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1. Introduction

Computer memory is often modeled as a two-level memory consisting of a
relatively small but fast cache (such as internal memory) and a relatively large
but slow memory (such as disk storage). Such a two-level model of memory
corresponds to the client-server paradigm of computing, in which the client is the
database user (or application) and the server manages the database; we can think
of the client workstation as a cache, and the server as slow memory. It also
models on-chip versus off-chip memory in VLSI systems.
The pages requested by an application must be in cache before computation

can proceed. In the event that a requested page is not in cache, a page fault
occurs and the application has to wait while the page is fetched from slow
memory to cache. The method of fetching pages into cache only when a page
fault occurs is called demand fetching. The problem of cache replacement or
caching is to decide which pages to remove from cache to accommodate the
incoming pages.
In many systems and database applications, the user spends a significant

amount of time processing a page, and the computer and the I/O system are
typically idle during that period. The computer can use this time to predict which
page the user will request next, and fetch that page into cache (if it is not already
in cache) in the background. When the user requests the page, it is available in
cache, and the user perceives a faster response time. Prefetching is a method of
improving response time performance by anticipating future user requests, and
getting the necessary data into cache in the background before an explicit request
is made by the application. The primary action in prefetching is predicting which
page will be next requested by the user. Related issues are the timing of prefetch
requests (so that the data arrives before it is requested) and cache replacement
(deciding which pages to evict from cache to accommodate the prefetched
pages).
In many hypertext and iterative database systems, there is often sufficient time

between user requests to prefetch as many pages as wanted, limited only by the
cache size k. We refer to prefetching in this setting as pure prefetching, and we
restrict our analysis in this paper to pure prefetching. Pure prefetching is an
important model that helps in analyzing the benefits of fetching pages in the
background. Pure prefetching is mathematically elegant since it isolates the
prediction component of prefetching from the issue of cache replacement. At the
same time, pure prefetchers can be converted into general prefetchers using
techniques described in Curewitz et al. [1993]. We refer to this issue again in
Sections 6 and 7.
Prior work on prefetching has been primarily empirical. The UNIX system

uses a simple scheme for prefetching that is optimized for sequential file access;
it anticipates and prefetches page i 1 1 when a request is made for page i.
Current database systems perform prefetching using such sequential prefetching
techniques derived from older virtual memory prefetchers. The I/O bottleneck is
seriously impeding performance in large-scale databases, and the demand for
improving response time performance is growing [Brady 1986]. The older virtual
memory-based prefetchers are inadequate for newer object-oriented and hyper-

772 J. S. VITTER AND P. KRISHNAN



text applications, and this has stimulated renewed interest in developing im-
proved algorithms for prefetching.1

In this paper, we give the first provable theoretical bounds on the performance of
prediction algorithms for prefetching. The first important point in our analytical
study of prefetching is to develop a framework for proving the goodness of
prefetchers. We say that an algorithm is online if it must make its decisions based
only on the past history. An offline algorithm can use the knowledge of the
future. Any implementable algorithm for caching or prefetching must clearly be
online. The notion of competitiveness introduced by Sleator and Tarjan [1985]
determines the goodness of an online algorithm by comparing its performance to
that of offline algorithms. An online caching or prefetching algorithm is c-
competitive if there exists a constant b such that, for any sequence of page
requests, the number of page faults the online algorithm incurs is at most b more
than c times the number of faults of an optimal offline algorithm. Competitive
algorithms for caching are well examined in the literature.2

It is not reasonable to expect algorithms to be competitive in this sense for
prefetching. An optimal offline algorithm for prefetching will never fault if it can
prefetch at least one page every time. In order to be competitive, an online
algorithm would have to be an almost perfect predictor for any sequence, which
seems intuitively impossible.
We resolve this matter by considering powerful probabilistic models. In our

main model, the sequence of page requests is assumed to be generated by a
labeled deterministic finite state automaton with probabilities on the transitions
(a probabilistic FSA or Markov source). In the second model, we consider the
special case of mth order Markov sources, in which the states correspond to the
contexts of the previous m page requests. We evaluate our prefetching algorithm
relative to the best online algorithm that has complete knowledge of the structure
and transition probabilities of the Markov source. For convenience, our normalized
measure of performance is the page fault rate, which is defined to be the total
number of page faults divided by the total number of page requests.
Prefetching is a learning problem that involves predicting the page requests of

the user. Our novel approach is to use optimal data compression methods to do
optimal prefetching. Our motivation is recent work in computational learning
theory [Blumer et al. 1987, 1989; Board and Pitt 1990], which has shown that
prediction is synonymous with generalization and data compression. Our intu-
ition in this paper is that, in order to compress data well, one has to be able to
predict future data well, and hence a good data compressor should also be a
good predictor: If a data compressor expects a certain character to be next with a
very high probability, it will assign that character a relatively small code. In the
end, if the net code length is small, then the predictions of the data compressor
must have been good. Independently to our work, there is work in the informa-
tion theory community on algorithms for binary sequences (corresponding to a
universe of two pages) that make one prediction for the next page (correspond-

1 See, for example, Chen and Baer [1992], Laird [1992], Mowry et al. [1992], Palmer and Zdonik
[1991], and Rodgers and Li [1992].
2 See, for example, Borodin et al. [1991], Fiat et al. [1991], Irani et al. [1992], Karlin et al. [1992],
McGeoch and Sleator [1989], and Sleator and Tarjan [1985].
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ing to cache size k 5 1);3 the binary case is not applicable to our prefetching
scenario.
In this paper, we adapt an optimal data compression method to get an optimal

pure prefetching algorithm for each of our models. Our models and results are
summarized in the next section. In Section 3, for our main Markov source model,
we apply a character-by-character version of the Ziv–Lempel data compression
algorithm [Ziv and Lampel 1978]. In Section 4, we compare our online algorithm
to the best algorithm that has full knowledge of the Markov source. We show
that the page fault rate of our algorithm converges for almost all page request
sequences to this best algorithm’s page fault rate. The trick is to show that good
compression results in good prefetching. In Section 5, we show faster conver-
gence to optimality for mth order Markov sources. In Section 6, we discuss issues
related to non-pure prefetching, and conclude in Section 7.

2. Page Request Models and Main Results

In keeping with the analogy between prefetching and text compression, we use
the terms “page” and “character” interchangeably. We denote the cache size by k
and the total number of different pages (or alphabet size) by a. The logarithm of
x to the base 2 is denoted by lg x, the natural logarithm of x is denoted by ln x,
and the empty string is denoted by l.

Definition 2.1 [Gallager 1968]. We define a probabilistic finite state automaton
(probabilistic FSA) as a quintuple (S, A, g, p, z0), where S is a finite set of states
with uS u 5 s, A is a finite alphabet of size a, g is a deterministic “next state”
function that maps S 3 A into S, p is a “probability assignment function” that
maps S 3 A into [0, 1] with the restriction that i[A p( z, i) 5 1 for all z [ S,
and z0 [ S is the start state. A probabilistic FSA when used to generate strings
is called a Markov source. A Markov source M is ergodic if it is irreducible and
aperiodic, meaning that each state can reach every other state, and the gcd of the
possible recurrence times for each state is 1.

Our main model assumes the source to be a Markov source. A general Markov
source models typical object-oriented and hypertext applications well, where the
request sequences are generated by traversing links between objects; for exam-
ple, a hypertext user moves through a document traversing hyperlinks. The
Markov source model is not to be confused with a Markov chain on the page
request sequence, which corresponds to a first-order model. A Markov source
can have infinite order and is significantly more general. It has served well in
modeling text for data compression purposes, for example.
For such a Markov source M we introduce the notion of expected fault rate FM,

a concept intuitively similar to entropy in data compression. More specifically, FM
is the best possible expected fault rate achievable by any online prefetching
algorithm, even one with full knowledge of the “next state” function and the
transition probabilities of the Markov source M. With a slight abuse of notation,
we denote by M the best possible prefetching algorithm (which has full knowl-
edge of the Markov source M). When the source is in state z, the optimal

3 See, for example, Blackwell [1956], Cover and Shenhar [1977], Feder et al. [1992], and Hannan
[1957].
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prefetcher M puts into cache the k pages having the k maximum probabilities,
which minimizes the probability that a page fault will occur during the next page
request. This minimum fault probability, weighted by the probability of being in
state z, summed over all states z, gives us FM. This is formalized later in
Definition 4.
We adapt a character-by-character version of the Ziv–Lempel [1978] data

compressor to get our optimal prefetcher 3. Theorems 2.2 and 2.3 below are our
main results.

THEOREM 2.2. Let M be a Markov source. The expected page fault rate achieved
by 3 approaches FM, as the page request sequence length n 3 `; the difference is
O(1/=log n). If M is ergodic, we get not only convergence of the mean but also
convergence almost everywhere: for a finite size dictionary data structure, 3’s page
fault rate approaches FM arbitrarily closely for almost all page request sequences s of
length n, as n 3 `.

We can also show that 3 is optimal in the limit, even if we compare 3 to the
best probabilistic FSA prefetcher tuned individually for each page request
sequence s of length n.

THEOREM 2.3. Let M be an ergodic Markov source. For any page request
sequence s of length n, let Fs be the best fault rate achievable by a probabilistic FSA
with at most s states applied to s. For a finite size dictionary data structure, 3’s page
fault rate approaches Fs arbitrarily closely for almost all page request sequences s,
as n 3 `.

The convergences in Theorems 2.2 and 2.3 also hold when we let the number
of states s and the alphabet size a get arbitrarily large, as long as n, s, and a tend
to ` in that relative order.
An interesting case is when the Markov source is stationary, and the start state

is chosen randomly according to steady state probabilities of the states. In this
case, since the start state is random, it is unclear how a “best algorithm” M (with
full knowledge of the source M) would operate! However, since our prefetcher 3
is optimal when M knows the start state (which makes M “stronger”), 3 is still
optimal even when the start state is random.

COROLLARY 2.4. Theorems 2.2 and 2.3 hold even when the Markov source M is
stationary.

Our bound on the convergence rate of 3 in Theorem 2.2 is slow; the page fault
rate of 3 approaches optimal as O(1/=log n), where n is the length of the page
request sequence. However, the Ziv–Lempel encoder works well in practice for
data compression. Purely as a means for comparison, we consider a second
less-general model in which the source is assumed to be mth order Markov; in
this case, the rate of convergence is provably faster. In such sources, the
probability distribution of the next page request (or character) is dependent only
on the previous m page requests (characters). We can therefore build a finite
state machine for the source, the states labeled by m-contexts and the transitions
denoting the changes from one m-context to the next. The state structure of the
source is hence known. In this situation, we develop a simple algorithm } that
collects statistics on the transitions that converge exponentially fast to the actual
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transition probabilities. The fault rate of } converges polynomially fast to the
expected fault rate of the source.

THEOREM 2.5. If the source is an ergodic mth order Markov source, then the
expected page fault rate of } is within an additive factor of O(1/=n) from the
expected page fault rate of the source, where n is the length of the page request
sequence.

The difficulty of the main model (Theorems 2.2 and 2.3) as opposed to the
mth order model (Theorem 2.5) is that the state structure of the source is
unknown in the main model and the problem of prefetching is thus significantly
harder than simply estimating transition probabilities.

3. A Prefetching Algorithm Based on Ziv–Lempel

In this section, we develop our prefetching algorithm 3 based on a character-
based version % of the Ziv–Lempel algorithm for data compression. The original
Ziv–Lempel algorithm [Ziv and Lempel 1978] is a word-based data compression
algorithm. The Ziv–Lempel encoder breaks the input string into blocks of
relatively large length n, and it encodes these blocks using a block-to-variable
code. Let x0 be the empty string l. The encoder parses each block of size n in a
greedy manner into distinct substrings x1, x2, . . . , xc with the following property:
For each j $ 1, substring xj without its last character is equal to some previous
substring xi, where 0 # i , j. Substring xj is encoded by the value i, using lg j
bits, followed by the ASCII encoding of the last character of xj, using lg a bits.
Arithmetic coding [Howard and Vitter 1992; Langdon 1984; Witten et al. 1987]

is a coding technique that achieves a coding length equal to the entropy of the
data model. Sequences of probability p are encoded using lg(1/p) 5 2lg p bits.
Arithmetic coding can be thought of as using “fractional” bits, as opposed to the
suboptimal Huffman coding in which all code lengths must be integral. The
Ziv–Lempel encoder can be converted from a word-based method to a character-
based algorithm % by building a probabilistic model that feeds probability
information to an arithmetic coder [Bell et al. 1990; Langdon 1983], as explained
in the example below. It has been shown that the coding length obtained in this
character-based approach is at least as good as that obtained using the word-
based approach [Bell et al. 1990; Howard and Vitter 1992; Langdon 1983].
Hence, the optimality results in Ziv and Lempel [1978] hold without change for
the character-based approach.

Example 3.1. Assume for simplicity that our alphabet is {a, b}. We consider
the page request sequence “aaaababaabbbabaa . . . .” The Ziv–Lempel en-
coder parses this string as “(a)(aa)(ab)(aba)(abb)(b)(abaa) . . . .” Each sub-
string in the parse is encoded as a pointer followed by an ASCII character.
In particular, the match “aba” of the seventh substring “abaa” is encoded
using lg 6 bits with a value 4, since the match “aba” is the fourth substring, and
the last character “a” is encoded using lg 2 bits, since the alphabet size a is 2.
In the character-based version % of the Ziv–Lempel encoder, a probabilistic

model (or parse tree) is built for each substring when the previous substring
ends. The parse tree at the start of the seventh substring is pictured in Figure 1.
There are five previous substrings beginning with an “a” and one beginning with
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a “b.” The page “a” is therefore assigned a probability of 5/6 at the root, and “b”
is assigned a probability of 1/6 at the root. Similarly, of the 5 substrings that
begin with an “a,” one begins with an “aa” and three begin with an “ab,”
accounting for the probabilities of 1/5 for “a” and 3/5 for “b” at node x, and so
on. Any sequence that leads from the root of the model to a leaf traverses a
sequence of probabilities p1, p2, p3, . . . whose product ) i pi equals 1/6. The
arithmetic coder encodes the sequence with i lg(1/pi) 5 lg(1/) i pi) 5 lg 6 bits.
Note that the unnamed transition with probability 1/5 at node x will never be
traversed, and having this arc can only increase the code length (since this
probability of 1/5 could otherwise be distributed at node x between “a” and “b”
increasing their respective probabilities and reducing their code lengths). Hence,
the encoding length using the character-based approach % will be at least as good
as that obtained using the word-based Ziv–Lempel algorithm. e

Our prefetcher 3 is based on the character-based version % of the Ziv–Lempel
encoder as follows: At the start of each substring, 3’s current node is set to be
the root of %’s parse tree. (See Figure 1.) Before each page request, 3 prefetches
the pages with the top k estimated probabilities as specified by the transitions out
of its current node. On seeing the actual page requested, 3 resets its current
node by walking down the transition labeled by that page and gets ready to
prefetch again. In addition, if the page is not in memory, a page fault is
generated. When 3 reaches a leaf, it fetches in k pages at random. (Our
analysis of the optimality of prefetcher 3 presented in Section 4 is indepen-
dent of the strategy used for prefetching while at a leaf. In particular, not
prefetching while at a leaf, or using the statistics at the root for prefetching
while at a leaf which is comparable to the Welsh variation of the Ziv–Lempel
algorithm for data compression, are valid variants of prefetcher 3.) The next
page request ends the substring, and 3 resets its current node to be the root.
Updating the model can be done dynamically while 3 traverses it. At the end
of n page requests, for some appropriately large n, 3 throws away its model
and starts afresh.
A pseudocode description of prefetcher 3 is given in Figure 2. The variable n

in the description of algorithm 3 in Figure 2 is a user-specified parameter that
determines the data structure restart time.

FIG. 1. The parse tree constructed by the character-based encoder % for Example 3.1.

777Optimal Prefetching via Data Compression



4. Analysis of our Prefetching Algorithm

Our analysis of the fault rate achieved by our prefetcher 3 builds on an analysis
of the compression rate achieved by the Ziv–Lempel character-based encoder %
that 3 is based on. In Section 4.1 we show that % is optimal in terms of
compression rate for almost all strings emitted by a Markov source. In Section
4.2, we build on Section 4.1 and show 3 is optimal in terms of prefetching for
almost all strings emitted by a Markov source.

4.1. BOUNDS ON COMPRESSION. We let s denote a (possibly infinite) se-
quence from the alphabet A, and we use the notation s i

j to denote the

FIG. 2. Algorithm 3. Pseudocode for pure prefetching.
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subsequence of s starting at the ith character up to and including the jth
character; in particular s1

n denotes the first n characters of s. For convenience,
we use pz,i to denote p( z, i), g( z, s1

n) to denote the state reached by a
probabilistic FSA when processing string s1

n starting in state z, and Pr( z, ,) to
denote the probability that the source M is in state z after emitting , characters.

Definition 4.1.1 [Gallager 1968]. Let M be a Markov source. The best possi-
ble average encoding length per character of M for input sequences of length n is
given by

HM~n! 5
1

n
O
z[S

S O
,50

n21

Pr~ z, ,!D S O
i

pz,i lg
1

pz,iD .
If we take the limit of HM(n) as n 3 `, we get the entropy HM of M.
We now examine the performance of the Ziv–Lempel character-based encoder

% under our probabilistic model of sources and coders. Note that an arithmetic
coder can use a probabilistic FSA as a model to perform data compression, and
hence probabilistic FSAs can be considered as encoders.

Definition 4.1.2. Given an encoder C, we define C’s compression rate (or
number of output bits per character) of s1

n by

CompressionC,n~s1
n! 5

L~ y1
n!

n
, (1)

where L( y1
n) is the length of C’s encoding of s1

n. Let M(s) be the set of all
probabilistic FSAs with uA u 5 a and uS u # s. We define CompressionM(s),n(s1

n)
to be minC[M(s){CompressionC,n(s1

n)}.
In particular, if we use a Markov source M to generate the sequence s1

n and
also to encode s1

n (via arithmetic coding), the average compression rate achieved
is equal to the entropy of M; that is,

E~CompressionM,n! 5 HM~n! . (2)

The definitions in Definition 4.1.2 above are similar to those of Ziv and
Lempel [1978], except that they define M(s) to be a class of “information
lossless” nonprobabilistic FSA encoders, use r in place of Compression, and use
n lg a in place of n in (1) to get a ratio of output length to input length.
We generalize Ziv and Lempel’s main result [Ziv and Lempel 1978] to our

model M(s) of probabilistic FSAs, using an iterative analysis based on arithmetic
coding, to get the following theorem:

THEOREM 4.1.3. The compression rate of % on s1
n is no worse than the best

probabilistic FSA in the limit as n 3 `. In particular,

Compression%,n~s1
n! # CompressionM(s),n~s1

n! 1 d~n! ,

where d~n! 5 OS 1

log nD .
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To prove Theorem 4.1.3, we first prove some facts about arithmetic coding and
the way the character-based encoder % works. The first step is to show a lower
bound on CompressionM(s),n(s1

n), for which we need the following lemmas.

LEMMA 4.1.4. Suppose that s1
n can be parsed into c “prefix-free” substrings, that

is, where no substring is a prefix of another. Then we have

CompressionM(s),n~s1
n! $

c

n
lg
c

s2
.

PROOF. The working of an arithmetic coder using a probabilistic FSA as its
model can be explained in the following way: The arithmetic coder associates a
unit interval [0, 1] with each state of the model. This interval is partitioned into
distinct subintervals, one per character, the size of the subinterval associated with
a character proportional to the probability of its transition out of the state. Any
string that takes the coder from state x to state x9 of the model defines implicitly
a subinterval of the original [0, 1] interval at x; also, this subinterval uniquely
characterizes the string. The size of this subinterval is clearly the product of the
probabilities of the transitions taken by the arithmetic coder while processing the
string and all the arithmetic coder’s output has to do is to identify this
subinterval. To identify a subinterval of length u, an arithmetic coder has to
output at least lg(1/u) 5 2lg u bits; for more details, see Howard and Vitter
[1992], Langdon [1984], and Witten et al. [1987]. As an example, consider the
probabilistic FSA of Figure 1 being used as a model by an arithmetic coder.
Starting at node x, the string “ba” would cause the interval to shrink by a factor
of 3/5 from [0, 1] to [0.2, 0.8] and then by a factor of 1/3 from [0.2, 0.8] to [0.2,
0.4]. To identify “ba,” which is associated with the interval [0.2, 0.4], the
arithmetic coder needs to output at least 2lg(0.4 2 0.2) bits (which is the same
as 2lg((3/5)(1/3))).
It is clear that if there are c9 distinct substrings processed in which M starts

from state x and ends in state x9, these c9 substrings define c9 distinct
subintervals of the original [0, 1] interval at x. If these c9 substrings are such that
no one is a prefix of another, the subintervals corresponding to them are
nonoverlapping, and the sum of the lengths of these subintervals is at most 1. By
convexity arguments, for these c9 substrings, the arithmetic coder has to output
an average of at least lg c9 bits per substring, giving a total output length of at
least c9 lg c9 bits for these substrings.
To calculate the output length of M on s1

n, we can trace s1
n through M and

sum up the output lengths for each substring in the parsing of s1
n. If s1

n can be
parsed into c distinct substrings, no one being a prefix of another, by convexity
arguments the code length is minimized when the c substrings are distributed
equally over the s2 state pairs ( x, x9), where x is the state of M when the
substring is about to be processed and x9 is the state of M after the substring is
processed. Substituting c9 5 c/s2 gives us the desired bound. e

The internal path length of a tree is defined as the sum over all nodes of the
length of the path from the root to that node. For a parse tree, the internal path
length is the length of the original string. The branch factor of a tree is the
maximum number of children that any node of the tree can have. For a parse
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tree, the branch factor is the alphabet size a. We now show a lower bound on the
number of leaves in a general tree.

LEMMA 4.1.5. Any tree with c nodes and internal path length n has at least
c2/20n leaves.

PROOF. Let the branch factor of the tree be denoted by a. The case a 5 1 is
trivial, so let us assume that a $ 2. We call the number v feasible if there exists
a tree with v leaves that has at least c nodes and internal path length at most n.
For any feasible v, if we create a tree T with at least c nodes and v leaves and
with minimum internal path length, then T’s internal path length must be at most
n. This tree T must accommodate as many nodes as possible close to its root so
as to minimize its internal path length. Hence, T must consist of a “full tree part”
T9 sitting above a “strand part” S9. (See Figure 3.)
The full tree part T9 has c9 nodes and v leaves, where every internal node,

except possibly one, has a children. It follows that T9 has at most c9 # va/(a 2
1) # 2v nodes. The strand part S9 has the remaining c 2 c9 nodes distributed as
v strands, each strand of length u or u 1 1 and hanging from a leaf of T9. The
number c of nodes in T is the sum of the number of nodes in T9 and S9, which is
bounded by 2v 1 v(u 1 1) # vu 1 3v. Hence, we have

vu 1 3v $ c . (3)

The contribution of S9 to the internal path length of T is at least vu2/ 2, so we
have vu2/ 2 # n, which implies that vu # =2nv. Since v # n, we have 3v #
3=nv . Substituting these bounds into (3), we get =nv(=2 1 3) $ c, from
which it follows that v $ c2/ 20n. e

When the Ziv–Lempel encoder parses a string s1
n, it breaks up this string into

distinct substrings that are closed under the prefix operation; that is, if s9 is one
of the substrings in the parse, then every prefix of s9 is also one of the substrings
in the parse. Thus, the substrings are not “prefix-free” and Lemma 4.1.4 cannot
be applied directly to get a lower bound on CompressionM(s),n(s1

n). The sub-
strings in the parse can be denoted by a parse tree, like the one pictured in
Figure 1. The nodes of the parse tree correspond to the substrings in the parse,

FIG. 3. Structure of the tree for minimum internal path length, used in the proof of Lemma 4.1.5.
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and node i is a child of node j via the edge labeled “a” if substring j appended
with character “a” gives substring i. For two nodes in a parse tree, if neither is an
ancestor of the other, then neither can be a prefix of the other; in particular, the
leaves of a parse tree are “prefix-free.” In Lemma 4.1.6 below, we derive a lower
bound on the compression rate of s1

n for any finite state encoder by applying
Lemma 4.1.4 to the (prefix-free) leaves of the parse tree, stripping the leaves
away, then applying Lemma 4.1.4 to the (prefix-free) leaves of what remains,
stripping the leaves away, and so on. Lemma 4.1.5 ensures the number of leaves
at each stage is sufficient to get the desired bound.

LEMMA 4.1.6. For any string s1
n, we have

CompressionM(s),n~s1
n! $

1

n
~2c~s1

n!lg c~s1
n! 2 c~s1

n!lg n

2 c~s1
n!lg s2 2 c~s1

n!lg~20~2a 1 2!4!),

where c(s1
n) is the maximum number of nodes in any parse tree for s1

n.

PROOF. Consider a parse of s1
n into c distinct prefix-closed substrings. The

corresponding parse tree for s1
n has c nodes. Recall that the v leaves of this tree

(which are substrings of s1
n) are prefix-free; that is, no leaf is a prefix of another.

By Lemma 4.1.4, any encoder requires at least v lg(v/s2) bits to encode these
leaves (substrings). We can strip off this layer of leaves from the tree and
iteratively lowerbound the encoding length for the remaining nodes of the tree.
To analyze this iterative process, we consider the stripping procedure to work

in phases. Each phase involves the stripping of one or more complete layers of
leaves. For 1 # i # r, the ith phase ends when the number of nodes remaining
in the tree is ci # ci21/ 2. By definition, we have c0 5 c and cr 5 0. Let the
number of leaves at the end of the ith phase be v i. If we denote by v i, j the
number of leaves removed in the jth layer of stripping within phase i, then by
Lemma 4.1.4, the encoding length by any finite state encoder of the nodes
stripped off in the ith phase is at least

O
j

v i, j lg
v i, j

s2
$ O

j

v i, j lg
v i

s2
5 ~ci21 2 ci!lg

v i

s2
.

By Lemma 4.1.5, we have v i $ ci
2/ 20n. Hence,

CompressionM(s),n~s1
n! $

1

n
O
i51

r

~ci21 2 ci!lg
v i

s2

$
1

n
O
i51

r

~ci21 2 ci!lg ci
2 2

lg 20ns2

n
O
i51

r

~ci21 2 ci! . (4)

By the definition of when a phase ends, we have ci21 2 ci $ ci21/ 2. Since the
branch factor of the parse tree is the alphabet size a, we get the upper bound
ci21 2 ci # ci21/ 2 1 cia. This gives us

782 J. S. VITTER AND P. KRISHNAN



ci $
c0

~2a 1 2! i
.

Hence, we have

O
i51

r

~ci21 2 ci!lg ci
2 $ 2 O

i51

r

~ci21 2 ci!lg c0 2 2 lg~2a 1 2! O
i51

r

i~ci21 2 ci!

$ 2c lg c 2 2 lg~2a 1 2! z ~2c! , (5)

from simple telescoping. Substituting (5) into (4), we get

CompressionM(s),n~s1
n! $

1

n
~2c lg c 2 c lg n 2 c lg s2 2 c lg~20~2a 1 2!4!! .

(6)

Since (6) is true for any c, it is true when c 5 c(s1
n), the maximum number of

nodes in any parse tree for s1
n. e

We are now ready to present the proof of Theorem 4.1.3.

PROOF OF THEOREM 4.1.3. It has been shown in Ziv and Lempel [1978] that

Compression%,n~s1
n! #

c~s1
n! 1 1

n
lg~2a~c~s1

n! 1 1!! , (7)

where c(s1
n) is the maximum number of nodes in any parse tree4 for s1

n. It is
shown in Lempel and Ziv [1976] that

0 # c~s1
n! ,

n lg a

~1 2 en!lg n
, where lim

n3`

en 5 0. (8)

Theorem 4.1.3 is clearly true when c(s1
n) 5 o(n/lg n) since

Compression%,n(s1
n) ; 0 as n 3 `. When c(s1

n) 5 O(n/lg n), using the lower
bound for CompressionM(s),n(s1

n) from Lemma 4.1.6 and the upper bound for
Compression%(s1

n) from (7), we get by simple arithmetic that

Compression%,n~s1
n! 2 CompressionM(s),n~s1

n! 5 OS 1

log nD ,
for any fixed a and s. By (8), no more possibilities exist for c(s1

n) and the
theorem stands proved. e

If our Markov source M has t states, it clearly belongs to the set M(t), and M
compresses no better than the best automaton in M(s), s $ t, for all sequences
s1
n produced by it. Using this fact in Theorem 4.1.3, taking the expected value of
both sides of the inequality, and using expression (2), we get the following

4 This is not the definition of c(s1
n) in Ziv and Lempel [1978], but it is easy to verify that the proofs

in Ziv and Lempel [1978] also hold under this definition of c(s1
n).
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corollary that the encoder % compresses as well as possible, achieving the
entropy of the source M in the limit.

COROLLARY 4.1.6. Let M be a Markov source with s states. We have

E~Compression%,n! # HM~n! 1 d9~n! , where d9~n! 5 OS 1

log nD .
4.2. BOUNDS ON FAULT RATE. Along the lines of entropy in Definition 4.1.1,

we introduce the corresponding notion of the expected fault rate FM of a Markov
source M. It is the expected fault rate achieved in prefetching by the best
algorithm that fully knows the source. As mentioned before, with a slight abuse
of notation, we denote this best algorithm also by M. When the source is in some
state z, algorithm M puts into the cache those k pages having the maximum
probabilities for state z.

Definition 4.2.1. Let M be a Markov source. Let Kz(M) be a set of pages with
the maximum k probabilities at state z. Then the expected fault rate of M on
inputs of length n is defined by

FM~n! 5
1

n
O
z[S

S O
v50

n21

Pr~ z, v!D S O
i[y Kz(M)

pz,iD .
If we take the limit of FM(n) as n 3 `, we get the expected fault rate FM of M.
We now come to our goal: to show optimality of our prefetcher 3. The

challenge is to show the correspondence between converging to the entropy and
converging to the page fault rate.

Definition 4.2.2. Given a Markov source M and a sequence s generated by
M, we define the fault rate FaultP,n(s1

n) of prefetcher P to be the number of page
faults incurred by P on s1

n, divided by n.

It is easy to prove the following lemma that M (considered as a prefetcher) has
the best expected fault rate (namely, FM) among all prefetchers when the source
is M (considered as a Markov source).

LEMMA 4.2.3. Let M be a Markov source. The expected fault rate of any
(deterministic or randomized) online algorithm P on sequences of length n satisfies

E~FaultP,n! $ FM~n! .

Our first task is to show the following important theorem that the expected
fault rate of 3 is no worse than the best possible expected fault rate FM on
sequences of length n, as n 3 `. This restates in detail the first part of our first
main theorem (Theorem 2.2).

THEOREM 4.2.4. Let M be a Markov source. The expected page fault rate of 3
on sequences of length n is no worse than the expected page fault rate of the Markov
source in the limit as n 3 `. In particular,

E~Fault3,n! # FM~n! 1 e~n! , where e~n! 5 OS 1

Îlog nD .
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To prove the above theorem, we use the following lemmas. The first gives
a bound on the probability of page fault by 3 that is independent of the cache
size k.

LEMMA 4.2.5. Suppose that at time instant u the Markov source M is at state z
and the next page request is i with probability pi. We can think of M as a prefetching
algorithm with access to the probabilities pi. Suppose that our prefetcher 3 thinks
that the next page request will be i with probability ri. Let us denote the probability of
page fault by M and 3 on the next page request by fM and f3, respectively. We have,
independently of the cache size k,

f3 2 fM # O
i51

a

upi 2 r iu.

PROOF. Let A be the set of k pages that M chooses to put in cache, let B be
the set of k pages that 3 chooses to put in cache, and let C 5 A ù B. For any
set X of pages, let pX 5 i[X pi and let rX 5 i[X ri. Then, f3 2 fM 5 (1 2
pB) 2 (1 2 pA) 5 pA 2 pB 5 pA2C 2 pB2C. Let i51

a upi 2 riu 5 e. Then,
pA2C 5 rA2C 1 e1 and pB2C 5 rB2C 1 e2, where ue1u 1 ue2u # e. Since 3
chooses those k pages that have the top k probabilities amongst the ri, 1 # i #
a, we have rB2C $ rA2C. Hence, f3 2 fM 5 pA2C 2 pB2C # e1 1 e2 # ue1u
1 ue2u # e. e

The following lemma is well known; however, we reproduce it and its proof
from Amit and Miller [1990] here for the sake of completeness. The summation
on the right-hand side of the lemma is the Kullback–Leibler divergence of
(r1, . . . , ra) with respect to ( p1, . . . , pa).

LEMMA 4.2.6. Given two probability vectors (p1, . . . , pa) and (r1, . . . , ra), we
have

S O
i51

a U pi 2 r iU D 2 # 2 O
i51

a

pi ln
pi

r i
.

PROOF. From the fact that x ln x 2 x 1 1 $ 0 and that 3( x 2 1)2 # (4x 1
2)( x ln x 2 x 1 1), we get ux 2 1 u # =(4x 1 2)/3 =x ln x 2 x 1 1. Using
this inequality at each term of the left-hand side of the inequality to be proved,
and applying the Cauchy–Schwartz inequality, we obtain

S O
i51

a U pi 2 r iU D 2 5 S O
i51

a

r iU pi
r i

2 1U D 2

#
1

3 S O
i51

a S 4 pir i 1 2D r iD z S O
i51

a S p1r i lg pir i 2
pi

r i
1 1D r iD

5 2 O
i51

a

pi ln
pi

r i
.

The last step above follows from the fact that i51
a pi 5 i51

a ri 5 1. e
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LEMMA 4.2.7. Let i51
u gixi be a convex linear combination of the nonnegative

quantities xi; that is, gi $ 0 and i51
u gi 5 1. Then,

S O
i51

u

g iÎxiD 2 # O
i51

u

g ix i.

PROOF. The lemma follows from the square root function being concave. e

We are now ready to prove Theorem 4.2.4.

PROOF OF THEOREM 4.2.4. The basic idea of the proof is to examine the
behavior of the prefetcher 3 whenever the Markov source M is in a particular
state z. One big difficulty is coping with the fact that the optimal prefetcher M
always prefetches the same k pages at state z, whereas our prefetcher 3’s
probabilities may differ significantly each time M is in state z, since it is
context-dependent. To get over this problem, we map the differences over
contexts to the state z and weight by the probability of being in state z.
Let z0 be the start state and S be the set of states of the source M. In the

definition of HM(n) (Definition 4.1.1), note that Pr( z, ,) is just the sum of the
probabilities of all length , strings that bring M from z0 to z. Hence

5

HM~n! 5
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z HM~ z!

5
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z O
i51

a

pz,i lg
1

pz,i
, (9)

where Pr(s1
0) 5 1, g( z0, s1

0) 5 z0, and HM( z) is the average encoding length of
the source at state z and is equal to i51

a pz,i lg(1/pz,i).
Let Compression%

,11(s1
,, z, s,11

,11) be %’s encoding length for the (, 1 1)st
character s,11

,11, given that M is in state z after emitting the first , characters s1
,.

We have Compression%,n(s1
n) 5 (1/n) ,50

n21 Compression%
,11(s1

,, z, s,11
,11). We

would like to express E(Compression%,n) in a form similar to (9). If we specify
the first , characters and leave the (, 1 1)st character s,11

,11 unspecified, we get
the random variable Compression%

,11(s1
,, z) with mean i51

a pz,i lg(1/rs1,,i),
where rs1,,i . 0 is the probability with which % expects to see character i next
after having processed s1

, in which M ends up in state z. We have

E~Compression%
,11! 5 O

z[S
O
all s1

,

Pr~s1
,! z @g~z0, s1

,! 5 z# z E~Compression%
,11~s1

,, z!!

5 O
z[S

O
all s1

,

Pr~s1
,! z @g~z0, s1

,! 5 z# z O
i51

a

pz , i lg
1

rs1, , i
. (10)

Summing on , in (10), we get

5 We use the notation [relation] to denote 1 if relation is true and 0 if relation is false.
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E~Compression %,n! 5
1

n
O
,50

n21

E~Compression %
,11!

5
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z O
i51

a

pz,i lg
1

rs1
,,i

.

(11)

Combining (11) and (9), we get

E~Compression%,n! 2 HM~n!

5
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z O
i51

a

pz,i lg
pz,i

rs1
,,i

. (12)

Our goal is to express the quantity E(Fault3,n) 2 FM(n) in a way similar to
(12). By analogy to the expression (9) for HM(n), we have

FM~n! 5
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z FM~ z!

5
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z O
i[y Kz(M)

pz,i, (13)

where FM( z) is the expected page fault rate at state z of M, and Kz(M) is a set of
pages with the maximum k probabilities at state z.
By further analogy, we define Fault3

,11(s1
,, z, s,11

,11) be the 0–1 quantity
denoting whether 3 faults on the (, 1 1)st page request s,11

,11, given that M is in
state z after emitting the first , page requests s1

,. We have Fault3,n(s1
n) 5 (1/n)

,50
n21 Fault3

,11(s1
,, z, s,11

,11). If we specify the first , page requests and leave the
(, 1 1)st page request s,11

,11 unspecified, we get the random variable Fault3
,11(s1

,, z)
with mean i[y Kz(3,s1

,
) pz,i, where Kz(3, s1

,) is the set of k pages that 3 puts
into its cache after processing s1

, in which M ends up in state z. We have

E~Fault3
,11! 5 O

z[S
O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z E~Fault3
,11~s1

,, z!!

5 O
z[S

O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z O
i[y Kz(3,s1

,)

pz,i. (14)

Summing on , in (14), we get

E~Fault3,n! 5
1

n
O
,50

n21

E~Fault3
,11!

5
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z O
i[y Kz(3,s1

,)

pz,i. (15)
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Combining (13) and (15), we get

E~Fault3,n! 2 FM~n!

5
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @g~z0, s1

,! 5 z# z S O
i[yKz(3,s1

,)

pz,i 2 O
i[yKz(M)

pz,iD . (16)

From Lemma 4.2.5 and (16) we get

E~Fault3,n! 2 FM~n!

#
1

n
O
z[S

O
,50

n21 O
all s1

,

Pr~s1
,! z @ g~ z0, s1

,! 5 z# z O
i51

a

upz,i 2 rs1
,,iu. (17)

Let us denote the term i51
a upz,i 2 rs1,,iu in (17) by e( z, ,, s1

,), and let us
denote the term i51

a pz,i lg( pz,i/rs1,,i) in (12) by d( z, ,, s1
,). Lemma 4.2.6

bounds e( z, ,, s1
,) by =(ln 4)d( z, ,, s1

,). By three applications of Lemma 4.2.7
to (12) and (17) and by the bound on E(Compression%,n) 2 HM(n) from
Corollary 4.1.6, we get our result.
From Corollary 4.1.6 and the above discussion it follows that e(n) is bounded

by =(ln 4)d9(n) 5 O(1/=log n). e

The following theorem is the detailed version of the second part of our first
main theorem (Theorem 2.2):

THEOREM 4.2.8. Let the page request sequence s of length bn be generated by
an ergodic Markov source M. We have

Fault3,nb3 E~Fault3,n! , for almost all sequences s, as b3 ` ,

where, by Theorem 4.2.4, we have

lim
n3`

E~Fault3,n! 5 FM.

PROOF. Given a sequence s1
bn, we divide it into b blocks each of length n.

The net fault rate Fault3,nb(s) is i51
b Fault3,n(s(i21)n11

in )/b. Since we throw
away our data structures at the end of each block, each of the b random variables
Fault3,n, for 1 # i # b, depends only on the start state for each block, and our
result follows by the ergodic theorem [Gallager 1968]. e

The proof of Theorem 2.3 essentially deals with showing that Fs converges to
FM for almost all s as n 3 `. We call two prefetchers M1 and M2 distinct if
there exists some time instant u and some page request sequence s such that M1
and M2 prefetch different sets of pages at time u on s. Let Mopt(s) be a maximal
set of probabilistic FSAs with s states that are distinct when considered as
prefetchers and that are each optimal for some page request sequence. We now
see that uMopt(s) u is finite.

LEMMA 4.2.9. The cardinality of set Mopt(s) is dependent only on s, a, and k,
and is independent of n.
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PROOF. Let M9 [ Mopt(s) be the best prefetcher for some page request
sequence s1

n. Let us trace s1
n through M9, counting the number of times each

transition is traversed. It is clear that the strategy of M9 would be to prefetch at
each state those k pages corresponding to the k maximum count transitions out
of that state. Hence, M9 could be considered as a finite state predictor with at
most s states and k transitions out of each state corresponding to the k pages it
prefetches at that state. The number of distinct FSAs with at most s states and k
transitions out of each state is clearly dependent only on s, a, and k. e

PROOF OF THEOREM 2.3. To prove Theorem 2.3, we need to show that Fs

approaches FM for almost all page request sequences s. By Theorem 2.2, we
know that the fault rate of 3 approaches FM for almost all page request
sequences. Theorem 2.3 then follows by transitivity.
Let M 5 (Sm, A, gm, pm, zm) be the Markov source, and let M9 5 (Sm9, A,

gm9, pm9, zm9) [ Mopt(s). Let us define prefetcher X 5 (Sx, A, gx, px, zx) to be
a type of “cross product” of M and M9, where Sx 5 Sm 3 Sm9, gx(( zi, zj), a) 5
( gm( zi, a), gm9( zj, a)), and px(( zi, zj), a) 5 pm( zi, a). At state ( zi, zj) [ Sx,
X prefetches those k pages that M prefetches at zi [ Sm, that is, the pages with
the top k probabilities at ( zi, zj).
Let us consider a state z [ Sx. Given a sequence s of length n, let p̂z be the

number of times s reaches state z, divided by n, and let p̂z,i be the number of
times s takes transition i out of state z, divided by the total number of transitions
taken by s out of state z. From large deviation theory [Shwartz and Weiss 1995],
we know that Pr( up̂z 2 pzu . d) is exponentially small in n for d . 0, where n is
the length of the sequence. Similarly, from Shwartz and Weiss [1995], we see that
Pr( up̂z,i 2 pz,iu . d) is exponentially small in n. (The exponentially small
probability is of the form O(exp(2ad2n)), where a depends on the Markov
source.) Using Lemmas 4.2.5 and 4.2.8, we have

E~FaultX,n! 2 Fs $ Î2d (18)

with exponentially small probability. By the definition of fault rate and Lemma
4.2.3, it follows that E(FaultX,n) 5 FM(n) # E(FaultM9,n). Since by Lemma
4.2.9 uMopt(s) u is finite, it follows for any e . 0 that

FM~n! 2 Fs $ e

with exponentially small probability. Thus, Fs converges to FM for almost all
page request sequences s.
From Theorem 2.2, 3’s fault rate converges to FM for almost all page request

sequences s. By transitivity, 3’s fault rate converges to Fs for almost all page
request sequences s. e

5. The mth Order Markov Source Model

In this section, we prove Theorem 2.5 by describing our online prefetcher } for
the case when the source is an mth order Markov source. It is easier to prefetch
optimally under this model because we implicitly know the transitions between
the states of M. The only problem that remains is to estimate the probabilities on
the transitions.
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In the mth order Markov source, the probability distribution of the next page
request is dependent only on the previous m page requests. Our online algorithm
for prefetching } builds the finite state machine of the source, the states labeled
with m-contexts and the transitions denoting the unique change from one
m-context to the next. Since the state structure of the source is known, } is
always in the same state that the source M is in (except possibly for the first m
page requests). The prefetcher } estimates the probability of each transition to
be the frequency that it is taken. Algorithm } prefetches the pages with the top
k estimated probabilities at the current state.
From the probability theory of Markov chains and renewal processes [Karlin

and Taylor 1975], we know that at time instant u, E( upz 2 p̂zu) 5 O(1/=u), and
E( upz,i 2 p̂z,iu) 5 O(1/=u). Using this in conjunction with Lemma 4.2.5, we see
that the expected difference in fault between } and the source for time u is
O(1/=u). Since ( u51

n 1/=u)/n 5 O(1/=n), it follows that the expected
difference in fault rate between } and the source is O(1/=n), where n is the
length of the page request sequence.6 (This is in contrast to prefetcher 3
which converges to the optimal fault rate of the general Markov source as
O(1/=log n); see Theorem 2.2.) Theorem 2.5 follows. Knowing the structure of
the source thus allows us to prove a faster rate of convergence.

6. Using 3 in Practice and Nonpure Prefetching

In this paper, we have analyzed our prefetchers under the pure prefetching
model, in which we can prefetch as many pages as desired between any two page
requests, limited only by the size of the cache and without regard for timing
issues. As pointed out in Section 1, this provides for mathematical elegance by
isolating the prediction component of prefetching from the cache replacement
component. Analyzing a general prefetcher mathematically is extremely hard; in
fact it is a challenging open problem to design an online caching algorithm (with
no prefetching) under a Markov source that converges to the fault rate of the
optimal caching algorithm.
The primary emphasis of this paper has been to establish the close connection

between data compression and prediction and derive theoretically optimal
algorithms for prefetching. A natural question at this stage is to understand how
the algorithms perform in practice. Practical issues that arise in implementing the
prefetcher 3 (or any data compression-based prefetcher) are extensive and are
discussed in a separate publication [Curewitz et al. 1993] and a patent applica-
tion [Vitter et al. 1996]. In particular, it is shown in Curewitz et al. [1993] and
Vitter et al. [1996] how to tackle the issues arising from the limited space
available for storing the data structures of the prefetcher, and from the limited
time available to do the prefetching. The impact of melding good cache
replacement strategies with good pure prefetchers in order to get general
nonpure prefetchers, and how to deal with situations when the user’s page
request preempts prefetching are also studied. In Curewitz et al. [1993], signifi-
cant reductions in fault rate are demonstrated (e.g., a 15–70% reduction in fault
rate over using the least recently used heuristic for cache replacement) using

6 By using the large deviation theory used to prove Theorem 2.3, we can derive a similar “almost
everywhere” convergence result for mth order Markov sources.
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CAD application traces and traces obtained from the OO1 and OO7 bench-
marks. Many object-oriented traces and the CAD application traces show little or
no benefit from prefetching using the UNIX-based “next page prefetching”
heuristic. Interestingly, in practice, just as with data compression, the prediction
by partial match (PPM)-based approaches perform better for prefetching than
the Lempel–Ziv-based prefetcher 3. It would be interesting to see the effect of
such data compression-based prefetchers for hypertext-based applications, such
as Internet browsers where the caching is done at the client.
An interesting observation from Curewitz et al. [1993] is that for the prefetch-

ers built from data compressors, the first prediction is always the most signifi-
cant; in other words, there is little difference in practice between prefetching
only one page between any two user page requests and pure prefetching. This
suggests an interesting nonpure prefetching model to analyze that is somewhere
between pure prefetching and cache replacement.

7. Conclusions

Our starting point in this research was the intuition that prediction is synony-
mous with data compression, and that a good data compressor should be able to
predict well for prefetching purposes. We have constructed a universal prefetcher
3 based on the Ziv–Lempel data compression algorithm that prefetches opti-
mally in the limit for almost all sequences emitted by a Markov source. Some
practical issues regarding prefetching are addressed in Section 6.
In follow-on work, an alternative prefetching model analyzed in Krishnan and

Vitter [1996] allows the source to be worst-case, that is, determined by an
adversary. The performance of the proposed prefetcher is shown to be optimal in
the worst case with respect to the optimal finite-state prefetcher. The time per
prediction is also optimal. The model is along the lines of that proposed for the
a 5 2, k 5 1 case discussed in Feder et al. [1992]. The approach in Krishnan
and Vitter [1996] is necessarily different from those of this paper and Feder et al.
[1992] in order to handle the general case and additionally to perform the
prediction in constant time per prediction.
The prefetching algorithms we have considered in this paper are adaptive and

based only on the page request sequence. They do not attempt to take advantage
of possible knowledge of the application that is issuing the requests or specially
provided hints by the programmer, which can be used to guide prefetching, as for
example in Patterson et al. [1993] and Trivedi [1979]. We could combine our
prefetcher with such special-purpose techniques so as to get the best of both
worlds. Methods for combining predictions for caching appear in Fiat et al.
[1991].
Under the compiler-directed prefetching paradigm used for scientific programs

[Chen and Baer 1992; Mowry et al. 1992; Rogers and Li 1992], the compiler
reorders instructions in application code and introduces explicit prefetching
instructions to reduce the effect of cache misses. The prefetch requests are issued
much in advance of their anticipated use. This introduces a number of interesting
timing issues dealing with when to initiate the prefetch request, and provides
another possible model to study prefetching analytically.
The framework of Abe and Warmuth [1990], who investigated a quite different

learning problem related to FSAs, has led us to propose a static PAC-learning
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framework for prefetching, in which the prefetcher is trained on several indepen-
dently generated sequences of a particular length generated by a source, and the
prefetcher should converge sufficiently fast. A harder model is to assume that the
prefetcher is trained on one sufficiently long sequence generated by a source. For
certain special cases of sources, like mth order Markov sources, we expect that
the optimal prefetcher is PAC-learnable. An interesting related model is that of
probabilistic concepts [Kearns and Schapire 1990]. We can modify the model so
that page requests are labeled by whether or not the optimal machine M faulted.
(In real life, though, we wouldn’t have this feedback.) The requests are generated
by a Markov source rather than independently; the distance measure corresponds
to the difference in expected fault rate with the optimal fault rate.
Finally, it is important to note that the type of analysis presented here in this

paper is similar to, but not the same as, competitive analysis. It should prove
useful in establishing the goodness of online algorithms for problems that
intuitively cannot admit a competitive online algorithm.

ACKNOWLEDGMENTS. We thank Yali Amit and Paul Howard for several helpful
discussions and comments.

REFERENCES

ABE, N., AND WARMUTH, M. 1990. On the computational complexity of approximating distribu-
tions by probabilistic automata. UCSC, UCSC-CRL-90-63.

AMIT, Y., AND MILLER, M. 1990. Large deviations for coding Markov chains and Gibbs random
fields. Tech. Rep. Washington Univ.

BELL, T. C., CLEARY, J. C., AND WITTEN, I. H. 1990. Text Compression. Prentice-Hall Advanced
Reference Series. Prentice-Hall, Englewood Cliffs, N.J.

BLACKWELL, D. 1956. An analog to the minimax theorem for vector payoffs. Pac. J. Math. 6, 1–8.
BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. K. 1987. Occam’s razor. Inf.
Proc. Lett. 24, 377–380.

BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. K. 1989. Learnability and the
Vapnik–Chervonenkis dimension. J. ACM 36, 4 (Oct.), 929–965.

BOARD, R., AND PITT, L. 1990. On the necessity of occam algorithms. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computation (Baltimore, Md., May 14–16). ACM, New
York, pp. 54–63.

BORODIN, A., IRANI, S., RAGHAVAN, P., AND SCHIEBER, B. 1991. Competitive paging with locality
of reference. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computation (New
Orleans, La., May 6–8). ACM, New York, pp. 249–259.

BRADY, J. T. 1986. A theory of productivity in the creative process. IEEE CG&A (May), 25–34.
CHEN, T. F., AND BAER, J. L. 1992. Reducing memory latency via non-blocking and prefetching
caches. In Proceedings of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems (Boston, Mass., Oct.). ACM, New York, pp. 51–61.

COVER, T. M., AND SHENHAR, A. 1977. Compound Bayes predictors with apparent Markov
structure. IEEE Trans. Syst. Man Cyb. SMC-7 (June), 421–424.

CUREWITZ, K. M., KRISHNAN, P., AND VITTER, J. S. 1993. Practical prefetching via data compres-
sion. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data
(Washington, D.C., May 26–28). ACM, New York, pp. 257–266.

FEDER, M., MERHAV, N., AND GUTMAN, M. 1992. Universal prediction of individual sequences.
IEEE Trans. Inf. Theory IT-38 (July), 1258–1270.

FIAT, A., KARP, R. M., LUBY, M., MCGEOCH, L. A., SLEATOR, D. D., AND YOUNG, N. E. 1991. On
competitive algorithms for paging problems. J. Algorithms 12, 685–699.

GALLAGER, R. G. 1968. Information Theory and Reliable Communication. Wiley, New York.
HANNAN, J. F. 1957. Approximation to Bayes risk in repeated plays. In Contributions to the Theory
of Games, Vol. 3, Annals of Mathematical Studies. Princeton, N.J., 97–139.

792 J. S. VITTER AND P. KRISHNAN



HOWARD, P. G., AND VITTER, J. S. 1992. Analysis of arithmetic coding for data compression. Inf.
Proc. Man. 28, 749–763 (invited paper in Special Issue on Data Compression for Images and
Texts).

IRANI, S., KARLIN, A. R., AND PHILLIPS, S. 1992. Strongly competitive algorithms for paging with
locality of reference. In Proceedings of the 3rd Annual ACM–SIAM Symposium on Discrete
Algorithms (Orlando, Fla., Jan. 27–29). ACM, New York, pp. 228–236.

KARLIN, A. R., PHILLIPS, S. J., AND RAGHAVAN, P. 1992. Markov paging. In Proceedings of the 33rd
Annual IEEE Conference on Foundations of Computer Science (Oct.). IEEE, New York, pp.
208–217.

KARLIN, S., AND TAYLOR, H. M. 1975. A First Course in Stochastic Processes, 2nd ed., Academic
Press, New York.

KEARNS, M. J., AND SCHAPIRE, R. E. 1990. Efficient distribution-free learning of probabilistic
concepts. In Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science
(Oct.). IEEE, New York, pp. 382–391.

KRISHNAN, P., AND VITTER, J. S. 1996. Optimal prediction for prefetching in the worst case. SIAM
J. Comput. to appear. (A shortened version appears in Proceedings of the 5th ACM–SIAM
Symposium on Discrete Algorithms, Jan. 1994. ACM, New York, pp. 372–401.)

LAIRD, P. 1992. Discrete sequence prediction and its applications. AI Research Branch, NASA
Ames Research Center, Moffet Field, Calif.

LANGDON, G. G. 1983. A note on the Ziv–Lempel model for compressing individual sequences.
IEEE Trans. Inf. Theory 29 (Mar.), 284–287.

LANGDON, G. G. 1984. An introduction to arithmetic coding. IBM J. Res. Develop. 28 (Mar.),
135–149.

LEMPEL, A., AND ZIV, J. 1976. On the complexity of finite sequences. IEEE Trans. Inf. Theory
IT-22, 1 (Jan.), 75–81.

MCGEOCH, L. A., AND SLEATOR, D. D. 1989. A strongly competitive randomized paging algorithm.
CS-89-122. Carnegie-Mellon Univ., Pittsburgh, Pa.

MOWRY, T. C., LAM, M. S., AND GUPTA, A. 1992. Design and evaluation of a compiler algorithm
for prefetching. In Proceedings of the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems (Boston, Mass., Oct.). ACM, New York, pp. 62–73.

PALMER, M., AND ZDONIK, S. 1991. Fido: A cache that learns to fetch. In Proceedings of the 1991
International Conference on Very Large Databases (Barcelona, Spain, Sept.). Morgan-Kaufmann,
San Mateo, Calif., pp. 255–264.

PATTERSON, R. H., GIBSON, G. A., AND SATYANARAYANAN, M. 1993. A status report on research in
transparent informed prefetching. ACM Oper. Syst. Rev. 27, (Apr.), 21–34.

ROGERS, A., AND LI, K. 1992. Software support for speculative loads. In Proceedings of the 5th
International Conference on Architectural Support for Programming Languages and Operating Systems
(Boston, Mass., Oct.). ACM, New York, pp. 38–50.

SHWARTZ, A., AND WEISS, A. 1995. Large Deviations for Performance Analysis. Chapman & Hall,
New York.

SLEATOR, D. D., AND TARJAN, R. E. 1985. Amortized efficiency of list update and paging rules.
Commun. ACM 28, 2 (Feb.), 202–208.

TRIVEDI, K. S. 1979. An analysis of prepaging. Computing 22, 191–210.
VAPNIK, V. 1982. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, New
York.

VITTER, J. S., CUREWITZ, K., AND KRISHNAN, P. 1996. Online background predictors and prefetch-
ers. Duke Univ., United States Patent No. 5,485,609.

WITTEN, I. H., NEAL, R. M., AND CLEARY, J. G. 1987. Arithmetic coding for data compression.
Commun. ACM 30, 6 (June), 520–540.

ZIV, J., AND LEMPEL, A. 1978. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inf. Theory 24 (Sept.), 530–536.

RECEIVED JULY 1991; REVISED NOVEMBER 1995; ACCEPTED MAY 1996

Journal of the ACM, Vol. 43, No. 5, September 1996.

793Optimal Prefetching via Data Compression


