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Data sets in large applications are often too massive to fit completely inside the
computer’s internal memory. The resulting input/output communication (or I/O)
between fast internal memory and slower external memory (such as disks) can be a
major performance bottleneck. In this article we survey the state of the art in the design
and analysis of external memory (or EM) algorithms and data structures, where the
goal is to exploit locality in order to reduce the I/O costs. We consider a variety of EM
paradigms for solving batched and online problems efficiently in external memory. For
the batched problem of sorting and related problems such as permuting and fast Fourier
transform, the key paradigms include distribution and merging. The paradigm of disk
striping offers an elegant way to use multiple disks in parallel. For sorting, however,
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disk striping can be nonoptimal with respect to I/O, so to gain further improvements we
discuss distribution and merging techniques for using the disks independently. We also
consider useful techniques for batched EM problems involving matrices (such as matrix
multiplication and transposition), geometric data (such as finding intersections and
constructing convex hulls), and graphs (such as list ranking, connected components,
topological sorting, and shortest paths). In the online domain, canonical EM
applications include dictionary lookup and range searching. The two important classes
of indexed data structures are based upon extendible hashing and B-trees. The
paradigms of filtering and bootstrapping provide a convenient means in online data
structures to make effective use of the data accessed from disk. We also reexamine
some of the above EM problems in slightly different settings, such as when the data
items are moving, when the data items are variable-length (e.g., text strings), or when
the allocated amount of internal memory can change dynamically. Programming tools
and environments are available for simplifying the EM programming task. During the
course of the survey, we report on some experiments in the domain of spatial databases
using the TPIE system (transparent parallel I/O programming environment). The
newly developed EM algorithms and data structures that incorporate the paradigms we
discuss are significantly faster than methods currently used in practice.

1. INTRODUCTION

1.1. Background

For reasons of economy, general-purpose
computer systems usually contain a hier-
archy of memory levels, each level with
its own cost and performance character-
istics. At the lowest level, CPU registers
and caches are built with the fastest but
most expensive memory. For internal main
memory, dynamic random access memory
(DRAM) is typical. At a higher level, in-
expensive but slower magnetic disks are
used for external mass storage, and even
slower but larger-capacity devices such
as tapes and optical disks are used for
archival storage. Figure 1 depicts a typical
memory hierarchy and its characteristics.

Most modern programming languages
are based upon a programming model in
which memory consists of one uniform ad-
dress space. The notion of virtual memory
allows the address space to be far larger
than what can fit in the internal memory
of the computer. Programmers have a nat-
ural tendency to assume that all memory
references require the same access time.
In many cases, such an assumption is rea-
sonable (or at least doesn’t do any harm),
especially when the data sets are not large.
The utility and elegance of this program-
ming model are to a large extent why it
has flourished, contributing to the produc-
tivity of the software industry.

However, not all memory references are
created equal. Large address spaces span
multiple levels of the memory hierar-
chy, and accessing the data in the low-
est levels of memory is orders of magni-
tude faster than accessing the data at the
higher levels. For example, loading a reg-
ister takes on the order of a nanosecond
(10−9 seconds), and accessing internal
memory takes tens of nanoseconds, but the
latency of accessing data from a disk is
several milliseconds (10−3 seconds), which
is about one million times slower! In ap-
plications that process massive amounts
of data, the input/output communication
(or simply I/O) between levels of memory
is often the bottleneck.

Many computer programs exhibit some
degree of locality in their pattern of mem-
ory references: Certain data are refer-
enced repeatedly for a while, and then
the program shifts attention to other sets
of data. Modern operating systems take
advantage of such access patterns by
tracking the program’s so-called “work-
ing set”–a vague notion that roughly cor-
responds to the recently referenced data
items [Denning 1980]. If the working set
is small, it can be cached in high-speed
memory so that access to it is fast. Caching
and prefetching heuristics have been de-
veloped to reduce the number of occur-
rences of a “fault,” in which the referenced
data item is not in the cache and must be
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Fig. 1 . The memory hierarchy of a typical unipro-
cessor system, including registers, instruction cache,
data cache (level 1 cache), level 2 cache, internal
memory, and disks. Below each memory level is the
range of typical sizes for that memory level. Each
value of B at the top of the figure denotes the block
transfer size between two adjacent levels of the hi-
erarchy. All sizes are given in units of bytes (B),
kilobytes (KB), megabytes (MB), gigabytes (GB), or
terabytes (TB). (In the PDM model described in
Section 2, we measure B in units of items rather than
in units of bytes.) In this figure, 8 KB is the indicated
physical block transfer size between internal mem-
ory and the disks. However, in batched applications
it is often more appropriate to use a substantially
larger logical block transfer size.

retrieved by an I/O from a higher level of
memory. For example, in a page fault, an
I/O is needed to retrieve a disk page from
disk and bring it into internal memory.

Caching and prefetching methods are
typically designed to be general-purpose,
and thus they cannot be expected to take
full advantage of the locality present in
every computation. Some computations
themselves are inherently nonlocal, and
even with omniscient cache management
decisions they are doomed to perform large
amounts of I/O and suffer poor perfor-
mance. Substantial gains in performance
may be possible by incorporating local-
ity directly into the algorithm design and
by explicit management of the contents
of each level of the memory hierarchy,
thereby bypassing the virtual memory
system.

We refer to algorithms and data
structures that explicitly manage data
placement and movement as external
memory (or EM) algorithms and data
structures. Some authors use the terms
I/O algorithms or out-of-core algorithms.

We concentrate in this survey on the I/O
communication between the random ac-
cess internal memory and the magnetic
disk external memory, where the relative
difference in access speeds is most ap-
parent. We therefore use the term I/O to
designate the communication between the
internal memory and the disks.

1.2. Overview

In this article, we survey several
paradigms for exploiting locality and
thereby reducing I/O costs when solving
problems in external memory. The prob-
lems we consider fall into two general
categories:

(1) batched problems, in which no prepro-
cessing is done and the entire file of
data items must be processed, often by
streaming the data through the inter-
nal memory in one or more passes; and

(2) online problems, in which computation
is done in response to a continuous
series of query operations. A common
technique for online problems is to or-
ganize the data items via a hierarchi-
cal index, so that only a very small por-
tion of the data needs to be examined in
response to each query. The data being
queried can be either static, which can
be preprocessed for efficient query pro-
cessing, or dynamic, where the queries
are intermixed with updates such as
insertions and deletions.

We base our approach upon the par-
allel disk model (PDM) described in the
next section. PDM provides an elegant
and reasonably accurate model for ana-
lyzing the relative performance of EM al-
gorithms and data structures. The three
main performance measures of PDM are
the number of I/O operations, the disk
space usage, and the CPU time. For rea-
sons of brevity, we focus on the first
two measures. Most of the algorithms
we consider are also efficient in terms
of CPU time. In Section 3, we list four
fundamental I/O bounds that pertain to
most of the problems considered here. In
Section 4, we show why it is crucial for
EM algorithms to exploit locality, and we
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discuss an automatic load balancing tech-
nique called disk striping for using multi-
ple disks in parallel.

In Section 5, we look at the canoni-
cal batched EM problem of external sort-
ing and the related problems of permut-
ing and fast Fourier transform. The two
important paradigms of distribution and
merging account for all well-known ex-
ternal sorting algorithms. Sorting with a
single disk is now well understood, so we
concentrate on the more challenging task
of using multiple (or parallel) disks, for
which disk striping is nonoptimal. The
challenge is to guarantee that the data
in each I/O are spread evenly across the
disks so that the disks can be used si-
multaneously. We also cover the funda-
mental lower bounds on the number of
I/Os needed to perform sorting and re-
lated batched problems. In Section 6, we
discuss grid and linear algebra batched
computations.

For most problems, parallel disks can
be utilized effectively by means of disk
striping or the parallel disk techniques
of Section 5, and hence we restrict our-
selves starting in Section 7 to the con-
ceptually simpler single-disk case. In
Section 7, we mention several effective
paradigms for batched EM problems in
computational geometry. The paradigms
include distribution sweep (for spatial join
and finding all nearest neighbors), per-
sistent B-trees (for batched point location
and graph drawing), batched filtering (for
3-D convex hulls and batched point lo-
cation), external fractional cascading (for
red–blue line segment intersection), exter-
nal marriage-before-conquest (for output-
sensitive convex hulls), and randomized
incremental construction with gradations
(for line segment intersections and other
geometric problems). In Section 8, we look
at EM algorithms for combinatorial prob-
lems on graphs, such as list ranking,
connected components, topological sort-
ing, and finding shortest paths. One tech-
nique for constructing I/O-efficient EM
algorithms is to simulate parallel algo-
rithms; sorting is used between parallel
steps in order to reblock the data for the
simulation of the next parallel step.

In Sections 9 to 11, we consider data
structures in the online setting. The dy-
namic dictionary operations of insert,
delete, and lookup can be implemented
by the well-known method of hashing. In
Section 9, we examine hashing in exter-
nal memory, in which extra care must be
taken to pack data into blocks and to allow
the number of items to vary dynamically.
Lookups can be done generally with only
one or two I/Os. Section 10 begins with
a discussion of B-trees, the most widely
used online EM data structure for dictio-
nary operations and 1-D range queries.
Weight-balanced B-trees provide a uni-
form mechanism for dynamically rebuild-
ing substructures and are useful for a
variety of online data structures. Level-
balanced B-trees permit maintenance of
parent pointers and support cut and con-
catenate operations, which are used in
reachability queries on monotone subdi-
visions. The buffer tree is a so-called
“batched dynamic” version of the B-tree for
efficient implementation of search trees
and priority queues in EM sweep line ap-
plications. In Section 11, we discuss spa-
tial data structures for multidimensional
data, especially those that support on-
line range search. Multidimensional ex-
tensions of the B-tree, such as the popu-
lar R-tree and its variants, use a linear
amount of disk space and often perform
well in practice, although their worst-case
performance is poor. A nonlinear amount
of disk space is required to perform 2-D
orthogonal range queries efficiently in the
worst case, but several important special
cases of range searching can be done ef-
ficiently using only linear space. A use-
ful paradigm for developing an efficient
EM data structure is to “externalize” an
efficient data structure designed for in-
ternal memory; a key component of how
to make the structure I/O-efficient is to
“bootstrap” a static EM data structure
for small-sized problems into a fully dy-
namic data structure of arbitrary size.
This paradigm provides optimal linear-
space EM data structures for several vari-
ants of 2-D orthogonal range search.

In Section 12, we discuss some addi-
tional EM approaches useful for dynamic
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Table I. Paradigms for I/O Efficiency Discussed in this
Survey

Paradigm Reference

Batched dynamic processing §10.4
Batched filtering §7
Batched incremental construction §7
Bootstrapping §11
Disk striping §4.2
Distribution §5.1
Distribution Sweeping §7
Externalization §11.3
Fractional Cascading §7
Filtering §11
Lazy Updating §10.4
Load Balancing §4
Locality §4
Marriage-before-conquest §7
Merging §5.2
Parallel simulation §8
Persistence §7
Random sampling §5.1
Scanning (or streaming) §2.2
Sparsification §8
Time-forward processing §10.4

data structures, and we also investigate
kinetic data structures, in which the data
items are moving. In Section 13, we focus
on EM data structures for manipulating
and searching text strings.

In Section 14, we discuss program-
ming environments and tools that facil-
itate high-level development of efficient
EM algorithms. We focus on the TPIE
system (transparent parallel I/O envi-
ronment), which we use in the vari-
ous timing experiments in the article. In
Section 15 we discuss EM algorithms that
adapt optimally to dynamically changing
internal memory allocations. We conclude
with some final remarks and observations
in Section 16. Table I lists several of the
EM paradigms discussed in this survey.

2. PARALLEL DISK MODEL (PDM)

EM algorithms explicitly control data
placement and movement, and thus it is
important for algorithm designers to have
a simple but reasonably accurate model
of the memory system’s characteristics.
Magnetic disks consist of one or more
rotating platters and one read/write
head per platter surface. The data are

stored on the platters in concentric circles
called tracks, as shown in Figure 2. To
read or write a data item at a certain
address on disk, the read/write head
must mechanically seek the correct track
and then wait for the desired address
to pass by. The seek time move from
one random track to another is often
on the order of 3 to 10 milliseconds, and
the average rotational latency, which is
the time for half a revolution, has the
same order of magnitude. In order to
amortize this delay, it pays to transfer
a large contiguous group of data items,
called a block. Similar considerations ap-
ply to all levels of the memory hierarchy.
Typical block sizes are shown in Figure 1.

Even if an application can structure
its pattern of memory accesses to exploit
locality and take full advantage of disk
block transfer, there is still a substantial
access gap between internal and exter-
nal memory performance. In fact the ac-
cess gap is growing, since the latency and
bandwidth of memory chips are improving
more quickly than those of disks. Use
of parallel processors further widens the
gap. Storage systems such as RAID deploy
multiple disks in order to get additional
bandwidth [Chen et al. 1994; Hellerstein
et al. 1997].

In the next section, we describe the
high-level parallel disk model (PDM),
which we use throughout this survey for
the design and analysis of EM algorithms
and data structures. In Section 2.2, we
consider some practical modeling issues
dealing with the sizes of blocks and tracks
and the corresponding parameter values
in PDM. In Section 2.3, we review the his-
torical development of models of I/O and
hierarchical memory.

2.1. PDM and Problem Parameters

We can capture the main properties of
magnetic disks and multiple disk systems
by the commonly used parallel disk model
(PDM) introduced by Vitter and Shriver
[1994a]:

N =problem size (in units of data
items),
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Fig. 2 . Platter of a magnetic disk drive.

M = internal memory size (in units of
data items),

B= block transfer size (in units of data
items),

D=number of independent disk drives,
and

P =number of CPUs,

where M <N , and 1≤ DB≤M/2. The
data items are assumed to be of fixed
length. In a single I/O, each of the D disks
can simultaneously transfer a block of B
contiguous data items.

If P ≤ D, each of the P processors can
drive about D/P disks; if D< P , each disk
is shared by about P/D processors. The
internal memory size is M/P per proces-
sor, and the P processors are connected
by an interconnection network. For rout-
ing considerations, one desired property
for the network is the capability to sort the
M data items in the collective main memo-
ries of the processors in parallel in optimal
O((M/P ) log M ) time.1 The special cases
of PDM for the case of a single proces-
sor (P = 1) and multiprocessors with one
disk per processor (P = D) are pictured in
Figure 3.

Queries are naturally associated with
online computations, but they can also be
done in batched mode. For example, in the
batched orthogonal 2-D range searching

1 We use the notation log n to denote the binary
(base 2) logarithm log2 n. For bases other than 2, the
base is specified explicitly.

problem discussed in Section 7, we are
given a set of N points in the plane and a
set of Q queries in the form of rectangles,
and the problem is to report the points
lying in each of the Q query rectangles.
In both the batched and online settings,
the number of items reported in response
to each query may vary. We thus need to
define two more performance parameters:

Q =number of input queries
(for a batched problem), and

Z = query output size (in units of data
items).

It is convenient to refer to some of the
above PDM parameters in units of disk
blocks rather than in units of data items;
the resulting formulas are often simpli-
fied. We define the lowercase notation

n= N
B

, m= M
B

, q= Q
B

, z = Z
B

(1)

to be the problem input size, internal
memory size, query specification size, and
query output size, respectively, in units of
disk blocks.

We assume that the input data are ini-
tially “striped” across the D disks, in units
of blocks, as illustrated in Figure 4, and
we require the output data to be simi-
larly striped. Striped format allows a file
of N data items to be read or written
in O(N/DB) = O(n/D) I/Os, which is
optimal.
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Fig. 3 . Parallel disk model: (a) P = 1, in which the D disks are connected
to a common CPU; (b) P = D, in which each of the D disks is connected to a
separate processor.

The primary measures of performance
in PDM are

(1) the number of I/O operations per-
formed,

(2) the amount of disk space used, and
(3) the internal (sequential or parallel)

computation time.

For reasons of brevity in this survey we
focus on only the first two measures. Most
of the algorithms we mention run in op-
timal CPU time, at least for the single-
processor case. Ideally algorithms and
data structures should use linear space,
which means O(N/B)=O(n) disk blocks of
storage.

2.2. Practical Modeling Considerations

Track size is a fixed parameter of the disk
hardware; for most disks it is in the range
50 to 200 KB. In reality, the track size for
any given disk depends upon the radius
of the track (cf. Figure 2). Sets of adjacent
tracks are usually formatted to have the
same track size, so there are typically only
a small number of different track sizes
for a given disk. A single disk can have
a 3 : 2 variation in track size (and there-

fore bandwidth) between its outer and the
inner tracks.

The minimum block transfer size im-
posed by hardware is often 512 bytes, but
operating systems generally use a larger
block size, such as 8 KB, as in Figure 1. It is
possible (and preferable in batched appli-
cations) to use logical blocks of larger size
(sometimes called clusters) and further re-
duce the relative significance of seek and
rotational latency, but the wall clock time
per I/O will increase accordingly. For ex-
ample, if we set PDM parameter B to be
five times larger than the track size, so
that each logical block corresponds to five
contiguous tracks, the time per I/O will
correspond to five revolutions of the disk
plus the (now relatively less significant)
seek time and rotational latency. If the
disk is smart enough, rotational latency
can even be avoided altogether, since the
block spans entire tracks and reading can
begin as soon as the read head reaches
the desired track. Once the block transfer
size becomes larger than the track size, the
wall clock time per I/O grows linearly with
the block size.

For best results in batched applications,
especially when the data are streamed
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Fig. 4 . Initial data layout on the disks, for D= 5
disks and block size B= 2. The input data items
are initially striped block by block across the disks.
For example, data items 16 and 17 are stored in the
second block (i.e., in stripe 1) of disk D3.

sequentially through internal memory, the
block transfer size B in PDM should be
considered to be a fixed hardware param-
eter a little larger than the track size (say,
on the order of 100 KB for most disks), and
the time per I/O should be adjusted ac-
cordingly. For online applications that use
pointer-based indexes, a smaller B value
such as 8 KB is appropriate, as in Figure 1.
The particular block size that optimizes
performance may vary somewhat from ap-
plication to application.

PDM is a good generic programming
model that facilitates elegant design of
I/O-efficient algorithms, especially when
used in conjunction with the program-
ming tools discussed in Section 14. More
complex and precise disk models, such as
the ones by Ruemmler and Wilkes [1994],
Ganger [1995], Shriver et al. [1998], Barve
et al. [1999], and Farach et al. [1998],
distinguish between sequential reads and
random reads and consider the effects of
features such as disk buffer caches and
shared buses, which can reduce the time
per I/O by eliminating or hiding the seek
time. For example, algorithms for spatial
join that access preexisting index struc-
tures (and thus do random I/O) can often
be slower in practice than algorithms that
access substantially more data but in a
sequential order (as in streaming) [Arge
et al. 2000]. It is thus helpful not only
to consider the number of block trans-
fers, but also to distinguish between the
I/Os that are random versus those that
are sequential. In some applications, au-
tomated dynamic block placement can im-
prove disk locality and help reduce I/O
time [Seltzer et al. 1995].

Another simplification of PDM is that
the D block transfers in each I/O are syn-
chronous; they are assumed to take the
same amount of time. This assumption
makes it easier to design and analyze al-
gorithms for multiple disks. In practice,
however, if the disks are used indepen-
dently, some block transfers will complete
more quickly than others. We can often
improve overall elapsed time if the I/O
is done asynchronously, so that disks get
utilized as soon as they become available.
Buffer space in internal memory can be
used to queue the read and write requests
for each disk.

2.3. Related Memory Models, Hierarchical
Memory, and Caching

The study of problem complexity and algo-
rithm analysis when using EM devices be-
gan more than 40 years ago with Demuth’s
PhD on sorting [Demuth 1956; Knuth
1998]. In the early 1970s, Knuth [1998]
did an extensive study of sorting using
magnetic tapes and (to a lesser extent)
magnetic disks. At about the same time,
Floyd [1972] and Knuth [1998] considered
a disk model akin to PDM for D= 1, P = 1,
B=M/2=2(Nc), for constant c> 0, and
developed optimal upper and lower I/O
bounds for sorting and matrix transposi-
tion. Hong and Kung [1981] developed a
pebbling model of I/O for straightline com-
putations, and Savage and Vitter [1987]
extended the model to deal with block
transfer. Aggarwal and Vitter [1988] gen-
eralized Floyd’s I/O model to allow D si-
multaneous block transfers, but the model
was unrealistic in that the D simultane-
ous transfers were allowed to take place
on a single disk. They developed match-
ing upper and lower I/O bounds for all
parameter values for a host of problems.
Since the PDM model can be thought of
as a more restrictive (and more realistic)
version of Aggarwal and Vitter’s model,
their lower bounds apply as well to PDM.
In Section 5.3 we discuss a recent simula-
tion technique due to Sanders et al. [2000];
the Aggarwal–Vitter model can be simu-
lated probabilistically by PDM with only
a constant factor more I /Os, thus making
the two models theoretically equivalent
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in the randomized sense. Deterministic
simulations on the other hand require a
factor of log(N/D)/ log log(N/D) more I/Os
[Armen 1996].

Surveys of I/O models, algorithms,
and challenges appear in Arge [1997],
Gibson et al. [1996], and Shriver and
Nodine [1996]. Several versions of PDM
have been developed for parallel compu-
tation [Dehne et al. 1999; Li et al. 1996;
Sibeyn and Kaufmann 1997]. Models of
“active disks” augmented with process-
ing capabilities to reduce data traffic to
the host, especially during streaming ap-
plications, are given in Acharya et al.
[1998] and Riedel et al. [1998]. Models of
microelectromechanical systems (MEMS)
for mass storage appear in Griffin et al.
[2000].

Some authors have studied problems
that can be solved efficiently by making
only one pass (or a small number of passes)
over the data [Feigenbaum et al. 1999;
Henzinger et al. 1999]. One approach to
reduce the internal memory requirements
is to require only an approximate answer
to the problem; the more memory avail-
able, the better the approximation. A re-
lated approach to reducing I/O costs for a
given problem is to use random sampling
or data compression in order to construct
a smaller version of the problem whose
solution approximates the original. These
approaches are highly problem-dependent
and somewhat orthogonal to our focus in
this survey.

The same type of bottleneck that occurs
between internal memory (DRAM) and ex-
ternal disk storage can also occur at other
levels of the memory hierarchy, such as be-
tween registers and level 1 cache, between
level 1 cache and level 2 cache, between
level 2 cache and DRAM, and between disk
storage and tertiary devices. The PDM
model can be generalized to model the
hierarchy of memories ranging from reg-
isters at the small end to tertiary stor-
age at the large end. Optimal algorithms
for PDM often generalize in a recursive
fashion to yield optimal algorithms in the
hierarchical memory models [Aggarwal
et al. 1987a,b; Vitter and Shriver 1994b;
Vitter and Nodine 1993]. Conversely, the

algorithms for hierarchical models can be
run in the PDM setting, and in that set-
ting many have the interesting property
that they use no explicit knowledge of the
PDM parameters like M and B. Frigo et
al. [1999] and Bender et al. [2000] develop
cache-oblivious algorithms and data struc-
tures that require no knowledge of the
storage parameters.

However, the match between theory
and practice is harder to establish for
hierarchical models and caches than for
disks. The simpler hierarchical models
are less accurate, and the more practical
models are architecture-specific. The rela-
tive memory sizes and block sizes of the
levels vary from computer to computer.
Another issue is how blocks from one
memory level are stored in the caches at
a lower level. When a disk block is read
into internal memory, it can be stored in
any specified DRAM location. However, in
level 1 and level 2 caches, each item can
only be stored in certain cache locations,
often determined by a hardware modulus
computation on the item’s memory ad-
dress. The number of possible storage lo-
cations in cache for a given item is called
the level of associativity. Some caches are
direct-mapped (i.e., with associativity 1),
and most caches have fairly low associa-
tivity (typically at most 4).

Another reason why the hierarchical
models tend to be more architecture-
specific is that the relative difference in
speed between level 1 cache and level 2
cache or between level 2 cache and DRAM
is orders of magnitude smaller than the
relative difference in latencies between
DRAM and the disks. Yet, it is apparent
that good EM design principles are useful
in developing cache-efficient algorithms.
For example, sequential internal memory
access is much faster than random access,
by about a factor of 10, and the more we
can build locality into an algorithm, the
faster it will run in practice. By properly
engineering the “inner loops,” a program-
mer can often significantly speed up the
overall running time. Tools such as sim-
ulation environments and system moni-
toring utilities [Knuth 1999; Rosenblum
et al. 1997; Srivastava and Eustace 1994]
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Table II. I/O Bounds for the Four Fundamental Operations. The
PDM Parameters Are Defined in Section 2.1

Operation I/O Bound, D= 1 I/O Bound, General D≥ 1

Scan(N ) 2

(
N
B

)
= 2(n) 2

(
N

DB

)
= 2

(
n
D

)
Sort(N )

2

(
N
B

logM/B
N
B

)
= 2(n logm n)

2

(
N

DB
logM/B

N
B

)
= 2

(
n
D

logm n
)

Search(N ) 2(logB N ) 2(logDB N )

Output(Z )
2

(
max

{
1,

Z
B

})
= 2(max{1, z})

2

(
max

{
1,

Z
DB

})
= 2

(
max

{
1,

z
D

})

can provide sophisticated help in the
optimization process.

For reasons of focus, we do not consider
such hierarchical models and caching is-
sues in this survey. We refer the reader
to the following references. Aggarwal
et al. [1987a] define an elegant hier-
archical memory model, and Aggarwal
et al. [1987b] augment it with block
transfer capability. Alpern et al. [1994]
model levels of memory in which the
memory size, block size, and bandwidth
grow at uniform rates. Vitter and Shriver
[1994b] and Vitter and Nodine [1993]
discuss parallel versions and variants
of the hierarchical models. The parallel
model of Li et al. [1996] also applies
to hierarchical memory. Savage [1995]
gives a hierarchical pebbling version of
Savage and Vitter [1987]. Carter and
Gatlin [1998] define pebbling models
of nonassociative direct-mapped caches.
Rahman and Raman [2000] and Sen and
Chatterjee [2000] apply EM techniques to
models of caches and translation lookaside
buffers. Rao and Ross [1999; 2000] use B-
tree techniques to exploit locality for the
design of cache-conscious search trees.

3. FUNDAMENTAL I/O OPERATIONS
AND BOUNDS

The I/O performance of many algorithms
and data structures can be expressed in
terms of the bounds for fundamental op-
erations:

(1) scanning (a.k.a. streaming or touching)
a file of N data items, which involves
the sequential reading or writing of the
items in the file;

(2) sorting a file of N data items, which
puts the items into sorted order;

(3) searching online through N sorted
data items; and

(4) outputting the Z answers to a query in
a blocked “output-sensitive” fashion.

We give the I/O bounds for these opera-
tions in Table II. We single out the special
case of a single disk (D= 1), since the for-
mulas are simpler and many of the discus-
sions in this survey are restricted to the
single-disk case.

The first two of these I/O bounds–
Scan(N ) and Sort(N )–apply to batched
problems. The last two I/O bounds–
Search(N ) and Output(Z )–apply to online
problems and are typically combined into
the form Search(N )+Output(Z ). As men-
tioned in Section 2.1, some batched prob-
lems also involve queries, in which case
the I/O bound Output(Z ) may be relevant
to them as well. In some pipelined con-
texts, the Z answers to a query do not
need to be output to disk but rather can be
“piped” to another process, in which case
there is no I/O cost for output. Relational
database queries are often processed in
such a pipeline fashion. For simplicity, in
this article we explicitly consider the out-
put cost for queries.
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The I/O bound Scan(N )=O(n/D),
which is clearly required to read or write
a file of N items, represents a linear
number of I/Os in the PDM model. An in-
teresting feature of the PDM model is that
almost all nontrivial batched problems
require a nonlinear number of I/Os, even
those that can be solved easily in linear
CPU time in the (internal memory) RAM
model. Examples we discuss later include
permuting, transposing a matrix, list
ranking, and several combinatorial graph
problems. Many of these problems are
equivalent in I/O complexity to permuting
or sorting.

The linear I/O bounds for Scan(N )
and Output(Z ) are trivial. The algo-
rithms and lower bounds for Sort(N ) and
Search(N ) are relatively new and are
discussed in later sections. As Table II in-
dicates, the multiple-disk I/O bounds for
Scan(N ), Sort(N ), and Output(Z ) are D
times smaller than the corresponding
single-disk I/O bounds; such a speedup
is clearly the best improvement possi-
ble with D disks. For Search(N ), the
speedup is less significant: the I/O bound
2(logB N ) for D= 1 becomes 2(log DB N )
for D≥ 1; the resulting speedup is only
2((logB N )/log DB N ) = 2((log DB)/ log B)
=2(1+ (log D)/ log B), which is typically
less than 2.

In practice, the logarithmic terms logm n
in the Sort(N ) bound and log DB N in the
Search(N ) bound are small constants. For
example, in units of items, we could have
N = 1010, M = 107, and B= 104, and thus
we get n= 106, m= 103, and logm n= 2, in
which case sorting can be done in a lin-
ear number of I/Os. If memory is shared
with other processes, the logm n term will
be somewhat larger, but still bounded by a
constant. In on-line applications, a smaller
B value, such as B= 102, is more appro-
priate, as explained in Section 2.2. The
corresponding value of logB N for the ex-
ample is 5, so even with a single disk, on-
line search can be done in a small constant
number of I/Os.

It still makes sense to explicitly iden-
tify terms like logm n and logB N in the
I/O bounds and not hide them within
the big-oh or big-theta factors, since the

terms can have a significant effect in prac-
tice. (Of course, it is equally important
to consider any other constants hidden in
big-oh and big-theta notations!) The non-
linear I/O bound 2(n logm n) usually indi-
cates that multiple or extra passes over
the data are required. In truly massive
problems, the data will reside on tertiary
storage. As we suggested in Section 2.3,
PDM algorithms can often be generalized
in a recursive framework to handle mul-
tiple levels of memory. A multilevel algo-
rithm developed from a PDM algorithm
that does n I/Os will likely run at least
an order of magnitude faster in hierarchi-
cal memory than would a multilevel algo-
rithm generated from a PDM algorithm
that does n logm n I/Os [Vitter and Shriver
1994b].

4. EXPLOITING LOCALITY AND
LOAD BALANCING

The key to achieving efficient I/O perfor-
mance in EM applications is to design the
application to access its data with a high
degree of locality. Since each read I/O op-
eration transfers a block of B items, we
make optimal use of that read operation
when all B items are needed by the appli-
cation. A similar remark applies to write
operations. An orthogonal form of locality
more akin to load balancing arises when
we use multiple disks, since we can trans-
fer D blocks in a single I/O only if the
D blocks reside on distinct disks.

An algorithm that does not exploit lo-
cality can be reasonably efficient when
it is run on data sets that fit in inter-
nal memory, but it will perform miser-
ably when deployed naively in an EM
setting and virtual memory is used to han-
dle page management. Examining such
performance degradation is a good way to
put the I/O bounds of Table II into perspec-
tive. In Section 4.1, we examine this phe-
nomenon for the single-disk case, when
D= 1.

In Section 4.2, we look at the multiple-
disk case and discuss the important
paradigm of disk striping [Kim 1986;
Salem and Garcia-Molina 1986], for
automatically converting a single-disk

ACM Computing Surveys, Vol. 33, No. 2, June 2001.



220 Jeffrey Scott Vitter

algorithm into an algorithm for multiple
disks. Disk striping can be used to get
optimal multiple-disk I/O algorithms for
three of the four fundamental operations
in Table II. The only exception is sort-
ing. The optimal multiple-disk algorithms
for sorting require more sophisticated load
balancing techniques, which we cover in
Section 5.

4.1. Locality Issues with a Single Disk

A good way to appreciate the fundamen-
tal I/O bounds in Table II is to consider
what happens when an algorithm does not
exploit locality. For simplicity, we restrict
ourselves in this section to the single-disk
case D = 1. For many of the batched prob-
lems we look at in this survey, such as
sorting, FFT, triangulation, and comput-
ing convex hulls, it is well known how to
write programs to solve the correspond-
ing internal memory versions of the prob-
lems in O(N log N ) CPU time. But if we
execute such a program on a data set
that does not fit in internal memory, rely-
ing upon virtual memory to handle page
management, the resulting number of
I/Os may be Ä(N log n), which represents
a severe bottleneck. Similarly, in the on-
line setting, many types of search queries,
such as range search queries and stabbing
queries, can be done using binary trees
in O(log N + Z ) query CPU time when
the tree fits into internal memory, but the
same data structure in an external mem-
ory setting may require Ä(log N + Z ) I/Os
per query.

We would like instead to incorporate lo-
cality directly into the algorithm design
and achieve the desired I/O bounds of
O(n logm n) for the batched problems and
O(logB N + z) for online search, in line
with the fundamental bounds listed in
Table II. At the risk of oversimplifying, we
can paraphrase the goal of EM algorithm
design for batched problems in the follow-
ing syntactic way: to derive efficient algo-
rithms so that the N and Z terms in the
I/O bounds of the naive algorithms are re-
placed by n and z, and so that the base
of the logarithm terms is not 2 but in-
stead m. For on-line problems, we want

the base of the logarithm to be B and to
replace Z by z. The relative speedup in
I/O performance can be very significant,
both theoretically and in practice. For ex-
ample, for batched problems, the I/O per-
formance improvement can be a factor of
(N log n)/n logm n= B log m, which is ex-
tremely large. For on-line problems, the
performance improvement can be a fac-
tor of (log N + Z )/(logB N + z); this value
is always at least (log N )/ logB N = log B,
which is significant in practice, and can be
as much as Z/z = B for large Z .

4.2. Disk Striping for Multiple Disks

It is conceptually much simpler to pro-
gram for the single-disk case (D= 1) than
for the multiple-disk case (D≥ 1). Disk
striping [Kim 1986; Salem and Garcia-
Molina 1986] is a practical paradigm that
can ease the programming task with mul-
tiple disks: I/Os are permitted only on en-
tire stripes, one stripe at a time. For ex-
ample, in the data layout in Figure 4, data
items 20 to 29 can be accessed in a single
I/O step because their blocks are grouped
into the same stripe. The net effect of strip-
ing is that the D disks behave as a single
logical disk, but with a larger logical block
size DB.

We can thus apply the paradigm of disk
striping to automatically convert an algo-
rithm designed to use a single disk with
block size DB into an algorithm for use
on D disks each with block size B: in the
single-disk algorithm, each I/O step trans-
mits one block of size DB; in the D-disk
algorithm, each I/O step consists of D
simultaneous block transfers of size B
each. The number of I/O steps in both al-
gorithms is the same; in each I/O step,
the DB items transferred by the two
algorithms are identical. Of course, in
terms of wall clock time, the I/O step in
the multiple-disk algorithm will be 2(D)
times faster than in the single-disk algo-
rithm because of parallelism.

Disk striping can be used to get op-
timal multiple-disk algorithms for three
of the four fundamental operations of
Section 3–streaming, online search, and
output reporting–but it is nonoptimal
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for sorting. To see why, consider what
happens if we use the technique of disk
striping in conjunction with an optimal
sorting algorithm for one disk, such as
merge sort [Knuth 1998]. The optimal
number of I/Os to sort using one disk with
block size B is

2(n logm n) = 2

(
n

log n
log m

)
= 2

(
N
B

log(N/B)
log(M/B)

)
. (2)

With disk striping, the number of I/O steps
is the same as if we use a block size of DB
in the single-disk algorithm, which corre-
sponds to replacing each B in (2) by DB,
which gives the I/O bound

2

(
N
DB

log(N/DB)
log(M/DB)

)
=2

(
n
D

log(n/D)
log(m/D)

)
.

(3)

On the other hand, the optimal bound for
sorting is

2

(
n
D

logm n
)
= 2

(
n
D

log n
log m

)
. (4)

The striping I/O bound (3) is larger than
the optimal sorting bound (4) by a multi-
plicative factor of

log(n/D)
log n

log m
log(m/D)

≈ log m
log(m/D)

. (5)

When D is on the order of m, the log(m/D)
term in the denominator is small, and
the resulting value of (5) is on the or-
der of log m, which can be significant in
practice.

It follows that the only way theoretically
to attain the optimal sorting bound (4) is
to forsake disk striping and to allow the
disks to be controlled independently, so
that each disk can access a different stripe
in the same I/O step. Actually, the only re-
quirement for attaining the optimal bound
is that either reading or writing is done in-
dependently. It suffices, for example, to do
only read operations independently and to

use disk striping for write operations. An
advantage of using striping for write op-
erations is that it facilitates the writing of
parity information for error correction and
recovery, which is a big concern in RAID
systems. (We refer the reader to Chen
et al. [1994] and Hellerstein et al. [1994]
for a discussion of RAID and error correc-
tion issues.)

In practice, sorting via disk striping can
be more efficient than complicated tech-
niques that utilize independent disks, es-
pecially when D is small, since the ex-
tra factor (log m)/ log(m/D) of I/Os due to
disk striping may be less than the algo-
rithmic and system overhead of using the
disks independently [Vengroff and Vitter
1996b]. In the next section we discuss algo-
rithms for sorting with multiple indepen-
dent disks. The techniques that arise can
be applied to many of the batched prob-
lems addressed later in the article. Two
such sorting algorithms–distribution sort
with randomized cycling and simple ran-
domized merge sort–have relatively low
overhead and will outperform disk-striped
approaches.

5. EXTERNAL SORTING AND
RELATED PROBLEMS

The problem of external sorting (or sort-
ing in external memory) is a central prob-
lem in the field of EM algorithms, partly
because sorting and sorting-like opera-
tions account for a significant percentage
of computer use [Knuth 1998], and also
because sorting is an important paradigm
in the design of efficient EM algorithms,
as we show in Section 8. With some tech-
nical qualifications, many problems that
can be solved easily in linear time in in-
ternal memory, such as permuting, list
ranking, expression tree evaluation, and
finding connected components in a sparse
graph, require the same number of I/Os in
PDM as does sorting.

THEOREM 5.1 [AGGARWAL AND VITTER

1988; NODINE AND VITTER 1995]. The
average-case and worst-case number
of I/Os required for sorting N =nB data
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items using D disks is

Sort(N ) = 2
(

n
D

logm n
)
. (6)

We saw in Section 4.2 how to con-
struct efficient sorting algorithms for mul-
tiple disks by applying the disk strip-
ing paradigm to an efficient single-disk
algorithm. But in the case of sorting,
the resulting multiple-disk algorithm does
not meet the optimal Sort(N ) bound of
Theorem 5.1. In Sections 5.1 and 5.2, we
discuss some recently developed external
sorting algorithms that use disks inde-
pendently. The algorithms are based upon
the important distribution and merge
paradigms, which are two generic ap-
proaches to sorting. The SRM method and
its variants [Barve et al. 1997; Barve and
Vitter 1999a; Sanders 2000], which are
based upon a randomized merge tech-
nique, outperform disk striping in practice
for reasonable values of D. All the algo-
rithms use online load balancing strate-
gies so that the data items accessed in an
I/O operation are evenly distributed on the
D disks. The same techniques can be ap-
plied to many of the batched problems we
discuss later in this survey.

All the methods we cover for parallel
disks, with the exception of Greed Sort
in Section 5.2, provide efficient support
for writing redundant parity information
onto the disks for purposes of error correc-
tion and recovery. For example, some of the
methods access the D disks independently
during parallel read operations, but in a
striped manner during parallel writes. As
a result, if we write D−1 blocks at a time,
the exclusive-OR of the D− 1 blocks can
be written onto the Dth disk during the
same write operation.

In Section 5.3, we show that, if we al-
low independent reads and writes, we can
probabilistically simulate any algorithm
written for the Aggarwal–Vitter model
discussed in Section 2.3 by use of PDM
with the same number of I/Os, up to a con-
stant factor.

In Section 5.4, we consider the situa-
tion in which the items in the input file
do not have unique keys. In Sections 5.5

and 5.6, we consider problems related to
sorting, such as permuting, permutation
networks, transposition, and fast Fourier
transform. In Section 5.7, we give lower
bounds for sorting and related problems.

5.1. Sorting by Distribution

Distribution sort [Knuth 1998] is a re-
cursive process in which we use a set of
S − 1 partitioning elements to partition
the items into S disjoint buckets. All the
items in one bucket precede all the items
in the next bucket. We complete the sort by
recursively sorting the individual buckets
and concatenating them to form a single
fully sorted list.

One requirement is that we choose the
S− 1 partitioning elements so that the
buckets are of roughly equal size. When
that is the case, the bucket sizes decrease
from one level of recursion to the next by a
relative factor of 2(S), and thus there are
O(logS n) levels of recursion. During each
level of recursion, we scan the data. As
the items stream through internal mem-
ory, they are partitioned into S buckets in
an online manner. When a buffer of size B
fills for one of the buckets, its block is writ-
ten to the disks in the next I/O, and an-
other buffer is used to store the next set of
incoming items for the bucket. Therefore,
the maximum number of buckets (and par-
titioning elements) is S=2(M/B)=2(m),
and the resulting number of levels of re-
cursion is 2(logm n).

It seems difficult to find S=2(m) par-
titioning elements using 2(n/D) I/Os and
guarantee that the bucket sizes are within
a constant factor of one another. Efficient
deterministic methods exist for choosing
S=√m partitioning elements [Aggarwal
and Vitter 1988; Nodine and Vitter 1993;
Vitter and Shriver 1994a], which has the
effect of doubling the number of levels
of recursion. Probabilistic methods based
upon random sampling can be found in
Feller [1968]. A deterministic algorithm
for the related problem of (exact) selection
(i.e., given k, find the kth item in the file
in sorted order) appears in Sibeyn [1999].

In order to meet the sorting bound (6),
we must form the buckets at each level
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of recursion using O(n/D) I/Os, which
is easy to do for the single-disk case.
In the more general multiple-disk case,
each read step and each write step dur-
ing the bucket formation must involve
on the average 2(D) blocks. The file of
items being partitioned is itself one of the
buckets formed in the previous level of
recursion. In order to read that file ef-
ficiently, its blocks must be spread uni-
formly among the disks, so that no one disk
is a bottleneck. The challenge in distribu-
tion sort is to write the blocks of the buck-
ets to the disks in an online manner and
achieve a global load balance by the end of
the partitioning, so that the bucket can be
read efficiently during the next level of the
recursion.

Partial striping is an effective technique
for reducing the amount of information
that must be stored in internal memory in
order to manage the disks. The disks are
grouped into clusters of size C and data
are written in “logical blocks” of size CB,
one per cluster. Choosing C=√D won’t
change the optimal sorting time by more
than a constant factor, but as pointed
out in Section 4.2, full striping (in which
C= D) can be nonoptimal.

Vitter and Shriver [1994a] develop two
randomized online techniques for the
partitioning so that with high probability
each bucket will be well balanced across
the D disks. In addition, they use partial
striping in order to fit in internal memory
the pointers needed to keep track of the
layouts of the buckets on the disks. Their
first partitioning technique applies when
the size N of the file to partition is suf-
ficiently large or when M/DB=Ä(log D),
so that the number 2(n/S) of blocks in
each bucket is Ä(D log D). Each parallel
write operation writes its D blocks in
independent random order to a disk
stripe, with all D! orders equally likely.
At the end of the partitioning, with high
probability each bucket is evenly dis-
tributed among the disks. This situation
is intuitively analogous to the classical
occupancy problem, in which b balls are
inserted independently and uniformly at
random into d bins. It is well known that
if the load factor b/d grows asymptotically

faster than log d , the most densely popu-
lated bin contains b/d balls asymptotically
on the average, which corresponds to an
even distribution. However if the load
factor b/d is 1, the largest bin contains
(ln d )/ ln ln d balls, whereas an average
bin contains only one ball [Vitter and
Flajolet 1990]. Intuitively, the blocks in
a bucket act as balls and the disks act as
bins. In our case, the parameters corre-
spond to b=Ä(d log d ), which suggests
that the blocks in the bucket should be
evenly distributed among the disks.

By further analogy to the occupancy
problem, if the number of blocks per
bucket is not Ä(D log D), then the tech-
nique breaks down and the distribution of
each bucket among the disks tends to be
uneven, causing a bottleneck for I/O op-
erations. For these smaller values of N ,
Vitter and Shriver [1994a] use their sec-
ond partitioning technique: the file is read
in one pass, one memoryload at a time.
Each memoryload is independently and
randomly permuted and written back to
the disks in the new order. In a second
pass, the file is accessed one memoryload
at a time in a “diagonally striped” manner.
Vitter and Shriver [1994a] show that with
very high probability each individual “di-
agonal stripe” contributes about the same
number of items to each bucket, so the
blocks of the buckets in each memory-
load can be assigned to the disks in a bal-
anced round-robin manner using an opti-
mal number of I/Os.

DeWitt et al. [1991] present a random-
ized distribution sort algorithm in a simi-
lar model to handle the case when sorting
can be done in two passes. They use a sam-
pling technique to find the partitioning el-
ements and route the items in each bucket
to a particular processor. The buckets are
sorted individually in the second pass.

An even better way to do distribution
sort, and deterministically at that, is the
BalanceSort method developed by Nodine
and Vitter [1993]. During the partitioning
process, the algorithm keeps track of how
evenly each bucket has been distributed
so far among the disks. It maintains an
invariant that guarantees good distribu-
tion across the disks for each bucket. For
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each bucket 1≤ b≤ S and disk 1≤d ≤ D,
let numb be the total number of items in
bucket b processed so far during the par-
titioning and let numb(d ) be the number
of those items written to disk d ; that is,
numb=

∑
1≤d≤D numb(d ). By application

of matching techniques from graph the-
ory, the BalanceSort algorithm is guaran-
teed to write at least half of any given
memoryload to the disks in a blocked man-
ner and still maintain the invariant for
each bucket b that the bD/2c largest values
among numb(1), numb(2), . . . , numb(D)
differ by at most 1. As a result, each
numb(d ) is at most about twice the ideal
value numb/D, which implies that the
number of I/Os needed to read a bucket
into memory during the next level of recur-
sion will be within a small constant factor
of optimal.

The distribution sort methods that we
mentioned above for parallel disks per-
form write operations in complete stripes,
which makes it easy to write parity infor-
mation for use in error correction and re-
covery. But since the blocks written in each
stripe typically belong to multiple buckets,
the buckets themselves will not be striped
on the disks, and we must use the disks
independently during read operations. In
the write phase, each bucket must there-
fore keep track of the last block written to
each disk so that the blocks for the bucket
can be linked together.

An orthogonal approach is to stripe the
contents of each bucket across the disks
so that read operations can be done in
a striped manner. As a result, the write
operations must use disks independently,
since during each write, multiple buckets
will be writing to multiple stripes. Error
correction and recovery can still be han-
dled efficiently by devoting to each bucket
one block-sized buffer in internal memory.
The buffer is continuously updated to con-
tain the exclusive-OR (parity) of the blocks
written to the current stripe, and after
D− 1 blocks have been written, the parity
information in the buffer can be written to
the final (Dth) block in the stripe.

Under this new scenario, the basic loop
of the distribution sort algorithm is, as be-
fore, to read one memoryload at a time and

partition the items into S buckets. How-
ever, unlike before, the blocks for each in-
dividual bucket will reside on the disks in
contiguous stripes. Each block therefore
has a predefined place where it must be
written. If we choose the normal round-
robin ordering for the stripes (name-
ly, . . . , 1, 2, 3, . . . , D, 1, 2, 3, . . . , D, . . .), the
blocks of different buckets may “collide,”
meaning that they need to be written to
the same disk, and subsequent blocks in
those same buckets will also tend to col-
lide. Vitter and Hutchinson [2001] solve
this problem by the technique of ran-
domized cycling. For each of the S buck-
ets, they determine the ordering of the
disks in the stripe for that bucket via a
random permutation of {1, 2, . . . , D}. The
S random permutations are chosen in-
dependently. If two blocks (from differ-
ent buckets) happen to collide during a
write to the same disk, one block is writ-
ten to the disk and the other is kept
on a write queue. With high probabil-
ity, subsequent blocks in those two buck-
ets will be written to different disks and
thus will not collide. As long as there is
a small pool of available buffer space to
temporarily cache the blocks in the write
queues, Vitter and Hutchinson show that
with high probability the writing proceeds
optimally.

We expect that the randomized cycling
method or the related merge sort methods
discussed at the end of Section 5.2 will be
the methods of choice for sorting with par-
allel disks. Experiments are under way to
evaluate their relative performance. Dis-
tribution sort algorithms may have an ad-
vantage over the merge approaches pre-
sented in Section 5.2 in that they typically
make better use of lower levels of cache
in the memory hierarchy of real systems,
based upon analysis of distribution sort
and merge sort algorithms on models of
hierarchical memory, such as the RUMH
model of Vitter and Nodine [1993].

5.2. Sorting by Merging

The merge paradigm is somewhat orthog-
onal to the distribution paradigm of the
previous section. A typical merge sort
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algorithm works as follows [Knuth 1998].
In the “run formation” phase, we scan the
n blocks of data, one memoryload at a time;
we sort each memoryload into a single
“run,” which we then output onto a series
of stripes on the disks. At the end of the
run formation phase, there are N/M =n/m
(sorted) runs, each striped across the
disks. (In actual implementations, we can
use the “replacement-selection” technique
to get runs of 2M data items, on the av-
erage, when MÀ B [Knuth 1998].) After
the initial runs are formed, the merging
phase begins. In each pass of the merg-
ing phase, we merge groups of R runs. For
each merge, we scan the R runs and merge
the items in an online manner as they
stream through internal memory. Double
buffering is used to overlap I/O and com-
putation. At most R =2(m) runs can be
merged at a time, and the resulting num-
ber of passes is O(logm n).

To achieve the optimal sorting bound
(6), we must perform each merging pass
in O(n/D) I/Os, which is easy to do for
the single-disk case. In the more general
multiple-disk case, each parallel read op-
eration during the merging must on aver-
age bring in the next 2(D) blocks needed
for the merging. The challenge is to ensure
that those blocks reside on different disks
so that they can be read in a single I/O
(or a small constant number of I/Os). The
difficulty lies in the fact that the runs be-
ing merged were themselves formed dur-
ing the previous merge pass. Their blocks
were written to the disks in the previous
pass without knowledge of how they would
interact with other runs in later merges.

For the binary merging case R = 2 we
can devise a perfect solution, in which the
next D blocks needed for the merge are
guaranteed to be on distinct disks, based
upon the Gilbreath principle [Gardner
1977; Knuth 1998]: we stripe the first
run into ascending order by disk number,
and we stripe the other run into descend-
ing order. Regardless of how the items in
the two runs interleave during the merge,
it is always the case that we can access
the next D blocks needed for the output
via a single I/O operation, and thus the
amount of internal memory buffer space

needed for binary merging is minimized.
Unfortunately there is no analogue to the
Gilbreath principle for R > 2, and as we
have seen above, we need the value of R
to be large in order to get an optimal sort-
ing algorithm.

The Greed Sort method of Nodine and
Vitter [1995] was the first optimal deter-
ministic EM algorithm for sorting with
multiple disks. It handles the case R > 2
by relaxing the condition on the merg-
ing process. In each step, two blocks from
each disk are brought into internal mem-
ory: the block b1 with the smallest data
item value and the block b2 whose largest
item value is smallest. If b1= b2, only
one block is read into memory, and it is
added to the next output stripe. Other-
wise, the two blocks b1 and b2 are merged
in memory; the smaller B items are writ-
ten to the output stripe, and the remain-
ing B items are written back to the disk.
The resulting run that is produced is
only an “approximately” merged run, but
its saving grace is that no two inverted
items are too far apart. A final application
of Columnsort [Leighton 1985] suffices
to restore total order; partial striping is
employed to meet the memory constraints.
One disadvantage of Greed Sort is that the
block writes and block reads involve inde-
pendent disks and are not done in a striped
manner, thus making it difficult to write
parity information for error correction and
recovery.

Aggarwal and Plaxton [1994] developed
an optimal deterministic merge sort based
upon the Sharesort hypercube parallel
sorting algorithm [Cypher and Plaxton
1993]. To guarantee even distribution dur-
ing the merging, it employs two high-level
merging schemes in which the scheduling
is almost oblivious. Like Greed Sort, the
Sharesort algorithm is theoretically opti-
mal (i.e., within a constant factor of opti-
mal), but the constant factor is larger than
the distribution sort methods.

One of the most practical methods for
sorting is based upon the simple ran-
domized merge sort (SRM) algorithm of
Barve et al. [1997] and Barve and Vitter
[1999a], referred to as “randomized strip-
ing” by Knuth [1998]. Each run is striped
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Table III. Ratio of the Number of I/Os Used by Simple
Randomized Merge Sort (SRM) to the Number of I/Os
Used by Merge Sort with Disk Striping, During a Merge
of kD Runs, Where kD ≈ M/2B. The Figures Were
Obtained by Simulation

D= 5 D= 10 D= 50

k= 5 0.56 0.47 0.37

k= 10 0.61 0.52 0.40

k= 50 0.71 0.63 0.51

across the disks, but with a random start-
ing point (the only place in the algorithm
where randomness is utilized). During the
merging process, the next block needed
from each disk is read into memory, and
if there is not enough room, the least
needed blocks are “flushed” (without any
I/Os required) to free up space. Barve
et al. [1997] derive an asymptotic upper
bound on the expected I/O performance,
with no assumptions on the input distri-
bution. A more precise analysis, which is
related to the so-called cyclic occupancy
problem, is an interesting open problem.
The cyclic occupancy problem is similar
to the classical occupancy problem we dis-
cussed in Section 5.1 in that there are b
balls distributed into d bins. However, in
the cyclical occupancy problem, the b balls
are grouped into c chains of length b1,
b2, . . . , bc, where

∑
1≤i≤c bi = b. Only the

head of each chain is randomly inserted
into a bin; the remaining balls of the chain
are inserted into the successive bins in a
cyclic manner (hence the name “cyclic oc-
cupancy”). It is conjectured that the ex-
pected maximum bin size in the cyclic oc-
cupancy problem is at most that of the
classical occupancy problem [Barve et al.
1997; Knuth 1998, problem 5.4.9–28]. The
bound has been established so far only in
an asymptotic sense.

The expected performance of SRM is not
optimal for some parameter values, but it
significantly outperforms the use of disk
striping for reasonable values of the pa-
rameters, as shown in Table III. Experi-
mental confirmation of the speedup was
obtained on a 500 megahertz CPU with
six fast disk drives, as reported by Barve
and Vitter [1999a].

We can get further improvements in
merge sort by a more careful prefetching
schedule for the runs. Barve et al. [2000]
and Kallahalla and Varman [1999, 2000]
have developed competitive and optimal
methods for prefetching blocks in paral-
lel I/O systems. Hutchinson et al. [2001a,
2001b] have demonstrated a powerful du-
ality between parallel writing and paral-
lel prefetching, which gives an easy way to
compute optimal prefetching and caching
schedules for multiple disks. More signif-
icantly, they show that the same dual-
ity exists between distribution and merg-
ing, which they exploit to get a provably
optimal and very practical parallel disk
merge sort. Rather than use random start-
ing points and round-robin stripes as in
SRM, Hutchinson et al. [2001a, 2001b] or-
der the stripes for each run independently,
based upon the randomized cycling strat-
egy discussed in Section 5.1 for distribu-
tion sort.

5.3. A General Simulation

Sanders et al. [2000] and Sanders [2001]
give an elegant randomized technique to
simulate the Aggarwal–Vitter model of
Section 2.3, in which D simultaneous
block transfers are allowed regardless of
where the blocks are located on the disks.
On the average, the simulation realizes
each I/O in the Aggarwal–Vitter model
by only a constant number of I/Os in
PDM. One property of the technique is
that the read and write steps use the
disks independently. Armen [1996] had
earlier shown that deterministic simula-
tions resulted in an increase in the num-
ber of I/Os by a multiplicative factor of
log(N/D)/ log log(N/D).

The technique of Sanders et al. [2000]
consists of duplicating each disk block and
storing the two copies on two indepen-
dently and uniformly chosen disks (cho-
sen by a hash function). In terms of the
occupancy model, each ball (block) is du-
plicated and stored in two random bins
(disks). Let us consider the problem of re-
trieving a specific set of D blocks from
the disks. For each block, there is a choice
of two disks from which it can be read.
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Regardless of which D blocks are re-
quested, Sanders et al. [2000] show how
to choose the copies that permit the D
blocks to be retrieved with high probabil-
ity in only two parallel I/Os. A natural ap-
plication of this technique is to the lay-
out of data on multimedia servers in order
to support multiple stream requests, as in
video-on-demand.

When writing blocks of data to the disks,
each block must be written to both the
disks where a copy is stored. Sanders
et al. [2000] prove that with high prob-
ability D blocks can be written in O(1)
I/O steps, assuming that there are O(D)
blocks of internal buffer space to serve
as write queues. The read and write
bounds can be improved with a corre-
sponding trade-off in redundancy and in-
ternal memory space.

5.4. Handling Duplicates

Arge et al. [1993] describe a single-disk
merge sort algorithm for the problem of
duplicate removal, in which there are a
total of K distinct items among the N
items. It runs in O(n max{1, logm(K/B)})
I/Os, which is optimal in the comparison
model. The algorithm can be used to sort
the file, assuming that a group of equal
items can be represented by a single item
and a count.

A harder instance of sorting called bun-
dle sorting arises when we have K dis-
tinct key values among the N items, but
all the items have different secondary in-
formation. Abello et al. [1998] and Matias
et al. [2000] develop optimal distribu-
tion sort algorithms for bundle sorting us-
ing BundleSort(N , K )=O(n max{1, logm
min{K , n}}) I/Os, and Matias et al. [2000]
prove the matching lower bound. Matias
et al. [2000] also show how to do bundle
sorting (and sorting in general) in place
(i.e., without extra disk space). In distri-
bution sort, for example, the blocks for the
subfiles can be allocated from the blocks
freed up from the file being partitioned;
the disadvantage is that the blocks in the
individual subfiles are no longer consec-
utive on the disk. The algorithms can be
adapted to run on D disks with a speedup

of O(D) using the techniques described in
Sections 5.1 and 5.2.

5.5. Permuting and Transposition

Permuting is the special case of sorting in
which the key values of the N data items
form a permutation of {1, 2, . . . , N }.

THEOREM 5.2 [AGGARWAL AND VITTER

1998]. The average-case and worst-case
number of I/Os required for permuting
N data items using D disks is

2

(
min

{
N
D

, Sort(N )
})
. (7)

The I/O bound (7) for permuting can
be realized by using one of the sorting
algorithms from Section 5 except in the
extreme case B log m= o(log n), in which
case it is faster to move the data items
one by one in a nonblocked way. The one-
by-one method is trivial if D= 1, but with
multiple disks there may be bottlenecks on
individual disks; one solution for doing the
permuting in O(N/D) I/Os is to apply the
randomized balancing strategies of Vitter
and Shriver [1994a].

Matrix transposition is the special case
of permuting in which the permutation
can be represented as a transposition of a
matrix from row-major order into column-
major order.

THEOREM 5.3 [AGGARWAL AND VITTER

1988]. With D disks, the number of I/Os
required to transpose a p×q matrix from
row-major order to column-major order is

2

(
n
D

logm min{M , p, q, n}
)

, (8)

where N = pq and n=N/B.

When B is relatively large (say, 1
2 M )

and N is O(M 2), matrix transposition can
be as hard as general sorting, but for
smaller B, the special structure of the
transposition permutation makes trans-
position easier. In particular, the matrix
can be broken up into square submatri-
ces of B2 elements such that each sub-
matrix contains B blocks of the matrix
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in row-major order and also B blocks of
the matrix in column-major order. Thus,
if B2<M , the transpositions can be done
in a simple one-pass operation by trans-
posing the submatrices one at a time in
internal memory.

Matrix transposition is a special case
of a more general class of permutations
called bit-permute/complement (BPC) per-
mutations, which in turn is a subset of
the class of bit-matrix-multiply/comple-
ment (BMMC) permutations. BMMC per-
mutations are defined by a log N × log N
nonsingular 0–1 matrix A and a (log N )-
length 0–1 vector c. An item with binary
address x is mapped by the permutation to
the binary address given by Ax⊕ c, where
⊕ denotes bitwise exclusive-OR. BPC per-
mutations are the special case of BMMC
permutations in which A is a permuta-
tion matrix; that is, each row and each
column of A contain a single 1. BPC per-
mutations include matrix transposition,
bit-reversal permutations (which arise in
the FFT), vector-reversal permutations,
hypercube permutations, and matrix re-
blocking. Cormen et al. [1999] character-
ize the optimal number of I/Os needed
to perform any given BMMC permutation
solely as a function of the associated ma-
trix A, and they give an optimal algorithm
for implementing it.

THEOREM 5.4 [CORMEN ET AL. 1999].
With D disks, the number of I/Os required
to perform the BMMC permutation defined
by matrix A and vector c is

2

(
n
D

(
1+ rank(γ )

log m

))
, (9)

where γ is the lower-left log n× log B sub-
matrix of A.

An interesting theoretical question is to
determine the I/O cost for each individual
permutation, as a function of some simple
characterization of the permutation, such
as number of inversions.

5.6. Fast Fourier Transform and
Permutation Networks

Computing the fast Fourier transform
(FFT) in external memory consists of a

series of I/Os that permit each computa-
tion implied by the FFT directed graph (or
butterfly) to be done while its arguments
are in internal memory. A permutation
network computation consists of an obliv-
ious (fixed) pattern of I/Os such that any
of the N ! possible permutations can be re-
alized; data items can only be reordered
when they are in internal memory. A per-
mutation network can be realized by a se-
ries of three FFTs [Wu and Feng 1981].

THEOREM 5.5 With D disks, the num-
ber of I/Os required for computing the
N-input FFT digraph or an N-input per-
mutation network is Sort(N ).

Cormen and Nicol [1988] give some
practical implementations for one-
dimensional FFTs based upon the
optimal PDM algorithm of Vitter and
Shriver [1994a]. The algorithms for FFT
are faster and simpler than for sorting
because the computation is nonadaptive
in nature, and thus the communication
pattern is fixed in advance.

5.7. Lower Bounds on I/O

In this section we prove the lower bounds
from Theorems 5.1 to 5.5 and mention
some related I/O lower bounds for the
batched problems in computational geom-
etry and graphs that we cover later in
Sections 7 and 8.

The most trivial batched problem is that
of scanning (a.k.a. streaming or touching)
a file of N data items, which can be done
in a linear number O(N/DB)=O(n/D) of
I/Os. Permuting is one of several simple
problems that can be done in linear CPU
time in the (internal memory) RAM model,
but require a nonlinear number of I/Os in
PDM because of the locality constraints
imposed by the block parameter B.

The following proof of the permutation
lower bound (7) of Theorem 5.2 is due to
Aggarwal and Vitter [1988]. The idea of
the proof is to calculate, for each t ≥ 0, the
number of distinct orderings that are re-
alizable by sequences of t I/Os. The value
of t for which the number of distinct order-
ings first exceeds N !/2 is a lower bound on
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the average number of I/Os (and hence the
worst-case number of I/Os) needed for per-
muting.

We assume for the moment that there
is only one disk, D= 1. Let us consider
how the number of realizable orderings
can change as a result of an I/O. In terms
of increasing the number of realizable or-
derings, the effect of reading a disk block
is considerably more than that of writing
a disk block, so it suffices to consider only
the effect of read operations. During a read
operation, there are at most B data items
in the read block, and they can be inter-
spersed among the M items in internal
memory in at most ( M

B ) ways, so the num-
ber of realizable orderings increases by a
factor of ( M

B ). If the block has never before
resided in internal memory, the number
of realizable orderings increases by an ex-
tra B! factor, since the items in the block
can be permuted among themselves. (This
extra contribution of B! can only happen
once for each of the N/B original blocks.)
There are at most n+ t ≤N log N ways to
choose which disk block is involved in the
tth I/O. (We allow the algorithm to use an
arbitrary amount of disk space.) Hence,
the number of distinct orderings that can
be realized by all possible sequences of t
I/Os is at most

(B!)N/B
(

N (log N )
(

M
B

))t

. (10)

Setting the expression in (10) to be at least
N !/2, and simplifying by taking the loga-
rithm, we get

N log B+ t
(

log N + B log
M
B

)
= Ä(N log N ). (11)

Solving for t, we get the matching lower
bound Ä(n logm n) for permuting for the
case D= 1. The general lower bound (7)
of Theorem 5.2 follows by dividing by D.

We get a stronger lower bound from
a more refined argument that counts
input operations separately from out-
put operations [Hutchinson et al 2001c].
For the typical case in which B log m=

ω(log N ), the I/O lower bound, up to lower-
order terms, is 2n logm n. For the patho-
logical in which B log m= o(log N ), the
I/O lower bound, up to lower-order terms,
is N/D.

Permuting is a special case of sorting,
and hence, the permuting lower bound
applies also to sorting. In the unlikely
case that B log m= o(log n), the permuting
bound is only Ä(N/D), and we must re-
sort to the comparison model to get the full
lower bound (6) of Theorem 5.1 [Aggarwal
and Vitter 1988]. In the typical case in
which B log m=Ä(log n), the comparison
model is not needed to prove the sorting
lower bound; the difficulty of sorting in
that case arises not from determining the
order of the data but from permuting (or
routing) the data.

The proof used above for permuting
also works for permutation networks, in
which the communication pattern is obliv-
ious (fixed). Since the choice of disk block
is fixed for each t, there is no N log N
term as there is in (10), and correspond-
ingly there is no additive log N term in
the inner expression as there is in (11).
Hence, when we solve for t, we get the
lower bound (6) rather than (7). The lower
bound follows directly from the counting
argument; unlike the sorting derivation,
it does not require the comparison model
for the case B log m= o(log n). The lower
bound also applies directly to FFT, since
permutation networks can be formed from
three FFTs in sequence. The transposi-
tion lower bound involves a potential argu-
ment based upon a togetherness relation
[Aggarwal and Vitter 1988].

Arge et al. [1993] show for the com-
parison model that any problem with an
Ä(N log N ) lower bound in the (internal
memory) RAM model requires Ä(n logm n)
I/Os in PDM for a single disk. Their ar-
gument leads to a matching lower bound
of Ä(n max{1, logm(K/B)}) I/Os in the
comparison model for duplicate removal
with one disk.

For the problem of bundle sorting, in
which the N items have a total of K
distinct key values (but the secondary
information of each item is different),
Matias et al. [2000] derive the matching
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lower bound BundleSort(N , K )=Ä(n max
{1, logm min{K , n}}). The proof consists of
the following parts. The first part is a sim-
ple proof of the same lower bound as for
duplicate removal, but without resorting
to the comparison model (except for the
pathological case B log m= o(log n)). It suf-
fices to set (10) to be at least N !/((N/K )!)K ,
which is the maximum number of per-
mutations of N numbers having K dis-
tinct values. Solving for t gives the lower
bound Ä(n max{1, logm(K/B)}), which is
equal to the desired lower bound for
BundleSort(N , K ) when K = B1+Ä(1) or
M = B1+Ä(1). Matias et al. [2000] derive
the remaining case of the lower bound
for BundleSort(N , K ) by a potential argu-
ment based upon the transposition lower
bound. Dividing by D gives the lower
bound for D disks.

Chiang et al. [1995], Arge [1995b],
Arge and Miltersen [1999], and Munagala
and Ranade [1999] give models and
lower bound reductions for several com-
putational geometry and graph prob-
lems. The geometry problems discussed in
Section 7 are equivalent to sorting in both
the internal memory and PDM models.
Problems such as list ranking and expres-
sion tree evaluation have the same nonlin-
ear I/O lower bound as permuting. Other
problems such as connected components,
biconnected components, and minimum
spanning forests of sparse graphs with E
edges and V vertices require as many I/Os
as E/V instances of permuting V items.
This situation is in contrast with the (in-
ternal memory) RAM model, in which the
same problems can all be done in linear
CPU time. (The known linear-time RAM
algorithm for finding a minimum span-
ning tree is randomized.) In some cases
there is a gap between the best-known up-
per and lower bounds, which we examine
further in Section 8.

The lower bounds mentioned above as-
sume that the data items are in some sense
“indivisible,” in that they are not split up
and reassembled in some magic way to
get the desired output. It is conjectured
that the sorting lower bound (6) remains
valid even if the indivisibility assumption
is lifted. However, for an artificial prob-

lem related to transposition, Adler [1996]
showed that removing the indivisibility
assumption can lead to faster algorithms.
A similar result is shown by Arge and
Miltersen [1999] for the decision problem
of determining if N data item values are
distinct. Whether the conjecture is true is
a challenging theoretical open problem.

6. MATRIX AND GRID COMPUTATIONS

Dense matrices are generally represented
in memory in row-major or column-major
order. Matrix transposition, which is
the special case of sorting that involves
conversion of a matrix from one repre-
sentation to the other, was discussed in
Section 5.5. For certain operations such
as matrix addition, both representations
work well. However, for standard matrix
multiplication (using only semiring oper-
ations) and LU decomposition, a better
representation is to block the matrix
into square

√
B×√B submatrices, which

gives the upper bound of the following
theorem.

THEOREM 6.1 [HONG AND KUNG 1981;
SAVAGE AND VITTER 1987; VITTER AND

SHRIVER 1994a; WOMBLE ET AL. 1993]. The
number of I/Os required for standard ma-
trix multiplication of two K × K matrices
or to compute the LU factorization of a
K × K matrix is2(K 3/min{K ,

√
M }DB).

Hong and Kung [1981] and Nodine et al.
[1991] give optimal EM algorithms for it-
erative grid computations, and Leiserson
et al. [1993] reduce the number of I/Os
of naive multigrid implementations by a
2(M 1/5) factor. Gupta et al. [1995] show
how to derive efficient EM algorithms au-
tomatically for computations expressed in
tensor form.

If a K × K matrix A is sparse, that is, if
the number Nz of nonzero elements in A
is much smaller than K 2, then it may
be more efficient to store only the nonzero
elements. Each nonzero element Ai, j is
represented by the triple (i, j , Ai, j ). Un-
like the dense case, in which transposi-
tion can be easier than sorting (e.g., see
Theorem 5.3 when B2≤M ), transposition
of sparse matrices is as hard as sorting.
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THEOREM 6.2 For a matrix stored in
sparse format and containing Nz nonzero
elements, the number of I/Os required to
convert the matrix from row-major order
to column-major order, and vice versa, is
2(Sort(Nz )).

The lower bound follows by reduction
from sorting. If the ith item in the input of
the sorting instance has key value x 6= 0,
there is a nonzero element in matrix posi-
tion (i, x).

For further discussion of numerical EM
algorithms we refer the reader to the sur-
vey by Toledo [1999]. Some issues re-
garding programming environments are
covered in Corbett et al. [1996] and
Section 14.

7. BATCHED PROBLEMS IN
COMPUTATIONAL GEOMETRY

Problems involving massive amounts of
geometric data are ubiquitous in spatial
databases [Laurini and Thompson 1992;
Samet 1989a,b], geographic information
systems (GIS) [Laurini and Thompson
1992; Somet 1989a; Van Kreveld et al.
1997], constraint logic programming
[Kanellakis et al. 1990; 1996], object-
oriented databases [Zdonik and Maier
1990], statistics, virtual reality systems,
and computer graphics [Funkhouser et al.
1992]. NASA’s Earth Observing System
[1999] project, the core part of the Earth
Science Enterprise (formerly Mission to
Planet Earth), produces petabytes (1015

bytes) of raster data per year. Microsoft’s
TerraServer [1998] online database of
satellite images is over one terabyte in
size. A major challenge is to develop
mechanisms for processing the data, or
else much of the data will be useless.2

For systems of this size to be efficient,
we need fast EM algorithms and data

2 For brevity, in the remainder of this survey we deal
only with the single-disk case D= 1. The single-disk
I/O bounds for the batched problems can often be cut
by a factor of 2(D) for the case D≥ 1 by using the
load balancing techniques of Section 5. In practice,
disk striping (cf. Section 4.2) may be sufficient. For
online problems, disk striping will convert optimal
bounds for the case D= 1 into optimal bounds for
D≥ 1.

structures for basic problems in computa-
tional geometry. Luckily, many problems
on geometric objects can be reduced to a
small core of problems, such as comput-
ing intersections, convex hulls, or nearest
neighbors. Useful paradigms have been
developed for solving these problems in ex-
ternal memory.

THEOREM 6.3 Certain batched prob-
lems involving N =nB input items,
Q = qB queries, and Z = zB output items
can be solved using

O((n+ q) logm n+ z) (12)

I/Os with a single disk:

(1) Computing the pairwise intersections
of N segments in the plane and their
trapezoidal decomposition;

(2) Finding all intersections between N
nonintersecting red line segments
and N nonintersecting blue line seg-
ments in the plane;

(3) Answering Q orthogonal 2-D range
queries on N points in the plane (i.e.,
finding all the points within the Q
query rectangles);

(4) Constructing the 2-D and 3-D convex
hull of N points;

(5) Voronoi diagram and triangulation
of N points in the plane;

(6) Performing Q point location queries
in a planar subdivision of size N;

(7) Finding all nearest neighbors for a set
of N points in the plane;

(8) Finding the pairwise intersections of
N orthogonal rectangles in the plane;

(9) Computing the measure of the union
of N orthogonal rectangles in the
plane;

(10) Computing the visibility of N seg-
ments in the plane from a point; and

(11) Performing Q ray-shooting queries
in 2-D constructive solid geometry
(CSG) models of size N.

The parameters Q and Z are set to 0 if they
are not relevant for the particular problem.

Goodrich et al. [1993], Zhu [1994], Arge
et al. [1995; 1998b], and Crauser et al.
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[1998; 1999] develop EM algorithms for
those problems using these EM paradigms
for batched problems:

Distribution sweeping, a generalization
of the distribution paradigm of Sec-
tion 5 for “externalizing” plane sweep
algorithms.

Persistent B-trees, an offline method for
constructing an optimal-space per-
sistent version of the B-tree data
structure (see Section 10.1), yield-
ing a factor of B improvement over
the generic persistence techniques of
Driscoll et al. [1989].

Batched filtering, a general method for
performing simultaneous EM se-
arches in data structures that can
be modeled as planar layered di-
rected acyclic graphs; it is useful for
3-D convex hulls and batched point
location. Multisearch on parallel
computers is considered in Dittrich
et al. [1988].

External fractional cascading, an EM
analogue to fractional cascading on a
segment tree, in which the degree of
the segment tree is O(mα) for some
constant 0<α≤ 1. Batched queries
can be performed efficiently using
batched filtering; online queries can
be supported efficiently by adapting
the parallel algorithms of the work of
Tamassia and Vitter [1996] to the I/O
setting.

External marriage-before-conquest, an
EM analogue to the technique of
Kirkpatrick and Seidel [1986] for per-
forming output-sensitive convex hull
constructions.

Batched incremental construction, a lo-
calized version of the randomized in-
cremental construction paradigm of
Clarkson and Shor [1989], in which
the updates to a simple dynamic
data structure are done in a ran-
dom order, with the goal of fast
overall performance on the average.
The data structure itself may have
bad worst-case performance, but the
randomization of the update order
makes worst-case behavior unlikely.

The key for the EM version so as to
gain the factor of B I/O speedup is to
batch the incremental modifications.

We focus in the remainder of this sec-
tion primarily on the distribution sweep
paradigm [Goodrich et al. 1993], which is a
combination of the distribution paradigm
of Section 5.1 and the well-known sweep-
ing paradigm from computational geome-
try [Preparata and Shamos 1985; de Berg
et al. 1997]. As an example, let us consider
computing the pairwise intersections of N
orthogonal segments in the plane by the
following recursive distribution sweep. At
each level of recursion, the region under
consideration is partitioned into2(m) ver-
tical slabs, each containing 2(N/m) of the
segments’ endpoints. We sweep a horizon-
tal line from top to bottom to process the
N segments. When the sweep line encoun-
ters a vertical segment, we insert the seg-
ment into the appropriate slab. When the
sweep line encounters a horizontal seg-
ment h, as pictured in Figure 5, we report
h’s intersections with all the “active” verti-
cal segments in the slabs that are spanned
completely by h. (A vertical segment is
“active” if it intersects the current sweep
line; vertical segments that are found to
be no longer active are deleted from the
slabs.) The remaining two end portions
of h (which “stick out” past a slab bound-
ary) are passed recursively to the next
level, along with the vertical segments.
The downward sweep then proceeds. After
the initial sorting (to get the segments
with respect to the y-dimension), the
sweep at each of the O(logm n) levels of
recursion requires O(n) I/Os, yielding the
desired bound (12). Some timing experi-
ments on distribution sweeping appear in
Chiang [1998]. Arge et al. [1998b] develop
a unified approach to distribution sweep
in higher dimensions.

A central operation in spatial databases
is spatial join. A common preprocessing
step is to find the pairwise intersections
of the bounding boxes of the objects in-
volved in the spatial join. The problem of
intersecting orthogonal rectangles can be
solved by combining the previous sweep
line algorithm for orthogonal segments
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Fig. 5 . Distribution sweep used for finding intersections among N orthogonal segments.
The vertical segments currently stored in the slabs are indicated in bold (namely, s1,
s2, . . . , s9). Segments s5 and s8 are not active, but have not yet been deleted from the
slabs. The sweep line has just advanced to a new horizontal segment that completely
spans slabs 2 and 3, so slabs 2 and 3 are scanned and all the active vertical segments in
slabs 2 and 3 (namely, s2, s3, s4, s6, s7) are reported as intersecting the horizontal segment.
In the process of scanning slab 3, segment s5 is discovered to be no longer active and can
be deleted from slab 3. The end portions of the horizontal segment that “stick out” into
slabs 1 and 4 are handled by the lower levels of recursion, where the intersection with s8
is eventually discovered.

with one for range searching. Arge et al.
[1998b] take a more unified approach us-
ing distribution sweep, which is extendible
to higher dimensions: the active objects
that are stored in the data structure in this
case are rectangles, not vertical segments.
The authors choose the branching factor
to be 2(

√
m ). Each rectangle is associated

with the largest contiguous range of ver-
tical slabs that it spans. Each of the pos-
sible2((

√
m
2 )) = 2(m) contiguous ranges of

slabs is called a multislab. The reason why
the authors choose the branching factor to
be 2(

√
m ) rather than 2(m) is so that the

number of multislabs is 2(m), and thus
there is room in internal memory for a
buffer for each multislab. The height of the
tree remains O(logm n).

The algorithm proceeds by sweeping
a horizontal line from top to bottom to
process the N rectangles. When the sweep
line first encounters a rectangle R, we con-
sider the multislab lists for all the multi-

slabs that R intersects. We report all the
active rectangles in those multislab lists,
since they are guaranteed to intersect R.
(Rectangles no longer active are discarded
from the lists.) We then extract the left
and right end portions of R that partially
“stick out” past slab boundaries, and we
pass them down to process in the next
lower level of recursion. We insert the re-
maining portion of R, which spans com-
plete slabs, into the list for the appropriate
multislab. The downward sweep then con-
tinues. After the initial sorting preprocess-
ing, each of the O(logm n) sweeps (one per
level of recursion) takes O(n) I/Os, yield-
ing the desired bound (12).

The resulting algorithm, called scal-
able sweeping-based spatial join (SSSJ)
[Arge et al. 1998a; 1998b], outperforms
other techniques for rectangle intersec-
tion. It was tested against two other
sweep line algorithms: the partition-based
spatial-merge (QPBSM) used in Paradise
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[Patel and Dewitt 1996] and a faster ver-
sion called MPBSM that uses an improved
dynamic data structure for intervals [Arge
et al. 1998a]. The TPIE system described
in Section 14 served as the common imple-
mentation platform. The algorithms were
tested on several data sets. The timing re-
sults for the two data sets in Figures 6(a)
and 6(b) are given in Figures 6(c) and 6(d),
respectively. The first data set is the worst
case for sweep line algorithms; a large
fraction of the line segments in the file
are active (i.e., they intersect the current
sweep line). The second data set is a best
case for sweep line algorithms, but the two
PBSM algorithms have the disadvantage
of making extra copies of the rectangles.
In both cases, SSSJ shows considerable
improvement over the PBSM-based meth-
ods. In other experiments done on more
typical data, such as TIGER/line road data
sets [TIGER 1992] SSSJ and MPBSM per-
form about 30% faster than does QPBSM.
The conclusion we draw is that SSSJ is
as fast as other known methods on typ-
ical data, but unlike other methods, it
scales well even for worst-case data. If the
rectangles are already stored in an index
structure, such as the R-tree index struc-
ture we consider in Section 11.2, hybrid
methods that combine distribution sweep
with inorder traversal often perform best
[Arge et al. 2000b].

For the problem of finding all intersec-
tions among N line segments, Arge et al.
[1995] give an efficient algorithm based
upon distribution sort, but the output com-
ponent of the I/O bound is slightly nonop-
timal: z logm n rather than z. Crauser
et al. [1998; 1999] attain the optimal
I/O bound (12) by constructing the trape-
zoidal decomposition for the intersecting
segments using an incremental random-
ized construction. For I/O efficiency, they
do the incremental updates in a series of
batches, in which the batch size is geomet-
rically increasing by a factor of m.

8. BATCHED PROBLEMS ON GRAPHS

The first work on EM graph algorithms
was by Ullman and Yannakakis [1991]
for the problem of transitive closure.

Chiang et al. [1995] consider a vari-
ety of graph problems, several of which
have upper and lower I/O bounds related
to sorting and permuting. Abello et al.
[1998] formalize a functional approach to
EM graph problems, in which computa-
tion proceeds in a series of scan opera-
tions over the data; the scanning avoids
side-effects and thus permits checkpoint-
ing to increase reliability. Kumar and
Schwabe [1996], followed by Buchsbaum
et al. [2000], develop graph algorithms
based upon amortized data structures
for binary heaps and tournament trees.
Munagala and Ranade [1999] give im-
proved graph algorithms for connectivity
and undirected breadth-first search, and
Arge et al. [2000a] extend the approach
to compute the minimum spanning forest
(MSF). Meyer [2001] provides some im-
provements for graphs of bounded degree.
Arge [1995b] gives efficient algorithms for
constructing ordered binary decision di-
agrams. Grossi and Italiano [1999] ap-
ply their multidimensional data structure
to get dynamic EM algorithms for MSF
and two-dimensional priority queues (in
which the delete min operation is replaced
by delete minx and delete miny ). Tech-
niques for storing graphs on disks for effi-
cient traversal and shortest path queries
are discussed in Agarwal et al. [1998b],
Goldman et al. [1998], Hutchinson et al.
[1999], and Nodine et al. [1996]. Com-
puting wavelet decompositions and his-
tograms [Vitter and Wang 1999; Vitter
et al. 1998; Wang et al. 2001] is an
EM graph problem related to transpo-
sition that arises in online analytical
processing (OLAP). Wang et al. [1998]
give an I/O-efficient algorithm for con-
structing classification trees for data
mining.

Table IV gives the best known I/O
bounds for several graph problems, as a
function of the number V = vB of ver-
tices and the number E = eB of edges.
The best known I/O lower bound for these
problems is Ä((E/V )Sort(V )= e logm v), as
mentioned in Section 5.7. A sparsifica-
tion technique [Eppstein et al. 1997]
can often be applied to convert I/O
bounds of the form O(Sort(E)) to the
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Fig. 6 . Comparision of scalable sweeping-based spatial join (SSSJ) with the
original PBSM (QPBSM) a new variant (MPBSM): (a) data set 1 consist of
tall and skinny (verticlally aligned) rectangles; (b) data set 2 consist of short
and wide (horizontally aligned) rectangles; (c) running times on data set 1; (d)
running times on data set 2.

improved form O((E/V )Sort(V )). For ex-
ample, the actual I/O bounds for connec-
tivity and MSF derived by Munagala and
Ranade [1999] and Arge et al. [2000a] are

O(max{1, log log(V/e)}Sort(E)). For the
MSF problem, we can partition the edges
of the graph into E/V sparse subgraphs on
V vertices, and then apply the algorithm
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Table IV. Best Known I/O Bounds for Batched Graph Problems for the Single-Disk Case D= 1. The Number of
Vertices is Denoted by V= vB and the Number of Edges by E=eB. The Terms Sort(N) and BunSort(N,K) are

Defined in Sections 3 and 5.4. Lower Bounds are Discussed in Section 5.7
Graph Problem I/O Bound, D= 1

List ranking,
Euler tour of a tree,
Centroid decomposition,
Expression tree evaluation

2(Sort(V )) [Chiang et al. 1995]

Connected components,
Minimum spanning forest (MSF)

O
(

max
{

1, log log
V
e

}
E
V

Sort(V )
)

[Arge et al. 2000a; Eppstein et al. 1997;
Munagala and Ranade 1999] (deterministic)

2

(
E
V

Sort(V )
)

[Chiang et al. 1995] (randomized)

Bottleneck MSF,
Biconnected components

O
(

min
{

V 2, max
{

1, log
V
M

}
E
V

Sort(V ),

(log B)
E
V

Sort(V )+ e log V
})

[Abelo et al. 1998; Chiang et al. 1995;
Eppstein et al. 1997; Kumar and Schwabe 1996]

(deterministic)

2

(
E
V

Sort(V )
)

[Chiang et al. 1995;

Eppstein et al. 1997] (randomized)

Ear decomposition,
Maximal matching

O
(

min
{

V 2, max
{

1, log
V
M

}
Sort(E),

(log B)Sort(E)+ e log V
})

[Abello et al. 1998; Chiang et al. 1995;
Kumar and Schwabe 1996] (deterministic)

O(Sort(E)) [Chiang et al. 1995]
(randomized)

Undirected breadth-first search O(BundleSort(E, V )+ V )
[Munagala and Ranade 1999]

Undirected single-source
shortest paths

O(e log e + V ) [Kumar and Schwabe 1996]

Directed and undirected
depth-first search,
Topological sorting,
Directed breadth-first search,
Directed single-source shortest paths

O
(

min
{

ve
m
+ V , (V + e) log v

})
[Buchsbaum et al. 2000; Chiang et al. 1995;

Munagala and Schwabe 1996]

Transitive closure O
(

V v
√

e
m

)
[Chiang et al. 1995]

of Arge et al. [2000a] to each subproblem
to create E/V spanning forests in a to-
tal of O(max{1, log log(V/e)}(E/V )Sort(V ))
I/Os. We can then merge the E/V spanning
forests, two at a time, in a balanced bi-
nary merging procedure by repeatedly ap-

plying the algorithm of Arge et al. [2000a].
After the first level of binary merging,
the spanning forests collectively have at
most E/2 edges; after two levels, they have
at most E/4 edges, and so on in a geo-
metrically decreasing manner. The total
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cost for the final spanning forest is thus
O(max{1, log log(V/e)}(E/V )Sort(V )) I/Os.
The reason why sparsification works is
that the spanning forest output by each bi-
nary merge is only2(V ) in size, yet it pre-
serves the necessary information needed
for the next merge step. The same ap-
proach works for connectivity.

In the case of semi-external graph
problems [Abello et al. 1998], in which
the vertices fit in internal memory but
not the edges (i.e., V ≤M < E), several
of the problems in Table IV can be
solved optimally in external memory. For
example, finding connected components,
biconnected components, and minimum
spanning forests can be done in O(e)
I/Os when V ≤M . The I/O complexities
of several problems in the general case
remain open, including connected compo-
nents, biconnected components, and min-
imum spanning forests in the determin-
istic case, as well as breadth-first search,
topological sorting, shortest paths, depth-
first search, and transitive closure. It may
be that the I/O complexity for several
of these problems is 2((E/V )Sort(V )+V ).
For special cases, such as trees, planar
graphs, outerplanar graphs, and graphs of
bounded tree width, several of these prob-
lems can be solved substantially faster
in O(Sort(E)) I/Os [Agarwal et al. 1998b;
Chiang 1995; Maheshwari and Zeh 1999;
2001].

Chiang et al. [1995] exploit the key idea
that efficient EM algorithms can often be
developed by a sequential simulation of a
parallel algorithm for the same problem.
The intuition is that each step of a parallel
algorithm specifies several operations and
the data upon which they act. If we bring
together the data arguments for each oper-
ation, which we can do by two applications
of sorting, then the operations can be per-
formed by a single linear scan through the
data. After each simulation step, we sort
again in order to reblock the data into the
linear order required for the next simula-
tion step. In list ranking, which is used as a
subroutine in the solution of several other
graph problems, the number of working
processors in the parallel algorithm

decreases geometrically with time, so the
number of I/Os for the entire simulation
is proportional to the number of I/Os used
in the first phase of the simulation, which
is Sort(N )=2(n logm n). The optimality
of the EM algorithm given in Chiang
et al. [1995] for list ranking assumes
that

√
m log m=Ä(log n), which is usually

true in practice. That assumption can be
removed by use of the buffer tree data
structure [Arge 1995a] (see Section 10.4).
A practical randomized implementation
of list ranking appears in Sibeyn [1997].

Dehne et al. [1997; 1999] and Sibeyn
and Kaufmann [1997] use a related ap-
proach and get efficient I/O bounds by
simulating coarse-grained parallel algo-
rithms in the BSP parallel model. Coarse-
grained parallel algorithms may exhibit
more locality than the fine-grained algo-
rithms considered in Chiang et al. [1995],
and as a result the simulation may re-
quire fewer sorting steps. Dehne et al.
make certain assumptions, most notably
that logm n≤ c for some small constant c
(or equivalently that M c <NB), so that
the periodic sortings can each be done in
a linear number of I/Os. Since the BSP
literature is well developed, their simu-
lation technique provides efficient single-
processor and multiprocessor EM algo-
rithms for a wide variety of problems.

In order for the simulation techniques
to be reasonably efficient, the parallel
algorithm being simulated must run in
O((log N )c) time using N processors. Un-
fortunately, the best known polylog-time
algorithms for problems such as depth-
first search and shortest paths use a poly-
nomial number of processors, not a linear
number. P-complete problems such as lex-
icographically first depth-first search are
unlikely to have polylogarithmic-time al-
gorithms even with a polynomial number
of processors. The interesting connection
between the parallel domain and the EM
domain suggests that there may be re-
lationships between computational com-
plexity classes related to parallel comput-
ing (such as P-complete problems) and
those related to I/O efficiency. It may thus
be possible to show by reduction that
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certain groups of problems are “equally
hard” to solve efficiently in terms of I/O
and are thus unlikely to have solutions as
fast as sorting.

9. EXTERNAL HASHING FOR ONLINE
DICTIONARY SEARCH

We now turn our attention to online data
structures for supporting the dictionary
operations of insert, delete, and lookup.
Given a value x, the lookup operation re-
turns the item(s), if any, in the structure
with key value x. The two main types of
EM dictionaries are hashing, which we
discuss in this section, and tree-based ap-
proaches, which we defer until Section 10.
The advantage of hashing is that the ex-
pected number of probes per operation is
a constant, regardless of the number N
of items. The common element of all EM
hashing algorithms is a predefined hash
function

hash : {all possible keys}
→ {0, 1, 2, . . . , K − 1}

that assigns the N items to K address
locations in a uniform manner. Hash-
ing algorithms differ from each other in
how they resolve the collision that results
when there is no room to store an item at
its assigned location.

The goals in EM hashing are to achieve
an average of O(Output(Z ))=O(dze) I/Os
per lookup, where Z = z B is the number
of items output, O(1) I/Os per insert and
delete, and linear disk space. Most tradi-
tional hashing methods use a statically al-
located table and are thus designed to han-
dle only a fixed range of N . The challenge
is to develop dynamic EM structures that
can adapt smoothly to widely varying val-
ues of N .

EM hashing methods fall into one of two
categories: directory methods and direc-
toryless methods. Fagin et al. [1979] pro-
posed a directory scheme called extendible
hashing. Let us assume that the size K
of the range of the hash function hash is
sufficiently large. The directory, for a given
d ≥ 0, consists of a table (array) of 2d point-
ers. Each item is assigned to the table lo-

cation corresponding to the d least signif-
icant bits of its hash address. The value
of d, called the global depth, is set to the
smallest value for which each table loca-
tion has at most B items assigned to it.
Each table location contains a pointer to a
block where its items are stored. Thus, a
lookup takes two I/Os: one to access the di-
rectory and one to access the block storing
the item. If the directory fits in internal
memory, only one I/O is needed.

Several table locations may have many
fewer than B assigned items, and for pur-
poses of minimizing storage utilization,
they can share the same disk block for stor-
ing their items. A table location shares a
disk block with all the other table locations
having the same k least significant bits in
their address, where the local depth k is
chosen to be as small as possible so that
the pooled items fit into a single disk block.
Each disk block has its own local depth. An
example is given in Figure 7.

When a new item is inserted, and its
disk block overflows, the global depth d
and the block’s local depth k are recalcu-
lated so that the invariants on d and k
once again hold. This process corresponds
to “splitting” the block that overflows and
redistributing its items. Each time the
global depth d is incremented by 1, the
directory doubles in size, which is how ex-
tendible hashing adapts to a growing N .
The pointers in the new directory are ini-
tialized to point to the appropriate disk
blocks. The important point is that the
disk blocks themselves do not need to be
disturbed during doubling, except for the
one block that overflows.

More specifically, let hashd be the hash
function corresponding to the d least sig-
nificant bits of hash; that is, hashd (x) =
hash(x) mod 2d . Initially a single disk
block is created to store the data items,
and all the slots in the directory are initial-
ized to point to the block. The local depth k
of the block is set to 0.

When an item with key value x is in-
serted, it is stored in the disk block pointed
to by directory slot hashd (x). If as a re-
sult the block (call it b) overflows, then
block b splits into two blocks—the origi-
nal block b and a new block b′—and its
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Fig. 7 . Extendible hashing with block size B= 3. The keys are indicated in italics; the
hash address of a key consists of its binary representation. For example, the hash address
of key 4 is “. . .000100” and the hash address of key 44 is “. . .0101100.” (a) The hash table
after insertion of the keys 4, 23, 18, 10, 44, 32, 9. (b) Insertion of the key 76 into table
location 100 causes the block with local depth 2 to split into two blocks with local depth 3.
(c) Insertion of the key 20 into table location 100 causes a block with local depth 3 to split
into two blocks with local depth 4. The directory doubles in size and the global depth d
is incremented from 3 to 4.

items are redistributed based upon the
(b.k + 1)st least significant bit of hash(x).
(Here b.k refers to b’s local depth k.) We in-
crement b.k by 1 and store that value also
in b′.k. In the unlikely event that b or b′
is still overfull, we continue the splitting
procedure and increment the local depths
appropriately. At this point, some of the
data items originally stored in block bhave
been moved to other blocks, based upon
their hash addresses. If b.k ≤ d , we sim-
ply update those directory pointers orig-
inally pointing to b that need changing,
as shown in Figure 7(b). Otherwise, the
directory isn’t large enough to accommo-
date hash addresses with b.k bits, so we
repeatedly double the directory size and
increment the global depth d by 1 until d
becomes equal to b.k, as shown in
Figure 7(c). The pointers in the new di-

rectory are initialized to point to the ap-
propriate disk blocks. As noted before, the
disk blocks do not need to be modified
during doubling, except for the block that
overflows.

Extendible hashing can handle dele-
tions in a similar way. When two blocks
with the same local depth k contain items
whose hash addresses share the same
k− 1 least significant bits and can fit into
a single block, then their items are merged
into a single block with a decremented
value of k. The combined size of the blocks
being merged must be sufficiently less
than B to prevent immediate splitting af-
ter a subsequent insertion. The directory
shrinks by half (and the global depth d
is decremented by 1) when all the local
depths are less than the current value
of d .
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The expected number of disk blocks re-
quired to store the data items is asymptot-
ically n/ ln 2≈n/0.69; that is, the blocks
tend to be about 69% full [Mendelson
1982]. At least Ä(n/B) blocks are needed
to store the directory. Flajolet [1983]
showed that on average the directory
uses 2(N1/Bn/B)=2(N1+ 1/B/B2) blocks,
which can be superlinear in N asymp-
totically! However, for practical values of
N and B, the N 1/B term is a small con-
stant, typically less than 2, and directory
size is within a constant factor of optimal.

The resulting directory is equivalent
to the leaves of a perfectly balanced trie
[Knuth 1998], in which the search path
for each item is determined by its hash
address, except that hashing allows the
leaves of the trie to be accessed directly
in a single I/O. Any item can thus be
retrieved in a total of two I/Os. If the di-
rectory fits in internal memory, only one
I/O is needed.

A disadvantage of directory schemes is
that two I/Os rather than one I/O are re-
quired when the directory is stored in ex-
ternal memory. Litwin [1980] and Larson
[1982] developed a directoryless method
called linear hashing that expands the
number of data blocks in a controlled regu-
lar fashion. For example, suppose that the
disk blocks currently allocated are blocks
0, 1, 2, . . . , 2d + p−1, for some 0 ≤ p < 2d .
When N grows sufficiently larger (say, by
0.8B items), block p is split by allocating
a new block 2d + p. Some of the data items
from block p are redistributed to block
2d + p, based upon the value of hashd+1,
and p is incremented by 1. When p reaches
2d, it is reset to 0 and the global depth
d is incremented by 1. To search for an
item with key value x, the hash address
hashd (x) is used if it is p or larger; oth-
erwise if the address is less than p, then
the corresponding block has already been
split, so hashd+1(x) is used instead as the
hash address.

In contrast to directory schemes, the
blocks in directoryless methods are cho-
sen for splitting in a predefined order.
Thus the block that splits is usually not
the block that has overflowed, so some
of the blocks may require auxiliary over-

flow lists to store items assigned to them.
On the other hand, directoryless methods
have the advantage that there is no need
for access to a directory structure, and
thus searches often require only one I/O.
A related technique called spiral storage
(or spiral hashing) [Martin 1979; Mullin
1985] combines constrained bucket split-
ting and overflowing buckets. More de-
tailed surveys and analysis of methods for
dynamic hashing appear in Baeza-Yates
and Soza-Pollman [1998] and Enbody and
Du [1988].

The above hashing schemes and their
many variants work very well for dictio-
nary applications in the average case, but
have poor worst-case performance. They
also do not support sequential search, such
as retrieving all the items with key value
in a specified range. Some clever work has
been done on order-preserving hash func-
tions, in which items with sequential keys
are stored in the same block or in adja-
cent blocks, but the search performance
is less robust and tends to deteriorate
because of unwanted collisions. (See
Gaede and Günther [1998] for a survey,
plus recent work in Indyk et al. [1997]).
A more effective approach for sequential
search is to use multiway trees, which we
explore next.

10. MULTIWAY TREE DATA STRUCTURES

An advantage of search trees over hashing
methods is that the data items in a tree
are sorted, and thus the tree can be used
readily for one-dimensional range search.
The items in a range [x, y] can be found by
searching for x in the tree, and then per-
forming an inorder traversal in the tree
from x to y . In this section we explore
some important search-tree data struc-
tures in external memory.

10.1. B-Trees and Variants

Tree-based data structures arise natu-
rally in the online setting, in which the
data can be updated and queries must
be processed immediately. Binary trees
have a host of applications in the (internal
memory) RAM model. In order to exploit
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block transfer, trees in external memory
generally use a block for each node, which
can store 2(B) pointers and data values.

The well-known balanced multiway B-
tree due to Bayer and McCreight [1972],
Comer [1979], and Knuth [1998] is the
most widely used nontrivial EM data
structure. The degree of each node in the
B-tree (with the exception of the root) is
required to be 2(B), which guarantees
that the height of a B-tree storing N
items is roughly logB N . B-trees support
dynamic dictionary operations and one-
dimensional range search optimally in lin-
ear space, O(logB N ) I/Os per insert or
delete, and O(logB N + z) I/Os per query,
where Z = z B is the number of items out-
put. When a node overflows during an in-
sertion, it splits into two half-full nodes,
and if the splitting causes the parent node
to overflow, the parent node splits, and so
on. Splittings can thus propagate up to the
root, which is how the tree grows in height.
Deletions are handled in a symmetric way
by merging nodes.

In the B+-tree variant, pictured in
Figure 8, all the items are stored in the
leaves, and the leaves are linked together
in symmetric order to facilitate range
queries and sequential access. The inter-
nal nodes store only key values and point-
ers and thus can have a higher branching
factor. In the most popular variant of
B+-trees, called B*-trees, splitting can
usually be postponed when a node over-
flows, by “sharing” the node’s data with
one of its adjacent siblings. The node
needs to be split only if the sibling is also
full; when that happens, the node splits
into two, and its data and those of its full
sibling are evenly redistributed, making
each of the three nodes about 2/3 full. This
local optimization reduces the number
of times new nodes must be created and
thus increases the storage utilization.
And since there are fewer nodes in the
tree, search I/O costs are lower. When
no sharing is done (as in B+-trees), Yao
[1978] shows that nodes are roughly
ln 2≈ 69% full on the average, assuming
random insertions. With sharing (as in
B*-trees), the average storage utiliza-
tion increases to about 2 ln(3/2)≈ 81%

[Baeza-Yates 1989; Küspert 1983]. Stor-
age utilization can be increased further
by sharing among several siblings, at
the cost of more complicated insertions
and deletions. Some helpful space-saving
techniques borrowed from hashing are
partial expansions [Baeza-Yates and
Larson 1989] and use of overflow nodes
[Srinivasan 1991].

A cross between B-trees and hashing,
where each subtree rooted at a certain
level of the B-tree is instead organized
as an external hash table, was devel-
oped by Litwin and Lomet [1987] and fur-
ther studied in Baeza-Yates [1996] and
Lomet [1988]. O’Neil [1992] proposed a
B-tree variant called the SB-tree that clus-
ters together on the disk symmetrically or-
dered nodes from the same level so as to
optimize range queries and sequential ac-
cess. Rao and Ross [1999; 2000] use sim-
ilar ideas to exploit locality and optimize
search tree performance in internal mem-
ory. Reducing the number of pointers al-
lows a higher branching factor and thus
faster search.

Partially persistent versions of B-trees
have been developed by Becker et al.
[1996] and Varman and Verma [1997].
By persistent data structure, we mean
that searches can be done with respect
to any timestamp y [Driscoll et al. 1989;
Easton 1986]. In a partially persistent
data structure, only the most recent ver-
sion of the data structure can be updated.
In a fully persistent data structure, any
update done with timestamp y affects all
future queries for any time after y . An in-
teresting open problem is whether B-trees
can be made fully persistent. Salzberg and
Tsotras [1999] survey work done on persis-
tent access methods and other techniques
for time-evolving data. Lehman and Yao
[1981], Mohan [1990], and Lomet and
Salzberg [1997] explore mechanisms to
add concurrency and recovery to B-trees.

10.2. Weight-Balanced B-Trees

Arge and Vitter [1996] introduce a pow-
erful variant of B-trees called weight-
balanced B-trees, with the property that
the weight of any subtree at level h (i.e.,
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Fig. 8 . B+-tree multiway search tree. Each internal and leaf node
corresponds to a disk block. All the items are stored in the leaves; the
darker portion of each leaf block indicates its relative fullness. The
internal nodes store only key values and pointers, 2(B) of them per
node. Although not indicated here, the leaf blocks are linked together
sequentially.

the number of nodes in the subtree rooted
at a node of height h) is 2(ah), for some
fixed parameter a of order B. By contrast,
the sizes of subtrees at level h in a reg-
ular B-tree can differ by a multiplicative
factor that is exponential in h. When a
node on level h of a weight-balanced B-tree
gets rebalanced, no further rebalancing is
needed until its subtree is updated Ä(ah)
times. Weight-balanced B-trees support a
wide array of applications in which the
I/O cost to rebalance a node of weight w
is O(w); the rebalancings can be scheduled
in an amortized (and often worst-case) way
with only O(1) I/Os. Such applications are
very common when the nodes have sec-
ondary structures, as in multidimensional
search trees, or when rebuilding is expen-
sive. Agarwal et al. [2001a] apply weight-
balanced B-trees to convert partition trees
such as kd-trees, BBD trees, and BAR
trees, which were designed for internal
memory, into efficient EM data structures.

Weight-balanced trees called BB[α]-
trees [Blum and Mehlhorn 1980;
Nievergelt and Reingold 1973] have
been designed for internal memory; they
maintain balance via rotations, which is
appropriate for binary trees, but not for
the multiway trees needed for external
memory. In contrast, weight-balanced
B-trees maintain balance via splits and
merges.

Weight-balanced B-trees were origi-
nally conceived as part of an optimal
dynamic EM interval tree structure for
stabbing queries and a related EM seg-
ment tree structure. We discuss their use

for stabbing queries and other types of
range queries in Sections 11.3 to 11.5.
They also have applications in the (in-
ternal memory) RAM model [Arge and
Vitter 1996; Grossi and Italiano 1997]
where they offer a simpler alternative to
BB[α]-trees. For example, by setting a to
a constant in the EM interval tree based
upon weight-balanced B-trees, we get a
simple worst-case implementation of in-
terval trees [Edelsbrunner 1983a; 1983b]
in internal memory. Weight-balanced B-
trees are also preferable to BB[α]-trees for
purposes of augmenting one-dimensional
data structures with range restriction ca-
pabilities [Willard and Lueker 1985].

10.3. Parent Pointers and Level-Balanced
B-Trees

It is sometimes useful to augment B-trees
with parent pointers. For example, if we
represent a total order via the leaves in a
B-tree, we can answer order queries such
as, “Is x < y in the total order?” by walk-
ing upwards in the B-tree from the leaves
for x and y until we reach their common
ancestor. Order queries arise in online al-
gorithms for planar point location and for
determining reachability in monotone
subdivisions [Agarwal et al. 1999]. If we
augment a conventional B-tree with par-
ent pointers, then each split operation
costs 2(B) I/Os to update parent pointers,
although the I/O cost is only O(1) when
amortized over the updates to the node.
However, this amortized bound does not
apply if the B-tree needs to support cut
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and concatenate operations, in which case
the B-tree is cut into contiguous pieces and
the pieces are rearranged arbitrarily. For
example, reachability queries in a mono-
tone subdivision are processed by main-
taining two total orders, called the left-
ist and rightist orders, each of which is
represented by a B-tree. When an edge
is inserted or deleted, the tree represent-
ing each order is cut into four consecutive
pieces, and the four pieces are rearranged
via concatenate operations into a new to-
tal order. Doing cuts and concatenation
via conventional B-trees augmented with
parent pointers will require2(B) I/Os per
level in the worst case. Node splits can oc-
cur with each operation (unlike the case
where there are only inserts and deletes),
and thus there is no convenient amortiza-
tion argument that can be applied.

Agarwal et al. [1999] describe an in-
teresting variant of B-trees called level-
balanced B-trees for handling parent
pointers and operations like cut and
concatenate. The balancing condition is
“global”: the data structure represents
a forest of B-trees in which the num-
ber of nodes on level h in the forest is
allowed to be at most Nh= 2N/(b/3)h,
where b is some fixed parameter in the
range 4< b< B/2. It immediately follows
that the total height of the forest is
roughly logb N .

Unlike previous variants of B-trees,
the degrees of individual nodes of level-
balanced B-trees can be arbitrarily small,
and for storage purposes, nodes are packed
together into disk blocks. Each node in the
forest is stored as a node record (which
points to the parent’s node record) and a
doubly linked list of child records (which
point to the node records of the children).
There are also pointers between the node
record and the list of child records. Every
disk block stores only node records or only
child records, but all the child records for
a given node must be stored in the same
block (possibly with child records for other
nodes). The advantage of this extra level
of indirection is that cuts and concatenates
can usually be done in only O(1) I/Os per
level of the forest. For example, during
a cut, a node record gets split into two,

and its list of child nodes is chopped into
two separate lists. The parent node must
therefore get a new child record to point
to the new node. These updates require
O(1) I/Os except when there is not enough
space in the disk block of the parent’s child
records, in which case the block must be
split into two, and extra I/Os are needed
to update the pointers to the moved child
records. The amortized I/O cost, however,
is only O(1) per level, since each update
creates at most one node record and child
record at each level. The other dynamic
update operations can be handled simi-
larly.

All that remains is to reestablish the
global level invariant when a level gets
too many nodes as a result of an update.
If level h is the lowest such level out
of balance, then level h and all the lev-
els above it are reconstructed via a pos-
torder traversal in O(Nh) I/Os so that the
new nodes get degree 2(b) and the in-
variant is restored. The final trick is to
construct the new parent pointers that
point from the 2(Nh−1)=2(bNh) node
records on level h− 1 to the 2(Nh) level-
h nodes. The parent pointers can be ac-
cessed in a blocked manner with respect
to the new ordering of the nodes on
level h. By sorting, the pointers can be
rearranged to correspond to the ordering
of the nodes on level h− 1, after which
the parent pointer values can be written
via a linear scan. The resulting I/O cost
is O(Nh+Sort(bNh)+Scan(bNh)), which
can be amortized against the 2(Nh)
updates that occurred since the last
time the level-h invariant was violated,
yielding an amortized update cost of
O(1+ (b/B) logm n) I/Os per level.

Order queries such as “Does leaf x
precede leaf y in the total order repre-
sented by the tree?” can be answered using
O(logB N ) I/Os by following parent point-
ers starting at x and y . The update oper-
ations insert, delete, cut, and concatenate
can be done in O((1+ (b/B) logm n) logb N )
I/Os amortized, for any 2≤ b≤ B/2, which
is never worse than O((logB N )2) by appro-
priate choice of b.

Using the multislab decomposition we
discuss in Section 11.3, Agarwal et al.
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[1999] apply level-balanced B-trees in a
data structure for point location in mono-
tone subdivisions, which supports queries
and (amortized) updates in O((logB N )2)
I/Os. They also use it to dynami-
cally maintain planar st-graphs using
O((1+ (b/B)(logm n) logb N ) I/Os (amor-
tized) per update, so that reachability
queries can be answered in O(logB N )
I/Os (worst-case). (Planar st-graphs are
planar directed acyclic graphs with a
single source and a single sink.) An in-
teresting open question is whether level-
balanced B-trees can be implemented in
O(logB N ) I/Os per update. Such an im-
provement would immediately give an op-
timal dynamic structure for reachability
queries in planar st-graphs.

10.4. Buffer Trees

An important paradigm for constructing
algorithms for batched problems in an
internal memory setting is to use a dy-
namic data structure to process a se-
quence of updates. For example, we can
sort N items by inserting them one by
one into a priority queue, followed by a se-
quence of N delete min operations. Sim-
ilarly, many batched problems in com-
putational geometry can be solved by
dynamic plane sweep techniques. For ex-
ample, in Section 7 we showed how to com-
pute orthogonal segment intersections by
dynamically keeping track of the active
vertical segments (i.e., those hit by the
horizontal sweep line); we mentioned a
similar algorithm for orthogonal rectangle
intersections.

However, if we use this paradigm
naively in an EM setting, with a B-tree
as the dynamic data structure, the result-
ing I/O performance will be highly nonop-
timal. For example, if we use a B-tree as
the priority queue in sorting or to store
the active vertical segments hit by the
sweep line, each update and query oper-
ation will take O(logB N ) I/Os, resulting
in a total of O(N logB N ) I/Os, which is
larger than the optimal bound Sort(N ) by
a substantial factor of roughly B. One so-
lution suggested in Vitter [1991] is to use a
binary tree data structure in which items

are pushed lazily down the tree in blocks
of B items at a time. The binary nature
of the tree results in a data structure of
height O(log n), yielding a total I/O bound
of O(n log n), which is still nonoptimal by
a significant log m factor.

Arge [1995a] developed the elegant
buffer tree data structure to support
batched dynamic operations, as in the
sweep line example, where the queries do
not have to be answered right away or
in any particular order. The buffer tree
is a balanced multiway tree, but with de-
gree 2(m) rather than degree 2(B), ex-
cept possibly for the root. Its key distin-
guishing feature is that each node has
a buffer that can store 2(M ) items (i.e.,
2(m) blocks of items). Items in a node
are pushed down to the children when the
buffer fills. Emptying a full buffer requires
2(m) I/Os, which amortizes the cost of dis-
tributing the M items to the 2(m) chil-
dren. Each item thus incurs an amortized
cost of O(m/M )=O(1/B) I/Os per level,
and the resulting cost for queries and up-
dates is O((1/B) logm n) I/Os amortized.

Buffer trees have an ever-expanding
list of applications. They can be used
as a subroutine in the standard sweep
line algorithm in order to get an opti-
mal EM algorithm for orthogonal segment
intersection. Arge showed how to extend
buffer trees to implement segment trees
[Bentley 1980] in external memory in a
batched dynamic setting by reducing the
node degrees to 2(

√
m ) and by intro-

ducing multislabs in each node, which
were explained in Section 7 for the re-
lated batched problem of intersecting
rectangles. Buffer trees provide a nat-
ural amortized implementation of pri-
ority queues for time-forward process-
ing applications such as discrete event
simulation, sweeping, and list rank-
ing [Chiang et al. 1995]. Govindrajan
et al. [2000] use time-forward processing
to construct a well-separated pair decom-
position of N points in d dimensions in
O(Sort(N )) I/Os, and they apply it to the
problems of finding the K nearest neigh-
bors for each point and the K closest pairs.
Brodal and Katajainen [1998] provide a
worst-case optimal priority queue, in the
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sense that every sequence of B insert
and delete min operations requires only
O(logm n) I/Os. Practical implementations
of priority queues based upon these ideas
are examined in Brengel et al. [1999]
and Sanders [1999]. In Section 11.2 we
report on some timing experiments in-
volving buffer trees for use in bulk load-
ing of R-trees. Further experiments on
buffer trees appear in Hutchinson et al.
[1997].

11. SPATIAL DATA STRUCTURES
AND RANGE SEARCH

In this section we consider online EM data
structures for storing and querying spa-
tial data. A fundamental database prim-
itive in spatial databases and geographic
information systems (GIS) is range search,
which includes dictionary lookup as a spe-
cial case. An orthogonal range query, for a
given d -dimensional rectangle, returns all
the points in the interior of the rectangle.
In this section we use range searching (es-
pecially for the orthogonal 2-D case when
d = 2) as the canonical query operation on
spatial data. Other types of spatial queries
include point location, ray shooting, near-
est neighbor, and intersection queries, but
for brevity we restrict our attention pri-
marily to range searching.

There are two types of spatial data
structures: data-driven and space-driven.
R-trees and kd-trees are data-driven since
they are based upon a partitioning of the
data items themselves, whereas space-
driven methods such as quad trees and
grid files are organized by a partitioning
of the embedding space, akin to order-
preserving hash functions. In this section
we discuss primarily data-driven data
structures.

Multidimensional range search is a
fundamental primitive in several online
geometric applications, and it provides in-
dexing support for constraint and object-
oriented data models. (See Kanellakis
et al. [1996] for background.) We have al-
ready discussed multidimensional range
searching in a batched setting in Section 7.
In this section we concentrate on data
structures for the online case.

For many types of range searching prob-
lems, it is very difficult to develop theoret-
ically optimal algorithms and data struc-
tures. Many open problems remain. The
primary design criteria are to achieve the
same performance we get using B-trees for
one-dimensional range search:

(1) to get a combined search and output
cost for queries of O(logB N + z) I/Os,

(2) to use only a linear amount (namely,
O(n) blocks) of disk storage space, and

(3) to support dynamic updates in
O(logB N ) I/Os (in the case of dynamic
data structures).

Criterion 1 combines the I/O cost
Search(N )=O(logB N ) of the search
component of queries with the I/O cost
Output(Z )=O(dze) for reporting the Z
output items. Combining the costs has
the advantage that when one cost is much
larger than the other, the query algorithm
has the extra freedom to follow a filtering
paradigm [Chazelle 1986], in which both
the search component and the output
reporting are allowed to use the larger
number of I/Os. For example, to do queries
optimally when Output(Z ) is large with
respect to Search(N ), the search compo-
nent can afford to be somewhat sloppy
as long as it doesn’t use more than O(z)
I/Os, and when Output(Z ) is relatively
small, the Z output items do not need to
reside compactly in only O(dze) blocks.
Filtering is an important design paradigm
for many of the algorithms we discuss in
this section.

We find in Section 11.7 under a fairly
general computational model for general
2-D orthogonal queries, as pictured in
Figure 9(d), it is impossible to satisfy
Criteria 1 and 2 simultaneously. At least
Ä(n(log n)/ log(logB N + 1)) blocks of disk
space must be used to achieve a query
bound of O((logB N )c + z) I/Os per query,
for any constant c [Subramanian and
Ramaswamy 1995]. Three natural ques-
tions arise.

—What sort of performance can be
achieved when using only a linear
amount of disk space? In Sections 11.1
and 11.2, we discuss some of the
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Fig. 9 . Different types of 2-D orthogonal range queries: (a) diagonal corner two-
sided 2-D query (equivalent to a stabbing query; cf. Section 11.3); (b) two-sided
2-D query; (c) three-sided 2-D query; (d) general four-sided 2-D query.

linear-space data structures used exten-
sively in practice. None of them come
close to satisfying Criteria 1 and 3 for
range search in the worst case, but in
typical-case scenarios they often per-
form well. We devote Section 11.2 to
R-trees and their variants, which are
the most popular general-purpose spa-
tial structures developed to date.

—Since the lower bound applies only to
general 2-D rectangular queries, are
there any data structures that meet Cri-
teria 1 to 3 for the important special
cases of 2-D range searching pictured
in Figures 9(a) through (c)? Fortunately
the answer is yes. We show in Sections
11.3 and 11.4 how to use a bootstrapping
paradigm to achieve optimal search and
update performance.

—Can we meet Criteria 1 and 2 for gen-
eral four-sided range searching if the
disk space allowance is increased to
O(n(log n)/ log(logB N + 1)) blocks? Yes
again! In Section 11.5, we show how to
adapt the optimal structure for three-
sided searching in order to handle gen-
eral four-sided searching in optimal
search cost. The update cost, however,
is not known to be optimal.

In Section 11.6, we discuss other scenar-
ios of range search dealing with three di-
mensions and nonorthogonal queries. We
discuss the lower bounds for 2-D range
searching in Section 11.7.

11.1. Linear-Space Spatial Structures

Grossi and Italiano [1999] construct an
elegant multidimensional version of the
B-tree called the cross tree. Using linear

space, it combines the data-driven par-
titioning of weight-balanced B-trees (cf.
Section 10.2) at the upper levels of the
tree with the space-driven partitioning of
methods like quad trees at the lower lev-
els of the tree. For d > 1, d -dimensional
orthogonal range queries can be done
in O(n1− 1/d + z) I/Os, and inserts and
deletes take O(logB N ) I/Os. The O-tree of
Kanth and Singh [1999] provides similar
bounds. Cross trees also support the dy-
namic operations of cut and concatenate in
O(n1− 1/d ) I/Os. In some restricted models
for linear-space data structures, the 2-D
range search query performance of cross
trees and O-trees can be considered to be
optimal, although it is much larger than
the logarithmic bound of Criterion 1.

One way to get multidimensional EM
data structures is to augment known in-
ternal memory structures, such as quad
trees and kd-trees, with block-access ca-
pabilities. Examples include kd-B-trees
[Robinson 1981], buddy trees [Seeger and
Kriegel 1990], and hB-trees [Evangelides
et al. 1997; Lomet and Salzberg 1990].
Grid files [Hinrichs 1985; Krishnamurthy
and Wang 1985; Nievergelt et al. 1984]
are a flattened data structure for storing
the cells of a two-dimensional grid in disk
blocks. Another technique is to “linearize”
the multidimensional space by imposing
a total ordering on it (a so-called space-
filling curve), and then the total order is
used to organize the points into a B-tree
[Gargantini 1982; Kamel and Faloutsas
1994; Orenstein and Merrett 1984]. Lin-
earization can also be used to represent
nonpoint data, in which the data items
are partitioned into one or more mul-
tidimensional rectangular regions [Abel
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1984; Orenstein 1989]. All the methods
described in this paragraph use linear
space, and they work well in certain sit-
uations; however, their worst-case range
query performance is no better than that
of cross trees, and for some methods, such
as grid files, queries can require 2(n)
I/Os, even if there are no points satisfying
the query. We refer the reader to Agarwal
and Erickson [1999], Gaede and Günther
[1998], and Nievergelt and Widmayer
[1997] for a broad survey of these and
other interesting methods. Space-filling
curves arise again in connection with R-
trees, which we describe next.

11.2. R-Trees

The R-tree of Guttman [1984] and its
many variants are a practical multidimen-
sional generalization of the B-tree for stor-
ing a variety of geometric objects, such
as points, segments, polygons, and poly-
hedra, using linear disk space. Internal
nodes have degree 2(B) (except possibly
the root), and leaves store 2(B) items.
Each node in the tree has associated with
it a bounding box (or bounding polygon) of
all the items in its subtree. A big differ-
ence between R-trees and B-trees is that
in R-trees the bounding boxes of sibling
nodes are allowed to overlap. If an R-tree
is being used for point location, for exam-
ple, a point may lie within the bounding
box of several children of the current node
in the search. In that case the search must
proceed to all such children.

In the dynamic setting, there are sev-
eral popular heuristics for where to insert
new items into an R-tree and how to rebal-
ance it; see Agarwal and Erickson [1999],
Gaede and Günther [1998], and Greene
[1989] for a survey. The R*-tree variant of
Beckmann et al. [1990] seems to give best
overall query performance. To insert an
item, we start at the root and recursively
insert the item into the subtree whose
bounding box would expand the least in
order to accommodate the item. In case of
a tie (e.g., if the item already fits inside the
bounding boxes of two or more subtrees),
we choose the subtree with the small-
est resulting bounding box. In the normal

R-tree algorithm, if a leaf node gets too
many items or if an internal node gets
too many children, we split it, as in
B-trees. Instead, in the R*-tree algorithm,
we remove a certain percentage of the
items from the overflowing node and rein-
sert them into the tree. The items we
choose to reinsert are the ones whose cen-
troids are farthest from the center of the
node’s bounding box. This forced reinser-
tion tends to improve global organization
and reduce query time. If the node still
overflows after the forced reinsertion, we
split it. The splitting heuristics try to par-
tition the items into nodes so as to mini-
mize intuitive measures such as coverage,
overlap, or perimeter. During deletion, in
both the normal R-tree and R*-tree algo-
rithms, if a leaf node has too few items
or if an internal node has too few chil-
dren, we delete the node and reinsert
all its items back into the tree by forced
reinsertion.

The rebalancing heuristics perform well
in many practical scenarios, especially in
low dimensions, but they result in poor
worst-case query bounds. An interesting
open problem is whether nontrivial query
bounds can be proven for the “typical-case”
behavior of R-trees for problems such as
range searching and point location. Sim-
ilar questions apply to the methods dis-
cussed in Section 11.1. New R-tree parti-
tioning methods by de Berg et al. [2000]
and Agarwal et al. [2001b] provide some
provable bounds on overlap and query per-
formance.

In the static setting, in which there are
no updates, constructing the R*-tree by re-
peated insertions, one by one, is extremely
slow. A faster alternative to the dynamic
R-tree construction algorithms mentioned
above is to bulk-load the R-tree in a
bottom-up fashion [Abel 1984; Kamel and
Faloutsos 1993; Orenstein 1989]. Such
methods use some heuristic for grouping
the items into leaf nodes of the R-tree, and
then recursively build the nonleaf nodes
from bottom to top. As an example, in
the so-called Hilbert R-tree of Kamel and
Faloutsos [1993], each item is labeled with
the position of its centroid on the Peano–
Hilbert space-filling curve, and a B+-tree
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Fig. 10 . Costs for R-tree processing (in
units of 1000 I/Os) using the naive repeated
insertion method and the buffer R-tree for
various buffer sizes: (a) cost for bulk-loading
the R-tree; (b) query cost.

is built upon the totally ordered labels in a
bottom-up manner. Bulk loading a Hilbert
R-tree is therefore easy to do once the
centroid points are presorted. These
static construction method algorithms are
very different in spirit from the dynamic
insertion methods. The dynamic methods
explicitly try to reduce the coverage,
overlap, or perimeter of the bounding
boxes of the R-tree nodes, and as a re-
sult, they usually achieve good query
performance. The static construction
methods do not consider the bounding
box information at all. Instead, the hope
is that the improved storage utilization
(up to 100%) of these packing methods
compensates for a higher degree of node
overlap. A dynamic insertion method re-
lated to Kamel and Faloutsos [1993] was
presented in Kamel and Faloutsos [1994].
The quality of the Hilbert R-tree in terms
of query performance is generally not as
good as that of an R*-tree, especially for

Table V. Summary of the Costs (in Number of I/Os)
for R-Tree Updates and Queries. Packing Refers to

the Percentage Storage Utilization

Data Update Update with 50% of the Data
Set Method Building Querying Packing

RI
naive
Hilbert
buffer

259, 263
15, 865
13, 484

6, 670
7, 262
5, 485

64%
92%
90%

CT
naive
Hilbert
buffer

805, 749
51, 086
42, 774

40, 910
40, 593
37, 798

66%
92%
90%

NJ
naive
Hilbert
buffer

1, 777, 570
120, 034
101, 017

70, 830
69, 798
65, 898

66%
92%
91%

NY
naive
Hilbert
buffer

3, 736, 601
246, 466
206, 921

224, 039
230, 990
227, 559

66%
92%
90%

higher-dimensional data [Berchtold et al.
1998; Kamel et al. 1996].

In order to get the best of both worlds—
the query performance of R*-trees and
the bulk construction efficiency of Hilbert
R-trees—Arge et al. [1999a] and van
den Bercken et al. [1997] independently
devised fast bulk loading methods based
upon buffer trees that do top-down
construction in O(n logm n) I/Os, which
matches the performance of the bottom-up
methods within a constant factor. The
former method is especially efficient and
supports dynamic batched updates and
queries. In Figure 10 and Table V, we
report on some experiments that test the
construction, update, and query perfor-
mance of various R-tree methods. The
experimental data came from TIGER/line
data sets from four US states [TIGER
1992]; the implementations were done
using the TPIE system, described in
Section 14.

Figure 10 compares the construction
cost for building R-trees and the result-
ing query performance in terms of I/Os for
the naive sequential method for construc-
tion into R*-trees (labeled “naive”) and the
newly developed buffer R*-tree method
[Arge et al. 1995a] (labeled “buffer”). An
R-tree was constructed on the TIGER road
data for each state and for each of four
possible buffer sizes. The four buffer sizes
were capable of storing 0, 600, 1250, and
5000 rectangles, respectively; buffer size 0
corresponds to the naive method and the
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larger buffers correspond to the buffer
method. The query performance of each
resulting R-tree was measured by pos-
ing rectangle intersection queries using
rectangles taken from TIGER hydro-
graphic data. The results, depicted in
Figure 10, show that buffer R*-trees, even
with relatively small buffers, achieve a
tremendous speedup in number of I/Os
for construction without any worsening
in query performance, compared with the
naive method. The CPU costs of the two
methods are comparable. The storage uti-
lization of buffer R*-trees tends to be in
the 90% range, as opposed to roughly 70%
for the naive method.

Bottom-up methods can build R-trees
even more quickly and more compactly,
but they generally do not support bulk dy-
namic operations, which is a big advan-
tage of the buffer tree approach. Kamel
et al. [1996] develop a way to do bulk
updates with Hilbert R-trees, but at
a cost in terms of query performance.
Table V compares dynamic update meth-
ods for the naive method, for buffer
R-trees, and for Hilbert R-trees [Kamel
et al. 1996] (labeled “Hilbert”). A single
R-tree was built for each of the four US
states, containing 50% of the road data
objects for that state. Using each of the
three algorithms, the remaining 50% of
the objects were inserted into the R-tree,
and the construction time was measured.
Query performance was then tested as be-
fore. The results in Table V indicate that
the buffer R*-tree and the Hilbert R-tree
achieve a similar degree of packing, but
the buffer R*-tree provides better update
and query performance.

11.3. Bootstrapping for 2-D Diagonal
Corner and Stabbing Queries

An obvious paradigm for developing an ef-
ficient dynamic EM data structure, given
an existing data structure that works
well when the problem fits into inter-
nal memory, is to “externalize” the in-
ternal memory data structure. If the
internal memory data structure uses a bi-
nary tree, then a multiway tree such as
a B-tree must be used instead. However,

when searching a B-tree, it can be diffi-
cult to report the outputs in an output-
sensitive manner. For example, in certain
searching applications, each of the 2(B)
subtrees of a given node in a B-tree may
contribute one item to the query output,
and as a result each subtree may need to
be explored (costing several I/Os) just to
report a single output item.

Fortunately, we can sometimes achieve
output-sensitive reporting by augment-
ing the data structure with a set of fil-
tering substructures, each of which is a
data structure for a smaller version of
the same problem. We refer to this ap-
proach, which we explain shortly in more
detail, as the bootstrapping paradigm.
Each substructure typically needs to
store only O(B2) items and to answer
queries in O(logB B2+ Z ′/B)=O(dZ ′/Be)
I/Os, where Z ′ is the number of items re-
ported. A substructure can even be static
if it can be constructed in O(B) I/Os, since
we can keep updates in a separate buffer
and do a global rebuilding in O(B) I/Os
whenever there are 2(B) updates. Such a
rebuilding costs O(1) I/Os (amortized) per
update. We can often remove the amortiza-
tion make it worst-case using the weight-
balanced B-trees of Section 10.2 as the un-
derlying B-tree structure.

Arge and Vitter [1996] first uncovered
the bootstrapping paradigm while design-
ing an optimal dynamic EM data structure
for diagonal corner two-sided 2-D queries
(see Figure 9(a)) that meets all three de-
sign criteria listed in Section 11. Diago-
nal corner two-sided queries are equiva-
lent to stabbing queries, which have the
form: “Given a set of one-dimensional in-
tervals, report all the intervals ‘stabbed’
by the query value x.” (That is, report all
intervals that contain x.) A diagonal cor-
ner query x on a set of 2-D points {(a1, b2),
(a2, b2), . . .} is equivalent to a stabbing
query x on the set of closed intervals
{[a1, b2], [a2, b2], . . .}.

The EM data structure for stabbing
queries is a multiway version of the
well-known interval tree data structure
[Edelsbrunner 1983a; 1983b] for internal
memory, which supports stabbing queries
in O(log N + Z ) CPU time and updates
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Fig. 11 . Internal node v of the EM priority search tree, for B = 64 with
√

B = 8
slabs. Node v is the lowest node in the tree completely containing the indicated
interval. The middle piece of the interval is stored in the multislab list corre-
sponding to slabs 3 to 5. (The multislab lists are not pictured.) The left and right
end pieces of the interval are stored in the left-ordered list of slab 2 and the
right-ordered list of slab 6, respectively.

in O(log N ) CPU time and uses O(N )
space. We can externalize it by using a
weight-balanced B-tree as the underly-
ing base tree, where the nodes have de-
gree 2(

√
B ). Each node in the base tree

corresponds in a natural way to a one-
dimensional range of x-values; its 2(

√
B )

children correspond to subranges called
slabs, and the 2(

√
B2)=2(B) contiguous

sets of slabs are called multislabs, as in
Section 7 for a similar batched problem.
Each input interval is stored in the low-
est node v in the base tree whose range
completely contains the interval. The in-
terval is decomposed by v’s 2(

√
B ) slabs

into at most three pieces: the middle piece
that completely spans one or more slabs
of v, the left end piece that partially pro-
trudes into a slab of v, and the right end
piece that partially protrudes into another
slab of v, as shown in Figure 11. The three
pieces are stored in substructures of v.
In the example in Figure 11, the middle
piece is stored in a list associated with the
multislab it spans (corresponding to the
contiguous range of slabs 3 to 5), the left
end piece is stored in a one-dimensional
list for slab 2 ordered by left endpoint,
and the right end piece is stored in a one-
dimensional list for slab 6 ordered by right
endpoint.

Given a query value x, the intervals
stabbed by x reside in the substructures
of the nodes of the base tree along the
search path from the root to the leaf for x.
For each such node v, we consider each of

v’s multislabs that contains x and report
all the intervals in the multislab list. We
also walk sequentially through the right-
ordered and left-ordered lists for the slab
of v that contains x, reporting intervals in
an output-sensitive way.

The big problem with this approach is
that we have to spend at least one I/O
per multislab containing x, regardless of
how many intervals are in the multislab
lists. For example, there may be 2(B)
such multislab lists, with each list con-
taining only a few stabbed intervals (or
worse yet, none at all). The resulting query
performance will be highly nonoptimal.
The solution, according to the bootstrap-
ping paradigm, is to use a substructure in
each node consisting of an optimal static
data structure for a smaller version of the
same problem; a good choice is the corner
data structure developed by Kanellakis
et al. [1996]. The corner substructure
in this case is used to store all the
intervals from the “sparse” multislab lists,
namely, those that contain fewer than
B intervals, and thus the substructure
contains only O(B2) intervals. When vis-
iting node v, we access only v’s non-
sparse multislab lists, each of which
contributes Z ′ ≥ B intervals to the output,
at an output-sensitive cost of O(Z ′/B) I/Os,
for some Z ′. The remaining Z ′′ stabbed
intervals stored in v can be found by a
single query to v’s corner substructure,
at a cost of O(logB B2+ Z ′′/B)=O(dZ ′′/Be)
I/Os. Since there are O(logB N ) nodes
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along the search path in the base tree, the
total collection of Z stabbed intervals is
reported in O(logB N + z) I/Os, which is
optimal. Using a weight-balanced B-tree
as the underlying base tree allows the
static substructures to be rebuilt in worst-
case optimal I/O bounds.

Stabbing queries are important be-
cause, when combined with one-
dimensional range queries, they provide a
solution to dynamic interval management,
in which one-dimensional intervals can
be inserted and deleted, and intersection
queries can be performed. These opera-
tions support indexing of one-dimensional
constraints in constraint databases. Other
applications of stabbing queries arise in
graphics and GIS. For example, Chiang
and Silva [1999] apply the EM interval
tree structure to extract at query time the
boundary components of the isosurface
(or contour) of a surface. A data structure
for a related problem, which in addition
has optimal output complexity, appears
in Agarwal et al. [1998b]. The above boot-
strapping approach also yields dynamic
EM segment trees with optimal query
and update bound and O(n logB N )-block
space usage.

11.4. Bootstrapping for Three-Sided
Orthogonal 2-D Range Search

Arge et al. [1999b] provide another ex-
ample of the bootstrapping paradigm
by developing an optimal dynamic EM
data structure for three-sided orthogonal
2-D range searching (see Figure 9(c))
that meets all three design criteria. In
internal memory, the optimal structure is
the priority search tree [McCreight 1985],
which answers three-sided range queries
in O(log N + Z ) CPU time, does updates
in O(log N ) CPU time, and uses O(N )
space. The EM structure of Arge et al.
[1999b] is an externalization of the prior-
ity search tree, using a weight-balanced
B-tree as the underlying base tree. Each
node in the base tree corresponds to a
one-dimensional range of x-values, and
its 2(B) children correspond to subranges
consisting of vertical slabs. Each node v
contains a small substructure called a

child cache that supports three-sided
queries. Its child cache stores the “Y-set”
Y (w) for each of the 2(B) children w of v.
The Y-set Y (w) for child w consists of
the highest 2(B) points in w’s slab that
are not already stored in the child cache
of some ancestor of v. There are thus a
total of 2(B2) points stored in v’s child
cache.

We can answer a three-sided query of
the form [x1, x2]× [ y1, +∞) by visiting a
set of nodes in the base tree, starting with
the root. For each visited node v, we pose
the query [x1, x2]× [ y1, +∞) to v’s child
cache and output the results. The follow-
ing rules are used to determine which of
v’s children to visit. We visit v’s child w if
either

(1) w is along the leftmost search path
for x1 or the rightmost search path
for x2 in the base tree, or

(2) the entire Y-set Y (w) is reported when
v’s child cache is queried.

(See Figure 12.) There are O(logB N )
nodes w that are visited because of Rule 1.
When Rule 1 is not satisfied, Rule 2 pro-
vides an effective filtering mechanism to
guarantee output-sensitive reporting. The
I/O cost for initially accessing a child
node w can be charged to the 2(B) points
of Y (w) reported from v’s child cache; con-
versely, if not all of Y (w) is reported, then
the points stored in w’s subtree will be too
low to satisfy the query, and there is no
need to visit w. (See Figure 12(b).) Pro-
vided that each child cache can be queried
in O(1) I/Os plus the output-sensitive
cost to output the points satisfying the
query, the resulting overall query time is
O(logB N + z), as desired.

All that remains is to show how to query
a child cache in a constant number of I/Os,
plus the output-sensitive cost. Arge et al.
[1999b] provide an elegant and optimal
static data structure for three-sided range
search, which can be used in the EM
priority search tree described above to
implement the child caches of size O(B2).
The static structure is a persistent B-tree
optimized for batched construction. When
used for O(B2) points, it occupies O(B)
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Fig. 12 . Internal node v of the EM priority search tree, with slabs (children) w1, w2, . . . , w5.
The Y-sets of each child, which are stored collectively in v’s child cache, are indicated by the
bold points. (a) The three-sided query is completely contained in the x-range of w2. The relevant
(bold) points are reported from v’s child cache, and the query is recursively answered in w2.
(b) The three-sided query spans several slabs. The relevant (bold) points are reported from v’s
child cache, and the query is recursively answered in w2, w3, and w5. The query is not extended
to w4 in this case because not all of its Y-set Y (w4) (stored in v’s child cache) satisfies the query,
and as a result none of the points stored in w4’s subtree can satisfy the query.

blocks, can be built in O(B) I/Os, and
supports three-sided queries in O(dZ ′/Be)
I/Os per query, where Z ′ is the number
of points reported. The static structure is
so simple that it may be useful in practice
on its own.

Both the three-sided structure devel-
oped by Arge et al. [1999b] and the struc-
ture for two-sided diagonal queries dis-
cussed in Section 11.3 satisfy Criteria 1
to 3 of Section 11. So in a sense, the three-
sided query structure subsumes the diago-
nal two-sided structure, since three-sided
queries are more general. However, diag-
onal two-sided structures may prove to be
faster in practice, because in each of its
corner substructures, the data accessed
during a query are always in contiguous
blocks, whereas the static substructures
used in three-sided search do not guaran-
tee block contiguity. Empirical work is on-
going to evaluate the performance of these
data structures.

On a historical note, earlier work
on two- and three-sided queries was
done by Ramaswamy and Subramanian
[1994] using the notion of path caching;
their structure met Criterion 1 but
had higher storage overheads and amor-
tized and/or nonoptimal update bounds.
Subramanian and Ramaswamy [1995]
subsequently developed the p-range tree
data structure for three-sided queries,
with optimal linear disk space and ne-

arly optimal query and amortized update
bounds.

11.5. General Orthogonal 2-D Range Search

The dynamic data structure for three-
sided range searching can be gener-
alized using the filtering technique of
Chazelle [1986] to handle general four-
sided queries with optimal I/O query
bound O(logB N + z) and optimal disk
space usage O(n(log n)/ log(logB N + 1))
[Arge et al. 1999b]. The update bound be-
comes O((logB N )(log n)/log(logB N + 1)),
which may not be optimal.

The outer level of the structure is a
balanced (logB N + 1)-way 1-D search tree
with 2(n) leaves, oriented, say, along
the x-dimension. It therefore has about
(log n)/ log(logB N + 1) levels. At each level
of the tree, each input point is stored in
four substructures (described below) that
are associated with the particular tree
node at that level that spans the x-value
of the point. The space and update bounds
quoted above follow from the fact that the
substructures use linear space and can be
updated in O(logB N ) I/Os.

To search for the points in a four-
sided query rectangle [x1, x2]× [ y1, y2],
we decompose the four-sided query in
the following natural way into two three-
sided queries, a stabbing query, and
logB N − 1 list traversals. We find the
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lowest node v in the tree whose x-range
contains [x1, x2]. If v is a leaf, we can
answer the query in a single I/O. Other-
wise we query the substructures stored
in those children of v whose x-ranges in-
tersect [x1, x2]. Let 2≤ k≤ logB N + 1 be
the number of such children. The range
query when restricted to the leftmost such
child of v is a three-sided query of the form
[x1, +∞] × [ y1, y2], and when restricted
to the rightmost such child of v, the range
query is a three-sided query of the form
[−∞, x2]× [ y1, y2]. Two of the substruc-
tures at each node are devoted to three-
sided queries of these types; using the
linear-sized data structures of Arge et al.
[1999b] in Section 11.4, each such query
can be done in O(logB N + z) I/Os.

For the k− 2 intermediate children of v,
their x-ranges are completely contained
inside the x-range of the query rectangle,
and thus we need only do k− 2 list traver-
sals in y-order and retrieve the points
whose y-values are in the range [ y1, y2].
If we store the points in each node in
y-order (in the third type of substructure),
the Z ′ output points from a node can be
found in O(dZ ′/Be) I/Os, once a starting
point in the linear list is found. We can
find all k− 2 starting points via a sin-
gle query to a stabbing query substruc-
ture S associated with v. (This structure
is the fourth type of substructure.) For
each two y-consecutive points (ai, bi) and
(ai+1, bi+1) associated with a child of v, we
store the y-interval [bi, bi+1] in S. Note
that S contains intervals contributed by
each of the logB N + 1 children of v. By a
single stabbing query with query value y1,
we can thus identify the k− 2 starting
points in only O(logB N ) I/Os [Arge and
Vitter 1996], as described in Section 11.3.
(We actually get starting points for all the
children of v, not just the k− 2 ones of
interest, but we can discard the starting
points we don’t need.) The total number
of I/Os to answer the range query is thus
O(logB N + z), which is optimal.

11.6. Other Types of Range Search

For other types of range searching, such as
in higher dimensions and for nonorthogo-

nal queries, different filtering techniques
are needed. So far, relatively little work
has been done, and many open problems
remain.

Vengroff and Vitter [1996a] develop the
first theoretically near-optimal EM data
structure for static three-dimensional or-
thogonal range searching. They create
a hierarchical partitioning in which all
the points that dominate a query point
are densely contained in a set of blocks.
Compression techniques are needed to
minimize disk storage. With some recent
modifications [Vitter and Vengroff 1999],
queries can be done in O(logB N + z)
I/Os, which is optimal, and the space
usage is O(n(log n)k+ 1

/
(log(logB N + 1))k)

disk blocks to support (3+ k)-sided 3-D
range queries, in which k of the dimen-
sions (0≤ k ≤ 3) have finite ranges. The
result also provides optimal O(log N + Z )-
time query performance for three-sided
3-D queries in the (internal memory) RAM
model, but using O(N log N ) space.

By the reduction in Chazelle and
Edelsbrunner [1987], a data structure for
three-sided 3-D queries also applies to
2-D homothetic range search, in which the
queries correspond to scaled and trans-
lated (but not rotated) transformations
of an arbitrary fixed polygon. A inter-
esting special case is “fat” orthogonal
2-D range search, where the query rectan-
gles are required to have bounded aspect
ratio. For example, every rectangle with
bounded aspect ratio can be covered by two
overlapping squares. An interesting open
problem is to develop linear-sized opti-
mal data structures for fat orthogonal
2-D range search. By the reduction, one
possible approach would be to develop
optimal linear-sized data structures for
three-sided 3-D range search.

Agarwal et al. [1998a] consider halfs-
pace range searching, in which a query is
specified by a hyperplane and a bit indi-
cating one of its two sides, and the output
of the query consists of all the points on
that side of the hyperplane. They give var-
ious data structures for halfspace range
searching in two, three, and higher dimen-
sions, including one that works for sim-
plex (polygon) queries in two dimensions,
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but with a higher query I/O cost. They
have subsequently improved the storage
bounds for halfspace range queries in two
dimensions to obtain an optimal static
data structure satisfying Criteria 1 and 2
of Section 11.

The number of I/Os needed to build
the data structures for 3-D orthogonal
range search and halfspace range search
is rather large (more thanÄ(N )). Still, the
structures shed useful light on the com-
plexity of range searching and may open
the way to improved solutions. An open
problem is to design efficient construc-
tion and update algorithms and to improve
upon the constant factors.

Callahan et al. [1995] develop dy-
namic EM data structures for several on-
line problems in d dimensions. For any
fixed ε >0, they can find an approximately
nearest neighbor of a query point (within
a 1+ ε factor of optimal) in O(logB N )
I/Os; insertions and deletions can also be
done in O(logB N ) I/Os. They use a re-
lated approach to maintain the closest
pair of points; each update costs O(logB N )
I/Os. Govindarajan et al. [2000] achieve
the same bounds for closest pair by main-
taining a well-separated pairs decompo-
sition. For finding nearest neighbors and
approximate nearest neighbors, two other
approaches are partition trees [Agarwal
et al. 1998a; 2000] and locality-sensitive
hashing [Gionis et al. 1999]. Numerous
other data structures have been developed
for range queries and related problems
on spatial data. We refer to Agarwal and
Erickson [1999], Gaede and Günther
[1998], and Nievergelt and Widmayer
[1997] for a broad survey.

11.7. Lower Bounds for Orthogonal
Range Search

We mentioned in Section 11 that Sub-
ramanian and Ramaswamy [1995]
prove that no EM data structure
for 2-D range searching can achieve
design Criterion 1 using less than
O(n(log n)/ log(logB N + 1)) disk blocks,
even if we relax the criterion to allow
O((logB N )c+ z) I/Os per query, for any
constant c. The result holds for an EM

version of the pointer machine model,
based upon the approach of Chazelle
[1990] for the internal memory model.

Hellerstein et al. [1997] consider
a generalization of the layout-based
lower bound argument of Kanellakis
et al. [1996] for studying the tradeoff
between disk space usage and query
performance. They develop a model for
indexability, in which an “efficient” data
structure is expected to contain the
Z output points to a query compactly
within O(dZ/Be)=O(dze) blocks. One
shortcoming of the model is that it
considers only data layout and ignores
the search component of queries, and
thus it rules out the important filtering
paradigm discussed earlier in Section 11.
For example, it is reasonable for any
query algorithm to perform at least
logB N I/Os, so if the output size Z is at
most B, an algorithm may still be able
to satisfy Criterion 1 even if the output
is contained within O(logB N ) blocks
rather than O(z)=O(1) blocks. Arge
et al. [1999b] modify the model to red-
erive the same nonlinear space lower
bound O(n(log n)/ log(logB N + 1)) of
Subramanian and Ramaswamy [1995]
for 2-D range searching by consider-
ing only output sizes Z larger than
(logB N )c B, for which the number of
blocks allowed to hold the outputs is
Z/B=O((logB N )c+ z). This approach
ignores the complexity of how to find
the relevant blocks, but as mentioned
in Section 11.5 the authors separately
provide an optimal 2-D range search data
structure that uses the same amount
of disk space and does queries in the
optimal O(logB N + z) I/Os. Thus, despite
its shortcomings, the indexability model
is elegant and can provide much insight
into the complexity of blocking data in
external memory. Further results in this
model appear in Koutsoupias and Taylor
[1998] and Samoladas and Miranker
[1998].

One intuition from the indexability
model is that less disk space is needed
to efficiently answer 2-D queries when
the queries have bounded aspect ratio
(i.e., when the ratio of the longest side
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length to the shortest side length of the
query rectangle is bounded). An inter-
esting question is whether R-trees and
the linear-space structures of Sections
11.1 and 11.2 can be shown to perform
provably well for such queries. Another
interesting scenario is where the queries
correspond to snapshots of the continuous
movement of a sliding rectangle.

When the data structure is restricted to
contain only a single copy of each point,
Kanth and Singh [1999] show for a re-
stricted class of index-based trees that
d -dimensional range queries in the worst
case require Ä(n1−1/d + z) I/Os, and they
provide a data structure with a matching
bound. Another approach to achieve the
same bound is the cross tree data struc-
ture [Grossi and Italiano 1999] mentioned
in Section 11.1, which in addition supports
the operations of cut and concatenate.

12. DYNAMIC AND KINETIC
DATA STRUCTURES

In this section we consider two scenar-
ios where data items change: dynamic (in
which items are inserted and deleted) and
kinetic (in which the data items move con-
tinuously along specified trajectories). In
both cases, queries can be done at any
time. It is often useful for kinetic data
structures to allow insertions and dele-
tions; for example, if the trajectory of an
item changes, we must delete the old tra-
jectory and insert the new one.

12.1. Logarithmic Method for Decomposable
Search Problems

In Sections 9 to 11 we’ve already encoun-
tered several dynamic data structures for
the problems of dictionary lookup and
range search. In Section 11, we saw how
to develop optimal EM range search data
structures by externalizing some known
internal memory data structures. The
key idea was to use the bootstrapping
paradigm, together with weight-balanced
B-trees as the underlying data structure,
in order to consolidate several static data
structures for small instances of range
searching into one dynamic data struc-

ture for the full problem. The bootstrap-
ping technique is specific to the partic-
ular data structures involved. In this
section we look at another technique that
is based upon the properties of the prob-
lem itself rather than upon that of the data
structure.

We call a problem decomposable if we
can answer a query by querying indi-
vidual subsets of the problem data and
then computing the final result from
the solutions to each subset. Dictionary
search and range searching are obvi-
ous examples of decomposable problems.
Bentley developed the logarithmic method
[Bentley and Saxe 1980; Overmars 1983]
to convert efficient static data structures
for decomposable problems into general
dynamic ones. In the internal memory set-
ting, the logarithmic method consists of
maintaining a series of static substruc-
tures, at most one each of size 1, 2, 4,
8, . . . . When a new item is inserted, it is
initialized in a substructure of size 1. If
a substructure of size 1 already exists, the
two substructures are combined into a sin-
gle substructure of size 2. If there is al-
ready a substructure of size 2, they in turn
are combined into a single substructure of
size 4, and so on. For the current value
of N , it is easy to see that the kth sub-
structure (i.e., of size 2k) is present exactly
when the kth bit in the binary represen-
tation of N is 1. Since there are at most
log N substructures, the search time
bound is log N times the search time per
substructure. As the number of items in-
creases from 1 to N , the kth structure is
built a total of N/2k times (assuming N
is a power of 2). If it can be built in O(2k)
time, the total time for all insertions and
all substructures is thus O(N log N ), mak-
ing the amortized insertion time O(log N ).
If we use up to three substructures of
size 2k at a time, we can do the recon-
structions in advance and convert the
amortized update bounds to worst-case
[Overmars 1983].

In the EM setting, in order to eliminate
the dependence upon the binary logarithm
in the I/O bounds, the number of sub-
structures must be reduced from log N to
logB N , and thus the maximum size of the
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kth substructure must be increased from
2k to Bk . As the number of items increases
from 1 to N , the kth substructure has to
be built NB/Bk times (when N is a power
of B), each time taking O(Bk(logB N )/B)
I/Os. The key point is that the extra fac-
tor of B in the numerator of the first term
is cancelled by the factor of B in the de-
nominator of the second term, and thus
the resulting total insertion time over all
N insertions and all logB N structures is
O(N (logB N )2) I/Os, which is O((logB N )2)
I/Os amortized per insertion. By global re-
building we can do deletions in O(logB N )
I/Os amortized. As in the internal memory
case, the amortized updates can typically
be made worst-case.

Arge and Vahrenhold [2000] obtain I/O
bounds for dynamic point location in gen-
eral planar subdivisions similar to those
of Agarwal et al. [1999], but without
use of level-balanced trees. Their method
uses a weight-balanced base structure at
the outer level and a multislab struc-
ture for storing segments similar to that
of Arge and Vitter [1996] described in
Section 11.3. They use the logarithmic
method to construct a data structure to
answer vertical rayshooting queries in the
multislab structures. The method relies
upon a total ordering of the segments, but
such an ordering can be changed drasti-
cally by a single insertion. However, each
substructure in the logarithmic method is
static (until it is combined with another
substructure), and thus a static total or-
dering can be used for each substructure.
The authors show by a type of fractional
cascading that the queries in the logB
N substructures do not have to be done in-
dependently, which saves a factor of logB
N in the I/O cost, but at the cost of mak-
ing the data structures amortized instead
of worst case.

Agarwal et al. [2001a] apply the loga-
rithmic method (in both the binary form
and B-way variant) to get EM versions of
kd-trees, BBD trees, and BAR trees.

12.2. Continuously Moving Items

Early work on temporal data generally
concentrated on time-series or multiver-

sion data [Salzberg and Tsotras 1999]. A
question of growing interest in this mo-
bile age is how to store and index con-
tinuously moving items, such as mobile
telephones, cars, and airplanes (e.g., see
Jensen and Theodoridis [2000], Saltenis
et al. [2000], and Wolfson et al. [1999]).
There are two main approaches to storing
moving items. The first technique is to use
the same sort of data structure as for non-
moving data, but to update it whenever
items move sufficiently far so as to trig-
ger important combinatorial events that
are relevant to the application at hand
[Basch et al. 1999]. For example, an event
relevant for range search might be trig-
gered when two items move to the same
horizontal displacement (which happens
when the x-ordering of the two items is
about to switch). A different approach is
to store each item’s location and speed tra-
jectory, so that no updating is needed as
long as the item’s trajectory plan does not
change. Such an approach requires fewer
updates, but the representation for each
item generally has higher dimension, and
the search strategies are therefore less
efficient.

Kollios et al. [1999] developed a linear-
space indexing scheme for moving points
along a (one-dimensional) line, based upon
the notion of partition trees. Their struc-
ture supports a variety of range search and
approximate nearest neighbor queries.
For example, given a range and time, the
points in that range at the indicated time
can be retrieved in O(n1/2+ ε + k) I/Os, for
arbitrarily small ε >0. Updates require
O((log n)2) I/Os. Agarwal et al. [2000]
extend the approach to handle range
searches in two dimensions, and they im-
prove the update bound to O((logB n)2)
I/Os. They also propose an event-driven
data structure with the same query
times as the range search data struc-
ture of Arge et al. [1999b] discussed in
Section 11.5, but with the potential need to
do many updates. A hybrid data structure
combining the two approaches permits a
tradeoff between query performance and
update frequency.

R-trees offer a practical generic mecha-
nism for storing multidimensional points
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and are thus a natural alternative for
storing mobile items. One approach is
to represent time as a separate dimen-
sion and to cluster trajectories using the
R-tree heuristics. However, the orthogo-
nal nature of the R-tree does not lend it-
self well to diagonal trajectories. For the
case of points moving along linear tra-
jectories, Šaltenis et al. [2000] build the
R-tree upon only the spatial dimensions,
but parameterize the bounding box coor-
dinates to account for the movement of
the items stored within. They maintain an
outer approximation of the true bounding
box, which they periodically update to re-
fine the approximation. Agarwal and Har-
Peled [2001] show how to maintain a prov-
ably good approximation of the minimum
bounding box with need for only a constant
number of refinement events.

13. STRING PROCESSING

In this section we survey methods used to
process strings in external memory, such
as inverted files, search trees, suffix trees
and suffix arrays, and sorting, with par-
ticular attention to more recent develop-
ments.

13.1. Inverted Files

The simplest and most commonly used
method to index text in large documents
or collections of documents is the inverted
file, which is analogous to the index at the
back of a book. The words of interest in the
text are sorted alphabetically, and each
item in the sorted list has a list of point-
ers to the occurrences of that word in the
text. In an EM setting, a hybrid approach
makes sense, in which the text is divided
into large chunks (consisting of one or
more blocks) and an inverted file is used to
specify the chunks containing each word;
the search within a chunk can be carried
out by using a fast sequential method,
such as the Knuth–Morris–Pratt [1977]
or Boyer–Moore [1977] methods. This par-
ticular hybrid method was introduced as
the basis of the widely used GLIMPSE
search tool [Manber and Wu 1994]. An-
other way to index text is to use hash-

Fig. 13 . Patricia trie representation of a single
node of an SB-tree, with branching factor B= 8.
The seven strings used for partitioning are pic-
tured at the leaves; in the actual data structure,
pointers to the strings, not the strings them-
selves, are stored at the leaves. The pointers
to the B children of the SB-tree node are also
stored at the leaves.

ing to get small signatures for portions
of text. The reader is referred to Frakes
and Baeza-Yates [1992] and Baeza-Yates
and Ribeiro-Neto [1999] for more back-
ground on the above methods.

13.2. String B-Trees

In a conventional B-tree, 2(B) unit-sized
keys are stored in each internal node to
guide the searching, and thus the entire
node fits into one or two blocks. However,
if the keys are variable-sized text strings,
the keys can be arbitrarily long, and there
may not be enough space to store 2(B)
strings per node. Pointers to 2(B) strings
could be stored instead in each node,
but access to the strings during search
would require more than a constant
number of I/Os per node. In order to save
space in each node, Bayer and Unterauer
[1977] investigated the use of prefix
representations of keys. Ferragina and
Grossi [1996; 1999] recently developed an
elegant generalization of the B-tree called
the String B-tree or simply SB-tree (not
to be confused with the SB-tree [O’Neil
1992] mentioned in Section 10.1). An
SB-tree differs from a conventional B-tree
in the way that each 2(B)-way branching
node is represented.

An individual node of Ferragina and
Grossi’s SB-tree is pictured in Figure 13.
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It is based upon a variant of the
Patricia trie character-based data struc-
ture [Knuth 1998; Morrison 1968] along
the lines of Ajtai et al. [1984]. It achieves
B-way branching with a total storage of
O(B) characters, which fit in O(1) blocks.
Each of its internal nodes stores an in-
dex (a number from 0 to N ) and a one-
character label for each of its outgoing
edges. For example, in Figure 13 the right
child of the root has index 4 and its out-
going edges have character labels “a” and
“b”, which means that the node’s left sub-
trie consists of strings whose position 4
(fifth character) is “a”, and its right subtrie
consists of strings whose position 4 (fifth
character) is “b”. The first four charac-
ters in all the strings in the node’s subtrie
are identically “bcbc”. To find which of the
B branches to take for a search string, a
trie search is done in the Patricia trie; each
binary branching decision is based upon
the character indexed at that node. For
search string “bcbabcba”, a binary search
on the trie in Figure 13 traverses the far-
right path of the Patricia trie, examining
character positions 0, 4, and 6.

Unfortunately, the leaf node that is
eventually reached (in our example, the
leaf at the far right, corresponding to
“bcbcbbba”) is not in general at the correct
branching point, since only certain char-
acter positions in the string were exam-
ined during the search. The key idea to
fix this situation is to sequentially com-
pare the search string with the string as-
sociated with the leaf, and if they dif-
fer, the index where they differ can be
found. In the example the search string
“bcbabcba” differs from “bcbcbbba” in the
fourth character (position 3), and there-
fore the search string is lexicographically
smaller than the entire right subtrie of
the root. It thus fits in between the leaves
“abac” and “bcbcaba”.

Searching each Patricia trie requires
one I/O to load it into memory, plus ad-
ditional I/Os to do the sequential scan of
the string after the leaf of the Patricia trie
is reached. Each block of the search string
that is examined during a sequential scan
does not have to be read in again for lower
levels of the SB-tree, so the I/Os for the se-

quential scan can be charged to the blocks
of the search string. The resulting query
time to search in an SB-tree for a string of
` characters is therefore O(logB N + `/B),
which is optimal. Insertions and dele-
tions can be done in the same I/O bound.
Ferragina and Grossi [1996; 1999] apply
SB-trees to the problems of string
matching, prefix search, and substring
search. Ferragina and Luccio [1998] apply
SB-trees to get new results for dynamic
dictionary matching; their structure even
provides a simpler approach for the (inter-
nal memory) RAM model.

13.3. Suffix Trees and Suffix Arrays

Tries and Patricia tries are commonly
used as internal memory data structures
for storing sets of strings. One particu-
larly interesting application of Patricia
tries is to store the set of suffixes of a
text string. The resulting data structure,
called a suffix tree [McCreight 1976;
Weiner 1973], can be built in linear time
and supports search for an arbitrary
substring of the text in time linear in
the size of the substring. A more compact
(but static) representation of a suffix tree,
called a suffix array [Manber and Myers
1993], consisting of the leaves of the
suffix tree in symmetric traversal order,
can also be used for fast searching. (See
Gusfield [1997] for general background.)
Farach et al. [1998] show how to construct
SB-trees, suffix trees, and suffix arrays on
strings of total length N using O(n logm n)
I/Os, which is optimal. Clark and Munro
[1996] give a practical implementation
of dynamic suffix trees that use about
five bytes per indexed suffix. Crauser and
Ferragina [1999] present an extensive set
of experiments on various text collections
in which they compare the practical
performance of some novel and known
suffix array construction algorithms.

13.4. Sorting Strings

Arge et al. [1997] consider several mod-
els for the problem of sorting K strings
of total length N in external mem-
ory. They develop efficient sorting algo-
rithms in these models, making use of the
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SB-tree, buffer tree techniques, and a sim-
plified version of the SB-tree for merg-
ing called the lazy trie. The problem can
be solved in the (internal memory) RAM
model in O(K log K +N ) time. By analogy
to the problem of sorting integers, it would
be natural to expect that the I/O complex-
ity would be O(k logm k+n), where k =
max{1, K/B}. Arge et al. show somewhat
counterintuitively that for sorting short
strings (i.e., strings of length at most B)
the I/O complexity depends upon the to-
tal number of characters, whereas for long
strings the complexity depends upon the
total number of strings.

THEOREM 13.1 [ARGE ET AL. 1997]. The
number of I/Os needed to sort K strings
of total length N, where there are K1
short strings of total length N1 and K2
long strings of total length N2 (i.e., N =
N1+N2 and K = K1+ K2 ), is

O
(

min
{

N1

B
logm

(
N1

B
+ 1
)

,

K1 logM (K1+ 1)
}
+ K2 logM (K2+ 1)

+ N
B

)
. (13)

Lower bounds for various models of how
strings can be manipulated are given in
Arge et al. [1997]. There are gaps in some
cases between the upper and lower bounds
for sorting.

14. THE TPIE EXTERNAL MEMORY
PROGRAMMING ENVIRONMENT

In this section we describe the TPIE
(transparent parallel I/O environment)3

[Arge et al. 1999a; TPIE 1999; Vengroff
and Vitter 1996b], which serves as the
implementation platform for the experi-
ments described in Sections 7 and 11.2 as
well as in several of the referenced papers.
TPIE is a comprehensive set of C++ tem-
plates for EM paradigms and a run-time

3 The TPIE software distribution is available free of
charge at http://www.cs.duke.edu/TPIE/ on the World
Wide Web.

library. Its goal is to help programmers de-
velop high-level, portable, and efficient im-
plementations of EM algorithms.

There are three basic approaches to
supporting development of I/O-efficient
code, which we call access-, array- and
framework-oriented. TPIE falls primarily
into the third category with some elements
of the first category. Access-oriented sys-
tems preserve the programmer abstrac-
tion of explicitly requesting data trans-
fer. They often extend the read–write
interface to include data type specifica-
tions and collective specification of mul-
tiple transfers, sometimes involving the
memories of multiple processing nodes.
Examples of access-oriented systems in-
clude the UNIX file system at the low-
est level, higher-level parallel file systems
such as Whiptail [Shriver and Wisniewski
1995], Vesta [Corbett and Feitelson 1996],
PIOUS [Moyer and Sunderam 1996], and
the High Performance Storage System
[Watson and Coyne 1995], and I/O li-
braries MPI-IO [Corbett et al. 1996], and
LEDA-SM [Crauser and Mehlhorn 1999].

Array-oriented systems access data
stored in external memory primarily by
means of compiler-recognized data types
(typically arrays) and operations on those
data types. The external computation is
directly specified via iterative loops or ex-
plicitly data-parallel operations, and the
system manages the explicit I/O transfers.
Array-oriented systems are effective for
scientific computations that make regular
strides through arrays of data and can
deliver high-performance parallel I/O
in applications such as computational
fluid dynamics, molecular dynamics, and
weapon system design and simulation.
Array-oriented systems are generally
ill-suited to irregular or combinatorial
computations. Examples of array-oriented
systems include PASSION [Thakur et
al. 1996], Panda [Seamons and Winslett
1996] (which also has aspects of access
orientation), PI/OT [Parsons et al. 1997],
and ViC* [Colvin and Cormen 1998].

TPIE [Arge et al. 1999a; TPIE 1999;
Vengroff and Vitter 1996b] provides a
framework-oriented interface for batched
computation as well as an access-oriented
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interface for online computation. Instead
of viewing batched computation as an
enterprise in which code reads data, op-
erates on them, and writes results, a
framework-oriented system views com-
putation as a continuous process during
which a program is fed streams of data
from an outside source and leaves trails
of results behind. TPIE programmers do
not need to worry about making explicit
calls to I/O routines. Instead, they merely
specify the functional details of the de-
sired computation, and TPIE automat-
ically choreographs a sequence of data
movements to feed the computation.

TPIE is written in C++ as a set of tem-
plated classes and functions. It consists of
three main components: a block transfer
engine (BTE), a memory manager (MM),
and an access method interface (AMI). The
BTE is responsible for moving blocks of
data to and from the disk. It is also respon-
sible for scheduling asynchronous read-
ahead and write-behind when necessary
to allow computation and I/O to overlap.
The MM is responsible for managing main
memory in coordination with the AMI and
BTE. The AMI provides the high-level uni-
form interface for application programs.
The AMI is the only component that pro-
grammers normally need to interact with
directly. Applications that use the AMI are
portable across hardware platforms, since
they do not have to deal with the under-
lying details of how I/O is performed on a
particular machine.

We have seen in the previous sec-
tions that many batched problems in spa-
tial databases, GIS, scientific comput-
ing, graphs, and string processing can be
solved optimally using a relatively small
number of basic paradigms like scanning
(or streaming), multiway distribution, and
merging, which TPIE supports as access
mechanisms. Batched programs in TPIE
thus consist primarily of a call to one
or more of these standard access mecha-
nisms. For example, a distribution sort can
be programmed by using the access mech-
anism for multiway distribution. The pro-
grammer has to specify the details as to
how the partitioning elements are formed
and how the buckets are defined. Then the

multiway distribution is invoked, during
which TPIE automatically forms the buck-
ets and writes them to disk using double
buffering.

For online data structures such as hash-
ing, B-trees, and R-trees, TPIE supports
more traditional block access like the
access-oriented systems.

15. DYNAMIC MEMORY ALLOCATION

The amount of internal memory allocated
to a program may fluctuate during the
course of execution because of demands
placed on the system by other users and
processes. EM algorithms must be able to
adapt dynamically to whatever resources
are available so as to preserve good perfor-
mance [Pang et al. 1993a]. The algorithms
in the previous sections assume a fixed
memory allocation; they must resort to
virtual memory if the memory allocation
is reduced, often causing a severe degra-
dation in performance.

Barve and Vitter [1999b] discuss the
design and analysis of EM algorithms
that adapt gracefully to changing memory
allocations. In their model, without loss
of generality, an algorithm (or program)
P is allocated internal memory in phases.
During the ith phase, P is allocated mi
blocks of internal memory, and this mem-
ory remains allocated to P until P com-
pletes 2mi I/O operations, at which point
the next phase begins. The process contin-
ues until P finishes execution. The model
makes the reasonable assumption that the
duration for each memory allocation phase
is long enough to allow all the memory in
that phase to be used by the algorithm.

For sorting, the lower bound approach
of (10) implies that∑

i

2mi log mi = Ä(n log n).

We say that P is dynamically optimal for
sorting if∑

i

2mi log mi =O(n log n)

for all possible sequences m1, m2, . . .
of memory allocation. Intuitively, if P is
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dynamically optimal, no other algorithm
can perform more than a constant num-
ber of sorts in the worst case for the same
sequence of memory allocations.

Barve and Vitter [1999b] define the
model in generality and give dynam-
ically optimal strategies for sorting,
matrix multiplication, and buffer tree op-
erations. Their work represents the first
theoretical model of dynamic allocation
and the first algorithms that can be consid-
ered dynamically optimal. Previous work
was done on memory-adaptive algorithms
for merge sort [Pang et al. 1993a; Zhang
and Larson 1997] and hash join [Pang
et al. 1993b], but the algorithms handle
only special cases and can be made to per-
form nonoptimally for certain patterns of
memory allocation.

16. CONCLUSIONS

In this survey we have described several
useful paradigms for the design and im-
plementation of efficient external memory
algorithms and data structures. The prob-
lem domains we have considered include
sorting, permuting, FFT, scientific com-
puting, computational geometry, graphs,
databases, geographic information sys-
tems, and text and string processing.
Interesting challenges remain in virtually
all these problem domains. One difficult
problem is to prove lower bounds for
permuting and sorting without the indi-
visibility assumption. Another promising
area is the design and analysis of EM algo-
rithms for efficient use of multiple disks.
Optimal bounds have not yet been deter-
mined for several basic EM graph prob-
lems such as topological sorting, shortest
paths, breadth and depth-first search,
and connected components. There is an
intriguing connection between problems
that have good I/O speedups and problems
that have fast and work-efficient parallel
algorithms. Several problems remain open
in the dynamic and kinetic settings, such
as range searching, ray shooting, point
location, and finding nearest neighbors.

A continuing goal is to develop optimal
EM algorithms and to translate theoreti-
cal gains into observable improvements in

practice. For some of the problems that can
be solved optimally up to a constant factor,
the constant overhead is too large for the
algorithm to be of practical use, and sim-
pler approaches are needed. In practice,
algorithms cannot assume a static inter-
nal memory allocation; they must adapt in
a robust way when the memory allocation
changes.

Many interesting challenges and oppor-
tunities in algorithm design and analysis
arise from new architectures being devel-
oped, such as networks of workstations,
hierarchical storage devices, disk drives
with processing capabilities, and storage
devices based upon microelectromechan-
ical systems (MEMS). Active (or intelli-
gent) disks, in which disk drives have
some processing capability and can filter
information sent to the host, have recently
been proposed to further reduce the I/O
bottleneck, especially in large database
applications [Acharya et al. 1998; Riedel
et al. 1998]. MEMS-based nonvolatile stor-
age has the potential to serve as an in-
termediate level in the memory hierarchy
between DRAM and disks. It could ulti-
mately provide better latency and band-
width than disks, at less cost per bit than
DRAM [Schlosser et al. 2000; Vettiger
et al. 2000].
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KÜSPERT, K. 1983. Storage utilization in B*-trees
with a generalized overflow technique. Acta In-
formatica, 19, 35–55.

LARSON, P.-A. 1982. Performance analysis of linear
hashing with partial expansions. ACM Trans-
actions on Database Systems 7, 4 (Dec.), 566–
587.

LAURINI, R. AND THOMPSON, D. 1992. Fundamentals
of Spatial Information Systems. Academic Press.

LEHMAN, P. L. AND YAO, S. B. 1981. Efficient lock-
ing for concurrent operations on B-Trees. ACM
Transactions on Database Systems 6, 4 (Dec.),
650–570.

LEIGHTON, F. T. 1985. Tight bounds on the com-
plexity of parallel sorting. IEEE Transactions
on Computers C-34, 4 (April), 344–354. Special
issue on sorting, E. E. Lindstrom, C. K. Wong,
and J. S. Vitter, Eds.

LEISERSON, C. E., RAO, S., AND TOLEDO, S. 1993. Ef-
ficient out-of-core algorithms for linear relax-
ation using blocking covers. In Proceedings of the
IEEE Symposium on Foundations of Computer
Science, Vol. 34, 704–713.

LI, Z., MILLS, P. H., AND REIF, J. H. 1996. Models
and resource metrics for parallel and distributed
computation. Parallel Algorithms and Applica-
tions 8, 35–59.

LITWIN, W. 1980. Linear hashing: A new tool for
files and tables addressing. In Proceedings of
the International Conference on Very Large
Databases (Montreal, Oct.), Vol. 6, 212–223.

LITWIN, W. AND LOMET, D. 1987. A new method for
fast data searches with keys. IEEE Software 4,
2 (March), 16–24.

ACM Computing Surveys, Vol. 33, No. 2, June 2001.



268 Jeffrey Scott Vitter

LOMET, D. 1988. A simple bounded disorder file or-
ganization with good performance. ACM Trans-
actions on Database Systems 13, 4, 525–551.

LOMET, D. B. AND SALZBERG, B. 1990. The hB-tree:
A multiattribute indexing method with good
guaranteed performance. ACM Transactions on
Database Systems 15, 4, 625–658.

LOMET, D. B. AND SALZBERG, B. 1997. Concurrency
and recovery for index trees. VLDB Journal 6, 3,
224–240.

MAHESHWARI, A. AND ZEH, N. External memory
algorithms for outerplanar graphs. In Proceed-
ings of the International Conference on Comput-
ing and Combinatorics (July), Vol. 1627 of Lec-
ture Notes in Computer Science, Springer-Verlag,
51–60.

MAHESHWARI, A. AND ZEH, N. 2001. I/O-efficient al-
gorithms for bounded treewidth graphs. In Pro-
ceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms (Washington, DC, Jan.), Vol. 12.

MANBER, U. AND MYERS, G. 1993. Suffix arrays: A
new method for on-line string searches. SIAM
Journal on Computing 22, 5 (Oct.), 935–948.

MANBER, U. AND WU, S. 1994. GLIMPSE: A tool to
search through entire file systems. In USENIX
Association, Ed., Proceedings of the Winter
USENIX Conference (San Francisco, Jan.), 23–
32.

MARTIN, G. N. N. 1979. Spiral storage: Incremen-
tally augmentable hash addressed storage. Tech-
nical Report CS-RR-027, University of Warwick,
March.

MATIAS, Y., SEGAL, E., AND VITTER, J. S. 2000. Effi-
cient bundle sorting. In Proceedings of the ACM–
SIAM Symposium on Discrete Algorithms (San
Francisco, Jan.), Vol. 11, 839–848.

MCCREIGHT, E. M. 1976. A space-economical suffix
tree construction algorithm. Journal of the ACM
23, 2, 262–272.

MCCREIGHT, E. M. 1985. Priority search trees.
SIAM Journal on Computing 14, 2 (May), 257–
276.

MENDELSON, H. 1982. Analysis of extendible hash-
ing. IEEE Transactions on Software Engineering
SE–8 (Nov.), 611–619.

MEYER, U. 2001. External memory BFS on undi-
rected graphs with bounded degree. In Proceed-
ings of the ACM-SIAM Symposium on Discrete
Algorithms (Washington, DC, Jan), Vol. 12.

Microsoft 1998. TerraServer online database of
satellite images, available on the World-Wide
Web at http://terraserver.microsoft.com/.

MOHAN, C. 1990 ARIES/KVL: A key-value lock-
ing method for concurrency control of multi-
action transactions on B-tree indices. In Pro-
ceedings of the International Conference on Very
Large Databases (Brisbane, August), Vol. 16,
392.

MORRISON, D. R. 1968. Patricia: Practical algo-
rithm to retrieve information coded in alphanu-
meric. Journal of the ACM 15, 514–534.

MOYER, S. A. AND SUNDERAM, V. 1996. Character-
izing concurrency control performance for the
PIOUS parallel file system. Journal of Parallel
and Distributed Computing 38, 1 (Oct.), 81–91.

MULLIN, J. K. 1985. Spiral storage: Efficient dy-
namic hashing with constant performance. The
Computer Journal 28, 3 (July), 330–334.

MUNAGALA, K. AND RANADE, A. 1999. I/O-
complexity of graph algorithms. In Proceedings
of the ACM-SIAM Symposium on Discrete
Algorithms (Baltimore, Jan.), Vol. 10, 687–694.

NASA 1999. Earth Observing System (EOS) web
page, NASA Goddard Space Flight Center,
http://eospso.gsfc.nasa.gov/.

NIEVERGELT, J. AND REINGOLD, E. M. 1973. Binary
search tree of bounded balance. SIAM Journal
on Computing 2, 1.

NIEVERGELT, J. AND WIDMAYER, P. 1997. Spatial data
structures: Concepts and design choices. In
M. van Kreveld, J. Nievergelt, T. Roos, and
P. Widmayer, Eds. Algorithmic Foundations of
GIS, Vol. 1340 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 153 ff.

NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK, K. C.
1984. The grid file: An adaptable, symmetric
multi-key file structure. ACM Transactions on
Database Systems 9, 38–71.

NODINE, M. H. AND VITTER, J. S. 1993. Determin-
istic distribution sort in shared and distributed
memory multiprocessors. In Proceedings of the
ACM Symposium on Parallel Algorithms and Ar-
chitectures (Velen, Germany, June–July), Vol. 5,
120–129.

NODINE, M. H. AND VITTER, J. S. 1995. Greed Sort:
An optimal sorting algorithm for multiple disks.
Journal of the ACM 42, 4 (July), 919–933.

NODINE, M. H., GOODRICH, M. T., AND VITTER, J. S.
1996. Blocking for external graph searching.
Algorithmica 16, 2 (August), 181–214.

NODINE, M. H., LOPRESTI, D. P., AND VITTER, J. S.
1991. I/O overhead and parallel VLSI archi-
tectures for lattice computations. IEEE Trans-
actions on Communications 40, 7 (July), 843–
852.

O’NEIL, P. E. 1992. The SB-tree. An index-
sequential structure for high-performance se-
quential access. Acta Informatica 29, 3 (June),
241–265.

ORENSTEIN, J. A. 1989. Redundancy in spatial
databases. In Proceedings of the ACM SIG-
MOD International Conference on Management
of Data (Portland, OR, June), 294–305.

ORENSTEIN, J. A. AND MERRETT, T. H. 1984. A class
of data structures for associative searching. In
Proceedings of the ACM Conference Principles of
Database Systems, Vol. 3, 181–190.

OVERMARS, M. H. 1983. The Design of Dynamic
Data Structures. Lecture Notes in Computer Sci-
ence. Springer-Verlag.

PANG, H., CAREY, M., AND LIVNY, M. 1993a. Memory-
adaptive external sorts. In Proceedings of the

ACM Computing Surveys, Vol. 33, No. 2, June 2001.



External Memory Algorithms and Data Structures 269

International Conference on Very Large
Databases (Dublin), Vol. 19, 618–629.

PANG, H., CAREY, M. J., AND LIVNY, M. 1993b. Par-
tially preemptive hash joins. In P. Buneman
and S. Jajodia, Eds. Proceedings of the ACM
SIGMOD International Conference on Manage-
ment of Data (Washington, DC, May), 59–68.

PARSONS, I., UNRAU, R., SCHAEFFER, J., AND SZAFRON, D.
1997. PI/OT: Parallel I/O templates. Parallel
Computing 23, 4 (June), 543–570.

PATEL, J. M. AND DEWITT, D. J. 1996. Partition
based spatial-merge join. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data (June), 259–270.

PREPARATA, F. P. AND SHAMOS, M. I. 1985. Computa-
tional Geometry. Springer-Verlag.

RAHMAN, N., AND RAMAN, R. 2000. Adapting radix
sort to the memory hierarchy. In Workshop
on Algorithm Engineering and Experimentation
(Jan.), Vol. 1982 of Lecture Notes in Computer
Science. Springer-Verlag.

RAMASWAMY, S. AND SUBRAMANIAN, S. 1994. Path
caching: A technique for optimal external
searching. In Proceedings of the ACM Confer-
ence Principles of Database Systems (Minneapo-
lis, MN), Vol. 13, 25–35.

RAO, J. AND ROSS, K. 1999. Cache conscious in-
dexing for decision-support in main memory. In
M. Atkinson et al., Eds. Proceedings of the In-
ternational Conference on Very Large Databases
(Los Altos, CA), Vol. 25, 78–89. Morgan Kauf-
mann san Mateor, CA.

RAO, J. AND ROSS, K. A. 2000. Making B+-trees
cache conscious in main memory. In W. Chen,
J. Naughton, and P. A. Bernstein, Eds, Proceed-
ings of the ACM SIGMOD International Con-
ference on Management of Data (Dallas). 475–
486.

RIEDEL, E., GIBSON, G. A., AND FALOUTSOS, C. 1998.
Active storage for large-scale data mining and
multimedia. In Proceedings of the International
Conference on Very Large Databases (August),
Vol. 22, 62–73.

ROBINSON, J. T. 1981. The k-d-b-tree: A search
structure for large multidimensional dynamic
indexes. In Proceedings of the ACM Conference
Principles of Database Systems, Vol. 1, 10–18.

ROSENBLUM, M., BUGNION, E., DEVINE, S., AND HERROD,
S. A. 1997. Using the SimOS machine simu-
lator to study complex computer systems. ACM
Transactions on Modeling and Computer Simu-
lation 7, 1 (Jan.), 78–103.

RUEMMLER, C. AND WILKES, J. 1994. An introduction
to disk drive modeling. IEEE Computer (March),
17–28.

SALEM, K. AND GARCIA-MOLINA, H. 1986. Disk strip-
ing. In Proceedings of IEEE International Con-
ference on Data Engineering (Los Angeles),
Vol. 2, 336–242.
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