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Outline 

• Generic motivation for Text Indexing and Pattern Search: 
 To achieve the time and space efficiency of Google  
 (i.e., inverted indexes)  
 but allow more general patterns (as in suffix trees) 

• Background on entropy-compressed data structures: 
How to work directly on compressed data efficiently. 

– Compressed Suffix Arrays (CSAs)   

– Wavelet tree 

• Retrieve the most relevant  documents 

• Achieve efficient performance in external memory 

• Conclusions and Open Problems 
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The Attack of Big Data 
• Lots of massive data sets being generated 

– Web publishing, bioinformatics, XML, e-mail, satellite data, commerce 

– NASA’s Earth Observing System produces Petabytes (1015 bytes),   
soon Exabytes (1018 bytes) 

– Yahoo’s Hadoop cluster contains 170 petabytes, runs 5M jobs/month 
 

• Data sets are compressible and should be compressed 
– Mobile devices have limited storage available 

– Search engines use DRAM in place of hard disks 

– Next generation cellular phones will charge # bits transmitted 

– There is never enough memory! 

– I/O overhead is reduced 

• When the index is external, minimize I/O!  Examples: 
– Search desktop for phrase in a file. 

– Hum a tune and search iPhone playlist for a match. 

 



Goal of this talk is . . . 

... to design compressed data structures 
to manage massive data sets 
 

• Use near-minimum amount of space 

• Measure space in data-aware way,  
i.e., in terms of each individual data set 

• Attain near-optimal query times and I/O bounds  

• Focus today is on relevance and external memory 

 



• Problem:  Compute how rain flows.  Where does it flood? 

• Naïve approaches take days to run (and cannot complete for large files). 

• Exploiting locality in algorithm design reduces processing time  

to minutes or hours. 

 

 

 

 

 

 

 
 Example: Jockey’s ridge (Outer Banks, North Carolina coast, U.S.A.) 

LIDAR terrain data in external memory 



Disk Drive Characteristics 

The difference in speed between modern CPUs and disks is analogous 
to the difference in speed in sharpening a pencil by using a sharpener 
on one's desk or by taking a hot-air balloon to Siberia and using a 
sharpener on someone's desk there.  -- adapted from Doug Comer 
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N   =  problem size 

M  =  internal memory size  

B   =  disk block size 

D   =  # independent disks 

 

Scan:  O(N/DB)  -- “linear” 

Sorting: O((N/DB) logM/B(N/M)) 

Search:  O(logDB N) 
 

Parallel Disk Model 
80 GB – 100 TB and more! 

1 – 4 GB 

8 – 500 KB 

[Vitter, Shriver STOC90, 94] 

[Vitter 08] book for overview 



Full-text Indexing 
(where pattern P is arbitrary) 

  

Given a text T of n characters from an alphabet Σ, 
build an index that can answer the following queries: 
 

For an input pattern P (of length p): 

 1.  Count the # locations in T where P occurs; 
  or 

 2.   Report the locations in T where P occurs. 

(We will add relevance later.) 

 

 



Analogy to a card catalog in a library  

 10-floor library 

 Card catalog near front entrance 

 indexes books’ titles and authors 

 negligible additional space 

 a small card (few bytes) per book 

 limited search operations! 

(only titles and authors) 

Library 

Card catalog 



Word-level indexing (à la Google)  

(search for a word using inverted index) 

i1 i2 

w i1, i2, i3, L 

 

1. Split the text into words. 

2. Collect all distinct words in a dictionary. 

3. For each word w, store the  

inverted list of its locations  

in the text: i1, i2, i3, L 

Can be implemented in practice with ≈ 15% of text 

space using gap encoding of inverted lists. 



Entropy-Compression of Sequences 

1,  5,  7,  8,  11,  42,  75,  103, 108,  115,  119,  … 

 Encode sequence by encoding the gaps 4, 2, 1, 3, 31, … 
 

Gap length g can be encoded by delta code in  ≈ log g bits, 

which is roughly the length of g in binary format 
 

Sequence of t items spanning length n takes  ≈ t log (n/t) bits  
=  t log (average gap length)  =  10 log (118/10)  ≈  35.6 bits 
 

This encoding realizes the information-theoretic limit  
(0th-order entropy) for encoding t numbers in the range [1, n] 

   4      2      1      3      31      33        28      5        7         4 



Inverted Index Can’t Do General Search 

• Arbitrary phrases not handled by Google (only word search) 

• Clear notion of word is not always available: 

• Some Eastern languages 

• unknown structure (e.g., DNA sequences) 

• Alphabet Σ,  text T of size n bytes (i.e., n log |Σ| bits) : 
each text position is the start of a potential occurrence of P 

Naive approach:  blow-up with O(n2) words of space 

Suffix trees and suffix arrays use O(n) words (i.e., O(n log n) bits) 

Can we do better with linear space O(n log |Σ|) bits? 

Or best yet with compressed space n Hk (1 + o(1)) bits (where Hk is entropy), 

which is competitive with inverted indexes?   
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Suffix Tree / Patricia Trie 

 

 

Text T: mississippi$ 
 

  1. mississippi$ 

  2. ississippi$ 

  3. ssissippi$ 

  4. sissippi$ 

  5. issippi$ 

  6. ssippi$ 

  7. sippi$ 

  8. ippi$ 

  9. ppi$ 

10. pi$ 

11. i$ 

12. $ 

 

 

s
u
ff
ix

e
s
 

Pattern P = ssi,  |p| = 3 

Search in O(p) time 

Find the occ 

occurrences 

 in O(occ) 

 time 

O(n) words space and optimal O(p+occ) query time 

Locus of P 



Suffix tree ST / Patricia trie 

Each link and each suffix value requires  
O(log n) bits 

  Suffix tree space is O(n log n) bits   
       ≈ 16 × text size in practice. 

Text T: mississippi$ 

12 
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 1 
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10 
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160 
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ST Library 



Suffix array SA: sorted list of suffixes 
        Text T:   M I S S I S S I P P I $ 

SUFFIX ARRAY SORTED  SUFFIXES 

12 

11 

  8 

  5 

  2 

  1 

10 

  9 

  7 

  4 

  6 

  3 

$ 

I$ 

IPPI$ 

ISSIPPI$ 

ISSISSIPPI$ 

MISSISSIPPI$ 

PI$ 

PPI$ 

SIPPI$ 

SISSIPPI$ 

SSIPPI$ 

SSISSIPPI$ 

10 
floors 

160 
floors 

40 
floors 

ST SA Library 



 Text T:   M I S S I S S I P P I $ 

 SUFFIX 
ARRAY SORTED  SUFFIXES 

NEIGHBOR  
FUNCTION 

  1. 

  2. 

  3. 

  4. 

  5. 

  6. 

  7. 

  8. 

  9. 

10. 

11. 

12. 
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Compressed Suffix Array 

Neighbor function Ф: 

SA(Ф[i]) = SA[i] + 1 

 

We can recreate the entries for 

the odd-numbered text positions 

from the even-numbered text 

positions. 

 

 

  

[Grossi & Vitter STOC00] 

[Grossi, Gupta, Vitter 

SODA03] 



 Text T:   M I S S I S S I P P I $ 
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Neighbor function Ф: 

SA(Ф[i]) = SA[i] + 1 

 

We can recreate the entries for 

the odd-numbered text positions 

from the even-numbered text 

positions. 

 

 

  

Compressed Suffix Array [Grossi & Vitter STOC00] 

[Grossi, Gupta, Vitter 

SODA03] 



SUFFIX 
ARRAY SORTED  SUFFIXES 

NEIGHBOR  
FUNCTION 

  1. 

   

  2. 

   

  3. 

   

  4. 

   

   

5. 

6. 
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SISSIPPI$ 

SSIPPI$ 

SSISSIPPI$ 

  6 

  1 

  8 

11 

12 

  5 

  2 

  7 

  3 

  4 

  9 

10 

Neighbor function Ф: 

SA(Ф[i]) = SA[i] + 1 

 

We can recreate the entries for 

the odd-numbered text positions 

from the even-numbered text 

positions. 

 

The SA values are all even, so 

we can “remember” that and cut 

them in half. 

 

  

[Grossi & Vitter STOC00] 

[Grossi, Gupta, Vitter 

SODA03] 
 Text T:   M I S S I S S I P P I $ 

 

Compressed Suffix Array 



SUFFIX 
ARRAY SORTED  SUFFIXES 

NEIGHBOR  
FUNCTION 
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Neighbor function Ф: 

SA(Ф[i]) = SA[i] + 1 

 

We can recreate the entries for 

the odd-numbered text positions 

from the even-numbered text 

positions. 

 

The SA values are all even, so 

we can “remember” that and cut 

them in half. 

 

How do we recreate the odd-

numbered text positions? 

 

 

  

[Grossi & Vitter STOC00] 

[Grossi, Gupta, Vitter 

SODA03] 

 

 Text T:   M I S S I S S I P P I $ 

 

Compressed Suffix Array 



SUFFIX 
ARRAY SORTED  SUFFIXES 
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FUNCTION 
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Neighbor function Ф: 

SA(Ф[i]) = SA[i] + 1 
 

Ex:  How to compute SA[4] = 5? 
 

SA[Ф[4]] = SA[11] = 6   Voila! 
 

How to compute Ф ? 

For each character, let’s write 

the Ф values for its suffixes. 
 

 $:  6   length = 1 

  I:  1,  8, 11, 12 length = 4 

M:  5   length = 1 

P:   2,  7  length = 2 

S:   3,  4,  9, 10 length = 4 
 

The 4th smallest neighbor is the 

3rd element in the I list:  11! 

 

 

  

 

 Text T:   M I S S I S S I P P I $ 

 

Compressed Suffix Array [Grossi & Vitter STOC00] 

[Grossi, Gupta, Vitter 

SODA03] 



Entropy-Compressing Sequences 

1,  5,  7,  8,  11,  42,  75,  103, 108,  115,  119,  … 

 
Encode sequence by encoding the gaps 4, 2, 1, 3, 31, … 
 

Gap length g can be encoded by delta code in  ≈ log g bits, 

which is roughly the length of g in binary format 
 

Sequence of t items spanning length n takes  ≈ t log (n/t) bits  
=  t log (average gap length)  =  10 log (118/10)  ≈  35.6 bits 
 

(Hypothetical) Partitioning:  4 log (10/4) + 3 log (92/3)  
+ 3 log (16/3) bits  ≈  27.3 bits  (high-order entropy) 

   

 

   4      2      1      3      31        33      28      5        7         4 

I-list: 

IE-list IP-list IS-list 



• We recursively halve the compressed suffix 
array until it is small enough to store explicitly. 

• The storage at each level is in high-order 
entropy-compressed format. 

• Wavelet tree data structure does necessary 
computations and in this context achieves high-
order entropy. 

[Grossi & Vitter STOC00] 

[Grossi, Gupta, Vitter 

SODA03] 

Compressed Suffix Array 



 O(p + polylog(n)) search time. 

 First index with size equal to text 

size in entropy-compressed form 

(~ n Hk, i.e., w/ mult. constant 1)! 

 Self-indexing text:  

no need to keep the text! 

 Any portion of the text can be 

decoded from the index.  

 Decoding is fast and does not 

require scanning the whole text. 

 Can cut search time further by 

log n factor (word size). 

 Similar provable for FM-Index. 

10 
floors 

50 
floors 

11 ½ 
floors 

text inverted 
index 

suffix 
array 

40 
floors 

1 ½ 
floors 

2-4 
floors 

New indexes 
(such as our CSA) 
require 20%-40% 
of the text size 

new 

Compressed Suffix Array [Grossi & Vitter STOC00] 

[Grossi, Gupta, Vitter SODA03] 



Wavelet Tree [Grossi, Gupta, Vitter SODA03] 

• How to do the gap encoding? 
 

• Neighbor function Ф (in CSA) and Last-to-First 
function (in FM-index) are closely related 

– LF(i) = SA-1 [ SA[i] – 1 ] = Ф-1(i) 
 

• Both computed elegantly by Wavelet Tree [GGV03] 

– Stores a text (e.g., BWT) in O(n log ||) bits 

– Supports rank/select & 2D range search in O(log ||) time 

– Can be 0-th order entropy compressed via RLE (gap) 

– When used w/ CSA or BWT  higher-order compression! 



Wavelet Tree [Grossi, Gupta, Vitter SODA03] 

c    a    b    f       b    e    g    c    g   a    d    e    f     e     a      b    e     g  

0    0    0    1    0    1    1    0    1    0    0    1    1    1    0     0    1    1 

1    0    0    0    1    0    1    0    0 0    0    1    1    0    0    0    0    1 

0    1    1    0    0    1 0    0    1 1    0    0    1    0    0 

∑ = {a, b, c, d, e, f, g } 

∑ = {a, b, c, d} ∑ = {e, f, g} 

∑ = {a, b} ∑ = {c, d} ∑ = {e, f} 

a b c d e f 

g 

T = 

1 

1 

0 1 0 1 

0 0 0 1 1 

0 



c    a    b    f       b    e    g    c    g   a    d    e    f     e    a       b    e     g  

0    0    0    1    0    1    1    0    1    0    0    1    1    1    0     0    1    1 

1    0    0    0    1    0    1    0    0 0    0    1    1    0    0    0    0    1 

0    1    1    0    0    1 0    0    1 1    0    0    1    0    0 

∑ = {a, b, c, d, e, f, g } 

∑ = {a, b, c, d} ∑ = {e, f, g} 

∑ = {a, b} ∑ = {c, d} ∑ = {e, f} 

a b c d e f 

g 

T = 

 Count  the number of e’s  in T[5,15]  

1 

1 

0 1 0 1 

0 0 0 1 1 

0 
rank1(5  - 1)=1 rank1(15)=7 

rank0(1)=0 rank0(5)=3 

rank0(1)=1 rank0(7)=5 

Count of e’s in 
T[5,15] = 3 – 0 = 3 

Wavelet Tree [Grossi, Gupta, Vitter SODA03] 



Two Challenges 

Our goal is to realize the advantages of inverted 
indexes but allow more general search capability. 

 

Challenges discussed today: 

1. Building relevance into queries  
(output top-k answers) 

2. External memory performance 
 

Note: Compressed suffix array (CSA) and FM-index 
access memory randomly and do not exploit locality 
and thus have poor I/O performance! 
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Document Indexing 

In a collection of text strings (documents) d1,d2,…dD of 
total length n,  
search for query pattern P (of length p). 

– Output the IDs for the documents that contain pattern P. 

– Issue:  # documents output might be much smaller than 
the total number of pattern occurrences,  
so going though all occurrences can be too costly. 

– Muthukrishnan: O(n) words of space, answers queries in 
optimal O(p + output) time. 

– Succinct version by Sadakane and by Valimaki & 
Makinen. 



Modified Problem—using Relevance  

• Instead of listing all documents (strings) where pattern 
occurs, list only highly ``relevant” documents. 
– Importance: where each document has a static weight  

(e.g., Google’s PageRank). 

– Frequency: where pattern P occurs most frequently. 

– Proximity: where two occurrences of P are close to each other. 

• Threshold K vs. Top-k 
– Threshold K: Retrieve matching documents with score ≥ K 

– Top-k: Retrieve only the k most-relevant documents. 

• More intuitive for User  



Approaches 

• Inverted Index 

– Popular in IR community. 

– Does not efficiently answer arbitrary pattern queries. 

– Slower 

• Muthukrishnan’s Structure (based on suffix trees) 

– Takes O(n log n) words of space for threshold queries 
while answering queries in O(p + output) time. 

– Top-k queries require additional overhead. 

• Let’s first improve to O(n) words of space. 

 



Suffix tree based solutions 

• Example:  Search for pattern “an” 

• We look at the node’s subtree: 
Output d1 (in which “an” appears twice) and d2. 

d1:banana 
 

d2: urban 
 

($ < a < b) 

Suffixes: 

a$ 

an$ 

ana$ 

anana$ 

ban$ 

banana$ 

n$ 

na$ 

nana$ 

rban$ 

urban$ 

 

 

a 

ban 

na$ 
$ 

a 

$ 

n 

$ n 

a 

na$ $ 

$ $ rban$ 

urban$ 

ana$ 

d1 

d2 

d1 
d1 

d2 

d1 
d2 

d1 
d1 

d2 

d2 

Locus for search 



Tree-link Structure: FOCS 2009 

• At each node v, store the ID for document di if at least two subtrees of v contain di. 

d1 d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d3 d6 d6 d3 d4 
d4 

d1 

d2,d3 

d5 

d6 

d5 

d4 

d3 

d3 

d1,d3,d4,d5 



Tree-link Structure: FOCS 2009 

• At each node v, store the ID for document di if at least two subtrees of v contain di. 

• Link every entry for document di to the entry of di in a closest ancestor node. 

d1 d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d3 d6 d6 d3 d4 
d4 

d1 

d2,d3 

d5 

d6 

d5 

d4 

d3 

d3 

d1,d3,d4,d5 



Tree-link Structure: FOCS 2009 

• At each node v, store the ID for document di if at least two subtrees of v contain di. 

• Link every entry for document di to the entry of di in a closest ancestor node. 

• Each link is annotated with (origin, target, score, doc_id) where origin and target 
are the preorder numbers for the start node and end node. 

d1 d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d3 d6 d6 d3 d4 
d4 

d1 

d2,d3 

d5 

d6 

d5 

d4 

d3 

d3 

d1,d3,d4,d5 

(2,0,2,d2) 

(13,12,1,d5) 

(12,1,2,d5) 
(3,1,2,d1) 

(5,3,1,d1) 
(18,12,1,d5) 

(2,1,2,d3) 



Frame query as (2,1,1) range search 

• Let’s say we convert top-k into score threshold T 

• Then only the links which originate from the subtree of locus node v qualify. 

• Exactly one link for each document goes above v from this subtree 

• Among  such links, we want to those with score ≥ T.  

 

d1 d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d3 d6 d6 d3 d4 
d4 

d1 

d2,d3 

d5 

d6 

d5 

d4 

d3 

d3 

d1,d3,d4,d5 

(2,0,2,d2) 

(13,12,1,d5) 

(12,1,2,d5) 
(3,1,2,d1) 

(5,3,1,d1) 
(18,12,1,d5) 

(2,1,2,d3) 

Subtree(v) = [2,18] 
For threshold T = 2, 
    d1, d2, d3, d5 … Yes 
    d4, d6 … No 
 

Locus v 



Main Idea ! 

• Each link has four attributes: (origin, target, origin_score, doc_id) 

• (2,1,1)-range query in 3D 
– In previous example, get all links with  

• Origin in [2,18]  ….   (subtree of v, the range where pattern matches) 

• Target value < 2  …. (enforces target above node v, uniqueness of each document) 

• Origin score ≥ 2  …. (applies score threshold) 

– Best linear space structure takes O(output × log n) time to answer such a 3D 
range query — which means O(p  +  output × log n) time — too costly! 

– Our target is O(p + output) time. 

• New Idea:   # possible target values   ≤    # ancestors of v   ≤    p 
– So group the links by their target values and  

query each relevant group separately via a (2, 1)-range query in 2D. 

– Each link will be represented as a triplet (origin, origin_score, doc_id). 

– At each target node is a list of all incoming links. 



Query Answering 

Top-k Retrieval:       O(p log n + k log k) time 

Via fractional cascading:  O(p + k log k) time 

Via further techniques:              O(p + k) time 

Links are sorted by origins 

within each node  

 each (2,1) query in 2D 

corresponds to a contiguous 

region of links within a node 



Compressed Data Structure 

• O(n) words of space in previous solution 
(i.e., O(n log n) bits) is MUCH BIGGER than text 

• Can we design data structures that take only as 
much space a compressed text?  And still answer 
queries efficiently? 

• Yes!  We show solutions based on sparsification 
and CSA (compressed suffix array). 

* 



Sparsification example 

Example:  Group size g = 4 

 

b a c d f e g i h o m l 

k 

j 
a,b,c,d 

n,a,b,p 
a,b,j,l 

a,b,e,f 

e,f,g,h 

p n 

At each marked node,  
the top-k list is stored explicitly. 
Extra space is  O(n / logЄ n)  

                          = o(n) bits    
 

LCA of two marked nodes 
is also marked 

Group consecutive g = k × log1+Є n leaves and mark them. 

Build a Compressed Suffix Array (CSA) on the  
n/g bottom-level marked nodes.   

 

 



Query Approach 

Locus v 

u 

Explicit top-k list stored at u 

Fringe leaves : ≤ 2g documents are separately  

queried for their for frequency counts  

≤ g ≤ g 



Results for Document Indexing  
with Relevance 

• O(n)-word data structures 
– K-frequency, K-repeats threshold: O(p + output) time. 
– Top-k highest relevant documents: O(p + k) time. 
– O(n) and O(n log n) construction time, resp. 
 

• Compressed data structures 
– Frequency   

• Threshold: O(p + output × log1+Є n) 
• Top-k: O(p + k (log k) (log1+Є n)) 
• Space: 2|CSA| + o(n) 

– Importance: log1+Є n time per item, 1|CSA| + o(n) space. 
– Document retrieval: Same. 
– No results for ``proximity”; not succinctly computable 

* 



Summary of Relevance Queries 

• This framework is provably optimal in query time, 
uses linear space, and is constructible in linear time 
for single-pattern queries. 

• With optimizations, we get an index 7–10 × text size 
that can answer queries in  << 1 millisecond. 

• Competitive with inverted indexes. 

• Can improve inverted indexes (for phrase queries). 

• We give the first entropy-compressed solutions. 

• Linear-space framework for multipattern queries. 

 



How To Query Efficiently In External Memory 

• Block size B 

• Minimize number of block transfers 

• Is it possible to get optimal O(p/B + logB N + k/B) I/Os ?   
– Sorted ? … No. 

– Convert top-k queries to threshold queries via sketches 

• Not clear … Last trick requires search of p separate lists 
(one per ancestor). 
If we apply it, we get O(p logB N + k/B) I/O … Too much! 

• In external memory, 3 constraints can be solved efficiently, 

but 4 constraints take super-linear space or O( N/B ) I/Os 

 



Geometric Problem:  
3-Sided Range Searching with Priority 

Jeff: O(N log log N) space with O(log log N) 
multiplicative I/Os 
• Wavelet tree 

Cheng: O(N) space… O(log log B) extra I/Os  

• Using bootstrapping with polynomial reduction 

Sharma: O(N log log log B) space … 
optimal # I/Os 
• Using bootstrapping with small buckets 

Rahul: O( N log* N) space… 
optimal O(p/B + logB N + k/B) I/Os 
• Using bootstrapping with 
logarithmic reduction + recursive bucketing 

Weighted points in 2d 

Output k highest weighted 

points within the query box 

Depth of 

(locus) < p 

 y=x 

If these 4 constraints were independent, no linear-space external 
memory structure has desired I/O performance. 
But 2 constraints share a common end point, i.e., they are “hinged” 



Practical Index  

• We come back to storing (origin, score, doc_id) lists at target 
nodes 
 

• Index A 
 Replace GST by the compressed suffix tree (CST) 
 

• Index B 
 Encode the origin info of the links by run-length (gap) encoding. 
 Encode the frequency or score by variable-length encoding 
 

• Index C 
 Drops the document info in each entry  
 (retrieval can be done on-the-fly by traversing the origins recursively until 

reaching a leaf node) 



Experimental Setup for word-phrase searching 

Datasets 
1. ENRON:   

48,619 email messages  from ENRON executives drawn from a 
dataset prepared by the CALO Project, totaling 100MB 

2. PROTEIN:  
Concatenation of 141,264 Human and Mouse protein sequences, 
totaling 60MB  
 

Public Code Libraries 
1. Succinct Data Structures Libraries (@ University of Ulm) 

2. Compressed Suffix Trees (@ PizzaChili Corpus) 
 

 

 

 



Space vs. Time  
Tradeoff 

Mean time to report k documents 

with highest frequency for a set of 

queries with 3 words 

Index Space 

PROTEIN Data 

ENRON Data 



Our Index vs. Inverted Index  (Query) 

Time (High, Low, Mean) to report 10 documents 

with highest frequency for a set of phrase queries 

with 2 words and 3 words 

A B C 

A B C 

2-word phrase 

queries 

3-word phrase 

queries 

ENRON Data ENRON Data 



Our Index vs. Inverted Index  (Space) 

• To speed up phrase searching, we may store inverted lists of all 

phrases up to h words  the larger the h, the more the index space 



Retrieval for Multiple Patterns 

• Example relevance measures: TFIDF, proximity 
between 2 patterns, combined frequency scores 

• Top-k: O(n) words of space index with  

O(p1 + p2 + nk log2 n ) query time 

• Top-k with approximate TFIDF is achievable 

• Succinct results ? 

– Proximity unlikely 
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Any-1 / Top-1 Index 

• Build GST on D 

• Group every g (=√n)  contiguous  

 leaves and mark their LCA’s  

• Mark LCA’s of each pairs of LCA’s 

• #marked nodes ≤ 2n/g =O(√n) 

• Between each pair of marked  

 nodes(for the corresponding  

 patterns), store the top  

 score in score matrix 

 

 

 

 

 

 

• We also keep individual structures for each document 

• Total size =O(n) words 

 

 

 

√n 

 O(√nX√n)=O(n) 

  Score Matrix 



Practical Shortcuts for Searching Genome 
[KHSVX10] 

• Human genome is not readily compressible 

• Consists of ≈ 3 billion base pairs ≈ 750 MB space 

• Key idea is instead Geometric Burrows-Wheeler 
Transform sparsification,  d > 1 

• Tradeoff: speed (low d) vs. succinctness (high d)  

• Verify 1-d results rather than use 2-d searching 

• Prioritize rightmost mismatches (where data is 
less precise) 
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Size of the Index for the Human Genome  
Using Different Aligners 

 
• PerM         : 12.4 GB, spaced seeds 
• SOAP2       : 6.1 GB, bidirectional BWT  
• BOWTIE    : 2.3 GB, bidirectional BWT 
• Ψ-RA(4)    : 3.4 GB, sparse SA, d=4 bases 
• Ψ-RA(8)    : 2.0 GB, sparse SA, d=8 bases 
• Ψ-RA(12)  : 1.6 GB, sparse SA, d=12 bases 

 
Raw human genome occupies  ≈750 MB  

(when each base is coded by 2 bits) 



Exact Match: Time for 100K “Reads” 

Our  
improvement 



Approximate Matching: Time for 100K Reads 

Our  
improvement 



Multi-core Performance: Time for 100K Reads 

Key Takeaway: Our algorithm is easily parallelizable 



Future Challenges in  
Compressed Data Structures 

Our goal is to realize the advantages of inverted 
indexes but allow more general search capability. 

 

Many exciting challenges to explore! 
• Computing directly on compressed data. . .  in many settings 

• External memory performance 

• Building relevance into queries (outputting top k) 

• Dual problem of dictionary matching 

• Biological applications 

• Streaming problems 

• Approximate matching, maximal matching, 2D matching, . . . 

• Building practical systems 

 

 


