
ALGORITHM 673
Dynamic Huffman Coding

JEFFREY SCOTT VITTER
Brown University

We present a Pascal implementation of the one-pass algorithm for constructing dynamic Huffman
codes that is described and analyzed in a companion paper [3]. The program runs in real time; that
is, the processing time for each letter of the message is proportional to the length of its codeword.
The number of bits used to encode a message of t letters is less than t bits more than that used by
the well-known two-pass algorithm. This is best possible for any one-pass Huffman scheme. In
practice, it uses fewer bits than all other Huffman schemes. The algorithm has applications in file
compression and network transmission.

Categories and Subject Descriptors: C.2.0 [Computer Communication Networks]: General--data
communication.~; E.l [Data]: Data Structures-trees; E.4 [Data]: Coding and Information Theory-
data compaction and compression, nonsecret encoding schemes; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete Mathematics]:
Graph Theory--trees; H.l.l [Models and Principles]: Systems and Information Theory-u&e of
information

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: Huffman codes, networks

1. INTRODUCTION

In this paper we present a Pascal implementation of Algorithm A, the one-pass
algorithm for constructing dynamic Huffman codes that is described and analyzed
in the companion paper [3]. The dynamic code used to process the (t + 1)st letter
in the message is a Huffman code based upon the first t letters. The processing
time for each letter is proportional to the length of its encoding, so the program
runs in real time. It is shown in [3] that the number of bits used by Algorithm A
to encode a message of t letters is less than t bits more than that used by the
well-known two-pass algorithm developed by D. A. Huffman [l]. Algorithm A is

Support was provided in part by National Science Foundation research grant DCR-84-03613, by an
NSF Presidential Young Investigator Award with matching funds from an IBM Faculty Development
Award and an AT&T research grant, by an IBM research contract, and by a Guggenheim Fellowship.
Part of this research was done while the author was at the Mathematical Sciences Research Institute
in Berkeley, Calif., at INRIA in Rocquencourt, France, and at Ecole Normale Superieure in Paris,
France.
Author’s current address: Department of Computer Science, Brown University, Providence, R.I.
02912.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 00983500/89/0600-0158 $01.50

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989, Pages 158-167

Algorithm 673: Dynamic Huffman Coding l 159

optimum in this respect among all one-pass Huffman schemes. Experiments
indicate that Algorithm A typically uses fewer bits than Huffman’s algorithm
and other one-pass Huffman methods. The algorithm has applications in file
compression and network transmission.

We shall use the following terminology in our discussion:

n = alphabet size;
cj = j th letter in the alphabet;
t = number of letters in the message processed so far;
k = number of distinct letters processed so far.

Each letter in the message is encoded by the path from the root to its leaf node
in the current version of the Huffman tree. The weight of each leaf is the number
of times the corresponding letter has appeared previously in the message. When
k < n, a O-node is used to represent the n - k unused letters in the message.
When a letter appears in the message for the first time, additional bits are put
into the encoding to specify which of the unused letters it is, and if there are still
unused letters remaining, the O-node is split to create an extra leaf to accommo-
date the new letter.

One of the main features of Algorithm A is its use of implicit numbering in
which the nodes in the Huffman tree are numbered in increasing order from
bottom to top and at each level in increasing order from left to right. Another
main feature is the invariant that all leaves of a given weight precede in the
implicit numbering all internal nodes of the same weight. These two features are
shown in [3] to guarantee good coding efficiency.

In this paper we present a detailed implementation for Algorithm A. The data
structure is described in Section 2, and Section 3 contains the Pascal code.

2. DATA STRUCTURE

We shall denote all of the leaves of a given weight as a leaf block and all the
internal nodes of a given weight as an internal block. The largest numbered node
in a block is called the leader of the block. Our invariant implies that the blocks
are linked together in increasing order by weight and that a leaf block always
precedes an internal block of the same weight. The main operations that must
be supported by the data structure for Algorithm A are

-Represent a binary Huffman tree with nonnegative weights that maintains the
invariant.

-Store a contiguous list of internal tree nodes in nondecreasing order by weight;
internal nodes of the same weight are ordered with respect to the implicit
numbering. A similar list is stored for leaf nodes.

-Find the leader of a node’s block, for any given node, based upon the implicit
numbering.

-Interchange the contents of two leaves of the same weight.
-Increment the weight of the leader of a block by 1, which can cause the node’s

implicit numbering to “slide” past the implicit numberings of the nodes in the
next block and cause their implicit numberings to each decrease by 1.

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

160 - Jeffrey Scott Vitter

-Represent the correspondence between the k letters of the alphabet that have
appeared in the message and the positive-weight leaves in the tree.

-Represent the n - k letters in the alphabet that have not yet appeared in the
message by a single leaf O-node in the Huffman tree.

The components of the data structure are listed below. The number of leaves
of zero weight are specified by integer variables M, E, and R.

M = n - k = the number of zero-weight letters in the alphabet
=2E+R, where05R<2E, except that R = -1 when M = 0.

The data structure makes use of an explicit numbering, which corresponds to
the physical storage locations used to store information about the nodes. This is
not to be confused with the implicit numbering defined in the last section. Unless
otherwise stated, all references to node numberings in this section are based
upon the explicit numbering. Leaf nodes are explicitly numbered 1, . . . , n in
contiguous locations in physical memory, and internal nodes are explicitly
numbered n + max{l, Ml, . . . , 2n - 1 in contiguous locations in memory.
Node q is a leaf node if and only if q 5 n. When k < n (that is, when M > 0), the
O-node in the Huffman tree is node M, and the positive-weight leaves are nodes
M+l,..., n.Nodesl,... , M represent letters of zero weight, though only node
M actually appears in the Huffman tree. When k > 1 (that is, when M < n), the
root of the tree is the internal node 2n - 1; otherwise, we have M = n and the
root of the tree is node n, the O-node.

There is a close relationship between the explicit and implicit numberings, as
specified in the second operation listed above: For two internal nodes p and q,
we have p < q in the explicit numbering if and only if p < q in the implicit
numbering; the same holds for two leaf nodes p and q.

The tree data structure is called a “floating tree” because the parent and child
pointers for the nodes are not maintained explicitly. Instead, each block has a
parent pointer and a rtChild pointer that points to the parent and right child of
the leader of the block. This allows a node to slide over an entire block without
having to update more than a constant number of pointers. Because of the
contiguous storage of leaves and of internal nodes, the locations of the parents
and children of the other nodes in the block can be computed in constant time
via an offset calculation from the block’s parent and rtChild pointer.

The correspondence between leaf nodes and the letters they represent is given
by the following arrays alpha and rep:

alpha[q] =j, 15 j 5 n,
if and only if aj is the letter represented by node q, 1 I q 5 n.

rep[j] = q, 1 5 q 5 n,
if and only if node q corresponds to letter aj, 1 I j 5 n.

The main entity in the floating tree representation is the block, as defined earlier.
Blocks are numbered in the range 1, . . . , 2n - 1 in no particular order. The
mapping between nodes and blocks is given by

bZock[q] = block number of node q for max{l, Ml I q 5 n
or n + max(1, M) 5 q 5 2n - 1.

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

Algorithm 673: Dynamic Huffman Coding l 161

The following eight arrays of integers are each indexed by a block number b in
the range 1 5 b 5 2n - 1.

weight[b] = weight of each node in block b.
parent[b] = the parent node of the leader of block b, if it exists;

and 0 otherwise.
parity[b] = 0 if the leader of block b is a left child or the root of the

Huffman tree;
and 1 otherwise.

rtChild[b] = 4 if b is a block of internal nodes and node 9 is the right
child of the leader of block b.

first[b] = 4 if node 4 is the leader of block b.
Zust[b] = 0 if node 4 is the smallest numbered node in block b.

preuBZock[b] = previous block on the circularly linked list of blocks.
nextBlock[b] = next block on the circularly linked list of blocks.

Each slot in the array weight must be capable of storing any integer in the range
[0, t 1. The unused blocks are linked together using nextBlock in a list headed by

availBlock = first block in the available-block list if the list is nonempty;
and 0 otherwise.

The final component of the data structure is the following array indexed by
lSi5n:

stuck[i] = ith-to-last bit of the encoding of the current letter being processed.

Except for the elements of the array weight, each integer variable can take on
at most n or 2n - 1 values, which requires either Uog,nl or Ilog,nl + 1 bits of
storage. The total amount of storage (in bits) needed for the data structure is

2flog,nl + rlog,log,nl + 2nrlog,nl
+ (2n - i)(ri0g,ti + 7r10gnlnl + 7) + rlog,nl + n
= 16nrlogznl + 15n + 2nIlog,tl,

which is only about 4nUog,nl more bits of storage than used by Algorithm FGK.
The storage requirement can be reduced by roughly nrlog,nl bits if separate
available-block lists are kept for internal nodes and leaf nodes since leaf blocks
do not need a rtChild value. If storage is dynamically allocated, as opposed to
preallocated via arrays, it is typically much less.

3. PASCAL CODE

The basic implementation of Algorithm A is along the lines of the implementation
of Algorithm FGK in [2]. The primary difference between the two is that
Algorithm A uses the implicit node numbering and the floating tree data structure
in order to maintain the invariant defined in Section 1.

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

162 - Jeffrey Scott Vitter

The basic loop for encoding and transmitting a message is

Initialize;
while there are more letters to encode do begin

Let aj be the next letter to encode;
EncodeAndTransmit (j);
Update(j)
end;

The corresponding loop for receiving and decoding a message is

Initialize;
while there is more to decode do begin

j : = ReceiveAndDecode;
OUtpUt(
Update (j)
end;

The Initialize procedure forms an initial Huffman tree consisting of a single
leaf O-node. The global variable 2 is always equal to 2n - 1.

procedure Initialize;
var i : integer;
begin
M := 0; E := 0; R := -1; Z := 2 X n - 1;
fori:=ltondobegin

M:=M+l;R:=R+l;
if2xR=MthenbeginE:=E+l;R:=Oend;
alpha[i] := i; rep[i] := i
end;

(Initialize node n as the O-node)
block[n] := 1; prevBlock[l] := 1; nextBlock[l] := 1; weight[l] := 0;
first[l] := n; last[l] := n;parity[l] := O;parent[l] := 0;
(Initialize available block list)
availBlock : = 2;
for i := availBlock to Z - 1 do

nextBlock[i] := i + 1;
nextBlock[Z] : = 0
end;

The EncodeAndTransn$t procedure determines the encoding of letter aj on the
basis of the path from the root of the Huffman tree to aj’s leaf, using the
convention that “0” means “go to the left child” and “1” means “go to the right
child.” If Uj has not appeared previously in the message, extra bits are sent to
specify which one of the M zero-weight letters has been encountered. These extra
bits are computed by the following minimum prefix code: If 1 I j I 2R, then aj
is specified by the (E + I)-bit binary representation of j - 1; otherwise, aj is
specified by the E-bit binary representation of j - R - 1. The system procedure
Transmit is called for each bit in the encoding to send it to the receiver.

procedure EncodeAndTransmit(j: integer);
var i, ii, q, t, root: integer;
begin
q := rep[j]; i := 0;
if q 5 M then begin (Encode letter of zero weight)

q := q - 1;
ifq<2XRthent:=E+lehebeginq:=q-R;t:=Eend;

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

Algorithm 673: Dynamic Huffman Coding l 163

for ii := 1 to t do begin
i := i + 1; stack[i] := q mod 2;
qz; q div 2

q:=M;
end;

if M = n then root := n else root := 2;
while q # root do begin {Traverse up the tree)

i := i + 1; stack[i] := (first[block[q]] - q + parity[block[q]]) mod 2;
q :=parent[block[q]] - (first[block[q]] - q + 1 -parity[block[q]]) div 2
end;

for ii := i downto 1 do Z’runsnit(stuck[ii])
end;

The ReceiveAndDecode function repeatedly calls a system function Receive to
read one more bit of input until the inputed sequence of O’s and l’s has specified
a path to a leaf node in the Huffman tree. Extra bits are read when k < n - 1
and a O-node is reached in order to determine which zero-weight letter is being
transmitted.

function ReceiveAndDecode: integer;
var i, q : integer;
begin
ifM=nthenq:=nelseq:=Z; (Setqtotherootnode)
while q > n do (Traverse down the tree)

q : = FindChild (q, Receive);
if q = M then begin (Decode O-node)

q:=o;
for i := 1 to E do q := 2 X q + Receive;
ifq<Rthenq:=2Xq+Receiveelseq:=q+R;
q:=q+l
end;

&;de := ulphu[q]
,

The function FindChild returns the node number of either the left or right
child of node j, depending on whether the parity parameter is set to 0 or 1.

function FindChild (j, purity: integer) : integer;
var delta, right, gap: integer;
begin
delta : = 2 x (first [block[j]] - j) + 1 - purity;
right := rtChild [block1 j]]; gap := right - lust[block[right]];
if delta 5 gap then FindChild := right - delta
else begin

delta := delta - gap - 1;
right := first[prevBlock[block[right]]]; gap := right - lust[block[right]];
if delta 5 gap then FindChild := right - delta
else FindChild : = first [prevBlock[block[right]]] - delta + gap + 1
end

end;

The last (inner) else-clause is never executed when the Huffman tree is well
formed, such as when FindChild is called by Decode, but it is needed when
FindChild is called by Update during the modification of the tree.

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

164 l Jeffrey Scott Vitter

The procedure InterchangeLeaves interchanges the contents of two leaf nodes
el and e2 in the Huffman tree.

procedure InterchangeLeaves(e1, e2: integer);
var temp : integer;
begin
rep[alpha[el]] := e2; rep[alpha[e2]] := el;
temp := alpha[el]; alpha[el] := alpha[e2]; alpha[e2] := temp
end;

The procedure Update is the main component of the algorithm. It is called by
both EncodeAndTransmit and ReceiveAndDecode in order to modify the dynamic
Huffman tree to account for the letter just processed.

procedure Update (k : integer);
var q, leafToIncrement, bq, b, oldparent, oldParity, nbq, par, bpar : integer;

slide: boolean;
begin
{Set q to the node whose weight should increase)
FindNode;
while q > 0 do

(At this point, q is the first node in its block. Increment q’s weight by 1 and slide q
if necessary over the next block to maintain the invariant. Then set q to the node
one level higher that needs incrementing next]

SlideAndIncrement ;
(Finish up some special cases involving the O-node]
if 1eafToIncrement # 0 then

begin q : = 1eafToIncrement ; SlideAndIncrement end
end;

The procedure Update calIs two internal procedures: FindNode and Slide-
AndIncrement. Both procedures have no local variables and do not take param-
eters. The FindNode procedure sets q to point to the leaf to process. If that leaf
is the O-node, which corresponds to the transmission of a letter that has not been
transmitted earlier in the message, the O-node is split to form an extra leaf if
there is still an untransmitted letter left in the alphabet. Otherwise, q is inter-
changed with the leader of its block.

procedure FindNode;
begin
q := rep[k]; 1eafToIncrement := 0;
if q 5 M then begin {A zero weight becomes positive)

InterchangeLeaves(q, M);
ifR=OthenbeginR:=Mdiv.Z;ifR>OthenE:=E-lend;
M:= M - 1; R := R - 1; q := M + 1; bq := block[q];
if M > 0 then begin

(Split the O-node into an internal node with two children. The new O-node is
node M; the old O-node is node M + 1; the new parent of nodes M and M + 1 is
node M+ n)

block[M] := bq; &.st[bq] := M; oldParent :=parent[bq];
parent[bq] := M + n; parity[bq] := 1;
(Create a new internal block of zero weight for node M + n)
b : = availBlock; availBlock : = nextBlock[availBlock];
prevBlock[b] := bq; nextBlock[b] := nextBlock[bq];
prevBlock[nextBlock[bq]] := b; nextBlock[bq] := b;
parent[b] := oldParent; parity[b] := 0; rtChild [b] := q;
block[M + n] := b; weight[b] := 0;

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

Algorithm 673: Dynamic Huffman Coding - 165

first[b] := M + n; la.st[b] := M + n;
1eafToIncrement := q; q : = M + n
end

end
else begin (Interchange q with the first node in q’s block)

InterchangeLeaues(q, first[block[q]]);
q := first[block[q]];
if(q=M+l)and(M>O)then

begin 1eafToIncrement := q; q := parent[block[q]] end
end

end;

The SlideAndIncrement procedure increments the weight of node q by 1 and
adjusts the tree pointers to reflect the new implicit numbering. Finally, q is set
to point to the node one level higher in the tree that needs incrementing next.

procedure SlideAndIncrement ;
begin (q is currently the first node in its block)
bq := block[q]; nbq := nextBlock[bq];
par : = parent [bq]; oldParent : = par; oldParity : = parity [bq];
if ((q I n) and (first[nbq] > n) and (weight[nbq] = weight[bq]))

or ((q > n) and (first[nbq] 5 n) and (weight[nbq] = weight[bq] + 1)) then
begin (Slide q over the next block)
slide : = true;
oldParent := parent[nbq]; oldParity := parity[nbq];
(Adjust child pointers for next higher level in tree)
if par > 0 then begin

bpar : = block[par];
if rtChild [bpar] = q then rtChild [bpar] := last [nbq]
else if rtChild [bpar] = first[nbq] then rtChild [bpar] := q
else rtChild [bpar] : = rtChild [bpar] + 1;
if par # Z then

if block[par + l] # bpar then
if rtChild[block[par + l]] = first[nbq] then

rtChild[block[par + l]] := q
else if block[rtChild[block[par + l]]] = nbq then

rtChild[block[par + l]] : = rtChild [block[par + l]] + 1
end;

(Adjust parent pointers for block nbq)
parent[nbq] := parent[nbq] - 1 + parity[nbq]; parity[nbq] := 1 - parity[nbq];
nbq := nextBlock[nbq];
end;

else slide := false;
if (((q 5 n) and (first[nbq] I n)) or ((q > n) and (first[nbq] > n)))

and (weight[nbq] = weight[bq] + 1) then
begin (Merge q into the block of weight one higher)
block[q] := nbq; last[nbq] := q;
if last [bq] = q then begin (q’s old block disappears)

nextBlock[preuBlock[bq]] := nextBlock[bq];
preuBlock[nextBlock[bq]] := preuBlock[bq];
nextBlock[bq] : = auailBlock; auailBlock : = bq
end

else begin
if q > n then rtChild [bq] := FindChild (q - 1, 1);
if parity[bq] = 0 then parent[bq] := parent[bq] - 1;
parity[bq] := 1 - parity[bq];
first[bq] := q - 1
end
end

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

166 l Jeffrey Scott Vitter

else if last [bq] = q then begin
if slide then begin (q’s block is slid forward in the block list)

prevBlock[nextBlock[bq]] := prevBlock[bq];
nextBlock[prevBlock[bq]] := nextBlock[bq];
prevBlock[bq] := prevBlock[nbq]; nextBlock[bq] := nbq;
prevBlock[nbq] := bq; nextBlock[prevBlock[bq]J := bq;
parent[bq] := oldParent; parity[bq] := oldParity
end;

weight[bq] := weight[bq] + 1
end

else begin]A new block is created for q]
b := availBlock; availBlock := nextBlock[availBlock];
block[q] := 6; first[b] := q; last[b] := q;
if q > n then begin

rtChild[b] := rtChild [bq];
rtChild [bq] := FindChild (q - 1, 1);
if rtChild [b] = q - 1 then parent [bq] := q
else if parity[bq] = 0 then parent[bq] := parent[bq] - 1
end

else if parity[bq] = 0 then parent[bq] := parent[bq] - 1;
first[bq] := q - 1; parity[bq] := 1 - parity[bq];
{Insert q’s block in its proper place in the block list)
prevBlock[b] := prevBlock[nbq]; nextBlock[b] := nbq;
prevBlock[nbq] := b; nextBlock[prevBlockrz[b]] := b;
weight[b] := weight[bq] + 1;
parent [b] : = oldParent ; parity [b] : = oldParity
end;

{Move q one level higher in the tree)
if q c: n then q := oldParent else q := par
end;

The processing in Algorithm A is dominated by the calls to SlideAndIncrement
made by Update. Roughly speaking, SlideAndIncrement is called once for each
level in the tree above the leaf node for the current letter being processed.
Each execution of SlideAndIncrement involves sliding the current node
and then moving up one level in the tree. The floating tree data structure
clearly supports these operations in constant time. The net result is that
Algorithm h does encoding and decoding in real time; that is, the processing
time for each letter in the message is proportional to the length of the letter’s
encoding.

The running time of our implementation is comparable to that of Algorithm
FGK. In more than 95 percent of the time that SlideAndIncrement is executed
in practice, the node q is neither slid over the next block (that is, we have
slide = false) nor merged into the next block, so the observed execution time is
fast. Faster running times can be obtained by replacing the procedures with
macros and by breaking up SlideAndIncrement into two separate macros, one for
leaves and one for internal nodes.

One nice feature of a floating tree, due to the use of implicit numbering, is that
the parent of nodes 2j - 1 and 2j is less than the parent of nodes 2j + 1 and
2j + 2 in both the implicit and explicit numberings. Such an invariant is not
maintained by the data structure in [2], for example.
ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

Algorithm 673: Dynamic Huffman Coding l 167

REFERENCES

1. HUFFMAN, D. A. A method for the construction of minimum redundancy codes. In the Proceed-
ings of the Institute of Radio Engineers 40 (1951), pp. 1098-1101.

2. KNUTH, D. E. Dynamic Huffman coding. J. Algorithms 6 (1985), 163-180.
3. VITTER, J. S. Design and analysis of dynamic Huffman codes. J. ACM 34, 4 (Oct. 1987),

825-845.

Received March 1987; revised May 1988; accepted October 1988

ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989.

