
Compressed Data Structures
with Relevance

Jeff Vitter

Provost and Executive Vice Chancellor

The University of Kansas, USA

(and collaborators Rahul Shah, Wing-Kai Hon, Roberto Grossi,

Oğuzhan Külekci, Bojian Xu, Manish Patil, Sharma Thankachan,

Sabrina Chandrasekaran, Yu-Feng Chien, Sheng-Yuan Chiu)

Outline

• Generic motivation for Text Indexing and Pattern Search:
 To achieve the time and space efficiency of Google
 (i.e., inverted indexes)
 but allow more general patterns (as in suffix trees)

• Background on entropy-compressed data structures:
How to work directly on compressed data efficiently.

– Compressed Suffix Arrays (CSAs)

– Wavelet tree

• Retrieve the most relevant documents

• Achieve efficient performance in external memory

• Conclusions and Open Problems

5

The Attack of Big Data
• Lots of massive data sets being generated

– Web publishing, bioinformatics, XML, e-mail, satellite data, commerce

– NASA’s Earth Observing System produces Petabytes (1015 bytes),
soon Exabytes (1018 bytes)

– Yahoo’s Hadoop cluster contains 170 petabytes, runs 5M jobs/month

• Data sets are compressible and should be compressed
– Mobile devices have limited storage available

– Search engines use DRAM in place of hard disks

– Next generation cellular phones will charge # bits transmitted

– There is never enough memory!

– I/O overhead is reduced

• When the index is external, minimize I/O! Examples:
– Search desktop for phrase in a file.

– Hum a tune and search iPhone playlist for a match.

Goal of this talk is . . .

... to design compressed data structures
to manage massive data sets

• Use near-minimum amount of space

• Measure space in data-aware way,
i.e., in terms of each individual data set

• Attain near-optimal query times and I/O bounds

• Focus today is on relevance and external memory

• Problem: Compute how rain flows. Where does it flood?

• Naïve approaches take days to run (and cannot complete for large files).

• Exploiting locality in algorithm design reduces processing time

to minutes or hours.

 Example: Jockey’s ridge (Outer Banks, North Carolina coast, U.S.A.)

LIDAR terrain data in external memory

Disk Drive Characteristics

The difference in speed between modern CPUs and disks is analogous
to the difference in speed in sharpening a pencil by using a sharpener
on one's desk or by taking a hot-air balloon to Siberia and using a
sharpener on someone's desk there. -- adapted from Doug Comer

11/2/2012 8

N = problem size

M = internal memory size

B = disk block size

D = # independent disks

Scan: O(N/DB) -- “linear”

Sorting: O((N/DB) logM/B(N/M))

Search: O(logDB N)

Parallel Disk Model
80 GB – 100 TB and more!

1 – 4 GB

8 – 500 KB

[Vitter, Shriver STOC90, 94]

[Vitter 08] book for overview

Full-text Indexing
(where pattern P is arbitrary)

Given a text T of n characters from an alphabet Σ,
build an index that can answer the following queries:

For an input pattern P (of length p):

 1. Count the # locations in T where P occurs;
 or

 2. Report the locations in T where P occurs.

(We will add relevance later.)

Analogy to a card catalog in a library

 10-floor library

 Card catalog near front entrance

 indexes books’ titles and authors

 negligible additional space

 a small card (few bytes) per book

 limited search operations!

(only titles and authors)

Library

Card catalog

Word-level indexing (à la Google)

(search for a word using inverted index)

i1 i2

w i1, i2, i3, L

1. Split the text into words.

2. Collect all distinct words in a dictionary.

3. For each word w, store the

inverted list of its locations

in the text: i1, i2, i3, L

Can be implemented in practice with ≈ 15% of text

space using gap encoding of inverted lists.

Entropy-Compression of Sequences

1, 5, 7, 8, 11, 42, 75, 103, 108, 115, 119, …

 Encode sequence by encoding the gaps 4, 2, 1, 3, 31, …

Gap length g can be encoded by delta code in ≈ log g bits,

which is roughly the length of g in binary format

Sequence of t items spanning length n takes ≈ t log (n/t) bits
= t log (average gap length) = 10 log (118/10) ≈ 35.6 bits

This encoding realizes the information-theoretic limit
(0th-order entropy) for encoding t numbers in the range [1, n]

 4 2 1 3 31 33 28 5 7 4

Inverted Index Can’t Do General Search

• Arbitrary phrases not handled by Google (only word search)

• Clear notion of word is not always available:

• Some Eastern languages

• unknown structure (e.g., DNA sequences)

• Alphabet Σ, text T of size n bytes (i.e., n log |Σ| bits) :
each text position is the start of a potential occurrence of P

Naive approach: blow-up with O(n2) words of space

Suffix trees and suffix arrays use O(n) words (i.e., O(n log n) bits)

Can we do better with linear space O(n log |Σ|) bits?

Or best yet with compressed space n Hk (1 + o(1)) bits (where Hk is entropy),

which is competitive with inverted indexes?

12

11 8

 5 2

 1

10 9

 7 4 6 3

Suffix Tree / Patricia Trie

Text T: mississippi$

 1. mississippi$

 2. ississippi$

 3. ssissippi$

 4. sissippi$

 5. issippi$

 6. ssippi$

 7. sippi$

 8. ippi$

 9. ppi$

10. pi$

11. i$

12. $

s
u
ff
ix

e
s

Pattern P = ssi, |p| = 3

Search in O(p) time

Find the occ

occurrences

 in O(occ)

 time

O(n) words space and optimal O(p+occ) query time

Locus of P

Suffix tree ST / Patricia trie

Each link and each suffix value requires
O(log n) bits

 Suffix tree space is O(n log n) bits
 ≈ 16 × text size in practice.

Text T: mississippi$

12

11 8

 5 2

 1

10 9

 7 4 6 3

10
floors

160
floors

ST Library

Suffix array SA: sorted list of suffixes
 Text T: M I S S I S S I P P I $

SUFFIX ARRAY SORTED SUFFIXES

12

11

 8

 5

 2

 1

10

 9

 7

 4

 6

 3

$

I$

IPPI$

ISSIPPI$

ISSISSIPPI$

MISSISSIPPI$

PI$

PPI$

SIPPI$

SISSIPPI$

SSIPPI$

SSISSIPPI$

10
floors

160
floors

40
floors

ST SA Library

 Text T: M I S S I S S I P P I $

 SUFFIX
ARRAY SORTED SUFFIXES

NEIGHBOR
FUNCTION

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

12

11

 8

 5

 2

 1

10

 9

 7

 4

 6

 3

$

I$

IPPI$

ISSIPPI$

ISSISSIPPI$

MISSISSIPPI$

PI$

PPI$

SIPPI$

SISSIPPI$

SSIPPI$

SSISSIPPI$

 6

 1

 8

11

12

 5

 2

 7

 3

 4

 9

10

Compressed Suffix Array

Neighbor function Ф:

SA(Ф[i]) = SA[i] + 1

We can recreate the entries for

the odd-numbered text positions

from the even-numbered text

positions.

[Grossi & Vitter STOC00]

[Grossi, Gupta, Vitter

SODA03]

 Text T: M I S S I S S I P P I $

 SUFFIX
ARRAY SORTED SUFFIXES

NEIGHBOR
FUNCTION

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

12

11

 8

 5

 2

 1

10

 9

 7

 4

 6

 3

$

I$

IPPI$

ISSIPPI$

ISSISSIPPI$

MISSISSIPPI$

PI$

PPI$

SIPPI$

SISSIPPI$

SSIPPI$

SSISSIPPI$

 6

 1

 8

11

12

 5

 2

 7

 3

 4

 9

10

Neighbor function Ф:

SA(Ф[i]) = SA[i] + 1

We can recreate the entries for

the odd-numbered text positions

from the even-numbered text

positions.

Compressed Suffix Array [Grossi & Vitter STOC00]

[Grossi, Gupta, Vitter

SODA03]

SUFFIX
ARRAY SORTED SUFFIXES

NEIGHBOR
FUNCTION

 1.

 2.

 3.

 4.

5.

6.

12

 8

 2

10

 4

 6

$

I$

IPPI$

ISSIPPI$

ISSISSIPPI$

MISSISSIPPI$

PI$

PPI$

SIPPI$

SISSIPPI$

SSIPPI$

SSISSIPPI$

 6

 1

 8

11

12

 5

 2

 7

 3

 4

 9

10

Neighbor function Ф:

SA(Ф[i]) = SA[i] + 1

We can recreate the entries for

the odd-numbered text positions

from the even-numbered text

positions.

The SA values are all even, so

we can “remember” that and cut

them in half.

[Grossi & Vitter STOC00]

[Grossi, Gupta, Vitter

SODA03]
 Text T: M I S S I S S I P P I $

Compressed Suffix Array

SUFFIX
ARRAY SORTED SUFFIXES

NEIGHBOR
FUNCTION

 1.

 2.

 3.

 4.

5.

6.

 6

 4

 1

 5

 2

 3

$

I$

IPPI$

ISSIPPI$

ISSISSIPPI$

MISSISSIPPI$

PI$

PPI$

SIPPI$

SISSIPPI$

SSIPPI$

SSISSIPPI$

 6

 1

 8

11

12

 5

 2

 7

 3

 4

 9

10

Neighbor function Ф:

SA(Ф[i]) = SA[i] + 1

We can recreate the entries for

the odd-numbered text positions

from the even-numbered text

positions.

The SA values are all even, so

we can “remember” that and cut

them in half.

How do we recreate the odd-

numbered text positions?

[Grossi & Vitter STOC00]

[Grossi, Gupta, Vitter

SODA03]

 Text T: M I S S I S S I P P I $

Compressed Suffix Array

SUFFIX
ARRAY SORTED SUFFIXES

NEIGHBOR
FUNCTION

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

12

11

 8

 5

 2

 1

10

 9

 7

 4

 6

 3

$

I$

IPPI$

ISSIPPI$

ISSISSIPPI$

MISSISSIPPI$

PI$

PPI$

SIPPI$

SISSIPPI$

SSIPPI$

SSISSIPPI$

 6

 1

 8

11

12

 5

 2

 7

 3

 4

 9

10

Neighbor function Ф:

SA(Ф[i]) = SA[i] + 1

Ex: How to compute SA[4] = 5?

SA[Ф[4]] = SA[11] = 6 Voila!

How to compute Ф ?

For each character, let’s write

the Ф values for its suffixes.

 $: 6 length = 1

 I: 1, 8, 11, 12 length = 4

M: 5 length = 1

P: 2, 7 length = 2

S: 3, 4, 9, 10 length = 4

The 4th smallest neighbor is the

3rd element in the I list: 11!

 Text T: M I S S I S S I P P I $

Compressed Suffix Array [Grossi & Vitter STOC00]

[Grossi, Gupta, Vitter

SODA03]

Entropy-Compressing Sequences

1, 5, 7, 8, 11, 42, 75, 103, 108, 115, 119, …

Encode sequence by encoding the gaps 4, 2, 1, 3, 31, …

Gap length g can be encoded by delta code in ≈ log g bits,

which is roughly the length of g in binary format

Sequence of t items spanning length n takes ≈ t log (n/t) bits
= t log (average gap length) = 10 log (118/10) ≈ 35.6 bits

(Hypothetical) Partitioning: 4 log (10/4) + 3 log (92/3)
+ 3 log (16/3) bits ≈ 27.3 bits (high-order entropy)

 4 2 1 3 31 33 28 5 7 4

I-list:

IE-list IP-list IS-list

• We recursively halve the compressed suffix
array until it is small enough to store explicitly.

• The storage at each level is in high-order
entropy-compressed format.

• Wavelet tree data structure does necessary
computations and in this context achieves high-
order entropy.

[Grossi & Vitter STOC00]

[Grossi, Gupta, Vitter

SODA03]

Compressed Suffix Array

 O(p + polylog(n)) search time.

 First index with size equal to text

size in entropy-compressed form

(~ n Hk, i.e., w/ mult. constant 1)!

 Self-indexing text:

no need to keep the text!

 Any portion of the text can be

decoded from the index.

 Decoding is fast and does not

require scanning the whole text.

 Can cut search time further by

log n factor (word size).

 Similar provable for FM-Index.

10
floors

50
floors

11 ½
floors

text inverted
index

suffix
array

40
floors

1 ½
floors

2-4
floors

New indexes
(such as our CSA)
require 20%-40%
of the text size

new

Compressed Suffix Array [Grossi & Vitter STOC00]

[Grossi, Gupta, Vitter SODA03]

Wavelet Tree [Grossi, Gupta, Vitter SODA03]

• How to do the gap encoding?

• Neighbor function Ф (in CSA) and Last-to-First
function (in FM-index) are closely related

– LF(i) = SA-1 [SA[i] – 1] = Ф-1(i)

• Both computed elegantly by Wavelet Tree [GGV03]

– Stores a text (e.g., BWT) in O(n log ||) bits

– Supports rank/select & 2D range search in O(log ||) time

– Can be 0-th order entropy compressed via RLE (gap)

– When used w/ CSA or BWT higher-order compression!

Wavelet Tree [Grossi, Gupta, Vitter SODA03]

c a b f b e g c g a d e f e a b e g

0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1

1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1

0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

∑ = {a, b, c, d, e, f, g }

∑ = {a, b, c, d} ∑ = {e, f, g}

∑ = {a, b} ∑ = {c, d} ∑ = {e, f}

a b c d e f

g

T =

1

1

0 1 0 1

0 0 0 1 1

0

c a b f b e g c g a d e f e a b e g

0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1

1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1

0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

∑ = {a, b, c, d, e, f, g }

∑ = {a, b, c, d} ∑ = {e, f, g}

∑ = {a, b} ∑ = {c, d} ∑ = {e, f}

a b c d e f

g

T =

 Count the number of e’s in T[5,15]

1

1

0 1 0 1

0 0 0 1 1

0
rank1(5 - 1)=1 rank1(15)=7

rank0(1)=0 rank0(5)=3

rank0(1)=1 rank0(7)=5

Count of e’s in
T[5,15] = 3 – 0 = 3

Wavelet Tree [Grossi, Gupta, Vitter SODA03]

Two Challenges

Our goal is to realize the advantages of inverted
indexes but allow more general search capability.

Challenges discussed today:

1. Building relevance into queries
(output top-k answers)

2. External memory performance

Note: Compressed suffix array (CSA) and FM-index
access memory randomly and do not exploit locality
and thus have poor I/O performance!

37

Document Indexing

In a collection of text strings (documents) d1,d2,…dD of
total length n,
search for query pattern P (of length p).

– Output the IDs for the documents that contain pattern P.

– Issue: # documents output might be much smaller than
the total number of pattern occurrences,
so going though all occurrences can be too costly.

– Muthukrishnan: O(n) words of space, answers queries in
optimal O(p + output) time.

– Succinct version by Sadakane and by Valimaki &
Makinen.

Modified Problem—using Relevance

• Instead of listing all documents (strings) where pattern
occurs, list only highly ``relevant” documents.
– Importance: where each document has a static weight

(e.g., Google’s PageRank).

– Frequency: where pattern P occurs most frequently.

– Proximity: where two occurrences of P are close to each other.

• Threshold K vs. Top-k
– Threshold K: Retrieve matching documents with score ≥ K

– Top-k: Retrieve only the k most-relevant documents.

• More intuitive for User

Approaches

• Inverted Index

– Popular in IR community.

– Does not efficiently answer arbitrary pattern queries.

– Slower

• Muthukrishnan’s Structure (based on suffix trees)

– Takes O(n log n) words of space for threshold queries
while answering queries in O(p + output) time.

– Top-k queries require additional overhead.

• Let’s first improve to O(n) words of space.

Suffix tree based solutions

• Example: Search for pattern “an”

• We look at the node’s subtree:
Output d1 (in which “an” appears twice) and d2.

d1:banana

d2: urban

($ < a < b)

Suffixes:

a$

an$

ana$

anana$

ban$

banana$

n$

na$

nana$

rban$

urban$

a

ban

na$
$

a

$

n

$ n

a

na$ $

$ $ rban$

urban$

ana$

d1

d2

d1
d1

d2

d1
d2

d1
d1

d2

d2

Locus for search

Tree-link Structure: FOCS 2009

• At each node v, store the ID for document di if at least two subtrees of v contain di.

d1 d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d3 d6 d6 d3 d4
d4

d1

d2,d3

d5

d6

d5

d4

d3

d3

d1,d3,d4,d5

Tree-link Structure: FOCS 2009

• At each node v, store the ID for document di if at least two subtrees of v contain di.

• Link every entry for document di to the entry of di in a closest ancestor node.

d1 d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d3 d6 d6 d3 d4
d4

d1

d2,d3

d5

d6

d5

d4

d3

d3

d1,d3,d4,d5

Tree-link Structure: FOCS 2009

• At each node v, store the ID for document di if at least two subtrees of v contain di.

• Link every entry for document di to the entry of di in a closest ancestor node.

• Each link is annotated with (origin, target, score, doc_id) where origin and target
are the preorder numbers for the start node and end node.

d1 d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d3 d6 d6 d3 d4
d4

d1

d2,d3

d5

d6

d5

d4

d3

d3

d1,d3,d4,d5

(2,0,2,d2)

(13,12,1,d5)

(12,1,2,d5)
(3,1,2,d1)

(5,3,1,d1)
(18,12,1,d5)

(2,1,2,d3)

Frame query as (2,1,1) range search

• Let’s say we convert top-k into score threshold T

• Then only the links which originate from the subtree of locus node v qualify.

• Exactly one link for each document goes above v from this subtree

• Among such links, we want to those with score ≥ T.

d1 d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d3 d6 d6 d3 d4
d4

d1

d2,d3

d5

d6

d5

d4

d3

d3

d1,d3,d4,d5

(2,0,2,d2)

(13,12,1,d5)

(12,1,2,d5)
(3,1,2,d1)

(5,3,1,d1)
(18,12,1,d5)

(2,1,2,d3)

Subtree(v) = [2,18]
For threshold T = 2,
 d1, d2, d3, d5 … Yes
 d4, d6 … No

Locus v

Main Idea !

• Each link has four attributes: (origin, target, origin_score, doc_id)

• (2,1,1)-range query in 3D
– In previous example, get all links with

• Origin in [2,18] …. (subtree of v, the range where pattern matches)

• Target value < 2 …. (enforces target above node v, uniqueness of each document)

• Origin score ≥ 2 …. (applies score threshold)

– Best linear space structure takes O(output × log n) time to answer such a 3D
range query — which means O(p + output × log n) time — too costly!

– Our target is O(p + output) time.

• New Idea: # possible target values ≤ # ancestors of v ≤ p
– So group the links by their target values and

query each relevant group separately via a (2, 1)-range query in 2D.

– Each link will be represented as a triplet (origin, origin_score, doc_id).

– At each target node is a list of all incoming links.

Query Answering

Top-k Retrieval: O(p log n + k log k) time

Via fractional cascading: O(p + k log k) time

Via further techniques: O(p + k) time

Links are sorted by origins

within each node

 each (2,1) query in 2D

corresponds to a contiguous

region of links within a node

Compressed Data Structure

• O(n) words of space in previous solution
(i.e., O(n log n) bits) is MUCH BIGGER than text

• Can we design data structures that take only as
much space a compressed text? And still answer
queries efficiently?

• Yes! We show solutions based on sparsification
and CSA (compressed suffix array).

*

Sparsification example

Example: Group size g = 4

b a c d f e g i h o m l

k

j
a,b,c,d

n,a,b,p
a,b,j,l

a,b,e,f

e,f,g,h

p n

At each marked node,
the top-k list is stored explicitly.
Extra space is O(n / logЄ n)

 = o(n) bits

LCA of two marked nodes
is also marked

Group consecutive g = k × log1+Є n leaves and mark them.

Build a Compressed Suffix Array (CSA) on the
n/g bottom-level marked nodes.

Query Approach

Locus v

u

Explicit top-k list stored at u

Fringe leaves : ≤ 2g documents are separately

queried for their for frequency counts

≤ g ≤ g

Results for Document Indexing
with Relevance

• O(n)-word data structures
– K-frequency, K-repeats threshold: O(p + output) time.
– Top-k highest relevant documents: O(p + k) time.
– O(n) and O(n log n) construction time, resp.

• Compressed data structures
– Frequency

• Threshold: O(p + output × log1+Є n)
• Top-k: O(p + k (log k) (log1+Є n))
• Space: 2|CSA| + o(n)

– Importance: log1+Є n time per item, 1|CSA| + o(n) space.
– Document retrieval: Same.
– No results for ``proximity”; not succinctly computable

*

Summary of Relevance Queries

• This framework is provably optimal in query time,
uses linear space, and is constructible in linear time
for single-pattern queries.

• With optimizations, we get an index 7–10 × text size
that can answer queries in << 1 millisecond.

• Competitive with inverted indexes.

• Can improve inverted indexes (for phrase queries).

• We give the first entropy-compressed solutions.

• Linear-space framework for multipattern queries.

How To Query Efficiently In External Memory

• Block size B

• Minimize number of block transfers

• Is it possible to get optimal O(p/B + logB N + k/B) I/Os ?
– Sorted ? … No.

– Convert top-k queries to threshold queries via sketches

• Not clear … Last trick requires search of p separate lists
(one per ancestor).
If we apply it, we get O(p logB N + k/B) I/O … Too much!

• In external memory, 3 constraints can be solved efficiently,

but 4 constraints take super-linear space or O(N/B) I/Os

Geometric Problem:
3-Sided Range Searching with Priority

Jeff: O(N log log N) space with O(log log N)
multiplicative I/Os
• Wavelet tree

Cheng: O(N) space… O(log log B) extra I/Os

• Using bootstrapping with polynomial reduction

Sharma: O(N log log log B) space …
optimal # I/Os
• Using bootstrapping with small buckets

Rahul: O(N log* N) space…
optimal O(p/B + logB N + k/B) I/Os
• Using bootstrapping with
logarithmic reduction + recursive bucketing

Weighted points in 2d

Output k highest weighted

points within the query box

Depth of

(locus) < p

 y=x

If these 4 constraints were independent, no linear-space external
memory structure has desired I/O performance.
But 2 constraints share a common end point, i.e., they are “hinged”

Practical Index

• We come back to storing (origin, score, doc_id) lists at target
nodes

• Index A
 Replace GST by the compressed suffix tree (CST)

• Index B
 Encode the origin info of the links by run-length (gap) encoding.
 Encode the frequency or score by variable-length encoding

• Index C
 Drops the document info in each entry
 (retrieval can be done on-the-fly by traversing the origins recursively until

reaching a leaf node)

Experimental Setup for word-phrase searching

Datasets
1. ENRON:

48,619 email messages from ENRON executives drawn from a
dataset prepared by the CALO Project, totaling 100MB

2. PROTEIN:
Concatenation of 141,264 Human and Mouse protein sequences,
totaling 60MB

Public Code Libraries
1. Succinct Data Structures Libraries (@ University of Ulm)

2. Compressed Suffix Trees (@ PizzaChili Corpus)

Space vs. Time
Tradeoff

Mean time to report k documents

with highest frequency for a set of

queries with 3 words

Index Space

PROTEIN Data

ENRON Data

Our Index vs. Inverted Index (Query)

Time (High, Low, Mean) to report 10 documents

with highest frequency for a set of phrase queries

with 2 words and 3 words

A B C

A B C

2-word phrase

queries

3-word phrase

queries

ENRON Data ENRON Data

Our Index vs. Inverted Index (Space)

• To speed up phrase searching, we may store inverted lists of all

phrases up to h words the larger the h, the more the index space

Retrieval for Multiple Patterns

• Example relevance measures: TFIDF, proximity
between 2 patterns, combined frequency scores

• Top-k: O(n) words of space index with

O(p1 + p2 + nk log2 n) query time

• Top-k with approximate TFIDF is achievable

• Succinct results ?

– Proximity unlikely

11/2/2012 111

Any-1 / Top-1 Index

• Build GST on D

• Group every g (=√n) contiguous

 leaves and mark their LCA’s

• Mark LCA’s of each pairs of LCA’s

• #marked nodes ≤ 2n/g =O(√n)

• Between each pair of marked

 nodes(for the corresponding

 patterns), store the top

 score in score matrix

• We also keep individual structures for each document

• Total size =O(n) words

√n

 O(√nX√n)=O(n)

 Score Matrix

Practical Shortcuts for Searching Genome
[KHSVX10]

• Human genome is not readily compressible

• Consists of ≈ 3 billion base pairs ≈ 750 MB space

• Key idea is instead Geometric Burrows-Wheeler
Transform sparsification, d > 1

• Tradeoff: speed (low d) vs. succinctness (high d)

• Verify 1-d results rather than use 2-d searching

• Prioritize rightmost mismatches (where data is
less precise)

11/2/2012 137

Size of the Index for the Human Genome
Using Different Aligners

• PerM : 12.4 GB, spaced seeds
• SOAP2 : 6.1 GB, bidirectional BWT
• BOWTIE : 2.3 GB, bidirectional BWT
• Ψ-RA(4) : 3.4 GB, sparse SA, d=4 bases
• Ψ-RA(8) : 2.0 GB, sparse SA, d=8 bases
• Ψ-RA(12) : 1.6 GB, sparse SA, d=12 bases

Raw human genome occupies ≈750 MB

(when each base is coded by 2 bits)

Exact Match: Time for 100K “Reads”

Our
improvement

Approximate Matching: Time for 100K Reads

Our
improvement

Multi-core Performance: Time for 100K Reads

Key Takeaway: Our algorithm is easily parallelizable

Future Challenges in
Compressed Data Structures

Our goal is to realize the advantages of inverted
indexes but allow more general search capability.

Many exciting challenges to explore!
• Computing directly on compressed data. . . in many settings

• External memory performance

• Building relevance into queries (outputting top k)

• Dual problem of dictionary matching

• Biological applications

• Streaming problems

• Approximate matching, maximal matching, 2D matching, . . .

• Building practical systems

