometry. In Proceedings of the IEEE Symposium on Foundations of Computer Science. (Palo Alto, CA)
IEEE Computer Society Press, Los Alamitos, CA, 714–723.

HENZINGER, M. R., RAGHAVAN, P., AND RAJAGOPALAN, S. 1998. Computing on data streams. Tech.
Rep. 1998–011, Digital Equipment Corporation Systems Research Center, Palo Alto, CA.

HUTCHINSON, D. A., SANDERS, P., AND VITTER, J. S. 2005. Duality between prefetching and queued
writing with parallel disks. SIAM J. Comput. 34, 6, 1443–1463.

KNUTH, D. E. 1998. Sorting and Searching, 2nd ed. The Art of Computer Programming, vol. 3. Addison-
Wesley, Reading, MA.

NODINE, M. H., AND VITTER, J. S. 1993. Deterministic distribution sort in shared and distributed memory
multiprocessors. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures. (Velen,
Germany), ACM, New York, 120–129.

NODINE, M. H., AND VITTER, J. S. 1995. Greed Sort: An optimal sorting algorithm for multiple disks. J.
ACM 42, 4 (July), 919–933.

680 J. S. VITTER AND D. A. HUTCHINSON

SANDERS, P., EGNER, S., AND KORST, J. 2000. Fast concurrent access to parallel disks. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms. (San Francisco, CA). ACM, New York, 849–858.

TPIE 1999. TPIE user manual and reference. The manual and software distribution are available on the web
at http://www.cs.duke.edu/TPIE/.

VENGROFF, D. E. 1994. A transparent parallel I/O environment. In Proceedings of the DAGS Symposium
on Parallel Computation (Hanover, NH). 117–134.

VENGROFF, D. E., AND VITTER, J. S. 1995. I/O-efficient scientific computation using TPIE. In Proceedings
of the IEEE Symposium on Parallel and Distributed Processing. IEEE Computer Society Press, Los
Alamitos, CA (San Antonio, TX), 74–77.

VITTER, J. S. 2001. External memory algorithms and data structures: Dealing with MASSIVE DATA.
ACM Computing Surveys 33, 2 (June), 209–271.

VITTER, J. S., AND FLAJOLET, P. 1990. Average-case analysis of algorithms and data structures. In
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van Leeuwen,
Ed. Elsevier and MIT Press, Chap. 9, 431–524.

VITTER, J. S., AND SHRIVER, E. A. M. 1994. Algorithms for parallel memory I: Two-level memories.
Algorithmica 12, 2–3, 110–147.

RECEIVED SEPTEMBER 2000; REVISED DECEMBER 2004; ACCEPTED NOVEMBER 2005

Journal of the ACM, Vol. 53, No. 4, July 2006.

