
Scalable Mining for Classi�cation Rules

in Relational Databases

Min Wang�

Data Management Department

IBM T. J. Watson Research Center

19 Skyline Drive

Hawthorne, NY 10532, USA

min@us.ibm.com

Phone: (914) 784-6268

FAX: (914) 784-7455

Bala Iyer

IBM Silicon Valley Lab

555 Bailey Avenue

San Jose, CA 95141, USA

balaiyer@us.ibm.com

Je�rey Scott Vittery

Purdue University

150 North University Street

West Lafayette, IN 47907, USA

jsv@purdue.edu

�

Contact author.Support was provided in part by an IBM Graduate Fellowship.

y

Support was provided in part by the Army Research OÆce through research grant DAAD19{03{1{0321, by the

National Science Foundation through research grant CCR{9877133, and by an IBM research award.

1



Abstract

Data mining is a process of discovering useful patterns (knowledge) hidden in ex-

tremely large datasets. Classi�cation is a fundamental data mining function, and some

other functions can be reduced to it. In this paper we propose a novel classi�cation

algorithm (classi�er) called MIND (MINing in Databases). MIND can be phrased in

such a way that its implementation is very easy using the extended relational calculus

SQL, and this in turn allows the classi�er to be built into a relational database system

directly. MIND is truly scalable with respect to I/O eÆciency, which is important

since scalability is a key requirement for any data mining algorithm.

We have built a prototype of MIND in the relational database management system

DB2 and have benchmarked its performance. We describe the working prototype

and report the measured performance with respect to the previous method of choice.

MIND scales not only with the size of datasets but also with the number of processors

on an IBM SP2 computer system. Even on uniprocessors, MIND scales well beyond

dataset sizes previously published for classi�ers. We also give some insights that may

have an impact on the evolution of the extended relational calculus SQL.

1 Introduction

Information technology has developed rapidly over the last three decades. To make decisions
faster, many companies have combined data from various sources in relational databases [Has96].
The data contain patterns previously undeciphered that are valuable for business purposes. Data
mining is the process of extracting valid, previously unknown, and ultimately comprehensible
information from large databases and using it to make crucial business decisions. The extracted
information can be used to form a prediction or classi�cation model, or to identify relations
between database records.

Since extracting data to �les before running data mining functions would require extra I/O
costs, users of IM as well as previous investigations [Imi96, IM96] have pointed to the need for the
relational database management systems to have these functions built in. Besides reducing I/O
costs, this approach leverages over 20 years of research and development in DBMS technology,
among them are:

� scalability,

� memory hierarchy management [Sar95, SS96],

� parallelism [B+95],

� optimization of the executions [BGI95],

� platform independence, and

� client server API [NS96].
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salary age credit rating

65K 30 Safe
15K 23 Risky
75K 40 Safe
15K 28 Risky
100K 55 Safe
60K 45 Safe
62K 30 Risky

Table 1: Training set

age<=30

salary<=62K

yes no

yes no

safe

risky safe

Figure 1: Decision tree for the data in Table 1

The classi�cation problem can be described informally as follows: We are given a training set

(or DETAIL table) consisting of many training examples. Each training example is a row with
multiple attributes, one of which is a class label . The objective of classi�cation is to process the
DETAIL table and produce a classi�er, which contains a description (model) for each class. The
models will be used to classify future data for which the class labels are unknown (see [B+84,
Qui93, Mur95, Cat91]).

Several classi�cation models have been proposed in the literature, including neutral network,
decision trees, statistical models, and genetic models. Among these models, decision tree model
is particularly suited for data mining applications due to the following reasons: (1) ease of con-
struction, (2) simple and easy to understand, and (3) acceptable accuracy [SAM96]. Therefore,
we focus on decision tree model in this paper. A simple illustration of of training data is shown
in Table 1. The examples re
ect the past experience of an organization extending credit. From
those examples, we can generate the classi�er shown in Figure 1.

Although memory and CPU prices are plunging, the volume of data available for analysis is
immense and getting larger. We may not assume that the data are memory-resident. Hence, an
important research problem is to develop accurate classi�cation algorithms that are scalable with
respect to I/O and parallelism. Accuracy is known to be domain-speci�c (e.g., insurance fraud,
target marketing). However, the problem of scalability for large amounts of data is more amenable
to a general solution. A classi�cation algorithm should scale well; that is, the classi�cation
algorithm should work well even if the training set is huge and vastly over
ows internal memory.
In data mining applications, it is common to have training sets with several million examples. It
is observed in [MAR96] that previously known classi�cation algorithms do not scale.

Random sampling is often an e�ective technique in dealing with large data sets. For simple
applications whose inherent structures are not very complex, this approach is eÆcient and gives
good results. However, in our case, we do not favor random sampling for two main reasons:
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1. In general, choosing the proper sample size is still an open question. The following factors
must be taken into account:

� The training set size.

� The convergence of the algorithm. Usually, many iterations are needed to process
the sampling data and re�ne the solution. It's very diÆcult to estimate how fast the
algorithm will give a satisfactory solution.

� The complexity of the model.

The best known theoretical upper bounds on sample size suggest that the training set size
may need to be immense to assure good accuracy [DKM96, KM96].

2. In many real applications, customers insist that all data, not just a sample of the data, must
be processed. Since the data are usually obtained from valuable resources at considerable
expense, they should be used as a whole throughout the analysis.

Therefore, designing a scalable classi�er may be necessary or preferable, although we can always
use random sampling in places where it is appropriate.

In [MAR96, SAM96, IBM96], data access for classi�cation follows \a record at a time" access
paradigm. Scalability is addressed individually for each operating system, hardware platform,
and architecture. In this paper, we introduce the MIND (MINing in Databases) classi�er. MIND
rephrases data classi�cation as a classic database problem of summarization and analysis thereof.
MIND leverages the extended relational calculus SQL, an industry standard, by reducing the
solution to novel manipulations of SQL 1 statements embedded in a small program written in C.

MIND scales, as long as the database primitives it uses scale. We can follow the recommenda-
tions in [AZ96, L+96] that numerical data be discretized so that each attribute has a reasonable
number of distinct values. If so, operations like histogram formation, which have a signi�cant
impact on performance, can be done in a linear number of I/Os, usually requiring one, but never
more than two passes over the DETAIL table [VV96]. Without the discretization, the I/O per-
formance bound has an extra factor that is logarithmic but fortunately with a very large base
M=B, which is the number of disk blocks that can �t in internal memory.

One advantage of our approach is that its implementation is easy. We have implemented
MIND as a stored procedure, a common feature in modern DBMSs. In addition, since most
modern database servers have very strong parallel query processing capabilities, MIND runs in
parallel at no extra cost. A salient feature of MIND and one reason for its eÆciency is its ability
to do classi�cation without any update to the DETAIL table.

We analyze and compare the I/O complexities of MIND and the previous method of choice, the
interesting method called SPRINT [SAM96]. Our theoretical analysis and experimental results
show that MIND scales well whereas SPRINT can exhibit quadratic I/O times.

We describe our MIND algorithm in the next section; an illustrative example is given in
Section 4. A theoretical performance analysis is given in Section 5. We revisit MIND algorithm
in Section 6 using a general extension of current SQL standards. In Section 7, we present our
experimental results. We make concluding remarks in Section 8.

1
SQL is simply an implementation [C

+
74] of the relational calculus proposed in [Cod70]. A few extensions have

been done since then [Ull82, C
+
74].
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2 The Algorithm

2.1 Overview

A decision tree classi�er is built in two phases: a growth phase and a pruning phase. In the
growth phase, the tree is built by recursively partitioning the data until each partition is either
\pure" (all members belong to the same class) or suÆciently small (according to a parameter
set by the user). The form of the split used to partition the data depends upon the type of the
attribute used in the split. Splits for a numerical attribute A are of the form value(A) � x, where
x is a value in the domain of A. Splits for a categorical attribute A are of the form value(A) 2 S,
where S is a subset of domain(A). 1 We consider only binary splits as in [MAR96, SAM96] for
purpose of comparisons. After the tree has been fully grown, it is pruned to remove noise in order
to obtain the �nal tree classi�er.

The tree growth phase is computationally much more expensive than the subsequent pruning
phase. The tree growth phase accesses the training set (or DETAIL table) multiple times, whereas
the pruning phase only needs to access the fully grown decision tree. We therefore focus on the
tree growth phase. The following pseudo-code gives an overview of our algorithm:

GrowTree(TrainingSet DETAIL)
Initialize tree T and put all of records of DETAIL in the root;
while (some leaf in T is not a STOP node)
for each attribute i do
form the dimension table (or histogram) DIM i;
evaluate gini index for each non-STOP leaf at each split value with respect to attribute i;

for each non-STOP leaf do
get the overall best split for it;

partition the records and grow the tree for one more level according to the best splits;
mark all small or pure leaves as STOP nodes;

return T ;

2.2 Leaf node list data structure

A powerful method called SLIQ was proposed in [MAR96] as a semi-scalable classi�cation algo-
rithm. The key data structure used in SLIQ is a class list whose size is linear in the number of
examples in the training set. The fact that the class list must be memory-resident puts a hard
limitation on the size of the training set that SLIQ can handle.

In the improved SPRINT classi�cation algorithm [SAM96], new data structures attribute list

and histogram are proposed. Although it is not necessary for the attribute list data structure to be
memory-resident, the histogram data structure must be in memory to insure good performance.
To perform the split in [SAM96], a hash table whose size is linear in the number of examples of
the training set is used. When the hash table is too large to �t in memory, splitting is done in
multiple steps, and SPRINT does not scale well.

In our MIND method, the information we need to evaluate the split and perform the partition
is stored in relations in a database. Thus we can take advantage of DBMS functionalities and
memory management. The only thing we need to do is to incorporate a data structure that
relates the database relations to the growing classi�cation tree. We assign a unique number to

1
A splitting index is used to choose from alternative splits. We use the gini index (de�ned in Section 2.3) in our

algorithm.
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each node in the tree. When loading the training data into the database, imagine the addition
of a hypothetical column leaf num to each row. For each training example, leaf num will always
indicate which leaf node in the current tree it belongs to. When the tree grows, the leaf num value
changes to indicate that the record is moved to a new node by applying a split. A static array
called LNL ( leaf node list) is used to relate the leaf num value in the relation to the corresponding
node in the tree. By using a labeling technique, we insure that at each tree growing stage, the
nodes always have the identi�cation numbers 0 through N � 1, where N is the number of nodes
in the tree. LNL[i] is a pointer to the node with identi�cation number i. For any record in the
relation, we can get the leaf node it belongs to from its leaf num value and LNL and hence we
can get the information in the node (e.g. split attribute and value, number of examples belonging
to this node and their class distribution).

To insure the performance of our algorithm, LNL is the only data structure that needs to be
memory-resident. The size of LNL is equal to the number of nodes in the tree, so LNL can always
be stored in memory.

2.3 Computing the gini index

A splitting index is used to choose from alternative splits for each node. Several splitting indices
have recently been proposed. We use the gini index, originally proposed in [B+84] and used
in [MAR96, SAM96], because it gives acceptable accuracy. The accuracy of our classi�er is
therefore the same as those in [MAR96, SAM96].

For a data set S containing N examples from C classes, gini(S) is de�ned as

gini(S) = 1�

CX
i=1

p2i (1)

where pi is the relative frequency of class i in S. If a split divides S into two subset S1 and S2,
with sizes N1 and N2 respectively, the gini index of the divided data ginisplit(S) is given by

gini split(S) =
N1

N
gini(S1) +

N2

N
gini(S2) (2)

The attribute containing the split point achieving the smallest gini index value is then chosen
to split the node [B+84]. Computing the gini index is the most expensive part of the algorithm
since �nding the best split for a node requires evaluating the gini index value for each attribute
at each possible split point.

The training examples are stored in a relational database system using a table with the follow-
ing schema: DETAIL(attr 1, attr 2, . . . , attrn, class , leaf num), where attr i is the ith attribute, for
1 � i � n, class is the classifying attribute, and leaf num denotes which leaf in the classi�cation
tree the record belongs to.2 In actuality leaf num can be computed from the rest of the attributes
in the record and does not need to be stored explicitly. As the tree grows, the leaf num value
of each record in the training set keeps changing. Because leaf num is a computed attribute,
the DETAIL table is never updated, a key reason why MIND is eÆcient for the DB2 relational
database. We denote the cardinality of the class label set by C, the number of the examples in
the training set by N , and the number of attributes (not including class label) by n.

2
DETAIL itself may be a summary of atomic transactional data, or the atomic data.
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3 Database Implementation of MIND

To emphasize how easily MIND is embeddable in a conventional database system using SQL and
its accompanying optimizations, we describe our MIND components using SQL.

3.1 Numerical attributes

For every level of the tree and for each attribute attr i, we recreate the dimension table (or
histogram) called DIM i with the schema DIM i(leaf num, class , attr i, count) using a simple SQL
SELECT statement on DETAIL:

INSERT INTO DIM i
2

SELECT leaf num; class; attr i; COUNT(*)

FROM DETAIL 3

WHERE leaf num <> STOP

GROUP BY leaf num; class; attr i

Although the number of distinct records in DETAIL can be huge, the maximum number of
rows in DIM i is typically much less and is no greater than (#leaves in tree) � (#distinct values
on attr i) � (#distinct classes), which is very likely to be of the order of several hundreds [Mes97].
By including leaf num in the attribute list for grouping, MIND collects summaries for every leaf
in one query. In the case that the number of distinct values of attr i is very large, preprocessing
is often done in practice to further discretize it [AZ96, L+96]. Discretization of variable values
into a smaller number of classes is sometimes referred to as \encoding" in data mining prac-
tice [AZ96]. Roughly speaking, this is done to obtain a measure of aggregate behavior that may
be detectable [Mes97]. Alternatively, eÆcient external memory techniques can be used to form
the dimension tables in a small number (typically one or two) linear passes, at the possible cost
of some added complexity in the application program to give the proper hints to the DBMS, as
suggested in Section 5.

After populating DIM i, we evaluate the gini index value for each leaf node at each possible
split value of the attribute i by performing a series of SQL operations that only involve accessing
DIM i.

It is apparent for each attribute i that its DIM i table may be created in one pass over the
DETAIL table. It is straightforward to schedule one query per dimension (attribute). Completion
time is still linear in the number of dimensions. Commercial DBMSs store data in row-major
sequence. I/O eÆciencies may be obtained if it is possible to create dimension tables for all
attributes in one pass over the DETAIL table. Concurrent scheduling of the queries populating
the DIM i tables is the simple approach. Existing bu�er management schemes that rely on I/O
latency appear to synchronize access to DETAIL for the di�erent attributes. The idea is that
one query piggy-backs onto another query's I/O data stream. Results from early experiments are
encouraging [Sin97].

It is also possible for SQL to be extended to insure that, in addition to optimizing I/O, CPU
processing is also optimized. Taking liberty with SQL standards, we write the following query as
a proposed SQL operator:

2
Note the structural transformation that takes an attribute name in a schema and turns it into the table name

of an aggregate.
3
DETAIL may refer to data either in a relation or a �le (e.g. on tape). In the case of a �le, DETAIL resolves

to an execution of a user-de�ned function (e.g. fread in UNIX) [Cha97]).
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SELECT FROM DETAIL

INSERT INTO DIM 1fleaf num , class; attr 1; COUNT(*)
WHERE predicate

GROUP BY leaf num , class; attr 1g
INSERT INTO DIM 2fleaf num , class; attr 2; COUNT(*)

WHERE predicate

GROUP BY leaf num , class; attr 2g
...

INSERT INTO DIM nfleaf num, class; attrn; COUNT(*)
WHERE predicate

GROUP BY leaf num , class; attrng

The new operator forms multiple groupings concurrently and may allow further RDBMS query
optimization.

Since such an operator is not supported, we make use of the object extensions in DB2, the
user-de�ned function (udf) [SR86, Cha96, IBM], which is another reason why MIND is eÆcient.
User-de�ned functions are used for association in [AS96]. User-de�ned function is a new feature
provided by DB2 version 2 [Cha96, IBM]. In DB2 version 2, the functions available for use
in SQL statements extend from the system built-in functions, such as avg, min, max, sum, to
more general categories, such as user-de�ned functions (udf). An external udf is a function that
is written by a user in a host programming language. The CREATE FUNCTION statement for an
external function tells the system where to �nd the code that implements the function. In MIND
we use a udf to accumulate the dimension tables for all attributes in one pass over DETAIL.

For each leaf in the tree, possible split values for attribute i are all distinct values of attr i
among the records that belong to this leaf. For each possible split value, we need to get the class
distribution for the two parts partitioned by this value in order to compute the corresponding
gini index. We collect such distribution information in two relations, UP and DOWN .

Relation UP with the schema UP(leaf num, attr i, class , count) can be generated by perform-
ing a self-outer-join on DIM i:

INSERT INTO UP

SELECT d1:leaf num; d1:attr i; d1:class; SUM(d2:count)
FROM (FULL OUTER JOIN DIM i d1, DIM i d2

ON d1:leaf num = d2:leaf num AND

d2:attr i � d1:attr i AND

d1:class = d2:class

GROUP BY d1:leaf num; d1:attr i; d1:class)

Similarly, relation DOWN can be generated by just changing the � to > in the ON clause. We
can also obtain DOWN by using the information in the leaf node and the count column in UP

without doing a join on DIM i again.
DOWN and UP contain all the information we need to compute the gini index at each possible

split value for each current leaf, but we need to rearrange them in some way before the gini index
is calculated. The following intermediate view can be formed for all possible classes k:

CREATE VIEW Ck UP(leaf num; attr i; count) AS
SELECT leaf num; attr i; count

FROM UP

WHERE class = k

8



Similarly, we de�ne view Ck DOWN from DOWN .
A view GINI VALUE that contains all gini index values at each possible split point can now

be generated. Taking liberty with SQL syntax, we write

CREATE VIEW GINI VALUE(leaf num, attr i; gini) AS
SELECT u1:leaf num; u1:attr i, fgini
FROM C1 UP u1, . . . ,CC UP uC , C1 DOWN d1, . . . ,CC DOWN dC
WHERE u1:attr i = � � � = uC :attr i = d1:attr i = � � � = dC :attr i AND

u1:leaf num = � � � = uC :leaf num = d1:leaf num = � � � = dC :leaf num

where fgini is a function of u1:count, . . . , un:count, d1:count, . . . , dn:count according to (1) and
(2).

We then create a tableMIN GINI with the schemaMIN GINI (leaf num ; attr name; attr value; gini):

INSERT INTO MIN GINI

SELECT leaf num; : i1; attr i
2, gini

FROM GINI VALUE a

WHERE a.gini=(SELECT MIN(gini)
FROM GINI VALUE b

WHERE a:leaf num = b:leaf num)

Table MIN GINI now contains the best split value and the corresponding gini index value for
each leaf node of the tree with respect to attr i. The table formation query has a nested subquery
in it. The performance and optimization of such queries are studied in [BGI95, Mur95, GW87].

We repeat the above procedure for all other attributes. At the end, the best split value for
each leaf node with respect to all attributes will be collected in table MIN GINI , and the overall
best split for each leaf is obtained from executing the following:

CREATE VIEW BEST SPLIT (leaf num ; attr name; attr value) AS
SELECT leaf num; attr name; attr value

FROM MIN GINI a

WHERE a:gini=(SELECT MIN(gini)
FROM MIN GINI b

WHERE a:leaf num = b:leaf num)

3.2 Categorical attributes

For categorical attribute i, we form DIM i in the same way as for numerical attributes. DIM i

contains all the information we need to compute the gini index for any subset splitting. In fact,
it is an analog of the count matrix in [SAM96], but formed with set-oriented operators.

A possible split is any subset of the set that contains all the distinct attribute values. If
the cardinality of attribute i is m, we need to evaluate the splits for all the 2m subsets. Those
subsets and their related counts can be generated in a recursive way. The schema of the relation
that contains all the k-sets is Sk IN (leaf num, class , v1; v2; :::; vk, count). Obviously we have
DIM i = S1 IN . Sk IN is then generated from S1 IN and Sk�1 IN as follows:

1i is a host variable, the value applies on invocation of the statement.
2
Again, note the transformation for the table name DIM i to column value i and column name attr i.
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INSERT INTO Sk IN

SELECT p:leaf num; p:class; p:v1, . . . , p:vk�1, q:v1, p:count+ q:count

FROM (FULL OUTER JOIN Sk�1 IN p, S1 IN q

ON p:leaf num = q:leaf num AND

p:class = q:class AND

q:v1 > p:vk�1)

We generate relation Sk OUT from Sk IN in a manner similar to how we generate DOWN

from UP . Then we treat Sk IN and Sk OUT exactly as DOWN and UP for numerical attributes
in order to compute the gini index for each k-set split.

A simple observation is that we don't need to evaluate all the subsets. We only need to
compute the k-sets for k = 1, 2, . . . ,bm=2c and thus save time. For large m, greedy heuristics are
often used to restrict search.

3.3 Partitioning

Once the best split attribute and value have been found for a leaf, the leaf is split into two children.
If leaf num is stored explicitly as an attribute in DETAIL, then the following UPDATE performs
the split for each leaf:

UPDATE DETAIL

SET leaf num = Partition(attr 1; : : : ; attrn; class; leaf num)

The user-de�ned function Partition de�ned on a record r 3 of DETAIL as follows:

Partition(record r)
Use the leaf num value of r to locate the tree node n that r belongs to;
Get the best split from node n;
Apply the split to r, grow a new child of n if necessary;
Return a new leaf num according to the result of the split;

However, leaf num is not a stored attribute in DETAIL because updating the whole relation
DETAIL is expensive. We observe that Partition is merely applying the current tree to the
original training set. We avoid the update by replacing leaf num by function Partition in the
statement forming DIM i. If DETAIL is stored on non-updatable tapes, this solution is required.
It is important to note that once the dimension tables are created, the gini index computation
for all leaves involves only dimension tables.

4 An Example

We illustrate our algorithm by an example. The example training set is the same as the data in
Table 1.

Phase 0: Load the training set and initialize the tree and LNL. At this stage, relation DETAIL,
the tree, and LNL are shown in Table 2 and Figure 2.

Phase 1: Form the dimension tables for all attributes in one pass over DETAIL using user-
de�ned function. The result dimension tables are show in Table 3{4.

3r = (attr 1; : : : ; attrn; class; leaf num).
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attr 1 attr 2 class leaf num

65K 30 Safe 0
15K 23 Risky 0
75K 40 Safe 0
15K 28 Risky 0
100K 55 Safe 0
60K 45 Safe 0
62K 30 Risky 0

Table 2: Initial relation DETAIL with implicit leaf num

  ...

0

LNL

0

Figure 2: Initial tree

leaf num attr 1 class count

0 15 2 2
0 60 1 1
0 62 2 1
0 65 1 1
0 75 1 1
0 100 1 1

Table 3: Relation DIM 1

leaf num attr 2 class count

0 23 2 1
0 28 2 1
0 30 1 1
0 30 2 1
0 40 1 1
0 45 1 1
0 55 1 1

Table 4: Relation DIM 2

Phase 2: Find the best splits for current leaf nodes. A best split is found through a set of
operations on relations as described in Section 2.

First we evaluate the gini index value for attr1. The procedure is depicted in Table 5{13.
We can see that the best splits on the two attributes achieve the same gini index value, so

relation BEST SPLIT is the same as MIN GINI except that it does not contain the column gini .
We store the best split in each leaf node of the tree (the root node in this phase). In case of a tie
for best split at a node, any one of them (attr 2 in our example) can be chosen.

11



leaf num attr 1 class count

0 15 1 0
0 15 2 2
0 60 1 1
0 60 2 2
0 62 1 1
0 62 2 3
0 65 1 2
0 65 2 3
0 75 1 3
0 75 2 3
0 100 1 4
0 100 2 3

Table 5: Relation UP

leaf num attr 1 class count

0 15 1 4
0 15 2 1
0 60 1 3
0 60 2 1
0 62 1 3
0 62 2 0
0 65 1 2
0 65 2 0
0 75 1 1
0 75 2 0

Table 6: Relation DOWN

leaf num attr 1 count

0 15 0.0
0 60 1.0
0 62 1.0
0 65 2.0
0 75 3.0
0 100 4.0

Table 7: Relation C1 UP

Phase 3: Partitioning. According to the best split found in Phase 2, we grow the tree and
partition the training set. The partition is re
ected as leaf num updates in relation DETAIL.
Any new grown node that is pure or \small enough" is marked and reassigned a special leaf num

value STOP so that it is not processed further. The tree is shown in Figure 3 and the new
DETAIL is shown in Table 14. Again, note leaf num is never stored in DETAIL, so no update
to DETAIL is necessary.
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leaf num attr 1 count

0 15 2.0
0 60 2.0
0 62 3.0
0 65 3.0
0 75 3.0
0 100 3.0

Table 8: Relation C2 UP

leaf num attr 1 count

0 15 4.0
0 60 3.0
0 62 3.0
0 65 2.0
0 75 1.0

Table 9: Relation C1 DOWN

leaf num attr 1 count

0 15 1.0
0 60 1.0
0 62 0.0
0 65 0.0
0 75 0.0

Table 10: Relation C2 DOWN

leaf num attr 1 gini

0 15 0.22856
0 60 0.40474
0 62 0.21428
0 65 0.34284
0 75 0.42856

Table 11: Relation GINI VALUE

leaf num attr name attr value gini

0 1 62 0.21428

Table 12: Relation MIN GINI after attr 1 is evaluated

leaf num attr name attr value gini

0 1 62 0.21428
0 2 30 0.21428

Table 13: Relation MIN GINI after attr 1 and attr 2 are evaluated
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  ...

1

2

0

LNL

0

1 2

age<=30

salary<=62K

yes no

Figure 3: Decision tree at Phase 3

attr 1 attr 2 class leaf num

65K 30 Safe 1
15K 23 Risky 1
75K 40 Safe 2)STOP

15K 28 Risky 1
100K 55 Safe 2)STOP

60K 45 Safe 2)STOP

62K 30 Risky 1

Table 14: Relation DETAIL with implicit leaf num after Phase 3

  ...

1

2

3

4

0

LNL

0

1 2

3 4

age<=30

salary<=62K

yes no

yes no

Figure 4: Final decision tree

attr 1 attr 2 class leaf num

65K 30 Safe 4)STOP

15K 23 Risky 3)STOP

75K 40 Safe STOP

15K 28 Risky 3)STOP

100K 55 Safe STOP

60K 45 Safe STOP

62K 30 Risky 3)STOP

Table 15: Final relation DETAIL with implicit leaf num

Phase 4: Repeat Phase 1 through Phase 3 until all the leaves in the tree become STOP leaves.
The �nal tree and DETAIL are shown in Figure 4 and Table 15.
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5 Performance Analysis

Building classi�ers for large training sets is an I/O bound application. In this section we analyze
the I/O complexity of both MIND and SPRINT and compare their performances.

As we described in Section 2.1, the classi�cation algorithm iteratively does two main opera-
tions: computing the splitting index (in our case, the gini index) and performing the partition.
SPRINT [SAM96] forms an attribute list (projection of the DETAIL table) for each attribute. In
order to reduce the cost of computing the gini index, SPRINT presorts each attribute list and
maintains the sorted order throughout the course of the algorithm. However, the use of attribute
lists complicates the partitioning operation. When updating the leaf information for the entries
in an attribute list corresponding to some attribute that is not the splitting attribute, there is
no local information available to determine how the entries should be partitioned. A hash table

(whose size is linear in the number of training examples that reach the node) is repeatedly queried
by random access to determine how the entries should be partitioned. In large data mining ap-
plications, the hash table is therefore not memory-resident, and several extra I/O passes may be
needed, resulting in highly nonlinear performance.

MIND avoids the external memory thrashing during the partitioning phase by the use of
dimension tables DIM i that are formed while the DETAIL table, consisting of all the training
examples, is streamed through memory. In practice, the dimension tables will likely �t in memory,
as they are much smaller than the DETAIL table, and often preprocessing is done by discretizing
the examples to make the number of distinct attribute values small. While vertical partitioning
of DETAIL may also be used to compute the dimension tables in linear time, we show that it is
not a must. Data in and data archived from commercial databases are mostly in row major order.
The layout does not appear to hinder performance.

If the dimension tables cannot �t in memory, they can be formed by sorting in linear time,
if we make the weak assumption that (M=B)c � D=B for some small positive constant c, where
D, M , and B are respectively the dimension table size, the internal memory size, and the block
size [BGV97, VV96]. This optimization can be obtained automatically if SQL has the multiple
grouping operator proposed in Section 3.1 and with appropriate query optimization, or by ap-
propriate restructuring of the SQL operations. The dimension tables themselves are used in a
stream fashion when forming the UP and DOWN relations. The running time of the algorithm
thus scales linearly in practice with the training set size.

Now let's turn to the detailed analysis of the I/O complexity of both algorithms. We will use
the parameters in Table 16 (all sizes are measured in bytes) in our analysis.

Each record in DETAIL has n attribute values of size ra, plus a class label that we assume
takes one (byte). Thus we have r = nra + 1. For simplicity we regard ra as some unit size and
thus r = O(n). Each entry in a dimension table consists of one node number, one attribute value,
one class label and one count. The largest node number is 2L, and it can therefore be stored in L
bits, which for simplicity we assume can �t in one word of memory. (Typically L is on the order
of 10{20. If desired, we can rid ourselves of this assumption on L by rearranging DETAIL or a
copy of DETAIL so that no leaf num �eld is needed in the dimension tables, but in practice this
is not needed.) The largest count is N , so rd = O(logN). Counts are used to record multiple
instances of a common value in a compressed way, so they always take less space than the original
records they represent. We thus have

Dk � minfnN; V C2krdg: (3)

In practice, the second expression in the min term is typically the smaller one, but in our worst-
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M size of internal memory
B size of disk block
N # of rows in DETAIL

n # of attributes in DETAIL (not including class label)
C # of distinct class labels
L depth of the �nal classi�er
Dk total size of all dimension tables at depth k

V # of distinct values for all attributes
r size of each record in DETAIL

ra size of each attribute value in DETAIL (for simplicity,
we assume that all attribute values are of similar size.)

rd size of each record in a dimension table
rh size of each record in a hash table (used in SPRINT)

Table 16: Parameters used in analysis

case expressions below we will often bound Dk by nN .

Claim 1 If all dimension tables �t in memory, that is, Dk �M for all k, the I/O complexity of

MIND is

O

�
LnN

B

�
; (4)

which is essentially best possible.

Proof : If all dimension tables �t in memory, then we only need to read DETAIL once at each
level. Dimension tables for all attributes are accumulated in memory when each DETAIL record
is read in. When the end of DETAIL table is reached, we'll have all the unsorted dimension tables
in memory. Then sorting and gini index computation are performed for each dimension table,
best split will be found for each current leaf node.

The I/O cost to read in DETAIL once is rN=B = O(nN=B), and there are L levels in the
�nal classi�er, so the total I/O cost is O(LnN=B).

Claim 2 In the case when not all dimension tables �t in memory at the same time, but each

individual dimension table does, the I/O complexity of MIND is

O

�
LnN

B
logM=B n

�
: (5)

Proof : In the case when not all dimension tables �t in memory at the same time, but each
individual dimension table does, we can form, use and discard each dimension table on the 
y.
This can be done by a single pass through the DETAIL table when M=n > B (which is always
true in practice).

MIND keeps a bu�er of size O(M=n) for each dimension. In scanning DETAIL, for each
dimension, its bu�er is used to store the accumulated information. Whenever a bu�er is full, it
is written to disk. When the scanning of DETAIL is �nished, many blocks have been obtained
for each dimension based on which the �nal dimension table can be formed easily. For example,
there might be two entries (1; 1; 1; count1), (1; 1; 1; count2) in two blocks for attr1. They are
corresponding to an entry with leaf num = 1, class = 1, attr1 = 1 in the �nal dimension table
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for attr1 and will become a entry (1; 1; 1; count1 + count2) in the �nal dimension table. All those
blocks that corresponds to one dimension are collectively called an intermediate dimension table
for that dimension.

Now the intermediate dimension table for the �rst attribute is read into memory, summarized,
and sorted into a �nal dimension table. Then MIND calculates the gini index values with respect
to this dimension for each leaf node, and keeps the current minimum gini index value and the
corresponding (attribute name; attribute value) pair in each leaf node. When the calculation for
the �rst attribute is done, the in-memory dimension table is discarded. MIND repeats the same
procedure for the second attribute, and so on. Finally, we get the best splits for all leaf nodes and
we are ready to grow the tree one more level. The I/O cost at level k is scanning DETAIL once,
plus writing out and reading in all the intermediate dimension tables once. We denote the total
size of all intermediate dimension tables at level k by D0

k. Note that the intermediate dimension
tables are a compressed version of the original DETAIL table, and they take much less space than
the original records they represent. So we have

D0
k � nN:

The I/O cost at each level is

O

0
@ 1

B

X
0�k<L

D0
k +

LnN

B

1
A = O

�
LnN

B

�
:

In the very unlikely scenario where M=n < B, a total of logM=B n passes over DETAIL are
needed, resulting in a total I/O complexity in (5).

Now let's consider the worst case in which some individual dimension tables do not �t in
memory. We employ a merge sort process. An interesting point is that the merge sort process
here is di�erent from the traditional one: After several passes in the merge sort, the lengths of
the runs will not increase anymore; they are upper bounded by the number of rows in the �nal
dimension tables, whose size, although too large to �t in memory, is typically small in comparison
with N .

We formally de�ne the special sort problem. We adopt the notations used in [Vit01]:

N = problem size (in units of data items);

M = internal memory size (in units of data items);

B = block size (in units of data items);

m =
M

B
; number of blocks that �ts into internal memory;

where 1 � B �M < N .
The special sort problem can be de�ned as follows:

De�nition 1 There are N 0(N 0 � N) distinct keys, fk1; k2; : : : ; kN 0g, and we assume k1 < k2 <

: : : < kN 0 for simplicity. We have N date items (kx(i); counti), for 1 � i � N , 1 � x(i) � N 0.

The goal is to obtain N 0 data items with the key in sorted increasing order and the corre-

sponding count summarized; that is, (ki; COUNTi), where

COUNTi =
X

1�k�N;x(k)=i

countk
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for 1 � i � N 0.

Lemma 1 The I/O complexity of the special sort problem is

O

�
N

B
logM

B

N 0

B

�
(6)

Proof : We perform a modi�ed merge sort procedure for the special sort problem. First N=M
sorted \runs" are formed by repeatedly �lling up the internal memory, sorting the records accord-
ing to their key values, combining the records with the same key and summarizing their counts,
and writing the results to disk. This requires O(N

B
) I/Os. Next m runs are continually merged

and combined together into a longer sorted run, until we end up with one sorted run containing
all the N 0 records.

In a traditional merge sort procedure, the crucial property is that we can merge m runs
together in a linear number of I/Os. To do so we simply load a block from each of the runs and
collect and output the B smallest elements. We continue this process until we have processed all
elements in all runs, loading a new block from a run every time a block becomes empty. Since
there are O(logm

N=B

m
) levels in the merge process, and each level requires O(N

B
) I/O operations,

we obtain the O(N
B
logm

N
B
) complexity for the normal sort problem.

An important di�erence between the special sort procedure and the traditional one is that in
the former, the length of each sorted run will not go beyond N 0 while in the latter, the length of
sorted runs at each level keeps increasing (doubling) until reaching N .

In the special sort procedure, at and after level k = dlogM=B N
0=Be, the length of any run

will be bounded by N 0 and the number of runs is bounded by d
N=B

mk e. (For simplicity, we will
ignore all the 
oors and ceilings in the following discussion.) From level k + 1 on, the operation
we perform at each level is basically combining each m runs (each with a length less than or equal
to N 0) into one run whose length is still bounded by N 0. We repeat this operation at each level

until we get a single run. At level k + i, we combine N=B

mk+i�1 runs into N=B

mk+i runs and the I/O at
this level is

N=B

mi�1

�
1 +

1

m

�
:

We will �nish the combining procedure at level k + p where p = logm
N=B

n0
; n0 = N 0=B: So the

I/O for the whole special sort procedure is:

2N
B
k + N

B
(1 + 1

m
) + N=B

m
(1 + 1

m
) + : : :+ N=B

mp�1 (1 +
1
m
)

� 2N
B
logm n0 + N

B
(1 + 1

m
) 1
1�1=m

� 2N
B
logm n0 + N

B

= O
�
N
B
logm n0 + N

B

�
= O

�
N
B
logM

B

N 0

B

�
:

Now we are ready to give the I/O complexity of MIND in the worst case.

Theorem 1 In the worst case the I/O complexity of MIND is

O

0
@nNL

B
+
nN

B

X
0�k<L

logM=B

Dk

B

1
A ; (7)
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which is

O

 
LnN

B

log nN
B

log M
B

!
: (8)

In most applications, the log term is negligible, and the I/O complexity of MIND becomes

O

�
LnN

B

�
; (9)

which matches the optimal time of (4).

Proof : This is similar to the proof in Claim 2. At level k of the tree growth phase, MIND
�rst forms all the intermediate dimension tables with total size D

0

k
in external memory. This

can be done by a single pass through the DETAIL table, as follows. MIND keeps a bu�er of
size O(M=n) for each dimension. In scanning DETAIL, MIND accumulates information for each
dimension in its corresponding bu�er; whenever a bu�er is full, it is written to disk. When the
scanning of DETAIL is �nished, MIND performs the special merge sort procedure for the disk
blocks corresponding to all (not individual) dimension tables. At the last level of the special sort,
the �nal dimension table for each attribute will be formed one by one. MIND calculates the gini
index values with respect to each dimension for each leaf node, and keeps the current minimum
gini index value and the corresponding (attribute name; attribute value) pair in each leaf node.
When the calculation for the last attribute is done, we get the best splits for all leaf nodes and
we are ready to grow the tree one more level.

The I/O cost at level k is scanning DETAIL once, which is O(nN=B), plus the cost of writing
out all the intermediate dimension tables once, which is bounded by O(nN=B), plus the cost for
the special sort, which is O(N

B
logM=B Dk=B).

So the I/O for all levels is

LnN

B
+

1

B

X
0�k<L

D
0

k +
nN

B

X
0�k<L

logM=B

Dk

B

which is

O

0
@LnN

B
+
nN

B

X
0�k<L

logM=B

Dk

B

1
A :

Now we analyze the I/O complexity of the SPRINT algorithm. There are two major parts in
SPRINT: the pre-sorting of all attribute lists and the constructing/searching of the corresponding
hash tables during partition. Since we are dealing with a very large DETAIL table, it is unrealistic
to assume that N is small enough to allow hash tables to be stored in memory. Actually those
hash tables need to be stored on disk and brought into memory during the partition phase. It
is true that hash tables will become smaller at deeper levels and thus �t in memory, but at the
early levels they are very large; for example, the hash table at level 0 has N entries.

Each entry in a hash table contains a tid(transaction identi�er) which is an integer in the
range of 1 to N , and one bit that indicates which child this record should be partitioned to in the
next level of the classi�er. So we have

rh =
1 + logN

8
:
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We can estimate when the hash tables will �t in memory, given the optimistic assumptions that
all memory is allocated to hash tables and all hash tables at each node have equal size; that is,
a hash table at level k contains N=2k entries. Thus, a hash table at level k �ts in memory if
rhN=2

k �M , or

2k �
N

M

�
1 + logN

8

�
: (10)

For suÆciently large k, (10) will be satis�ed, that is, hash tables become smaller at deeper nodes
and thus �t in memory. But it is clear that even for moderately large detail tables, hash tables
at upper levels will not �t in memory.

During the partition phase, each non-splitting attribute list at each node needs to be parti-
tioned into two parts based on the corresponding hash table. One way to do this is to do a random
hash table search for each entry in the list, but this is very expensive. Fortunately, there is a
better way: First, we bring a large portion of the hash table into memory. The size of this portion
is limited only by the availability of the internal memory. Then we scan the non-splitting list once,
block by block, and for each entry in the list, we search the in-memory portion of the hash table.
In this way, the hash table is swapped into memory only once, and each non-splitting attribute
list is scanned N=M times. For even larger N , it is better to do the lookup by batch sorting, but
that approach is completely counter to the founding philosophy of the SPRINT algorithm.

A careful analysis gives us the following estimation:

Theorem 2 The I/O complexity of SPRINT is

O

�
nN2 logN

BM

�
(11)

Proof : To perform the pre-sort of the SPRINT algorithm, we need to read DETAIL once, write
out the unsorted attribute lists, and sort all the attribute lists. So we have

IOpresort = O

�
nN

B
logM

B

N

B

�
:

From level 0 through level k� 1, hash tables will not �t in memory. At level i (0 � i � k� 1),
SPRINT will perform the following operations:

1. Scan the attribute lists one by one to �nd the best split for each leaf node.

2. According to the best split found for each leaf node, form the hash tables and write them
to disk.

3. Partition the attribute list of the splitting attribute for each leaf node.

4. Partition the attribute lists for the n� 1 non-splitting attributes for each leaf node.

Among these operations, the last one incurs the most I/O cost and we perform it by bringing a
portion of a hash table into memory �rst. The size of this portion is limited only by the availability
of the main memory. Then we scan each non-splitting list once, block by block, and for each entry
in the list, we search the in-memory portion of the hash table and decide which child this entry
should go in the next level. In this way, the hash table is swapped into memory only once, and
the non-splitting list is scanned multiple times. The I/O cost of this operation is

O

�
nNhi

B

�
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where hi is the number of portions we need to partition a hash table into due to the limitation of
the memory size.

From level k to level L the hash table will �t in memory, and the I/O costs for those levels is
O((L� k)nN=B) , which is signi�cantly smaller than those for the previous levels.

So the I/O cost of SPRINT becomes

O

0
@nN

B
logM

B

N

B
+

X
0�i�k�1

nNhi

B
+
(L� k)nN

B

1
A (12)

Note that we have

hi =
rhN

2iM
=

N

2iM

�
1 + logN

8

�
So

N

M

�
1 + logN

8

�
�

X
0�i�k�1

hi �
2N

M

�
1 + logN

8

�
(13)

Applying (13) to (12), we get the I/O complexity of SPRINT in (11).

Examination of (8) and (11) reveals that MIND is clearly better in terms of I/O performance.
For large N , SPRINT does a quadratic number of I/Os, whereas MIND scales well.

6 Algorithm Revisited Using SchemaSQL

In Section 3.1, we described the MIND algorithm using SQL-like statements. Due to the limitation
of current SQL standards, most of those SQL-like statements are not supported directly in today's
DBMS products. Therefore, we need to convert them to currently supported SQL statements,
augmented with new facilities like user de�ned functions. Putting logic within a user-de�ned
function hides the operator from query optimization. If classi�cation was a subquery or part of
a large query, it would not be possible to obtain all join reorderings, thereby risking suboptimal
execution.

Current SQL standards are mainly designed for eÆcient OLTP (On-Line Transactional Pro-
cessing) queries. For non-OLTP applications, it is true that we can usually reformulate the
problem and express the solution using standard SQL. However, this approach often results in
ineÆciency. Extending current SQL with ad-hoc constructs and new optimization considerations
might solve this problem in some particular domain, but it is not a satisfactory solution. Since
supporting OLAP (On-Line Analytical Processing) applications eÆciently is such an important
goal for today's RDBMSs, the problem deserves a more general solution.

In [LSS96] an extension of SQL, called SchemaSQL, is proposed. SchemaSQL o�ers the
capability of uniform manipulation of data and meta-data in relational multi-database systems.
By examining the SQL-like queries in Section 3.1, we can see that this capability is what we need
in the MIND algorithm. To show the power of extended SQL and the 
exibility and general 
avor
of MIND, in this section, we rewrite all the queries in Section 3.1 using SchemaSQL.

First we give an overview of the syntax of SchemaSQL. For more details see [LSS96].
In a standard SQL query, the tuple variables are declared in the FROM clause. A variable dec-

laration has the form hrangeihvari. For example, in the query below, the expression student T de-
clares T as a variable that ranges over the (tuples of the) relation student(student id; department;GPA):
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SELECT student id

FROM student T

WHERE T:department = CS AND T:GPA = A

The SchemaSQL syntax extends SQL syntax in several directions:

1. The federation consists of databases, with each database consisting of relations.

2. To permit meta-data queries and reconstruction views, SchemaSQL permits the declaration
of other types of variables in addition to the tuple variables permitted in SQL.

3. Aggregate operations are generalized in SchemaSQL to make horizontal and block aggrega-
tions possible, in addition to the usual vertical aggregation in SQL.

SchemaSQL permits the declaration of variables that can range over any of the following �ve sets:

1. names of databases in a federation,

2. names of the relations in a database,

3. names of the columns in the scheme of a relation,

4. tuples in a given relation in database, and

5. values appearing in a column corresponding to a given column in a relation.

Variable declarations follow the same syntax as hrangeihvari as in SQL, where var is any identi�er.
However, there are two major di�erences:

1. The only kind of range permitted in SQL is a set of tuples in some relation in the database,
where in SchemaSQL any of the �ve kinds of range can be used to declare variables.

2. The range speci�cation in SQL is made using constant, i.e., an identi�er referring to a
speci�c relation in a database. By contrast, the diversity of ranges possible in SchemaSQL
permits range speci�cations to be nested, in the sense that it is possible to say, for example,
that R is a variable ranging over the relation names in database D, and that T is a tuple
in the relation denoted by R.

Range speci�cations are one of the following �ve types of expressions, where db, rel, col are
any constant or variable identi�ers.

1. The expression ! denotes a range corresponding to the set of database names in the
federation.

2. The expression db! denotes the set of relation names in the database db.

3. The expression db :: rel! denotes the set of names of column in the schema of the relation
rel in the database db.

4. db :: rel denotes the set of tuples in the relation rel in the database db.

5. db :: rel:col denotes the set of values appearing in the column named col in the relation rel

in the database db.
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For example, consider the clause FROM db1! R, db1 :: R T . It declares R as a variable ranging
over the set of relation names in the database db1 and T as a variable ranging over the tuples in
each relation R in the database db1

Now we are ready to rewrite all the SQL-like queries in Section 3.1 using SchemaSQL. Assume
that our training set is stored in relation DETAIL in a database named FACT . We �rst generate
all the dimension tables with the schema (leaf num; class; attr val ; count) in a database named
DIMENSION , using a simple SchemaSQL statement:

CREATE VIEW DIMENSION :: R(leaf num; class; attr val ; count) AS

SELECT T:leaf num ; T:class; T:R,COUNT(*)

FROM FACT :: DETAIL! R;

FACT :: DETAIL T

WHERE R <>0 class0 AND

R <>0 leaf num 0 AND

T:leaf num <> STOP

GROUP BY T:leaf num; T:class; T:R

The variable R is declared as a column name variable ranging over the column names of
relation DETAIL in the database FACT , and the variable T is declared as a tuple variable on
the same relation. The conditions on R in the WHERE clause make the variable R range over
all columns except the columns named class and leaf num. If there are n columns in DETAIL

(excluding columns class and leaf num), this query generates n VIEWs in database DIMENSION ,
and the name of each VIEW is the same as the corresponding column name in DETAIL. Note
that the attribute name to relation name transformation is done in a very natural way, and the
formation of multiple GROUP BYs is done by involving DETAIL only once.

Those views will be materialized, so that in the later operations we do not need to access
DETAIL any more.

Relations corresponding to UP with the schema (leaf num , attr val , class , count) can be
generated in a database named UP by performing a self-outer-join on dimension tables in database
DIMENSION :

CREATE VIEW UP :: R(leaf num; attr val ; class; count) AS

SELECT d1:leaf num ; d1:attr val ; d1:class,SUM(d2:count)
FROM (FULL OUTER JOIN DIMENSION :: R d1,

DIMENSION :: R d2,
DIMENSION ! R

ON d1:leaf num = d2:leaf num AND

d1:attr val � d2:attr val AND

d1:class = d2:class

GROUP BY d1:leaf num; d1:attr val ; d1:class)

The variable R is declared as a relation name variable ranging over all the relations in database
DIMENSION . Variables d1 and d2 are both tuple variables over the tuples in each relation R in
database DIMENSION . For each relation in database DIMENSION , a self-outer-join is performed
according to the conditions speci�ed in the query, and the result is put into a VIEW with the same
name in database UP .

Similarly, relations corresponding to DOWN can be generated in a database named DOWN

by just changing the � to > in the ON clause.
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Database DOWN and database UP contain all the information we need to compute all the
gini index values. Since standard SQL only allows vertical aggregations, we need to rearrange
them before the gini index is actually calculated as in Section 3.1. In SchemaSQL, aggregation
operations are generalized to make horizontal and block aggregations possible. Thus, we can
generate views that contain all gini index values at each possible split point for each attribute in
a database named GINI VALUE directly from relations in UP and DOWN :

CREATE VIEW GINI VALUE :: R(leaf num; attr val ; gini) AS

SELECT u:leaf num; u:attr val ; fgini
FROM UP :: R u,

DOWN :: R d,
UP ! R

WHERE u:leaf num = d:leaf num AND

u:attr val = d:attr val

GROUP BY u:leaf num; u:attr val

where fgini is a function of u:class, d:class, u:count, d:count according to (1) and (2).
R is declared as a variable ranging over the set of relation names in database UP , u is a

variable ranging over the tuples in each relation in database UP , and d is a variable ranging over
the tuples in the relation with the same name as R in database DOWN . Note that the set of
relation names in databases UP and DOWN are the same. For each of the relation pairs with
the same name in UP and DOWN , this statement will create a view with the same name in
database GINI VALUE according to the conditions speci�ed. It is interesting to note that fgini
is a block aggregation function instead of the usual vertical aggregation function in SQL. Each
view named R in database GINI VALUE contains the gini index value at each possible split
point with respect to attribute named R.

Next, we create a single view MIN GINI with the schema MIN GINI (leaf num, attr name ,
attr val , gini) in a database named SPLIT form the multiple views in database GINI VALUE :

CREATE VIEW SPLIT :: MIN GINI (leaf num; attr name ; attr val ; gini) AS

SELECT T1:leaf num; R1; T1:attr val ; gini

FROM GINI VALUE ! R1,
GINI VALUE :: R1 T1

WHERE T1:gini =(SELECT MIN(T2:gini)

FROM GINI VALUE ! R2,
GINI VALUE :: D2 T2

WHERE R1 = R2 AND

T1:leaf num = T2:leaf num)

R1 and R2 are variables ranging over the set of relation names in database GINI VALUE . T1
and T2 are tuple variables ranging over the tuples in relations speci�ed by R1 and R2, respectively.
The clause R1 = R2 enforces R1 and R2 to be the same relation. Note that relation name R1 in
database GINI VALUE becomes the column value for the column named attr name in relation
MIN GINI in database SPLIT . Relation MIN GINI now contains the best split value and the
corresponding gini index value for each leaf node of the tree with respect to all attributes.

The overall best split for each leaf is obtained from executing the following:
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CREATE VIEW SPLIT :: BEST SPLIT ( leaf num; attr name ; attr val) AS
SELECT T1:leaf num; T1:attr name ; T1:attr val

FROM SPLIT :: MIN GINI T1
WHERE T1:gini =(SELECT MIN(gini)

FROM SPLIT :: MIN GINI T2
WHERE T1:leaf num = T2:leaf num)

This statement is similar to the statement generating relation BEST SPLIT in Section 3.1. T1
is declared as a tuple variable ranging over the tuples of relation MIN GINI in database SPLIT .
For each leaf num, (attr name , attr val) pair that achieving the minimum gini index value is
inserted into relation BEST SPLIT .

We have shown how to rewrite all the SQL-like queries in MIND algorithm using SchemaSQL.
In our current prototype of MIND, the �rst step, generating all the dimension tables from
DETAIL, is most costly and all the later steps only need to access small dimension tables. We use
udf to reduce the cost of the �rst step. All the SQL-like queries in Section 3.1 in the later steps
are translated into equivalent SQL queries. Those translations usually lead to poor performance.
But since those queries only access small relations in MIND, the performance loss is negligible.
While udf provides a solution to our classi�cation algorithm, we a believe general extension of
SQL is needed for eÆcient support of OLAP applications.

An alternative way to generate all the dimension tables from DETAIL would be using the
newly proposed data cube operator [GBLP96] since dimension tables are di�erent subcubes. But
it usually takes a long time to generate the data cube without precomputation and the fact that
the leaf num column in DETAIL keeps changing from level to level when we grow the tree makes
precomputation infeasible.

7 Experimental Results

There are two important metrics to evaluate the quality of a classi�er: classi�cation accuracy and
classi�cation time. We compare our results with those of SLIQ [MAR96] and SPRINT [SAM96].
(For brevity, we include only SPRINT in this paper; comparisons showing the improvement of
SPRINT over SLIQ are given in [SAM96].) Unlike SLIQ and SPRINT, we use the classical
database methodology of summarization. Like SLIQ and SPRINT, we use the same metric (gini
index) to choose the best split for each node, we grow our tree in a breadth-�rst fashion, and
we prune it using the same pruning algorithm. Our classi�er therefore generates a decision tree
identical to the one produced by [MAR96, SAM96] for the same training set, which facilitates
meaningful comparisons of run time. The accuracy of SPRINT and SLIQ is discussed in [MAR96,
SAM96], where it is argued that the accuracy is suÆcient.

For our scaling experiments, we ran our prototype on large data sets. The main cost of our
algorithm is that we need to access DETAIL n times (n is the number of attributes) for each
level of the tree growth due to the absence of the multiple GROUP BY operator in the current SQL
standard. We recommend that future DBMSs support the multiple GROUP BY operator so that
DETAIL will be accessed only once regardless of the number of attributes. In our current working
prototype, this is done by using user-de�ned function as we described in Section 3.1.

Owing to the lack of a classi�cation benchmark, we used the synthetic database proposed
in [AGI+92]. In this synthetic database, each record consists of nine attributes as shown in
Table 17. Ten classi�er functions are proposed in [AGI+92] to produce databases with di�erent
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attribute value

salary uniformly distributed from 20K to 150K
commission salary � 75K ) commission = 0 else

uniformly distributed from 10K to 75K
age uniformly distributed from 20 to 80
loan uniformly distributed from 0 to 500K
elevel uniformly chosen from 0 to 4
car uniformly chosen form 1 to 20
zipcode uniformly chosen from 10 available zipcodes
hvalue uniformly distributed from

0:5k100000 to 1:5k100000,
where k 2 f0; : : : ; 9g is zipcode

hyear uniformly distributed from 1 to 30

Table 17: Description of the synthetic data

complexities. We run our prototype using function 2. It generates a database with two classes:
Group A and Group B. The description of the class predicate for Group A is shown below.

Function 2, Group A
((age < 40) ^ (50K � salary � 100K)) _
((40 � age < 60) ^ (75K � salary � 125K)) _
((age � 60) ^ (25K � salary � 75K))

Our experiments were conducted on an IBM RS/6000 workstation running AIX level 4.1.3.
and DB2 version 2.1.1. We used training sets with sizes ranging from 0.5 million to 5 million
records. The relative response time and response time per example are shown in Figure 5 and
Figure 6 respectively. Figure 5 hints that our algorithm achieves linear scalability with respect to
the training set size. Figure 6 shows that the time per example curve stays 
at when the training
set size increases. The corresponding curve for [SAM96] appears to be growing slightly on the
largest cases. Figure 7 is the performance comparison between MIND and SPRINT. MIND ran
on a processor with a slightly slower clock rate. We can see that MIND performs better than
SPRINT does even in the range where SPRINT scales well, and MIND continues to scale well as
the data sets get larger.

We also ran MIND on an IBM multiprocessor SP2 computer system. Figure 8 shows the
parallel speedup of MIND.

Another interesting measurement we obtained from uniprocessor execution is that accessing
DETAIL to form the dimension tables for all attributes takes 93%{96% of the total execution
time. To achieve linear speedup on multiprocessors, it is critical that this step is parallelized. In
the current working prototype of MIND, it is done by user-de�ned function with a scratch-pad
accessible from multiple processors.

8 Conclusions

The MIND algorithm solves the problem of classi�cation within the relational database manage-
ment systems. Our performance measurements show that MIND demonstrates scalability with
respect to the number of examples in training sets and the number of parallel processors. We
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Figure 8: Speedup of MIND for multiprocessors. The y-value denotes the total response time for
the indicated training set size, divided by the total response time for 3 million examples.

2. MIND avoids any update to the DETAIL table of examples. This is of signi�cant practical
interest; for example, imagine DETAIL having billions of rows.

3. In the absence of a multiple concurrent grouping SQL operator, MIND takes advantage of
the user-de�ned function capability of DB2 to achieve the equivalent functionality and the
resultant performance gain.

4. Parallelism of MIND is obtained at little or no extra cost because the RDBMS parallelizes
SQL queries.

We recommend that extensions be made to SQL to do multiple groupings and the streaming
of each group to di�erent relations. Most DBMS operators currently take two streams of data
(tables) and combine them into one. We believe that we have shown the value of an operator that
takes a single stream input and produces multiple streams of outputs.
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