
Online Data Structures in External Memory

Je�rey Scott Vitter1;2?

1
Duke University, Center for Geometric Computing,

Department of Computer Science, Durham, NC 27708�0129, USA

http://www.cs.duke.edu/�jsv/

jsv@cs.duke.edu
2
I.N.R.I.A. Sophia Antipolis, 2004, route des Lucioles, B. P. 93,

06902 Sophia Antipolis Cedex, France

Abstract. The data sets for many of today's computer applications are

too large to �t within the computer's internal memory and must instead

be stored on external storage devices such as disks. A major performance

bottleneck can be the input/output communication (or I/O) between

the external and internal memories. In this paper we discuss a variety of

online data structures for external memory, some very old and some very

new, such as hashing (for dictionaries), B-trees (for dictionaries and 1-D

range search), bu�er trees (for batched dynamic problems), interval trees

with weight-balanced B-trees (for stabbing queries), priority search trees

(for 3-sided 2-D range search), and R-trees and other spatial structures.

We also discuss several open problems along the way.

1 Introduction

The Input/Output communication (or simply I/O) between the fast internal memory

and the slow external memory (such as disk) can be a bottleneck in applications that

process massive amounts of data [33]. One promising approach is to design algorithms

and data structures that bypass the virtual memory system and explicitly manage their

own I/O. We refer to such algorithms and data structures as external memory (or EM )

algorithms and data structures. (The terms out-of-core algorithms and I/O algorithms
are also sometimes used.) We concentrate in this paper on the design and analysis of

online EM memory data structures.

The three primary measures of performance of an algorithm or data structure are

the number of I/O operations performed, the amount of disk space used, and the internal
(parallel) computation time. For reasons of brevity we shall focus in this paper on only

the �rst two measures. Most of the algorithms we mention run in optimal CPU time,

at least for the single-processor case.

1.1 Disk Model

We can capture the main properties of magnetic disks and multiple disk systems by the

commonly-used parallel disk model (PDM) introduced by Vitter and Shriver [69]. Data

is transferred in large units of blocks of size B so as to amortize the latency of moving

the read-write head and waiting for the disk to spin into position. Storage systems such

?
Supported in part by the Army Research O�ce through MURI grant DAAH04�96�1�0013 and
by the National Science Foundation through research grants CCR�9522047 and EIA�9870734.



as RAID use multiple disks to get more bandwidth [22, 39]. The principal parameters

of PDM are the following:

N = problem input data size (items);

Z = problem output data size (items);

M = size of internal memory (items);

B = size of disk block (items);

D = # independent disks;

whereM < N and 1 � DB �M . The

�rst four parameters are all de�ned

in units of items. For notational con-

venience, we de�ne the corresponding

parameters in units of blocks:

n =
N

B
; z =

Z

B
; m =

M

B
:

memory
internal

size M
size B

D disks

disk disk

CPUs

disk

Block I/O

For simplicity, we restrict our attention in this paper to the single-disk case D = 1,

since online data structures that use a single disk can generally be transformed auto-

matically by the technique of disk striping to make optimal use of multiple disks [68].

Programs that perform well in terms of PDM will generally perform well when

implemented on real systems [68]. More complex and precise models have been formu-

lated [59, 62, 10]. Hierarchical (multilevel) memory models are discussed in [68] and its

references.

1.2 Design Goals for Online Data Structures

Online data structures support the operation of query on a collection of data items. The

nature of the query depends upon the application at hand. For example, in dictionary

data structures, a query consists of �nding the item (if any) that has a speci�ed key

value. In orthogonal range search, the data items are points in d-dimensional space IRd
,

for some d, and a query involves �nding all the points in a speci�ed query d-dimensional

rectangle. Other types of queries include point location, nearest neighbor, �nding in-

tersections, etc.

When the data items do not change and the data structure can be preprocessed

before any queries are done, the data structure is known as static. When the data

structure supports insertions and deletions of items, intermixed with the queries, the

data structure is called dynamic. The primary theoretical challenges in the design and

analysis of online EM data structures are three-fold:

1. to answer queries in O(logB N + z) I/Os,

2. to use only a linear amount of disk storage space, and

3. to do updates (in the case of dynamic data structures) in O(logB N) I/Os.

These criteria correspond to the natural lower bounds for online search in the com-

parison model. The three criteria are problem-dependent, and for some problems they

cannot be met. For dictionary queries, we can do better using hashing, achieving O(1)

I/Os per query on the average.

Criterion 1 combines together the I/O cost O(logB N) of the search component

of queries with the I/O cost O(dze) for reporting the output, because when one cost

is much larger than the other, the query algorithm has the extra freedom to follow a



�ltering paradigm [19], in which both the search component and the output reporting

are allowed to use the larger number of I/Os. For example, when the output size Z is

large, the search component can a�ord to be somewhat sloppy as long as it doesn't use

more than O(z) I/Os; and when Z is small, the Z output items do not have to reside

compactly in only O(dze) blocks. Filtering is an important design paradigm in online

EM data structures.

For many of the online problems we consider, there is a data structure (such as

binary search trees) for the internal memory version of the problem that can answer

queries in O(logN +Z) CPU time, but if we use the same data structure naively in an

external memory setting (using virtual memory to handle page management), a query

may require 
(logN+Z) I/Os, which is excessive.1 The goal is to build locality directly

into the data structure and explicitly manage I/O so that the logN and Z terms in

the I/O bounds of the naive approach are replaced by logB N and z, respectively. The

relative speedup in I/O performance, namely, (logN + Z)=(logB N + z), is at least

(logN)= logB N = logB, which is signi�cant in practice, and it can be as much as

Z=z = B for large Z.

1.3 Overview of Paper

In Section 2 we discuss EM hashing methods for dictionary applications. The most

popular EM data structure is the B-tree structure, which provides excellent perfor-

mance for dictionary operations and one-dimensional range searching. We give several

variants and applications of B-trees in Section 3. We look at several aspects of multi-

dimensional range search in Section 4. The contents of this paper are modi�cations of

a broader survey by the author [68] with several additions. The reader is also referred

to other surveys of online data structures for external memory [4, 27, 32, 56].

2 Hashing for Online Dictionary Search

Dictionary operations consist of insert, delete, and lookup. Given a value x, the lookup

operation returns the item(s), if any, in the structure with key value x. The two main

types of EM dictionaries are tree-based approaches (which we defer to Section 3) and

hashing. The common element of all EM hashing algorithms is a pre-de�ned hash

function hash : fall possible keysg ! f0; 1; 2; : : : ; K � 1g that assigns the N items to

K address locations in a uniform manner.

The goals in EM hashing are to achieve an average of O(1) I/Os per insert and

delete, O(dze) I/Os per lookup, and linear disk space. Most traditional hashing methods

use a statically allocated table and thus can handle only a �xed range of N . The

challenge is to develop dynamic EM structures that adapt smoothly to widely varying

values of N .

EM hashing methods fall into one of two categories: directory methods and di-

rectoryless methods. Fagin et al. [29] proposed the following directory scheme, called

extendible hashing : Let us assume that the size K of the range of the hash function

hash is su�ciently large. The directory, for d � 0, consists of a table of 2d pointers.

Each item is assigned to the table location corresponding to the d least signi�cant bits

of its hash address. The value of d is set to the smallest value for which each table

location has at most B items assigned to it. Each table location contains a pointer to

a block where its items are stored. Thus, a lookup takes two I/Os: one to access the

1
We use the notation logN to denote the binary (base 2) logarithm log2N . For bases other than 2,
the base will be speci�ed explicitly, as in the base-B logarithm log

B
N .



directory and one to access the block storing the item. If the directory �ts in internal

memory, only one I/O is needed.

Many table locations may few items assigned to them, and for purposes of mini-

mizing storage utilization, they can share the same disk block for storing their items.

A table location shares a disk block with all the locations having the same k least

signi�cant bits, where k is chosen to be as small as possible so that the pooled items

�t into a single disk block. Di�erent table locations may have di�erent values of k.

When a new item is inserted, and its disk block over�ows, the items in the block

are redistributed so that the invariants on d and k once again hold. Each time d

is incremented by 1, the directory doubles in size, which is how extendible hashing

adapts to a growing N . The pointers in the new directory are initialized to point to

the appropriate disk blocks. The important point is that the disk blocks themselves do

not need to be disturbed during doubling, except for the one block that splits.

Extendible hashing can handle deletions in a symmetric way by merging blocks.

The combined size of the blocks being merged must be su�ciently less than B to

prevent immediate splitting after a subsequent insertion. The directory shrinks by half

(and d is decremented by 1) when all the local depths are less than the current value

of d.

The expected number of disk blocks required to store the data items is asymptot-

ically n= ln 2 � n=0:69; that is, the blocks tend to be about 69% full [54]. At least


(n=B) blocks are needed to store the directory. Flajolet [30] showed on the average

that the directory uses �(N1=Bn=B) = �(N1+1=B=B2) blocks, which can be super-

linear in N asymptotically! However, in practice the N1=B
term is a small constant,

typically less than 2.

A disadvantage of directory schemes is that two I/Os rather than one I/O are

required when the directory is stored in external memory. Litwin [50] developed a

directoryless method called linear hashing that expands the number of data blocks in

a controlled regular fashion. In contrast to directory schemes, the blocks in directoryless

methods are chosen for splitting in a prede�ned order. Thus the block that splits is

usually not the block that has over�owed, so some of the blocks may require auxiliary

over�ow lists to store items assigned to them. On the other hand, directoryless methods

have the advantage that there is no need for access to a directory structure, and thus

searches often require only one I/O. A more detailed survey of methods for dynamic

hashing is given in [27].

The above hashing schemes and their many variants work very well for dictionary

applications in the average case, but have poor worst-case performance. They also do

not support sequential search, such as retrieving all the items with key value in a

speci�ed range. Some clever work has been done on order-preserving hash functions,

in which items with sequential keys are stored in the same block or in adjacent blocks,

but the search performance is less robust and tends to deteriorate because of unwanted

collisions. (See [32] for a survey.). A much more popular approach is to use multiway

trees, which we explore next.

3 Spatial Data Structures

In this section we consider online EM data structures for storing and querying spatial

data. A fundamental database primitive in spatial databases and geographic informa-

tion systems (GIS) is orthogonal range search, which includes dictionary lookup as a

special case. A range query, for a given d-dimensional rectangle, returns all the points

in the interior of the rectangle. We use range searching in this section as the canonical



query on spatial data. Other types of spatial queries include point location queries, ray

shooting queries, nearest neighbor queries, and intersection queries, but for brevity we

restrict our attention primarily to range searching.

Spatial data structures tend to be of two types: space-driven or data-driven. Quad

trees and grid �les are space-driven since they are based upon a partitioning of the

embedding space, somewhat akin to using order-preserving hash functions, whereas

methods like R-trees and kd-trees are organized by partitioning the data items them-

selves. We shall discuss primarily the latter type in this section.

3.1 B-trees and Variants

Tree-based data structures arise naturally in the online setting, in which the data can

be updated and queries must be processed immediately. Binary trees have a host of

applications in the RAM model. In order to exploit block transfer, trees in external

memory use a block for each node, which can store �(B) pointers and data values. The

well-known B-tree due to Bayer and McCreight [12, 24, 46], which is probably the most

widely used EM nontrivial data structure in practice, is a balanced multiway tree with

height roughly logB N and with node degree �(B). (The root node is allowed to have

smaller degree.) B-trees support dynamic dictionary operations and one-dimensional

range search optimally in the comparison model, satisfying the three design criteria

of Section 1.2. When a node over�ows during an insertion, it splits into two half-full

nodes, and if the splitting causes the parent node to over�ow, the parent node splits,

and so on. Splittings can thus propagate up to the root, which is how the tree grows

in height.

In the B+-tree variant, pictured in Figure 1, all the items are stored in the leaves,

and the leaves are linked together in symmetric order to facilitate range queries and

sequential access. The internal nodes store only key values and pointers and thus can

have a higher branching factor. In the most popular variant of B
+
-trees, called B*-

trees, splitting can usually be postponed when a node over�ows, by instead �sharing�

the node's data with one of its adjacent siblings. The node needs to be split only if the

sibling is also full; when that happens, the node splits into two, and its data and those

of its full sibling are evenly redistributed, making each of the three nodes about 2=3

full. This local optimization reduces how often new nodes must be created and thus

increases the storage utilization. And since there are fewer nodes in the tree, search I/O

costs are lower. When no sharing is done (as in B
+
-trees), Yao [71] shows that nodes

are roughly ln 2 � 69% full on the average, assuming random insertions. With sharing

(as in B*-trees), the average storage utilization increases to about 2 ln(3=2) � 81% [9,

49]. Storage utilization can be increased further by sharing among several siblings, but

insertions and deletions get more complicated.

Persistent versions of B-trees have been developed by Becker et al. [13] and Varman

and Verma [65]. Lomet and Salzberg [52] explore mechanisms to add concurrency and

recovery to B-trees.

Arge and Vitter [8] give a useful variant of B-trees called weight-balanced B-trees
with the property that the number of data items in any subtree of height h is �(ah),

for some �xed parameter a of order B. (By contrast, the sizes of subtrees at level h in

a regular B-tree can di�er by a multiplicative factor that is exponential in h.) When

a node on level h gets rebalanced, no further rebalancing is needed until its subtree

is updated 
(ah) times. This feature can support applications in which the cost to

rebalance a node is O(w), allowing the rebalancing to be done in an amortized (and

often worst-case) way with O(1) I/Os. Weight-balanced B-trees were originally con-

ceived as part of an optimal dynamic EM interval tree data structure for answering



Level 2

Level 1

Leaves

Fig. 1. B
+
-tree multiway search tree. Each internal and leaf node corresponds to a disk

block. All the items are stored in the leaves. The internal nodes store only key values

and pointers, �(B) of them per node. Although not indicated here, the leaf blocks are

linked together sequentially.

stabbing queries, which we discuss in Section 4.1, but they also have applications to the

internal memory RAM model [8, 36]. For example, by setting a to a constant, we get a

simple, worst-case implementation of interval trees in internal memory. They also serve

as a simpler and worst-case alternative to the data structure in [70] for augmenting

one-dimensional data structures with range restriction capabilities.

Weight-balanced B-trees can also be used to maintain parent pointers e�ciently

in the worst case: When a node splits during over�ow, it costs �(B) I/Os to update

parent pointers. We can reduce the cost via amortization arguments and global re-

building to only �(logB N) I/Os, since nodes do not split too often. However, this

approach will not work if the B-tree needs to support cut and concatenate operations.

Agarwal et al. [1] develop an interesting variant of B-trees with parent pointers, called

level-balanced B-trees, in which the local balancing condition on the degree of nodes

is replaced by a global balancing condition on the number of nodes at each level of

the tree. Level-balanced B-trees support search and order operations in O(logB N + z)

I/Os, and the update operations insert, delete, cut, and concatenate can be done in

O
�
(1 + (b=B)(logm n) logbN

�
I/Os amortized, for any 2 � b � B=2, which is bounded

by O
�
(logB N)

2
�
. Agarwal et al. [1] use level-balanced B-trees in a data structure for

point location in monotone subdivisions, which supports queries and (amortized) up-

dates in O
�
(logB N)2

�
I/Os. They also use it to dynamically maintain planar st-graphs

using O
�
(1 + (b=B)(logm n) logbN

�
I/Os (amortized) per update, so that reachability

queries can be answered in O(logB N) I/Os (worst-case). It is open as to whether

these results can be improved. One question is how to deal with non-monotone sub-

divisions. Another question is whether level-balanced B-trees can be implemented in

O(logB N) I/Os per update, so as to satisfy all three design criteria. Such an improve-

ment would immediately give an optimal dynamic structure for reachability queries in

planar st-graphs.

3.2 Bu�er Trees

Many batched problems in computational geometry can be solved by plane sweep

techniques. For example, to compute orthogonal segment intersections, we can keep

maintain the vertical segments hit by a horizontal sweep line moving from top to

bottom. If we use a B-tree to store the active vertical segments, each insertion and

query will take 
(logB N) I/Os, resulting in a huge I/O cost of 
(N logB N), which

can be more than B times larger than the desired bound of O(n logm n). One solution

suggested in [67] is to use a binary tree in which items are pushed lazily down the tree

in blocks of B items at a time. The binary nature of the tree results in a data structure



of height � log n, yielding a total I/O bound of O(n log n), which is still nonoptimal

by a signi�cant logm factor.

Arge [5] developed the elegant bu�er tree data structure to support batched dynamic
operations such as in the sweep line example, where the queries do not have to be

answered right away or in any particular order. The bu�er tree is a balanced multiway

tree, but with degree �(m), except possibly for the root. Its key distinguishing feature

is that each node has a bu�er that can storeM items (i.e., m blocks of items). Items in

a node are not pushed down to the children until the bu�er �lls. Emptying the bu�er

requires O(m) I/Os, which amortizes the cost of distributing theM items to the �(m)

children. Each item incurs an amortized cost of O(m=M) = O(1=B) I/Os per level.

Queries and updates thus take O
�
(1=B) logm n

�
I/Os amortized. Bu�er trees can be

used as a subroutine in the standard sweep line algorithm in order to get an optimal

EM algorithm for orthogonal segment intersection. Arge showed how to extend bu�er

trees to implement segment trees [15] in external memory in a batched dynamic setting

by reducing the node degrees to �(
p
m ) and by introducing multislabs in each node,

which we explain later in a di�erent context.

Bu�er trees have an ever-expanding list of applications. They provide, for example,

a natural amortized implementation of priority queues for use in applications like dis-

crete event simulation, sweeping, and list ranking. Brodal and Katajainen [17] provide

a worst-case optimal priority queue, in the sense that every sequence of B insert and

delete-min operations requires only O(logm n) I/Os.

3.3 R-trees and Multidimensional Spatial Structures

The R-tree of Guttman [37] and its many variants are an elegant multidimensional

generalization of the B-tree for storing a variety of geometric objects, such as points,

segments, polygons, and polyhedra, using linear storage space. Internal nodes have

degree �(B) (except possibly the root), and leaves store �(B) items. Each node in the

tree has associated with it a bounding box (or bounding polygon) of all the elements in

its subtree. A big di�erence between R-trees and B-trees is that in R-trees the bounding

boxes of sibling nodes are allowed overlap. If an R-tree is being used for point location,

for example, a point may lie within the bounding box of several children of the current

node in the search. In that case the search must proceed to all such children.

Several heuristics for where to insert new items into an R-tree and how to rebalance

it are surveyed in [4, 32, 34]. The methods perform well in many practical cases, espe-

cially in low dimensions, but they have poor worst-case bounds. An interesting open

problem is whether nontrivial bounds can be proven for the �typical-case� behavior

of R-trees for problems such as range searching and point location. Similar questions

apply to the methods discussed in the previous section.

The R*-tree variant of Beckmann et al. [14] seems to give best overall query perfor-

mance. Precomputing an R*-tree by repeated insertions, however, is extremely slow.

A faster alternative is to use the Hilbert R-tree of Kamel and Faloutsos [41, 42]. Each

item is labeled with the position of its center on the Hilbert space-�lling curve, and

a B-tree is built in a bottom-up manner on the totally ordered labels. Bulk loading a

Hilbert R-tree is therefore easy once the center points are presorted, but the quality of

the Hilbert R-tree in terms of query performance is not as good as that of an R*-tree,

especially for higher-dimensional data [16, 43].

Arge et al. [6] and van den Bercken et al. [64] have independently devised fast bulk

loading methods for R*-trees that are based upon bu�er trees. Experiments indicate

that the former method is especially e�cient and can even support dynamic batched

updates and queries.



21

1

2

xx

y

y1

1 2xx

yy

x2

1

q

q
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

(b) (d)(a) (c)

Fig. 2. Di�erent types of 2-D orthogonal range queries: (a) Diagonal corner 2-sided

query, (b) 2-sided query, (c) 3-sided query, (d) general 4-sided query.

Related linear-space multidimensional structures, which correspond to multiway

versions of well-known internal memory structures like quad trees and kd-trees, include

grid �les [40, 48, 55], kd-B-trees [58], buddy trees [61], and hB-trees [28, 51]. We refer

the reader to [4, 32, 56] for a broad survey of these and other interesting methods.

4 Online Multidimensional Range Searching

Multidimensional range search is a fundamental primitive in several online geomet-

ric applications, and it provides indexing support for new constraint data models and

object-oriented data models. (See [44] for background.) For many types of range search-

ing problems, it is very di�cult to develop theoretically optimal algorithms that sat-

isfy the three design criteria of Section 1.2. We have seen some linear-space online

data structures in Section 3.3, but their query performance is not optimal. Many open

problems remain.

We shall see in Section 4.3 for general 2-D orthogonal queries that it is not possible

to satisfy criteria 1 and 2 simultaneously, for a fairly general computational model:

At least 

�
n(log n)= log(logB N + 1)

�
disk blocks of space must be used to achieve

a query bound of O
�
(logB N)

c
+ z

�
I/Os per query, for any constant c. A natural

question is whether criterion 1 can be met if the disk space allowance is increased to

O
�
n(log n)= log(logB N + 1)

�
blocks. And since the lower bound applies only to general

rectangular queries, it is natural to ask whether there are data structures that meet

criteria 1�3 for interesting special cases of 2-D range searching, such as those pictured

in Figure 2. Fortunately, the answers to both questions are �yes!�, as we shall explore

in the next section.

4.1 Data Structures for 2-D Orthogonal Range Searching

An obvious paradigm for developing an e�cient EM data structure is to �externalize�

an existing data structure that works well when the problem �ts into internal memory.

If the internal memory data structure uses a binary tree, then a multiway tree has

to be used instead. However, it can be di�cult when searching a B-tree to report the

outputs in an output-sensitive manner. For example, for certain searching applications,

each of the �(B) subtrees of a given node in a B-tree may contribute one item to the

query output, which will require each subtree to be explored (costing several I/Os)

just to report a single output item. Fortunately, the data structure can sometimes be

augmented with a set of �ltering substructures, each of which is a data structure for a

smaller version of the same problem, in order to achieve output-sensitive reporting. We

refer to this approach as the bootstrapping paradigm. Each substructure typically needs

to store only O(B2
) items and to answer queries in O(logB B

2
+ Z0=B) = O(dZ0=Be)

I/Os, where Z0

is the number of items reported. The substructure is allowed to be



static if it can be constructed in O(B) I/Os, since we can keep updates in a separate

bu�er and do a global rebuilding in O(B) I/Os when there are �(B) updates. Such a

rebuilding costs O(1) I/Os per update in the amortized sense, but the amortization for

the substructures can often be removed and made worst-case by use of weight-balanced

B-trees as the underlying B-tree structure.

Arge and Vitter [8] �rst uncovered the bootstrapping paradigm while designing

an optimal dynamic EM data structure for diagonal corner 2-sided 2-D queries (see

Figure 2(a)) that meets all three design criteria of Section 1.2. Diagonal corner 2-sided

queries are equivalent to stabbing queries: Given a set of one-dimensional intervals,

report all the intervals that contain the query value x. (Such intervals are said to be

�stabbed� by x.) The global data structure is a multiway version of the well-known

interval tree data structure [25, 26], which supports stabbing queries in O(logN + Z)

CPU time and updates in O(logN) CPU time and uses O(N) space. It is externalized

by using a weight-balanced B-tree as the underlying base tree, where the nodes have

degree �(
p
B ) so that multislabs can be introduced. Each node in the base tree cor-

responds in a natural way to a one-dimensional range of x-values; its �(
p
B ) children

correspond to subranges called slabs, and the �(
p
B2

) = �(B) contiguous sets of slabs

are called multislabs.

Each inputed interval is stored in the lowest node v in the base tree whose range

completely contains the interval. The interval is decomposed by v's slabs into at most

three parts: the middle part that completely spans one or more slabs of v, the left end

that partially protrudes into a slab wleft, and the right end that partially protrudes

into a slab wright. The three parts are stored in substructures of v: The middle part is

stored in a list associated with the multislab it spans, the left part is stored in a list

for wleft ordered by left endpoint, and the right part is stored in a list for wright ordered

by right endpoint.

Given a query value x, the intervals stabbed by x reside in the substructures of the

nodes of the base tree along the search path for x. For each such node v, we consider

each of v's multislabs that contains x and report all the intervals in its list. We also

walk sequentially through the right-ordered list and left-ordered list for the slab of v

that contains x, reporting intervals in an output-sensitive way.

The big problem with this approach is that we have to look at the list for each

of v's multislabs that contains x, regardless of how many intervals are in the list. For

example, there may be �(B) such multislab lists, but each list may contain only a few

stabbed intervals (or worse yet, none at all!). The resulting query performance will be

highly nonoptimal. The solution, according to the bootstrapping paradigm, is to use a

substructure in each node consisting of an optimal static data structure for a smaller

version of the same problem; a good choice is the corner data structure developed by

Kanellakis et al. [44]. The corner substructure is used to store all the intervals from the

�sparse� multislab lists, namely, those that contain fewer than B intervals, and thus the

substructure contains only O(B2
) intervals. When visiting node v, we access only v's

non-sparse multislabs lists, each of which contributes Z0 � B intervals to the output,

at an output-sensitive cost of O(Z0=B) I/Os, for some Z0

. The remaining Z00

stabbed

intervals stored in v can be found by querying v's corner substructure of size O(B2
),

at a cost of O(dZ00=Be) I/Os, which is output-sensitive. Since there are O(logB N)

nodes along the search path, the total collection of Z stabbed intervals are reported in

a O(logB N + z) I/Os, which is optimal. The use of a weight-balanced B-tree as the

underlying base tree permits the rebuilding of the static substructures in worst-case

optimal I/O bounds.



(a) (b)

432154321 wwwwww w 5w w w

Fig. 3. Internal node v of the EM priority search tree, with slabs (children) w1, w2,

: : : , w5. The Y-sets of each slab, which are stored collectively in v's substructure, are

indicated by the bold points. (a) The 3-sided query is completely contained in the

x-range of w2. The relevant (bold) points are reported from v's substructure, and the

query is recursively answered in w2. (b) The 3-sided query spans several slabs. The

relevant (bold) points are reported from v's substructure, and the query is recursively

answered in w2, w3, and w5. The query is not extended to w4 in this case because not

all of its Y-set Y (w4) (stored in v's substructure) satis�es the query, and as a result

none of the points stored in w4's subtree can satisfy the query.

Stabbing queries are important because, when combined with one-dimensional

range queries, they provide a solution to dynamic interval management, in which one-

dimensional intervals can be inserted and deleted, and intersection queries can be

performed. These operations support indexing of one-dimensional constraints in con-

straint databases. Other applications of stabbing queries arise in graphics and GIS.

For example, Chiang and Silva [23] apply the EM interval tree structure to extract

at query time the boundary components of the isosurface (or contour) of a surface. A

data structure for a related problem, which in addition has optimal output complexity,

appears in [3]. The above bootstrapping approach also yields dynamic EM segment

trees with optimal query and update bound and O(n logB N)-block space usage.

Arge et al. [7] provide another example of the bootstrapping paradigm by devel-

oping an optimal dynamic EM data structure for 3-sided 2-D range searching (see

Figure 2(c)) that meets all three design criteria. The global structure is an externaliza-

tion of the optimal structure for internal memory�the priority search tree [53]�using

a weight-balanced B-tree as the underlying base tree. Each node in the base tree cor-

responds to a one-dimensional range of x-values, and its �(B) children correspond to

subranges consisting of vertical slabs. Each node v contains a small substructure that

supports 3-sided queries. Its substructure stores the �Y-set� Y (w) for each of the �(B)

slabs (children) w of v. The Y-set Y (w) consists of the highest �(B) points in w's slab

that are not already stored in an ancestor of v. Thus, there are a total of �(B2) points

stored in v's substructure.

A 3-sided query of the form [x1; x2]� [y1;1) is answered by visiting a set of nodes

in the base tree, starting with the root, and querying the substructure of each node.

The following rule is used to determine which children of a visited node v should be

visited: We visit v's child w if either

1. w is along the leftmost search path for x1 or the rightmost search path for x2 in

the base tree, or

2. the entire Y-set Y (w) is reported when v is visited.

(See Figure 3.) Rule 2 provides an e�ective �ltering mechanism to guarantee output-

sensitive reporting when Rule 1 is not satis�ed: The I/O cost for initially accessing a



child node w can be charged to the �(B) points in Y (w) reported from v's substructure;

conversely, if not all of Y (w) is reported, then the points stored in w's subtree will be

too low to satisfy the query, and there is no need to visit w. (See Figure 3(b).)

Arge et al. [7] also provide an elegant and optimal static data structure for 3-

sided range search, which can be used in the EM priority search tree described above

to implement the substructures containing O(B2) points. The static structure is a

persistent version of a data structure for one-dimensional range search. When used for

O(B2
) points, it occupies O(B) blocks, can be built in O(B) I/Os, and supports 3-sided

queries in O(dZ0=Be) I/Os per query, where Z0

is the number of points reported. The

static structure is so simple that it may be useful in practice on its own.

The dynamic data structure for 3-sided range searching can be generalized using

the �ltering technique of Chazelle [19] to handle general 4-sided queries with optimal

query bound O(logB N) and optimal disk space usage O
�
n(log n)= log(logB N + 1)

�
[7].

The update bound becomes O
�
(logB N)(log n)=log(logB N + 1)

�
. The outer level of

the structure is a (logB N + 1)-way one-dimensional search tree; each 4-sided query is

reduced to two 3-sided queries, a stabbing query, and logB N list traversals.

Earlier work on 2-sided and 3-sided queries was done by Ramaswamy and Subra-

manian [57] using the notion of path caching ; their structure met criterion 1 but had

higher storage overheads and amortized and/or nonoptimal update bounds. Subrama-

nian and Ramaswamy [63] subsequently developed the p-range tree data structure for

3-sided queries, with optimal linear disk space and nearly optimal query and amortized

update bounds. They got a static data structure for 4-sided range search with the same

query bound by applying the �ltering technique of Chazelle [19]. The structure can be

modi�ed to perform updates, by use of a weight-balanced B-tree as the underlying base

tree and the dynamization techniques of [7], but the resulting update bound will be

amortized and nonoptimal, as a consequence of the use of their 3-sided data structure.

4.2 Other Range Searching Data Structures

For other types of range searching, such as in higher dimensions and for nonorthogonal

queries, di�erent �ltering techniques are needed. So far, relatively little work has been

done, and many open problems remain.

Vengro� and Vitter [66] develop the �rst theoretically near-optimal EM data struc-

ture for static three-dimensional orthogonal range searching. They create a hierarchical

partitioning in which all the points that dominate a query point are densely contained

in a set of blocks. Compression techniques are needed to minimize disk storage. With

some recent modi�cations by the author, queries can be done in O(logB N + z) I/Os,

which is optimal, and the space usage is O
�
n(log n)k

�
(log(logB N + 1))

k
�
disk blocks

to support (3 + k)-sided 3-D range queries, in which k of the dimensions (0 � k � 3)

have �nite ranges. The space bounds are optimal for 3-sided 3-D queries (i.e., k = 0)

and 4-sided 3-D queries (i.e., k = 1). The result also provides optimal O(logN + Z)-

time query performance in the RAM model using linear space for answering 3-sided

3-D queries, improving upon the result in [21].

Agarwal et al. [2] consider halfspace range searching, in which a query is speci�ed

by a hyperplane and a bit indicating one of its two sides, and the output of the query

consists of all the points on that side of the hyperplane. They give various data struc-

tures for halfspace range searching in two, three, and higher dimensions, including one

that works for simplex (polygon) queries in two dimensions, but with a higher query

I/O cost. They have subsequently improved the storage bounds to get an optimal static

data structure satisfying criteria 1 and 2 for 2-D halfspace range queries.



The number of I/Os needed to build the data structures for 3-D orthogonal range

search and halfspace range search is rather large (more than 
(N)). Still, the struc-

tures shed useful light on the complexity of range searching and may open the way

to improved solutions. An open problem is to design e�cient construction and update

algorithms and to improve upon the constant factors.

Callahan et al. [18] develop dynamic EM data structures for several online problems

such as �nding an approximately nearest neighbor and maintaining the closest pair of

vertices. Numerous other data structures have been developed for range queries and

related problems on spatial data. We refer to [4, 32, 56] for a broad survey.

4.3 Lower Bounds for Orthogonal Range Searching

As mentioned above, Subramanian and Ramaswamy [63] prove that no EM

data structure for 2-D range searching can achieve criterion 1 using less than

O
�
n(log n)= log(logB N + 1)

�
disk blocks, even if we relax 1 to allow O

�
(logB N)

c
+ z

�

I/Os per query, for any constant c. The result holds for an EM version of the pointer

machine model, based upon the approach of Chazelle [20] for internal memory.

Hellerstein et al. [38] consider a generalization of the layout-based lower bound

argument of Kanellakis et al. [44] for studying the tradeo� between disk space us-

age and query performance. They develop a model for indexability, in which an �ef-

�cient� data structure is expected to contain the Z output points to a query com-

pactly within O
�
dZ=Be

�
= O

�
dze

�
blocks. One shortcoming of the model is that it

considers only data layout and ignores the search component of queries, and thus it

rules out the important �ltering paradigm discussed earlier in Section 4. For exam-

ple, it is reasonable for any query algorithm to perform at least logB N I/Os, so if

the output size Z is at most B, an algorithm may still be able to satisfy criterion 1

even if the output is contained within O(logB N) blocks rather than O(z) = O(1)

blocks. Arge et al. [7] modify the model to rederive the same nonlinear space lower

bound O
�
n(log n)= log(logB N + 1)

�
of Subramanian and Ramaswamy [63] for 2-D

range searching by considering only output sizes Z larger than (logB N)
cB, for which

the number of blocks allowed to hold the outputs is Z=B = O
�
(logB N)

c
+ z

�
. This

approach ignores the complexity of how to �nd the relevant blocks, but as mentioned in

Section 4.1 the authors separately provide an optimal 2-D range search data structure

that uses the same amount of disk space and does queries in the optimal O(logB N+z)

I/Os. Thus, despite its shortcomings, the indexability model is elegant and can provide

much insight into the complexity of blocking data in external memory. Further results

in this model appear in [47, 60].

One intuition from the indexability model is that less disk space is needed to ef-

�ciently answer 2-D queries when the queries have bounded aspect ratio (i.e., when

the ratio of the longest side length to the shortest side length of the query rectangle is

bounded). An interesting question is whether R-trees and the linear-space structures of

Section 3.3 can be shown to perform provably well for such queries. Another interesting

scenario is where the queries correspond to snapshots of the continuous movement of

a sliding rectangle.

When the data structure is restricted to contain only a single copy of each point,

Kanth and Singh [45] show for a restricted class of index-based trees that d-dimensional

range queries in the worst case require 
(n1�1=d + z) I/Os, and they provide a data

structure with a matching bound. Another approach to achieve the same bound is the

cross tree data structure of Grossi and Italiano [35], which in addition supports the

operations of cut and concatenate.



5 Conclusions

In this paper we have surveyed several useful paradigms and techniques for the design

and implementation of e�cient online data structures for external memory. For lack

of space, we didn't cover several interesting geometric search problems, such as point

location, ray shooting queries, nearest neighbor queries, where most EM problems

remain open, nor the rich areas of string processing and combinatorial graph problems.

We refer the reader to [4, 31, 68] and the references therein.

A variety of interesting challenges remain in range searching, such as methods for

high dimensions and nonorthogonal searches as well as the analysis of R-trees and

linear-space methods for typical-case scenarios. Another problem is to prove lower

bounds without the indivisibility assumption. A continuing goal is to translate theo-

retical gains into observable improvements in practice. For some of the problems that

can be solved optimally up to a constant factor, the constant overhead is too large for

the algorithm to be of practical use, and simpler approaches are needed.

Online issue also arise in the analysis of batched EM algorithms: In practice,

batched algorithms must adapt in a robust and online way when the memory allo-

cation changes, and online techniques can play an important role. Some initial work

has been done on memory-adaptive EM algorithms in a competitive framework [11].

Acknowledgements. The author wishes to thank Lars Arge, Ricardo Baeza-Yates,

Vasilis Samoladas, and the members of the Center for Geometric Computing at Duke

University for helpful comments and suggestions.

References

1. P. K. Agarwal, L. Arge, G. S. Brodal, and J. S. Vitter. I/O-e�cient dynamic point location
in monotone planar subdivisions. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms, 11�20, 1999.
2. P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter. E�cient searching

with linear constraints. In Proc. 17th ACM Symposium on Principles of Database Systems,
169�178, 1998.

3. P. K. Agarwal, L. Arge, T. M. Murali, K. Varadarajan, and J. S. Vitter. I/O-e�cient algorithms
for contour line extraction and planar graph blocking. In Proceedings of the ACM-SIAM Sym-

posium on Discrete Algorithms, 117�126, 1998.
4. P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle,

J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry,
volume 23 of Contemporary Mathematics, 1�56. AMS Press, Providence, RI, 1999.

5. L. Arge. The bu�er tree: A new technique for optimal I/O-algorithms. In Proceedings of the

Workshop on Algorithms and Data Structures, volume 955 of Lecture Notes in Computer

Science, 334�345. Springer-Verlag, 1995. A complete version appears as BRICS technical report
RS�96�28, University of Aarhus.

6. L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. E�cient bulk operations on dynamic
R-trees. In Proceedings of the 1st Workshop on Algorithm Engineering and Experimentation,
Baltimore, January 1999.

7. L. Arge, V. Samoladas, and J. S. Vitter. Two-dimensional indexability and optimal range
search indexing. In Proceedings of the ACM Symposium Principles of Database Systems,
Philadelphia, PA, May�June 1999.

8. L. Arge and J. S. Vitter. Optimal dynamic interval management in external memory. In Pro-

ceedings of the IEEE Symposium on Foundations of Computer Science, 560�569, Burlington,
VT, October 1996.

9. R. A. Baeza-Yates. Expected behaviour of B+-trees under random insertions. Acta Informatica,
26(5), 439�472, 1989.

10. R. D. Barve, E. A. M. Shriver, P. B. Gibbons, B. K. Hillyer, Y. Matias, and J. S. Vitter. Modeling
and optimizing I/O throughput of multiple disks on a bus: the long version. Technical report,
Bell Labs, 1997.

11. R. D. Barve and J. S. Vitter. External memory algorithms with dynamically changing memory
allocations: Long version. Technical Report CS�1998�09, Duke University, 1998.

12. R. Bayer and E. McCreight. Organization of large ordered indexes. Acta Inform., 1, 173�189,
1972.



13. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal
multiversion B-tree. The VLDB Journal, 5(4), 264�275, December 1996.

14. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An e�cient and ro-
bust access method for points and rectangles. In Proceedings of the SIGMOD International

Conference on Management of Data, 322�331, 1990.
15. J. L. Bentley. Multidimensional divide and conquer. Communications of the ACM, 23(6),

214�229, 1980.
16. S. Berchtold, C. Böhm, and H.-P. Kriegel. Improving the query performance of high-dimensional

index structures by bulk load operations. In Proceedings of the International Conference on

Extending Database Technology, 1998.
17. G. S. Brodal and J. Katajainen. Worst-case e�cient external-memory priority queues. In

Proceedings of the Scandinavian Workshop on Algorithms Theory, volume 1432 of Lecture
Notes in Computer Science, 107�118, Stockholm, Sweden, July 1998. Springer-Verlag.

18. P. Callahan, M. T. Goodrich, and K. Ramaiyer. Topology B-trees and their applications. In
Proceedings of the Workshop on Algorithms and Data Structures, volume 955 of Lecture Notes
in Computer Science, 381�392. Springer-Verlag, 1995.

19. B. Chazelle. Filtering search: a new approach to query-answering. SIAM Journal on Computing,
15, 703�724, 1986.

20. B. Chazelle. Lower bounds for orthogonal range searching: I. The reporting case. Journal of

the ACM, 37(2), 200�212, April 1990.
21. B. Chazelle and H. Edelsbrunner. Linear space data structures for two types of range search.

Discrete & Computational Geometry, 2, 113�126, 1987.
22. P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: high-performance,

reliable secondary storage. ACM Computing Surveys, 26(2), 145�185, June 1994.
23. Y.-J. Chiang and C. T. Silva. External memory techniques for isosurface extraction in scien-

ti�c visualization. In J. Abello and J. S. Vitter, editors, External Memory Algorithms and

Visualization, Providence, RI, 1999. AMS Press.
24. D. Comer. The ubiquitous B-tree. Comput. Surveys, 11(2), 121�137, 1979.
25. H. Edelsbrunner. A new approach to rectangle intersections, part I. Int. J. Computer Mathe-

matics, 13, 209�219, 1983.
26. H. Edelsbrunner. A new approach to rectangle intersections, part II. Int. J. Computer Mathe-

matics, 13, 221�229, 1983.
27. R. J. Enbody and H. C. Du. Dynamic hashing schemes. ACM Computing Surveys, 20(2),

85�113, June 1988.
28. G. Evangelidis, D. B. Lomet, and B. Salzberg. The hB� -tree: A multi-attribute index supporting

concurrency, recovery and node consolidation. VLDB Journal, 6, 1�25, 1997.
29. R. Fagin, J. Nievergelt, N. Pippinger, and H. R. Strong. Extendible hashing�a fast access

method for dynamic �les. ACM Transactions on Database Systems, 4(3), 315�344, 1979.
30. P. Flajolet. On the performance evaluation of extendible hashing and trie searching. Acta

Informatica, 20(4), 345�369, 1983.
31. W. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures and Algo-

rithms. Prentice-Hall, 1992.
32. V. Gaede and O. Günther. Multidimensional access methods. Computing Surveys, 30(2), 170�

231, June 1998.
33. G. A. Gibson, J. S. Vitter, and J. Wilkes. Report of the working group on storage I/O issues in

large-scale computing. ACM Computing Surveys, 28(4), 779�793, December 1996.
34. D. Greene. An implementation and performance analysis of spatial data access methods. In

Proceedings of the IEEE International Conference on Data Engineering, 606�615, 1989.
35. R. Grossi and G. F. Italiano. E�cient cross-trees for external memory. In J. Abello and J. S.

Vitter, editors, External Memory Algorithms and Visualization. AMS Press, Providence, RI,
1999.

36. R. Grossi and G. F. Italiano. E�cient splitting and merging algorithms for order decomposable
problems. Information and Computation, in press. An earlier version appears in Proceedings of
the 24th International Colloquium on Automata, Languages and Programming, volume 1256
of Lecture Notes in Computer Science, Springer Verlag, 605�615, 1997.

37. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the

ACM SIGMOD Conference on Management of Data, 47�57, 1985.
38. J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. On the analysis of indexing schemes.

In Proceedings of the 16th ACM Symposium on Principles of Database Systems, 249�256,
Tucson, AZ, May 1997.

39. L. Hellerstein, G. Gibson, R. M. Karp, R. H. Katz, and D. A. Patterson. Coding techniques for
handling failures in large disk arrays. Algorithmica, 12(2�3), 182�208, 1994.

40. K. H. Hinrichs. The grid �le system: Implementation and case studies of applications. PhD
thesis, Dept. Information Science, ETH, Zürich, 1985.

41. I. Kamel and C. Faloutsos. On packing R-trees. In Proceedings of the 2nd International

Conference on Information and Knowledge Management, 490�499, 1993.
42. I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals. In Proceedings

of the 20th International Conference on Very Large Databases, 500�509, 1994.



43. I. Kamel, M. Khalil, and V. Kouramajian. Bulk insertion in dynamic R-trees. In Proceedings

of the 4th International Symposium on Spatial Data Handling, 3B, 31�42, 1996.
44. P. C. Kanellakis, S. Ramaswamy, D. E. Vengro�, and J. S. Vitter. Indexing for data models

with constraints and classes. Journal of Computer and System Science, 52(3), 589�612, 1996.
45. K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating index

structures. In Proceedings of the 7th International Conference on Database Theory, Jerusalem,
January 1999.

46. D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-
Wesley, Reading MA, second edition, 1998.

47. E. Koutsoupias and D. S. Taylor. Tight bounds for 2-dimensional indexing schemes. In Pro-

ceedings of the 17th ACM Symposium on Principles of Database Systems, Seattle, WA, June
1998.

48. R. Krishnamurthy and K.-Y. Wang. Multilevel grid �les. Tech. report, IBM T. J. Watson
Center, Yorktown Heights, NY, November 1985.

49. K. Küspert. Storage utilization in B*-trees with a generalized over�ow technique. Acta Infor-

matica, 19, 35�55, 1983.
50. W. Litwin. Linear hashing: A new tool for �les and tables addressing. In International Con-

ference On Very Large Data Bases, 212�223, Montreal, Quebec, Canada, October 1980.
51. D. B. Lomet and B. Salzberg. The hB-tree: a multiattribute indexing method with good guar-

anteed performance. ACM Transactions on Database Systems, 15(4), 625�658, 1990.
52. D. B. Lomet and B. Salzberg. Concurrency and recovery for index trees. The VLDB Journal,

6(3), 224�240, 1997.
53. E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2), 257�276, May

1985.
54. H. Mendelson. Analysis of extendible hashing. IEEE Transactions on Software Engineering,

SE�8, 611�619, November 1982.
55. J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid �le: An adaptable, symmetric multi-

key �le structure. ACM Trans. Database Syst., 9, 38�71, 1984.
56. J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and design choices. In M. van

Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, editors, Algorithmic Foundations of GIS,
volume 1340 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

57. S. Ramaswamy and S. Subramanian. Path caching: a technique for optimal external searching.
Proceedings of the 13th ACM Conference on Principles of Database Systems, 1994.

58. J. T. Robinson. The k-d-b-tree: a search structure for large multidimensional dynamic indexes.
In Proc. ACM Conference Principles Database Systems, 10�18, 1981.

59. C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer, 17�28,
March 1994.

60. V. Samoladas and D. Miranker. A lower bound theorem for indexing schemes and its application
to multidimensional range queries. In Proc. 17th ACM Conf. on Princ. of Database Systems,
Seattle, WA, June 1998.

61. B. Seeger and H.-P. Kriegel. The buddy-tree: An e�cient and robust access method for spatial
data base systems. In Proc. 16th VLDB Conference, 590�601, 1990.

62. E. Shriver, A. Merchant, and J. Wilkes. An analytic behavior model for disk drives with reada-
head caches and request reordering. In Joint International Conference on Measurement and

Modeling of Computer Systems, June 1998.
63. S. Subramanian and S. Ramaswamy. The P-range tree: a new data structure for range searching

in secondary memory. Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
1995.

64. J. van den Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loading multidi-
mensional index structures. In Proceedings 23rd VLDB Conference, 406�415, 1997.

65. P. J. Varman and R. M. Verma. An e�cient multiversion access structure. IEEE Transactions

on Knowledge and Data Engineering, 9(3), 391�409, May/June 1997.
66. D. E. Vengro� and J. S. Vitter. E�cient 3-d range searching in external memory. In Proceedings

of the ACM Symposium on Theory of Computation, 192�201, Philadelphia, PA, May 1996.
67. J. S. Vitter. E�cient memory access in large-scale computation. In Proceedings of the 1991

Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science.
Springer-Verlag, 1991. Invited paper.

68. J. S. Vitter. External memory algorithms and data structures. In J. Abello and J. S. Vitter,
editors, External Memory Algorithms and Visualization. AMS Press, Providence, RI, 1999. An
updated version is available via the author's web page http://www.cs.duke.edu/�jsv/.

69. J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level memories.
Algorithmica, 12(2�3), 110�147, 1994.

70. D. Willard and G. Lueker. Adding range restriction capability to dynamic data structures.
Journal of the ACM, 32(3), 597�617, 1985.

71. A. C. Yao. On random 2-3 trees. Acta Informatica, 9, 159�170, 1978.


