
An Efficient Algorithm for Sequential
Random Sampling

JEFFREY SCOTT VllTER
I.N.R.I.A. Brown University

We examine several methods for drawing a sequential random sample of n records from a file
containing N records. Method D is recommended for general use. The algorithm is on-line (so that
CPU time can be overlapped with I/O), has a small constant memory requirement, and is easy to
program. An improved implementation is detailed in the Appendix.

Categories and Subject Descriptors: F.2.m [Analysis of Algorithms and Problem Complexity]:
Miscellaneous; G.3 [Mathematics of Computing]: Probability and Statistics-random num&r
generation; statistical software

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: Optimization, random sampling, rejection method

1. INTRODUCTION

Sequential random sampling is a fundamental operation having many applica-
tions in science and industry. The problem is to draw a random sample of size n
without replacement from a file containing N records; the n records must appear
in the same order in the sample as they do in the file. Another formulation is to
form a sorted random set of n elements from (1, 2, . . . , NJ. The sample size n is
typically very small relative to the file size N.

In this paper we reaffirm the efficiency and practicality of Method D introduced
in [9] and present some implementation improvements. We recommend it as
the method of choice for sequential random sampling. The main features of
Method D are

(1) It is on-line-that is, it requires no preprocessing and can generate each
element of the sample in constant expected time.

(2) The memory requirement of the program is a small constant.
(3) The implementation is easy to program (it is given in the Appendix).

Method D solves the open problem presented in [8, ex. 3.4.2-81.

Support was provided in part by a National Science Foundation research grant DCR-84-03613, by
an NSF Presidential Young Investigator Award with matching funds from an IBM Faculty Devel-
opment Award and an AT&T research grant, and by a Guggenheim Fellowship.
Author’s address: Department of Computer Science, Brown University, Providence, R.I. 02912. Part
of this research was done while the author was on leave at the Mathematical Sciences Research
Institute in Berkeley, California, and the article was revised while on sabbatical at Institut National
de Recherche en Informatique et en Automatique in Rocquencourt, France, and at the l?cole Normale
Superieure in Paris, France.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 00983500/87/0300-0058 $00.75

ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987, Pages 56-67.

An Efficient Algorithm for Sequential Random Sampling l 59

Two interesting twopass methods for sequential random sampling, called
Methods SG and SG*, were developed by Ahrens and Dieter [2]. Methods SG
and SG* were quoted in [2] to be faster than Method D by factors of 4-5 and
2-2.5, respectively. It turns out that an inferior implementation of Method D
was used in the testing, not the one given explicitly on page 716 in [9]. We have
redone the experiments with a better implementation. Method D uses more CPU
time than Method SG in most cases, but always less than Method SG*.

In terms of elapsed time, Method D is the fastest way to obtain a ran-
dom sample of records because its CPU time can be overlapped with the
record I/O, whereas Methods SG and SG* use two passes and are not on-line.
Method SG also requires O(n) memory space. When n is large, this can be
prohibitive, and in virtual memory environments page faults can deteriorate
performance.

The next section gives a brief description of Method D along with the theory
behind the implementation in the Appendix. In Section 3, we review the structure
of Methods SG and SG* and present our empirical CPU timings. The algorithms
were coded carefully in FORTRAN 77 (VS FORTRAN) on an IBM 3081
mainframe. All three methods can be sped up further by using an assembly-coded
exponential random number generator, if available. Conclusions are given in
Section 4. Efficient and improved implementations of Method D and another
method, called Method A, appear in the Appendix.

2. METHOD D

We begin by discussing the simplest of all sequential random sampling methods,
developed by Fan, Muller, and Rezucha [4] and Jones [6], which is called
Method S by Knuth [9]. An independent uniform random variate (from the unit
interval) is generated for each record in the file in order to determine whether
the record should be chosen for the sample. If m records have already been
chosen from among the first t records in the file, the (t + 1)st record is chosen
with probability (n - m)/(N - t). Method S thus requires roughly N random
variates and runs in O(N) time.

Significant speedups can be obtained by determining in an efficient way how
many records should be skipped ouer before the next is chosen for the sample.
Let us denote the number of records to skip by S(n, N), the skip distance. We
also modify our definitions of n and N to be, respectively, the number of records
remaining to be chosen for the sample and the number of records in the file that
have not yet been processed.

The range of S(n, N) is the integers in [0, N - n]. The distribution function
F(s) = Pr(S 5 SJ is

F(s) = 1 _ W - s - 1)” = 1 _ W - nIti
N” N”+’ ’ (2.1)

for 0 5 s 5 N - n. (The notation afi denotes the falling power a(a - 1) . . . (a - b
+ 1) = a!/(a - b)!) It follows that the probability function f(s) = Pr(S = SJ is

(2.2)

ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

60 l Jeffrey S. Vitter

for 0 I s I N - n. The mean value of S(n, N) is (N - n)/(n + l), and the
standard deviation is roughly equal to the mean. The full derivations of most of
the results presented in this section appear in [9].

Method S can be expressed in this framework: Each value of the skip distance
S(n, N) is generated in O(S + 1) time, using S + 1 uniform random variates.
The running time can be improved by a factor of 3-4 if we determine S by
generating a uniform random variate V and setting S to be the minimum value
s 2 0, such that (N - n)s+’ 5 N”+‘V. It follows from (2.1) that the resulting S
has the correct distribution. The running time is still O(N), but only n random
variates are generated. An efficient implementation for this algorithm, which we
call Method A, is given in the Appendix.

Method D achieves its greater speedup by generating S using the acceptance-
rejection framework of von Neumann. The trick is to find a random variable X
with probability density function g(x) that approximates S well and a constant
c such that f(LnJ) 5 cg(x), for all x in the domain of g(x). To generate S, we
independently generate X and a uniform random variate U. If U 5 f(LXJ)/cg(X)
(which occurs with very high probability), then we accept and set S := LXJ;
otherwise we reject and repeat the process with a new X and U. The resulting S
has the correct distribution (2.1).

The computation of f(s) is expensive and requires 0(min(n, a]) time because
of the presence of the falling powers in (2.2). Instead, we use a quickly computed
approximation h(s) satisfying h(s) 5 f(s). The test U 5 h(LXJ)/cg(X) is
performed instead, and, if satisfied, we accept and set S := LXJ, since it then
follows that U 5 f(LXJ)/cg(X). Otherwise, the test U 5 f(LXJ)/cg(X) is per-
formed, and we accept or reject as before. The process is repeated until acceptance
is reached. This technique is sometimes called a squeeze method since the value
of f(LxJ) is squeezed between the values h(LxJ) and cg(x).

The algorithm is very short and simple to state. The parameter (Y determines
when to use Method A as opposed to the acceptance-rejection technique. Typical
settings are in the range 0.05-0.15. For the efficient implementation given in the
Appendix, we use cr = A. The algorithm works as follows:

Dl. [Is n 2 aN?] If n 2 (YN, use Method A to finish the sampling and then terminate.
D2. [Generate U and X.1 Generate independently a uniform random variate U from the

unit interval and a random variate X with density function g(x). If X 1 N - n + 1,
then X is regenerated until X < N - n + 1.

D3. [Accept?] If U I h(LXJ)/cg(X), then set S := LXJ and go to Step D5.
D4. [Accept?] If U I f(LXJ)/cg(X), then set S := LXJ. Otherwise, return to Step D2.
D5. [Select the (S + 1)st record.] Skip over the next S records in the file and then select

the following one for the sample. Set iV := N - S - 1 and n := n - 1. Return to
Step Dl if n > 0.

A good choice for X is the beta distribution scaled to the interval [0, N] with
parameters a = 1, b = n. It is the continuous counterpart of S and approximates
S very well. The value of X can be thought of as the minimum of n numbers
chosen independently and uniformly from the real interval [0, N]. We can
generate X by setting

X:= N(l - U1ln) or X := N(l - eeYln), (2.3)
ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

An Efficient Algorithm for Sequential Random Sampling 61

where U is uniformly distributed on the unit interval and Y is exponentially
distributed. (Expressions of the form a* are evaluated as exp(b In a) using a call
to the exponential and logarithm library functions.)

Our choice of parameters is given below:

otherwise;

(2.4)

h(s) =

n-1

, O=s(N-n;

lo, otherwise.

The resulting algorithm is proved in [9] to run in O(n) time, on the average.
The running time can be cut by more than half by clever implementation. For

our choice of parameters in (2.4), the test of acceptance in Step D3 is of the form

.- (2.5)

When the test is true, which happens with very high probability 1 - O(n/N),
the ratio of the left-hand side and the right-hand side of (2.5), namely,

NU

(

N-n+1 N - X IT-’
.-

N-n+1 N-n-S+1) N ’ (2.6)

is statistically equivalent to a uniform random variate whose value is independent
of all previous values of X and of whether those X were accepted. We get the
(n - 1)st root of a uniform random variate by taking the (n - 1)st root of (2.6).
Let us denote the resulting quantity by V’:

v’= (,-“,“, ,)‘/(“-“,“,r;; 1 . v. (2.7)

A more efficient way to order these steps is first to compute V’ via (2.7) and
then to do the simple test of acceptance

Is V’sl? (2.8)

which is equivalent to (2.5). If the test (2.8) is satisfied, then we can efficiently
precompute the value of X for the next iteration of the algorithm by setting

X := N(l - V’). (2.9)
The reader should compare this with (2.3) and note that n decreases by 1 before
the start of the next iteration. We thus obtain the next X without need of a
uniform random variate and an operation of the form ub, which is normally
suggested by (2.3). The resulting X has the necessary independence, as stated
above. Another nice feature of the test (2.8) is that the possibility of floating
point underflow is eliminated. With this implementation, each of the n iterations

ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

62 l Jeffrey S. Vitter

of Method D requires an average of about one uniform random variate and one
computation of the form ub (which is implemented as exp(b In a)). This represents
a twofold speedup in running time.

An alternate way to generate X, as suggested by (2.3), is to use an exponentially
distributed random variate Y, which has the same distribution as -In U. There
are assembly language programs for generating Y more quickly than by computing
the logarithm of a uniform random variate. This fact can be incorporated into
the above scheme to reduce the overhead per iteration to about one exponential
random variate and one exponential operation of the form e”. The fix is not
straightforward, however, because the argument to the logarithm function im-
plicit in (2.7) is CU = NU/(N - n + l), not U. The solution is to redefine c to be

(2.10)

The definition of V’ changes from (2.7) to

V’ = exp
1 N-n+1 N-X .-

N-n+1 N-n-S+1 N ’
(2.11)

If the test V’ I 1, is true, which again happens with very high probability 1 -
O(n/N), then we generate X for the next loop via (2.9) as before. The resulting
implementation is given in the Appendix.

Two optimizations of a relatively minor nature are possible in the way that X
is generated. When l/n is sufficiently small with respect to n/N, the average
number of times that Step D2 is done before acceptance is reached can be reduced
by using a different distribution for X, namely, the geometric distribution given
in [9]. The second optimization comes into play when n is sufficiently small
and when X cannot be generated via (2.9). An alternative to (2.3) is to obtain
X directly by generating n independent uniform real numbers from the unit
interval, selecting the smallest, and multiplying it by N. But since (2.3) is rarely
used to generate X (the significantly faster (2.9) is used whenever possible), the
speedup is minimal. In each case, sufficiently smull means smaller than some
implementation-dependent constant. The improvements are minor, at the cost
of more complicated code, and for those reasons are not included in the Appendix.
Another possible optimization is to reduce the overhead in calling the random
number generator by generating several random numbers at once and storing
them in an array. This requires some extra storage, and the program goes off-
line from time to time to do the random number generation.

3. COMPARISONS

In this section we compare the performance of Method D with that of the twopass
random sampling schemes Methods SG and SG* from [2]. The latter two
algorithms are not on-line, but do run in O(n) time. Let us begin with a sketch
of how Methods SG and SG* work. In the first pass, geometrically distributed
random variates G1, GZ, . . . with a fixed mean are used as the skip distances. If
less than n records are selected, that is, if Clsis,(Gi + 1) > N, then the process
is repeated. The mean p of the geometric random variates is chosen slightly less
than N/n - 1 so that the odds of repeating are small. Typically no I/O is done
during this pass. Each time a record is “selected” for the sample its index is
ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

An Efficient Algorithm for Sequential Random Sampling l 63

recorded in an array, which requires space for O(n) pointers. If array space runs
out, the process must be restarted. In the second pass, the number of elements
in the array is reduced to n by randomly deleting elements. The n entries are
then compacted, and the actual selection of the records can begin. (An alternative
is for the records to be actually selected in the first pass and stored in internal
memory or written to secondary storage; the extraneous ones would be deleted
in pass two.)

Method SG has a memory storage requirement of O(n), which can be excessive.
This storage requirement can be avoided if the random number generator used
to generate G1, Gz, . . . can be reseeded for the second pass, so that the program
can regenerate the selected indices on the fly. The final n indices are then chosen
via Method S (or better yet, via Method A) using a different sequence of
pseudorandom numbers. The resulting algorithm is called Method SG*.

Methods SG and SG* are very similar to the clever algorithms proposed by
J. L. Bentley (personal communication, April 1983; see [9, p. 7131). The main
difference is that Bentley obtains a sorted random sample of real numbers by
repeatedly generating random variates X using (2.3); the parameters n and N
change dynamically as the sampling progresses. The sample of reals is then
truncated to integers to complete pass one. The rest of the algorithms are the
same as Methods SG and SG*. The size of the sample formed in pass one by
Bentley’s methods has a much smaller variance than the size of the sample
produced by Methods SG and SG*, so the target mean size of the sample can be
reduced. However, it is more costly to generate random variates X than geomet-
rically distributed random variates with a fixed mean, so Methods SG and SG*
are respectively faster than the corresponding methods due to Bentley.

The CPU times (in microseconds) per selected record for Methods D, SG, and
SG* are given in Table I for N = lo6 and in Table II for N = 10’. Each algorithm
was simulated 105/n times for each value of n and N, and the cumulated CPU
time was divided by lo5 to get the average time per selected record. An exception
was the case n = 106, N = 1O8, which was simulated once for each algorithm; the
running time was then divided by n to get the corresponding table entry.

The programs were implemented using FORTRAN 77 (VS FORTRAN), and
special care was taken to avoid conversions between different data formats (like
integer and real) which slow down the running time. The programs were compiled
and run on an IBM 3081 mainframe computer; optimization level one was used,
since it produced the fastest code. A Pascal-like implementation of Method D is
given in the Appendix; the FORTRAN 77 version is a direct translation of it.

The comparisons given in [2] involving Method D are misleading because the
timing experiments use the inferior implementation of Method D in [5], not the
simpler and more efficient version given on page 716 in [9] or the improved
version given in the Appendix of this paper. Methods S and A, which are not
included in the above tables, use roughly 12N and 3.5N + 8n microseconds of
CPU time, respectively, to complete the sampling.

In terms of elapsed time, Method D is the fastest way to generate a sequential
random sample of records, since it is an on-line algorithm and its CPU compu-
tation can be overlapped with the I/O; that is not the case with Methods SG and
SG*. Even if the records are actually selected during pass one and stored on
secondary storage for pass two, the I/O time in the second pass will not
be overlapped and will typically be greater than the CPU time. In addition,

ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

64 l Jeffrey S. Vitter

Table I. CPU Time in Microseconds for N = lo6

N = lo6 D SG SG*

n=l 39 146 175
n=2 42 98 133
n=5 44 67 103
n= 10’ 44 53 90
n = lo* 45 35 69
n = lo3 48 29 62
n = 10’ 54 27 59
n = lo5 44 26 58

Table II. CPU Time in Microseconds for N = 10’

N = lo8 D SG SG*

n=l 39 146 172
n=2 42 98 131
n=5 44 67 103
n= 10’ 44 53 90
n = 10’ 45 35 69
n = lo3 45 29 62
n = 10’ 48 27 59
n = lo5 55 26 58
n = lo6 44 26 58

Method SG requires O(n) space, which can be excessive and can cause page
faults when n is large.

A useful and intuitive measure of CPU performance is the number of mathe-
matical library function calls. For simplicity, we shall ignore arithmetic
operations like addition, subtraction, multiplication, and division, and instead
concentrate on the number of random variates generated and the number of
exponential and logarithm computations. In Methods SG and SG*, the geometric
random variates each have the same mean (call it II), so they can each be
generated by one uniform random variate and one logarithm operation (or
equivalently, by one exponential random variate). Method SG requires the
computation of an average of about N/(p + 1) = n + O(~Z”~) geometric random
variates in the first pass and about N/(p + 1) - n = O(n1’2) uniform
random variates in the second pass. Method SG* requires an average of
roughly n + O(TI”~) geometric random variates in each of the two passes, plus
an extra n + O(n112) uniform random variates in the second pass. Method D uses
an average of about n uniform random variates, n exponential operations, and n
logarithm operations (or equivalently, about n exponential random variates and
n exponential operations).

It is possible to generate an exponential random variate faster than by
computing -In U, where U is a uniform random variate, through direct tech-
niques coded in assembly language [l, 81. If such a routine is available, all three
methods can be sped up. The way to do that for Method D is described in the
Appendix.

There are several published nonsequential random sampling methods (e.g., see
[2, 3, 81) that typically use a hash table of size O(n). Sequential samples can be
ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

An Efficient Algorithm for Sequential Random Sampling 65

obtained in a second pass by sorting, also in O(n) time. The CPU times are
similar to those of Method SG; the same disadvantages apply, except that
problems due to page faults are even more likely.

4. CONCLUSIONS

Method D is the recommended algorithm for sequential random sampling. It
combines the advantages of Method A when n is large with the efficiency of the
acceptance-rejection technique for small n. The method is on-line, and thus its
CPU time can be overlapped with the I/O when records are selected. The memory
requirement is constant. An efficient implementation is given in the Appendix.
CPU time using FORTRAN 77 on an IBM 3081 is = 40-50 microseconds per
selected record, this can be improved further if a fast exponential random variate
generator is available.

The Appendix also gives an efficient version of Method A, which improves the
running time of the basic Method S by a factor of 3-4. Other algorithms for
sequential random sampling are described and analyzed in [7] and [9].

APPENDIX

In this appendix we present Pascal-like implementations for Methods A and D.
Variables of type real should be double precision so that roundoff error is
insignificant, even when N is very large. Roughly log,, N + 1 digits of precision
will suffice. Intermediate calculations should be done in double precision as well.
Variables of type integer must be able to store values up to size N. The function
call UNIFORMRV() returns a uniform random variable from the open unit
interval. The reserved words loop and endloop denote the beginning and end of
a loop. The statement breakloop causes flow of control to exit the innermost
active loop. We assume that n I 1. The seemingly redundant type conversions
for the special case n = 1 in each algorithm are to ensure that the out-of-range
value S = N is never generated because of roundoff error. Such a situation has
never been observed by the author, but it is theoretically possible, so the
precaution is warranted. The extra time required is insignificant.

top := N - n; Nreal := N;
while rz 2 2 do begin

V := UNIFORMRV(); S := 0; quot := top/Nreal;
while quot > V do begin

S := S + 1; top := -1.0 + top; Nreal := -1.0 + Nreal;
quot := (quot x top)/Nreal
end;

Skip over the next S records and select the following one for the sample;
Nreal := -1.0 + Nreal; n := -1 + n
end;

{ Special case n = 1)
S := TRUNC(ROUND(Nrea1) x UNIFORMRV());
Skip over the next S records and select the following one for the sample;

Al. Method A. Variables V, quot, Nreal, and top are of type real. All other
variables have type integer. The variable Nreal represents N in floating point
format.

ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

66 l Jeffrey S. Vitter

A2. Method D. We use an integer variable negalphuinv to represent -l/a
where (Y is the parameter that decides when to use Algorithm A instead of the
acceptance-rejection method. Typical values of (Y are in the range 0.05-0.15. For
example, in the IBM 3081 implementation, we used CY = A.

The variables nreal, Nreal, ninv, nminlinv, U, X, Vprime, yl, y2, top, bottom,
negSrea1, and qulreal have type real; the others have type integer. Variables
nreal, Nreal, ninv, nminl inv, and negSrea1 are floating point versions of n,
N, l/n, l/h - l), and -S, respectively. The value of qul is N - n + 1,
and q&real is its floating point representation. Variable Vprime is equal
to the nth root of a uniform random variable when it is used to generate X
via (2.9).

nreal := n; ninu := l.O/nreal; Nreal := N;
Vprime := EXP(LOG(UNZFORMRV()) x ninu);
gal := -n + 1 + N; quireal := -nreal+ I.0 + Nreal;
negalphaino := -13; threshold := -negalphainu x n;

while (n > 1) and (threshold < N) do
begin
nminlinu := l.O/(-1.0 + nreal);
loop

loop {Step D2: Generate U and X}
X := Nreal x (- Vprime + 1.0); S := TRUNC(X);
if S < qul then breakloop;
Vprime := EXP(LOG(UNIFORMRV()) x ninu)

endloop;
U := UNIFORMRV(); negSrea1 := -S;

{Step D3: Accept?}
yl := EXP(LOG(U x Nreal/qulreal) x nminlinu);
Vprime := yl x (-X/Nreal + 1.0) x (qulreal/(negS’real+ q&real));
if Vprime 5 1.0 then breakloop; {Accept! Test (2.8) is true}

{Step D4: Accept?}
y2 := 1.0; top := -1.0 + Nrea[;
if -l+n>Sthen

begin bottom := -nreal + Nreal; limit := -S + N end
else begin bottom := -1.0 + negSrea1 + Nreal; limit := qul end;
for t := -1 + N downto limit do begin

yb := (yd x top) / bottom;
top := -1.0 + top; bottom := -1.0 + bottom end;

if Nreal/(-X+ Nreal) 2 yl x EXP(LOG(y2) x nminlinv) then
begin { Accept! }
Vprime := EXP(LOG(UNIFORMRV()) x nminlinu);
breakloop
end;

Vprime := EXP(LOG(UNZFORMRV()) x ninu)
endloop;

{Step D5: Select the (S + 1)st record}

Skip over the next S records and select the following one for the sample;
N := -S + (-1 + N); Nreal := negSreal+ (-1.0 + Nreal);
n := -1 + n; nreal := -1.0 + nreal; ninu := nminlinu;
qul := -S + gal; qulreal := negSrea1 -I- qulreal;
threshold = threshold + negalphainu
end;

if n > 1 then Use Method A to finish the sampling
else begin { Special case n = 1 }

S := TRUNC(N x Vprime);
Skip over the next S records and select the following one for the sample
end;

ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

An Efficient Algorithm for Sequential Random Sampling l 67

When the test (2.8) is true, which happens with very high probability 1 -
O(n/N), the random variable X in the next iteration is generated via (2.9).
This is significantly faster than (2.3), since it saves a call to UNIFORMRV,
EXP, and LOG.

If a fast assembly language subroutine is available for generating exponentially
distributed random variates, then we can speed up the algorithm, as outlined in
(2.10) and (2.11). The two lines of code

U := UNIFORMRV ();
yl := EXP(LOG(U x Nreal/qulreal) x nminlinu);

in Steps D2 and D3 should be replaced by

Y := EXPONENTIALRV();
yl := EXP(-Y X nminlinu + l.O/qulreal);

and all expressions of the form LOG (UNIFORMR V()) in the code should be
replaced by -EXPONENTIALRV().

ACKNOWLEDGMENTS
The author would like to thank the referees for their very helpful comments.

REFERENCES
1. AHRENS, J. H., AND DIETER, U. Computer methods for sampling from the exponential and

normal distributions. Commun. ACM 15, 10 (Oct. 1972), 873-862.
2. AHRENS, J. H., AND DIETER, U. Sequential random sampling. ACM Trans. Math. So@. 11, 2

(June 1985) 157-169.
3. ERNVALL, J., AND NEVALAINEN, 0. An algorithm for unbiased random sampling. Cornput. J.

25, 1 (Jan. 1982) 45-47.
4. FAN, C. T., MIJLLER, M. E., AND REZUCHA, I. Development of sampling plans by using

sequential (item by item) selection techniques and digital computers. Am. Stat. Assn. J. 57 (June
1962) 387-402.

5. GEHRKE, H. Einfache sequentielle Stichprobenentnahme. Diplomarbeit, Universitiit Kiel, Kiel,
West Germany (Aug. 1984).

6. JONES, T. G. A note on sampling a tape file. Commun. ACM 5,6 (June 1962) 343.
7. KAWARASAKI, J., AND SIBUYA, M. Random numbers for simple random sampling without

replacement. Keio Math. Sem. Rep. 7 (1982) l-9.
8. KNUTH, D. E. The Art of Computer Programming. Vol. 2, Seminumerical Algorithms, 2d ed.

Addison-Wesley, Reading, Mass. (1981).
9. VIT~ER, J. S. Faster methods for random sampling. Commun. ACM 27,7 (July 1984) 703-718.

Received July 1986; revised December 1986; accepted February 1987

ACM Transactions on Mathematical Software, Vol. 13, No. 1, March 1987.

