Structure 4+ Style = Communication

Jeffrey Scott Vitter
The University of Kansas
Lawrence, KS 66045-7518

July 21, 2011

As T enter my (100,000)2th year as a faculty member in computer science, I repeatedly feel
compelled to give the same basic lessons about how to write — in a variety of settings and
to young and old alike. After all, what could be more basic to success than the ability to
communicate? In this article, I have distilled the essence of those writing lessons into a list of
useful tips and observations to help steer folks of all backgrounds onto the proper path toward
literate communication. I also discuss some nuances of technical writing with TEX [2] and

IXTEX [4].

1. General Writing and Organization

First things first. When composing a piece of writing with multiple points and facets, such as an
essay, technical paper, or business letter, start your writing in a hierarchical, top-down manner.
I highly recommend version-by-version refinement, which is a simple outlining technique that
forces you into proper organization. Start with Version 1 as a rough outline of the main points
and topics in the order of treatment. On the side, make a list of all the little detailed ideas and
points that come to you in the process, but you don’t yet know where they should go. (Don’t
put them into the outline yet; you're not ready for that stage.)

Version 2 should be an elaboration of Version 1, in which you identify the section titles and
specify the main ideas of each section. Insert the points you want to make into the relevant
sections, so that you know where they belong. Version 3 should be a further elaboration of
Version 2 with specific subideas and a clear story line, some of which is now in text form rather
than outline form. Version 4 should be close to the final version, if not the final version itself.

Don’t start writing any other way. DON’T START WRITING ANY OTHER WAY!!! Pardon
the capitalization; I get carried away on this point because it is far and away the most important.
Even though it seems like you're doing extra or redundant work to go through the version-by-
version refinement process, in reality it will save you valuable time, and the result will be
organized and coherent. For you computer scientists, the extra percentage of work is bounded
by a geometrically decreasing series, so there’s only a constant factor of extra overhead. Failure
to use version-by-version refinement will cost you much more time because of rewrites, not to
mention the likelihood that no one will be happy with the result.

Go for clarity and simplicity. Review your writing to streamline it. Eliminate unneeded words,
phrases, and sentences.

In papers, state the main contributions clearly in the abstract. The abstract and the introduc-
tion of a paper are very important in conference paper submissions; some referees seem to form

their opinions based only upon the first two pages. Explain the problem and background, state
the contributions, and explain their importance. The same advice applies to writing letters:
tell the reader why you’re writing the letter in the first paragraph, if not the first sentence.

» Use active voice in your writing as much as possible. It’s good style to write in first person,
using the group “we,” which helps promote use of active voice. Avoid use of “I” in professional
reports and papers, unless you're taking a personal perspective as I am in this article.

» Place the verb close to the subject. Otherwise, in long sentences, confusion will reign. Consider
this example: “Any suggestion that the cause of the poor throughput that rendered the appli-
cation unusable was rooted in slow hardware and not sloppy software design is unreasonable.”
Here’s a better rewrite with the verb close to the subject: “It is unreasonable to assert that
the poor throughput that rendered the application unusable was rooted in slow hardware and
not sloppy software design.” Even better: “The poor throughput that rendered the application
unusable was not the sole result of slow hardware; the primary culprit was sloppy software
design.”

» The two stress points of a sentence are at its beginning and its end. The end generally gets
the most emphasis, so try to reserve the end of the sentence for the most important element.
Structure each sentence to move from the known concept to the unknown, from the given idea
to the new, from the background to the result. Put transitional and background words or
phrases (such as “Therefore,” “Thus,” “However,” “In the last section,” etc.) at the beginning
of the sentence, saving the important content for the end.

» You'll probably store what you write in files on your computer. If so, name your files in a
logically meaningful way. Move old files to a special directory and give them a new name that
reflects the last date of alteration. Do not keep garbage files in the main directory; get rid of
them or put them in a special directory (e.g., called 01dStuff or MiscJunk).

2. Grammar and Style

» Avoid use of “filler” words or phrases that carry no real meaning, such as
e “actually,”
“basically,”
“essentially,”
“it is important to note that” (a phrase only for exceptional situations),
“note that,”

“therefore,”
“thus.”

Filler words can serve a useful purpose; an example is the use of “thus” or “therefore” to signal
a conclusion. But they’re easy to overuse, so minimize their use.

» Certain words are awkward in formal papers, and there are better substitutes:
e Replace “a lot of” with “many” or “much.”
e Spell out contractions. (OK, I'm breaking that rule in this article too to keep the tone
informal.)
e Symbols and abbreviations should be reserved for mathematical formulas. Avoid their
use within text. Instead, spell out the corresponding words. For example, replace “3” by
“there exists,” “V” by “for all,” “=" by “implies,” and “3” and “s.t.” by “such that.”

Use a colon to introduce a list of items or a mathematical formula only if the preceding sentence
is complete. A colon is inappropriate when the list or formula is a required part of the natural
flow of a sentence. In the preceding two rules, look at how the two lists of bulleted items are
introduced. In particular, in the former, there is no colon after

“Avoid use of ‘filler’ words or phrases that carry no real meaning, such as”

because what follows acts as the object of “such as.” It would be OK to replace “such as” by
the phrase (with colon) “such as the following:” or better yet to use the alternate sentence

“Avoid the following ‘filler’ words or phrases that carry no real meaning:”

A colon can also be used to restate or elaborate upon a full sentence: in this example, I am not
capitalizing what follows the colon, since my elaboration does not extend to multiple sentences,
or otherwise I would capitalize “In” (the word following the colon).

In a list of three or more items, phrases, or clauses (like this one), put a comma between each
pair. The last comma in such a list is referred to as the “serial comma” or “Oxford comma.” The
general decline of Western civilization has led to journalistic conventions that omit the serial
comma, but I urge you to maintain standards of common decency and resist those influences.

On the western side of the Atlantic, commas and periods are generally placed inside the closing
quotation mark, even when the logical grouping would suggest otherwise, as in the list of
bulleted items at the beginning of this section. We computer scientists often have trouble with
this rule! For reasons of clarity, I often violate the rule when describing edits I want someone
to make to a paper, such as replace “this” with “that”. (Did it again!) Fortunately the rule
doesn’t apply to other forms of punctuation, such as colons, semicolons, question marks, and
punctuation marks.

Unless the clauses are short, put a comma immediately before a coordinating conjunction
(such as “and”) that connects two independent clauses, and if the second clause starts with an
introductory phrase (as this one does), don’t put a comma right after the conjunction.

Follow this example of not putting a comma before “and” when the sentence (or clause) has
one subject and uses two different verbs (known as “compound verbs”).

An exception to the previous rule occurs when the sentence is long and a comma would improve
readability, but in such cases you’d be well advised to break the sentence into two separate
sentences.

Another logical inconsistency: it’s always fine to put a comma before “but” even when there
are compound verbs. For example, writing is most effective when original and innovative, but
still requires attention to basic mechanics.

Use “that” (with no comma before it) to introduce a dependent clause that specifies what you’re
talking about. If instead the purpose of the clause is only to give complementary information,
which strictly speaking is not needed for basic understanding, then use “which” and separate
the clause by commas from the rest of the sentence. Reread this rule for examples.

Try not to use “this” or “that” as nouns. Use them instead as adjectives by specifying this
what or that what.

The words “their” and “they” should always refer to more than one person. Avoid the common
mistake of using “their” and “they” to refer to a single person whose gender is not specified, as
in “Each person raised their hand when they wanted to ask a question.” A correct version is
“Each person raised his or her hand to ask a question.” It may seem awkward to write “his or
her,” but it’s more awkward to be regarded as illiterate! Better yet: “The people raised their
hands to ask questions.”

Use a hyphen between words that combine to form a single adjective. Example: The O(n)-1/O
algorithms execute O(n) I/Os. (If we forget the hyphen, then we're incorrectly talking about
a set of I/0O algorithms that are O(n) in number.) Another example: I/O-efficient algorithms
are the main goal of the study of I/O efficiency. Some word combinations and adjective phrases
that have (happily) become heavily used no longer need hyphens: Several years ago, I used to
write the multi-word expression “external-memory algorithms,” but now the multiword format
is simply “external memory algorithms.”

Hyphens are also used in some compound words, like “mother-in-law,” but avoid them whenever
possible (the hyphens, that is), unless the compound word is used as an adjective.

Use an en-dash “-” (obtained in TEX [2] and IATEX [4] by a double hyphen --) to indicate a
range as in pages 1-4 and months June-July or to replace the word “to” as in the Lawrence—
Topeka toll road. Never put a space before or after an en-dash. A more obscure use of an
en-dash is to replace a hyphen in a multiword adjective phrase when one of the nouns being
connected has multiple words or a hyphen; that’s really being pro—en-dash!

Em-dashes “—” (obtained in TEX and IXTEX by a triple hyphen ---) provide emphasis, usually
to separate one part of a sentence from another. I used to not put blank spaces before and after
an em-dash, but I've been softened over the years by The Chicago Manual of Style [1] and now
include spaces before and after.

For you Mac and PC users, Microsoft Word can be configured in its AutoCorrect settings
to automatically convert two consecutive hyphens into a single dash. A pet peeve of mine is
that Word makes it hard to use dashes properly: If you put a space before the two hyphens, the
dash you end up with in Word is an en-dash, but then you have to go back and manually delete
the spaces because en-dashes should never have spaces before or after. If instead you leave out
the space before the two hyphens, Word converts them into an em-dash, but then in order to
follow the Chicago style convention, you have to go back and manually add the missing spaces.
Word has it backwards! Oh well ..., maybe Microsoft will fix it.

To dash out on a happy note, here’s an easy way to remember which dash is which: An old
font convention, no longer strictly followed, was that an em-dash is a dash that has the width
of a capital M, while the thinner en-dash has the width of a capital N. In typography, the units
“em” and “en” are used to describe those traditional lengths. So just remember that “em”
refers to M and “en” refers to N, and you’ll never again wonder how to tell the difference!

Spell out all positive numbers less than 10 when used as an adjective. Use the numeral when
used as a noun. Example: Rule 1 for writing a paper is to always do at least three or four
versions. You should never need 10 versions.

Use a spell checker periodically to get rid of obvious errors. Be sure you spell-check before
distributing a version of the paper.

3. TgX and ETEX Basics

XTEX documents are stored in a file whose name ends in the extension .tex. They begin with
a documentclass line such as

\documentclass[11pt]{article}

which specifies that the default font size is 11 points and that the document style is article
format. What follows is the preamble, consisting of a series of declarations using \usepackage
that specify which style packages to use.

On my web page [8], you can find the files template.tex and template_full.tex that can
serve as templates for a longer article or paper. Several useful macros (which are shorthand
definitions of more complicated sets of commands) appear in the style file jsvi.sty. You can
use any of those macros in your IXTEX document by including the line

\usepackage{jsv1i}

in the preamble of the file. Simply make sure that the style file jsvl.sty resides in the same
directory as your IWTEX document.

Be sure to use \label and \ref for referring to equations and sections, since their numbering
may change when new material is added. It’s convenient to have label names that indicate
the type and location of the label; for example, just after the \section macro that started
this section, I included the ITEX code \label{sec:TeXbasics}, so that I could produce the
reference “Section 3”7 elsewhere in this report by writing Section™\ref{sec:TeXbasics}.

Use \cite for references. BIBTEX is highly recommended. Several large BIBTEX bibliographies
in computer science are on the Web, such as at http://liinwww.ira.uka.de/bibliography/.

The ITEX macro \emph{ ... } allows you to emphasize important terms when they are first
introduced, as well as words in the text that deserve special emphasis. For example, the last
sentence ends with “... deserve \emph{speciall} emphasis.” (An older way of getting italics
is {\em speciall\/}, but the simpler \emph syntax is preferred. The italic correction \/ is
called for with \em in this particular case but is never needed with \emph.)

Nested uses of \emph undo one another. So if you use \emph inside a theorem environment
(in which the text is normally italicized), the emphasized text will be upright, not italicized.

ETEX also defines macros \textrm, \textit, \textsl, \textbf, \textsf, \textsc, and
\texttt, which format text enclosed in braces into roman, italics, slant, boldface, sans serif,
small caps, and typewriter font.

The \verb macro formats its argument verbatim into typewriter font so that even the spe-
cial characters like \ and & are treated like ordinary characters. The argument to \verb
must be enclosed in a pair of matching characters (other than a space, letter, or asterisk)
that do not appear elsewhere in the argument; for example, the previous sentence starts with
“The \verb#\verb# macro....” The verbatim environment can be used to simulate multiline
typewriter text including the carriage returns.

Names of identifiers (or variables or program modules) having more than one letter should be
formatted so that they appear in italics with the proper spacing. Feel free to use my macro
\id for that purpose. Single-letter identifiers are formatted correctly in math mode without
need for any macros. My style file jsvi.sty has macros called \idrm, \idit, \idbf, \idsf,

\idtt, and \idcal for formatting math text into roman, italics, boldface, sans serif, typewriter,
and calligraphic font. The macro \id is shorthand for \idit. The argument to \idcal must
contain only uppercase letters and spaces. A space must be preceded by \ to be recognized,
and underscores are denoted by _.

The macros work correctly in both text and math modes, and they automatically use the
right size in subscripts and superscripts. Example: The ATEX code

We can insert key~\idcal{K} into the hash table \id{table_ptr} by means
of the function call $\id{hash_insert}(\idcal{K}, \id{table_ptr}, M)$,
where $M \leq M_\idrm{max}$ is the size of the table.

produces the following:

“We can insert key /C into the hash table table_ptr by means of the function call
hash_insert(IC, table_ptr, M), where M < Mpay is the size of the table.”

KTEX’s list-making environments itemize, enumerate, etc. often leave excessive vertical space
between items. A simple fix is to insert my macro \cramped before the first \item, as I did in
the two examples near the beginning of Section 2.

ITEX puts extra space before the start of an environment if there is a blank line in the input
before the \begin{ ... } macro that starts the environment. The extra space is fine for envi-
ronments like theorem and definition that logically start a new paragraph, but not usually
for list-making environments. Delete the blank lines in the latter case.

Use ~ and \, and \@ appropriately to prevent bad line breaks and for proper spacing in TEX.
(The , character in the preceding sentence denotes a space.) Example: The IXTEX code

Prof. Vitter wants all Comp.\ Sci.\ students to write English well,
not just those from the U.S\@. The \LaTeX\ code™\verb#U.S\@Q.#
instructs \LaTeX\ to treat the previous ‘‘U.S.’’ not only as initials
but also as the end of a sentence, so that more spacing is added.

produces the following;:

“Prof. Vitter wants all Comp. Sci. students to write English well, not just those from
the U.S. The BTEX code U.S\@. instructs IXIEX to treat the previous “U.S.” not
only as initials but also as the end of a sentence, so that more spacing is added.”

Another example:

Let“I denote the subset of n points in the interior of circle™C.
(Refer to Figures 2, 3, and™4.)

produces the following:

“Let I denote the subset of n points in the interior of circle C. (Refer to Figures 2,
3, and 4.)”

The use of ~ in this example is to prevent an isolated symbol or number from appearing at the
beginning of a line of text. There is no ~ before n points, because n is linked to points and
thus it would not be isolated if it appeared at the start of a line.

4. Figures and Tables

» It’s easy to include pictures or displays in a X TEX document. The UNIX program latex can pro-
cess files that embed pictures or displays in encapsulated postscript (eps) format. Simply include
\usepackage{graphicx} in the preamble near the top of the file (after the \documentclass
line) and use the macro \includegraphics to insert the picture. For example, the code

\begin{figure} [h]

\begin{center}

\includegraphics[width=2.9in]{picturel}

\caption{Here’s a sample figure of something near and dear to my heart.}
\label{fig:figexample}

\end{center}

\end{figure}

reads in the picture of a disk platter from the eps file picturel.eps and produces Figure 1.

) magnetic surface
disk of disk

\

read/write arm

read/write head

disk track

Figure 1: Here’s a sample figure of something near and dear to my heart.

The h argument to \begin{figure} inserts the figure immediately after where it occurs in
the KTEX file. A b argument would cause the figure to be “floated” to the bottom of the
current page (or if it doesn’t fit on the current page, it goes to the next page on which it fits).
The argument t would instead float the figure to the top of the page. The width argument
in the \includegraphics macro sets the actual width for the picture, and the picture in
picturel.eps gets scaled appropriately. You can also scale to a certain height, or even to a
certain height and width simultaneously.

» Some newer software packages use the pdflatex program rather than the latex program. The
pdflatex program can process files with figures in formats such as pdf, png, jpeg, and tiff, but
not eps. When using pdflatex, figures in eps format should first be converted into pdf format
using a UNIX command such as epstopdf.

» Use \begin{table} instead of \begin{figure} if you want a table instead of a figure. Tables
can also be floated to the top or bottom of a page.

» Tables are somewhat cumbersome in IATEX using the tabular environment, so use some good
templates to design them. Several good examples appear in [4]. In the example below, note
how \begin{center} is used to center the table. The macro \0 provides horizontal spacing
equal to that of a digit, so that the numbers line up correctly.

\begin{center}

\def\0{}

\begin{tabular}{lclclclcl} \hline

\textit{Error Norm}& \textit{Exact} & \textit{Prob.\ Counting} &
\textit{Static} \\

\hline

$\le"{\mathrm{abs}}\|_1 $§ & 52.13 & 52.42 & 52.13 \\
$\le"{\mathrm{abs}}I\I_2 $§ & 88.70 & 88.80 & 88.70 \\
$\| e"{\mathrm{rel}} \|_1$ &\00.17 &\00.17 &\00.17 \\
$\le"{\mathrm{comb}}\[_1$ & 16.71 & 16.72 & 16.71 \\
\hline

\end{tabular}

\end{center}

Here’s what’s produced:

Error Norm | Ezact | Prob. Counting | Static
2P |I1 52.13 52.42 52.13
l|€2P%]|2 88.70 88.80 88.70
ller!l, 0.17 0.17 0.17

|ecomb|l; | 16.71 16.72 16.71

It’s sometimes useful in TEX and IATEX to insert a zero-width \strut into text in order to
produce the proper vertical spacing when the text is enclosed in a box or abutted to other
items in a vertical list. IATEX often needs extra help. For example, I've found it useful to
define macros \tallstrut and \tallerstrut in my style file jsvl.sty to add extra spacing
above the first line of boxed tables made with I¥TEX’s tabular environment. Here’s an example
where I slightly modify the last example by adding \tallstrut immediately after the first two
instances of \hline:

Error Norm | Ezact | Prob. Counting | Static
|e2Ps ||y 52.13 52.42 52.13
|2 |2 88.70 88.80 88.70
ller! |1 0.17 0.17 0.17

|ecombly | 16.71 16.72 16.71

5. Formatting Mathematics

Avoid using \frac for fractions that appear in text style or when the resulting characters will be
too small, such as in exponents, subscripts, and superscripts. For example, use (N/B) exp(z/t)
or (N/B)e*/t in text, but not Net. It’s marginally OK to use Ne/!, but one of the previous
two choices is preferred. This distinction would more obvious if the e*/* term were replaced by
something like log N. In that case, (N/B)log N is definitely better than ¥ log N; otherwise,
the term that is mathematically the most significant (namely, %) is dwarfed in type size by the
less significant term (log V). In display format, use

Eez/t

N
Iz and ElogN. (1)

Be sure to include proper punctuation in sentences involving math formulas like E = mc?.

Periods always go outside of math mode when the formula is in text, like in the last sentence,
but inside math mode when in math display format, as in (1).

Long sets and sequences should be specified differently when they appear in text than when
they are displayed, so as to allow a line break in the text if needed. Example: The IXTEX code

The set $\{ x_1$, $x_2%, \dots, $x_n\}$ is in text style,
but in display style, it should be $$\{ x_1, x_2, \ldots, x_n \}.$$

produces the following:
“The set {z1, 2, ..., Ty} is in text style, but in display style, it should be

{z1,29,..., 2}

Always use \dots for an ellipsis in text mode. In math mode, \dots and \ldots are inter-
changeable, and \cdots results in centered dots.
Another example: The ITEX code

The sequence x_1, x_2%, \dots\ is in text style,
but in display style, it should be $$x_1, x_2, \ldots. $$

produces the following:

“The sequence 1, T3, ... is in text style, but in display style, it should be

2
T1,T9, ...

Use \langle and \rangle, not < and >, to get the math angle brackets “(” and “).”

6. Becoming a TpXpert

TgEX is a finely tuned machine for producing beautifully formatted documents. We’'ve already
seen some basic guidelines for using TEX in Sections 3 and 5. Below are some fine points about
how get the most out of TEX and KIEX.

Use \bigl and \bigr in math expressions that appears in text, but \left and \right in
math displays. (There’s also \bigm for middle delimiters as well as plain ol’ \big.) In some
KETEX environments, \bigl, \bigr, etc. don’t have any effect in text style, but you can fix that
problem by including \usepackage{amsmath} in the preamble. Example: The KTEX code

Write $0\bigl((N"2 (\log N) + \sqrt m \,) / 2 \bigr)$ in text style,
not $0((N"2 (\log N) + \sqrt m \,) / 2)$. In displays, write
$30\1left (\frac{1}{2} \left(N"2 (\log N) + \sqrt m \,\right)\right)
\quad\mbox{or}\quad 0\left(\frac{N"2 (\log N) + \sqrt m\,}{2}\right).$$

produces the following:

“Write O((N?(log N) + /m)/2) in text style, not O((N?*(log N) + /m)/2). In
displays, write

0 (; (N?(log N) + m)) or O (NQ(IOgN) T ﬁ)

2

Another example: The IXTEX code

Write $\bigl\{ \bigl(x(t), y(t)\bigr) \bigm| O \leq t \leq n \bigr\}$
instead of $\{ (x(t), y(t)) \mid O \leq t \leq n \}$ since $x(t)$ already
has a parenthesis and the larger delimiters make it easier to read.

produces the following:

“Write {(z(t),y(t)) | 0 < ¢ < n} instead of {(z(t),y(t)) | 0 < t < n} since z(t)
already has a parenthesis and the larger delimiters make it easier to read.”

It would have been even worse in the latter case if | were used instead of \mid, since
$\{ x(t), y(&)) | 0 \leq t \leq n \}$

gives the wrong spacing around the | relation:

), y(1)10 <t <n}”

In text style, enclose a tall or deep math expression or subexpression within \smash{ ... } to
make TEX ignore its height. Otherwise, TEX may add extra space between adjacent lines in the

text, which can look awkward, for example, when there is a really deep expression like zy,,)

on one line and a really tall expression like 92" on the next. Often the lines won't interfere
with one other if the extra space is eliminated by use of \smash{ ... }, and the resulting look
(e.g., 2%) will be much improved. Very tall or deep expressions are best put in displays.

7. What’s More

For more extensive guidance on writing, there are several sources worth consulting: My PhD
adviser Don Knuth has been the biggest influence on my writing — as he has been for many
others. T highly recommend the course notes he coauthored on mathematical writing [3]; they
give a useful list of do’s and don’t’s worthy of memorization. And of course, be sure to read
Strunk and White’s classic text on the elements of style [6]. Williams and Colomb pick up where
Strunk and White left off and provide a clear, systematic process for improved writing [9]. On
the humorous side, Safire’s self-contradicting “Fumblerules” entertain while illustrating basic
principles of grammar [5]. A new must-read entry (although from a British point of view!) is
Truss’s lighthearted look at the importance of punctuation [7].

The writing notes I've included in this article are kept in up-to-date form on my web page [8],
along with the source code, the style file, and some template files. My plan is to update the
article on a semiregular basis. I've included just a few rules so far; no doubt more will be
coming. I welcome any suggestions, corrections, or comments you might have; you can send
me email at (jsv@vitter.org). Every suggestion of yours that I implement earns you 2.56 KRW
(with payments rounded off to the nearest dollar).

References

[1] The Chicago Manual of Style. University of Chicago Press, 16th edition, 2010.

[2] Donald E. Knuth, Computers & Typesetting. Volume A: The TpXbook. Addison-Wesley,
Reading, Massachusetts, 1984.

10

[3]

Donald E. Knuth, Tracy L. Larrabee, and Paul M. Roberts. Mathematical Writing. Math-
ematical Association of America, Washington, D.C., 1989.

Leslie Lamport. BTgX: A Document Preparation System. Addison-Wesley, 1994.

William Safire. How Not to Write: The Essential Misrules of Grammar. W. W. Norton &
Company, New York, 2005.

William Strunk, Jr. and E. B. White. The Elements of Style. Allyn and Bacon, Boston, 5th
edition, 2009.

Lynn Truss. Fats, Shoots & Leaves: The Zero Tolerance Approach to Punctuation. Gotham
Books, New York, 2004.

Jeffrey S. Vitter. Web page http://www.vitter.org/jsv/. The updated
version of this article, its source code, some IAITEX template files, and
the style file jsvli.sty can be found by following links to the web page
http://www.provost.ku.edu/jsv/jsvteachinglinks.html.

Joseph M. Williams and Gregory G. Colomb. Style: The Basics of Clarity and Grace.
Longman, New York, 4th edition, 2011.

11

