
IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 5, JULY 2015 535

An Efficient Algorithm for Discovering Motifs in
Large DNA Data Sets

Qiang Yu, Hongwei Huo*, Member, IEEE, Xiaoyang Chen, Haitao Guo, Jeffrey Scott Vitter, Fellow, IEEE,
and Jun Huan, Member, IEEE

Abstract—The planted motif discovery has been success-
fully used to locate transcription factor binding sites in dozens
of promoter sequences over the past decade. However, there has
not been enough work done in identifying motifs in the
next-generation sequencing (ChIP-seq) data sets, which contain
thousands of input sequences and thereby bring new challenge
to make a good identification in reasonable time. To cater this
need, we propose a new planted motif discovery algorithm
named MCES, which identifies motifs by mining and combining
emerging substrings. Specially, to handle larger data sets, we
design a MapReduce-based strategy to mine emerging substrings
distributedly. Experimental results on the simulated data show
that i) MCES is able to identify motifs efficiently and effec-
tively in thousands to millions of input sequences, and runs faster
than the state-of-the-art motif discovery algorithms, such as
F-motif and TraverStringsR; ii) MCES is able to identify motifs
without known lengths, and has a better identification accuracy
than the competing algorithm CisFinder. Also, the validity of
MCES is tested on real data sets. MCES is freely available at
http://sites.google.com/site/feqond/mces.

Index Terms—ChIP-seq, emerging substrings, MapReduce,
motif discovery.

I. INTRODUCTION

M OTIF discovery is an important and challenging
problem in computational biology. It plays a key role

in locating transcription factor binding sites (TFBS) in DNA
sequences. Binding sites tend to be short and degenerate, so it
is difficult to distinguish them from the input sequences. The
planted motif discovery [1] is a famous formulation for
motif discovery, which has been proven to be NP-complete [2].
Planted Motif Discovery Problem: Given a set of
-length DNA sequences over the alphabet

and two nonnegative integers and , satisfying
, the task is to find one or more -length strings

such that occurs in all or a large fraction of the sequences

Manuscript received March 27, 2015; accepted March 31, 2015. Date of pub-
lication April 09, 2015; date of current version August 05, 2015. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61173025 and 61373044, and the Fundamental Research Funds for the
Central Universities under Grant JB150306 and XJS15014. Asterisk indicates
corresponding author.
Q. Yu, X. Chen, and H. Guo are with the School of Computer Science and

Technology, Xidian University, Xi'an, 710071, China (e-mail: qyu@mail.xi-
dian.edu.cn; xychen@mail.xidian.edu.cn; htguo@mail.xidian.edu.cn).
*H. Huo is with the School of Computer Science and Technology, Xidian

University, Xi'an, 710071, China (e-mail: hwhuo@mail.xidian.edu.cn).
J. S. Vitter and J. Huan are with the Information and Telecommunication of

Technology Center, The University of Kansas, Lawrence, 66047, USA (e-mail:
{jsv,jhuan}@ku.edu).
Digital Object Identifier 10.1109/TNB.2015.2421340

with up to mismatches. The -length string is called a
motif and each occurrence of is called a motif instance of .
According to how and where motif occurrences appear in the

sequences, there are three types of motif discovery sequence
model: OOPS, ZOOPS and TCM [3], corresponding to one oc-
currence per sequence, zero or one occurrence per sequence
and zero or more occurrences per sequence, respectively. The
ZOOPS and TCM sequence model are more consistent with the
real biological situation than the OOPS model, but identifying
motifs under these two models is more difficult than that under
the OOPS model.
Numerous algorithms have been proposed to identify motifs

in several to dozens of promoter sequences from co-regulated
or homologous genes [4]. These algorithms can be divided
into two categories in terms of the used motif representation
models: those using consensus sequences [5] and those using
position weight matrices (PWM) [6]. Most identification al-
gorithms based on consensus sequences are pattern-driven
[7]–[11]. They traverse all sequence patterns of length with
an initial search space of and report all motifs.
The identification algorithms based on PWM usually employ
statistical techniques [3], [12]. They iteratively update an initial
PWM and report the motif with high score.
In recent years, the novel experimental techniques, such

as protein-binding microarray (PBM) [13] and chromatin
immunoprecipitation followed by high-throughput sequencing
(ChIP-seq) allows the genome-wide identification of TFBSs
[4], [14]. The experiments can output a list of transcription
factor binding regions (i.e., peak regions), but motif discovery
methods are still needed to accurately locating TFBSs in these
peak regions. The advantage of a ChIP-seq data set is that the
sequences are cleaner than the traditional promoter sequences
[4]. That is, not only a high percentage of sequences contain
TFBSs, but also each sequence has a high resolution (i.e., the
sequence length is short, about 200 base pairs). It seems easier
for motif discovery methods to obtain a high identification ac-
curacy in ChIP-seq data sets, but the size of a ChIP-seq data set
is very large and the set contains thousands or more sequences,
requiring a high computational efficiency of motif discovery.
Unfortunately, almost all algorithms designed for identifying
motifs in promoter sequences, either the pattern-driven algo-
rithms or statistical algorithms, become too time-consuming
for ChIP-seq data sets.
ChIP-tailored versions of traditional motif discovery algo-

rithms have been proposed, such as MEME-ChIP [15]. These
algorithms usually present limitations on the data set size by se-
lecting a small subset of the sequences to make motif identifica-
tion [16]. For example, MEME-ChIP just selects 600 sequences
at random from the input sequences and then identifies motifs

1536-1241 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

536 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 5, JULY 2015

by using the expectation-maximization algorithm. In spite of
this, these algorithms still show a poor time performance due
to maintaining the original algorithm framework. In contrast to
MEME-ChIP, EXTREME [17] achieves a much better time per-
formance by using the online expectation-maximization algo-
rithm, but it requires too much storage space in handling large
input (e.g., it requires about 8 GB memory for 10 Mb inputs).
A few new algorithms [18], [19] are designed either based on
suffix tree or De Bruijn graph, but they show poor time perfor-
mance with the increase of and . Although DREME [20] can
analyze very large data sets in minutes, it can only find short
motifs. To process full-size ChIP-seq data sets efficiently, some
algorithms based on word counting are proposed, such as RSAT
[21] and CisFinder [22]. Both RSAT and CisFinder just take
advantages of frequencies of very short words for the sake of
good time performance, so they may miss some useful informa-
tion contained in the sequences; also, CisFinder does not support
outputting motifs of a specified length.
Against the background of identifying motifs in ChIP-seq

data sets, it is necessary to design new algorithms with the fol-
lowing features: i) they can handle the full-size input sequences
and make full use of the information contained in the sequences,
ii) they can complete the computation with a good time perfor-
mance and a good identification accuracy, iii) they can identify
motifs without the OOPS constraint and iv) they can report mo-
tifs with or without a specified length.
To cater these needs, we proposed a new motif discovery

algorithm, named MCES, based on mining and combining
emerging substrings, which are potential motif instances.
We design MCES in terms of the ZOOPS sequence model. To
handle very large data sets, we also design a MapReduce-based
strategy to mine emerging substrings distributedly. MCES fully
uses the emerging substrings of different lengths, and is able
to efficiently and effectively identify motifs with or without a
specified length in full-size ChIP-seq data sets.
The rest of the paper is organized as follows. Section II first

gives the overview of the proposed algorithm, then describes
the mining step and the combining step in detail, and finally
shows the whole algorithm. Section III presents the results and
discussion. We conclude the paper in Section IV.

II. METHODS

A. Overview
We first introduce an observation that a given instance of

a motif may exactly occur multiple times in ChIP-seq
data sets. ChIP-seq data sets contain thousands or more DNA se-
quences, and thus the motif also has thousands or more
instances. Since each instance differs from in at most posi-
tions, we can expect to find some motif instances repeating mul-
tiple times in thousands of sequences. In Section III-A we con-
firm this observation by using probabilistic analysis and demon-
strate that motif instances have higher occurrence frequencies
than the background -mers.
In view of these considerations, we identify motifs by mining

and combining substrings with high occurrence frequencies.
Accordingly, our algorithm contains two main steps, namely
the mining step and the combining step. Table I summarizes
the notations used in this paper.
In the mining step, we mine substrings of different lengths

simultaneously, for i) the length of the

TABLE I
NOTATIONS USED IN THIS PAPER.

identified motif is unknown in advance and ii) some segments
of a motif are also over-represented and mining them helps us
obtain more motif information. Moreover, to reduce the dis-
turbance of random over-represented substrings, we perform
mining by using both a test set and a control set of DNA se-
quences. The test set contains the sequences that share the mo-
tifs to be identified, whereas the control set only consists of the
background sequences (i.e., the sequences that do not contain
motif instances). Thereby, the interest substrings or motif in-
stances are only over-represented in the test set rather than in
the control set, and we call such substrings emerging substrings.
Naturally, we convert our mining task to emerging substrings
mining problem [23] as follows. The detailed description of the
mining step is given in Section II-B.
Emerging Substrings Mining Problem: Given a test set

and a control set of sequences over , a
threshold frequency , and a minimum
growth rate , the task is to find all substrings over

such that , and
. The substrings satisfying the con-

ditions of both and are called emerging substrings.
In the combining step, we combine emerging substrings to-

gether by using clustering methods to obtain predicted motifs.
The key factors to consider are as follows. First, the mining step
may output many emerging substrings due to mining substrings
of different lengths, and these emerging substrings should be
combined efficiently. Second, we need a method to calculate
the similarity between two substrings of different lengths. Sec-
tion II-C describes the combining step in detail.

B. Mining Step
We take advantage of the string mining algorithm proposed

by Fischer, Heun and Kramer [23] to calculate the mining step
efficiently. Their mining algorithm runs in optimal time. It first
constructs the suffix array (SA) and the longest common prefix

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

YU et al.: AN EFFICIENT ALGORITHM FOR DISCOVERING MOTIFS IN LARGE DNA DATA SETS 537

array (LCP) for the input data sets, and then visits all substrings
by simulating the suffix tree traversal in the SA using the LCP
information.
To adjust their mining algorithm to closely fit our problem, we

make the following improvements. First, since the occurrence
frequencies of motif instances are different for distinct
length , we set an adaptive threshold frequency for each pos-
sible length through probabilistic analysis, rather than using a
fixed one. Second, we design a distributed version of the mining
algorithm based on MapReduce to make it scale well for very
large data sets.
1) Mining Parameters: The threshold frequency and the

minimum growth rate are two important parameters in the
mining step. We set as 2 to reduce the disturbance of random
over-represented substrings. In the following discussion, we
focus on how to set the threshold frequency .
In order to properly choose the threshold frequency for

mining potential instances, we estimate the probability
that a random instance of a motif occurs (or is
implanted) in a given sequence, denoted by , based on
the assumption that the given sequence contains one motif
instance. Since it is easy to calculate the probability of the
occurrence of given , denoted
by , can be calculated by
using the theorem of total probability:

(1)

Furthermore, we need to estimate the probability of
. Since , there exist

positions in the alignment of and covering the positions
where differs from . For each of the positions, let
represents the probability that differs from . Then, we
calculate by using the binomial formula:

(2)

In (2), the parameter reflects the conservation of the
motif. For a given motif , a small indicates that
is more conserved, namely differs from its instances in
fewer positions. We set as 0.2, 0.5 and 0.8 to represent high
conservation, intermediate conservation and low conservation,
respectively.
On the above basis, we calculate the threshold frequency

by (3), where the parameter represents the per-
centage of input sequences containing motif instances, for sup-
porting the ZOOPS sequence model.

(3)

In practice, to determine the value of the threshold frequency
for each length , we make the following settings. We choose
corresponding to the challenging problem instances, and set

both and as 0.8. When is large , the value of
is too small and there are too many disturbed

substrings passing the constraint; in this case, we reset to a
low bound 0.002, which is approximately equal to the value of

for .
2) MapReduce Strategy: In mining emerging substrings, al-

though the storage space required by the associated data struc-
tures (i.e., SA and LCP) is linear in the size of input data sets, it
will exceed the memory capacity of a single machine when the
input data sets are very large. To solve this problem, we propose
an emerging substrings mining method based on MapReduce
[24], which facilitates us to develop scalable data-intensive ap-
plication on distributed systems.
We partition the input data sets and to multiple data

blocks with the size . More specifically, is partitioned
to blocks: , and is partitioned
to blocks: . Note that, the
data blocks and may have a size smaller than .
In Map phase, each Map task deals with one data block
and returns the occurrence counts of all substrings in
using a set of 3-tuples , where
is equal to if comes from

otherwise. Here, using 3-tuples
to represent the occurrence counts of substrings is for the
convenience of merging them in Reduce phase.
Note that, the size of the intermediate results (i.e., the set of

3-tuples) generated from each map task could be very large;
in that case I/O operations would consume too much compu-
tational time. To tackle this problem, we introduce a parameter

to filter out the substrings that do not satisfy the
condition of the threshold frequency . The parameter al-
lows us to use relaxed constraint to filter out some unnecessary
substrings in advance with interesting substrings retained. The
effect of the parameter is demonstrated in Section III-C3. On
the above basis, the map function is as follows, where traversing
all substrings (line 2) is performed by the algorithm in [23].

Algorithm 1 Map function

Input: a data block
Output: the set of 3-tuples
1:
2: for each substring do
3: get its occurrence count
4:
5: if and then
6: if is from then
7: to
8: else
9: to
10: return

In Reduce phase, reduce task merges the 3-tuples with the
same key (substring) into one 3-tuple by summing up the values
in the corresponding positions. That is, when all map tasks finish
the transmission of their intermediate results, for a substring
its 3-tuples are , and then the
final 3-tuple of is , , which
equals to . Finally, reduce
task outputs the substrings that satisfy the conditions of both
and . The reduce function is as follows.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

538 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 5, JULY 2015

Algorithm 2 Reduce function

Input: all sets of 3-tuples is the
total number of
Output: the set of emerging substrings
1:
2: for to do
3: merge to
4: for each 3-tuple in do
5:
6:
7:
8: if and then
9: add to
10: return

C. Combining Step

1) Combining Method: We describe the main framework
of the combining step in Algorithm 3 and accordingly give an
example in Fig. 1 using the Esrrb data set [25]. The combining
step includes two stages: clustering emerging substrings and
clustering PWMs that correspond to the clusters of emerging
substrings.

Algorithm 3 Combine Emerging Substrings

Input: the set of emerging substrings
Output: the set of motifs
1: // the set of dispersive substrings
2: // the set of PWMs
3: // the set of motifs
4: for to do
5: cluster the emerging substrings in of length
6: for each obtained cluster of emerging substrings do
7: if then
8: align the substrings in and get a PWM
9: add to
10: else
11: add the substrings in to
12: cluster the substrings in and add obtained PWMs to

13: cluster the PWMs in
14: for each obtained cluster of PWMs do
15: align the PWMs in and get a combined PWM
16: fetch the segment of with high information content to

obtain a motif
17: add to
18: return

All clustering operations are completed by using the MCL al-
gorithm [26],which is a graph clustering algorithmbased on sim-
ulation of flow in graphs and has been widely used in bioinfor-
matics. In the graphical representation of the substrings/PWMs,
each substring/PWM is represented by a node, and the weight of

the edge between two nodes is the similarity between two sub-
strings/PWMs defined in Section II-C2. There are two param-
eters required in using the MCL algorithm, namely the power
parameter and the inflation parameter , and we set them as 2
and 1.8 following the suggestions given in [27].
In Stage 1 (lines 4 to 12 in Algorithm 3), to ensure good time

performance, we iteratively cluster the emerging substrings of
the same length, rather than cluster all the emerging substrings at
one time. If an obtained cluster contains substrings, we call
it an invalid cluster and call the substrings in it dispersive sub-
strings. The dispersive substrings of the same length show weak
or no motif information, but all the dispersive substrings of dif-
ferent lengths may contain strong motif information. Thus, clus-
tering the dispersive substrings of different lengths can help us to
find the motif information missed in clustering the substrings of
the same length. In Fig. 1, the symbol # represents the number of
corresponding substrings. In all of the 787 emerging substrings,
there are 93 dispersive substrings; in all of the 40 valid clusters,
there are9ones coming fromclustering thedispersive substrings.
For each valid cluster, we need to align the substrings in it

to get a PWM. First, we can align two substrings by aligning
their maximum overlap and obtain a score by (4). Second, we
align all substrings in the cluster by building a maximumweight
spanning tree using the Prim algorithm.
In order to implement the alignment along with building the

spanning tree, we select the substring that is the cluster center
as the start node of the spanning tree, which is located in the
thickest parts of the graph of substrings. From Fig. 1, we can
see that the cluster center (the bold substring) corresponds to
the segment of PWM with high information content. Then, we
repeatedly select a new node (substring) linked to an already
selected node (substring) and align to , until all substrings
are selected and aligned .
In Stage 2 (lines 13 to 18 in Algorithm 3), we cluster the ob-

tained PWMs, which contributes to eliminating redundant motif
information and combining parts of motif information to form
whole motifs. For each cluster of PWMs, we align the PWMs in
it. The aligning process is similar to that of aligning emerging
substrings, except for using a different similarity measure pro-
vided by (6). As shown in Fig. 1, after aligning the PWMs in
each cluster of PWMs, the corresponding substrings are also
aligned, and then we get a combined PWM for each cluster of
PWMs.
Finally, we obtain the motifs by fetching the segments of

combined PWMs with high information content (the bold parts
of the combined PWMs). Given a combined PWM , when
identifying motifs with a specified length , we traverse all seg-
ments of length and fetch the segment of with maximum
information content as the motif. When identifying general mo-
tifs (without a specified length), we obtain the motif by deleting
the columns with low information content from two sides of
. More specifically, we find a column and a column of

such that for any and , the information content of
column is smaller than a threshold (0.1), and we fetch the seg-
ment corresponding to columns to as the motif. As shown in
Fig. 1, we obtain three motifs by clustering 40 PWMs (clusters
of emerging substrings).
2) Similarity Measures: In the combining step, our algorithm

needs to cluster two types of data elements, namely emerging

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

YU et al.: AN EFFICIENT ALGORITHM FOR DISCOVERING MOTIFS IN LARGE DNA DATA SETS 539

Fig. 1. Illustration of the combining step using the Esrrb data set.

substrings and PWMs. Therefore, we design two similarity mea-
sures for these two types of data elements.
First, we compare two given emerging substrings and
in terms of their maximum overlap. The two emerging

substrings may have different lengths and are not aligned. We
expect the overlap of the two emerging substrings represents
the common segment of motif occurrences. For the overlap
of length , we allow a maximum number of mismatches

; moreover, we say an overlap is valid only when its
length is larger than four. Taking these considerations into
account, we calculate the similarity of and by (4), where

denotes the length of the maximum overlap of
and .

if ,
otherwise.

(4)

Second, we need to compare two given PWMs and ,
which correspond to the sets of aligned similar emerging sub-

strings. Comparing and needs to consider two aspects:
i) how to compare two PWM columns and , and ii)
how to align and and sum the scores from comparing
corresponding columns. We compare and by using
the Average Log Likelihood Ratio (ALLR) to distinguish their
probability distributions [28]:

(5)
where is the background frequency of base ,
and and are the count and frequency of base
at the position of .
For each PWM obtained in Stage 1 of the combining step,

there is a segment of with significantly high information con-
tent, which is likely to correspond to a segment of the motif. To
reduce the disturbance of columns with low information con-
tent, we compare and by finding aligned segments of
and with maximum ALLR. Thus, we calculate the similarity

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

540 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 5, JULY 2015

of and by (6), where denotes the length of the segment
(in practice, we set as 6).

(6)

D. Whole Algorithm
The whole algorithm of MCES is described in Algorithm 4.

MCES can make de nove motif discovery without any presets.
Note that, mining appropriate amount of emerging substrings is
sensitive to the threshold frequency . In default, we set for
mining potential instances as described in Section II-B1,
and set the range of as the usual motif lengths .
Optionally, users can reset and the range of to meet their
own needs. We use a threshold (40 Mbytes in default) to de-
termine whether to perform the mining step using MapReduce.
After performing the mining step and the combining step (lines
2 to 6), if the set of motifs is empty, we usually do not get
enough emerging substrings in the mining step. In this case, we
relax the threshold frequency and reperform the mining step
and the combining step (lines 7 to 9).

Algorithm 4 MCES

Input: a test set and a control set of DNA sequences
Output: the set of motifs
1: set mining parameters
2: if then
3: perform mining step in a single machine
4: else

5: perform mining step distributedly using MapReduce
6: perform combining step using Algorithm 1 and get
7: if then
8:
9: perform mining step and combining step again
10: return

The time complexity of MCES depends on both the mining
step and the combining step. In the mining step, all of the oper-
ations, namely constructing data structures (SA and LCP) and
traversing all substrings, are completed in optimal time [23],
namely . The combining step is mainly to
apply the MCL clustering algorithm multiple times, and takes

time: denotes the number of times that the MCL
algorithm runs, and is the time complexity of the MCL al-
gorithm [25], where denotes the number of nodes to be clus-
tered; since both and are approximately equal to the se-
quence length , we replace themwith in the time complexity.
Therefore, the time complexity of MCES is

. The space complexity of MCES mainly depends on the
mining step, in which the data structures (not compressed SA
and LCP) need a storage space of

bits.
When performing the mining step using MapReduce, besides

the complexity analyzed above, we also need to consider the
additional I/O complexity caused by the intermediate results,
which is discussed in detail in Section III-C3.

TABLE II
COMPARISONS OF TWO PROBABILITIES AND

III. RESULTS AND DISCUSSION

A. Probabilistic Analysis of Mining Emerging Substrings
In this section, we use probabilistic analysis to demonstrate

the feasibility of mining emerging substrings for identifying
motifs, which is the foundation of the MCES algorithm.

We expect that the emerging substrings are potential instances of
the motif. Therefore, we need to demonstrate that i) some
instances of the motif can exactly occur multiple times in
ChIP-seq data sets and ii) they have higher occurrence frequen-
cies than the -mers in the background sequences.
For this purpose, we compare two probabilities. One is the

probability that a random instance of a motif occurs (or
is implanted) in a given sequence, namely calculated by
(1). The other is the probability that a random -mer occurs in a
given sequence of length , denoted by calculated by (7).

and represent the occurrence frequencies of a random
motif instance and that of a random -mer, respectively.

(7)

Table II gives the comparisons of the two probabilities on dif-
ferent . The values of are obtained in the high, inter-
mediate and low conservation cases by setting in (2) as 0.2,
0.5 and 0.8, respectively. The values of are obtained by set-
ting as 200. From the table, we can find that the values of
are large enough in most cases, and thus the random motif
instances can exactly occur multiple times in the data sets con-
taining thousands or more sequences. Note that, for the cases of
large and , it is difficult for a motif instance to repeat
multiple times; in this case, the short segments of this motif in-
stance may repeat multiple times, and we can obtain the motif
by mining and clustering these short segments. We can also find
that the values of are significantly larger than that of ;
that is, random instances have higher occurrence frequen-
cies than random -mers. From the above, it is a feasible way to
obtain motif information by mining emerging substrings.

B. Algorithm Assessment
There are two widely used indicators to assess the motif dis-

covery algorithms. One is the running time. The other is the
identification accuracy. A good motif discovery algorithm is ex-
pected to run in a short time with a high identification accuracy.
We use the nucleotide level performance coefficient

[29] to evaluate the identification accuracy:

(8)

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

YU et al.: AN EFFICIENT ALGORITHM FOR DISCOVERING MOTIFS IN LARGE DNA DATA SETS 541

TABLE III
VALIDITY OF MCES FOR IDENTIFYING MOTIFS

where is the set of nucleotide positions covered by the occur-
rences of the real motif and is the set of nucleotide positions
covered by the occurrences of the predicted motif. ranges
from 0 to 1, indicating both the sensitivity and specificity.
Note that, in our experiments, we simplify the computation of

by comparing the real motif and the predicted motif di-
rectly: let and be the set of nucleotides covered by the real
motif and the predicted motif, respectively. That is, assume ,
and be the length of the real motif, the length of the pre-

dicted motif and the length of the overlap of the two motifs, re-
spectively; then and . The
reason for using simplified is that it can better reflect the
validity of themotif discovery for large input. Let us consider the
case that the identified motif and the real motif are identical. In
this case, the exact identification ismade and the simplified
is 1; however, for the original , the spurious hits in searching
motif instances in large inputwillmake it very low,which cannot
distinguish the identification of different levels effectively.

C. Results on Simulated Data
Simulated data provide quantitative measures to compare the

performance of different algorithms. We generate the test set
based on the method in [1]: generate a motif of length and
identically distributed sequences of length ; then, select 80%
of the sequences and implant a random motif instance to a
random position in each of the selected sequences. Note that, we
generate each motif instance different from the motif in at most
positions, and control the conservation of the motif by

setting the value of in (2). The control set consists of random
sequences of length without implanted motif instances. We
implement MCES using ; all results except those in Sec-
tion III-C3 are obtained on a computer with a 2.67 GHz pro-
cessor and a 4 Gbyte memory.
1) Identifying Motifs: We first demonstrate the validity

of MCES for identifying motifs. We choose three
problem instances of different lengths, and fix and

. For each problem instance, we test MCES in all the
high , intermediate and low con-
servation cases. The results are shown in Table III. MCES not
only makes valid identification (outputs the exact results) for all
these problem instances but also has quite a short running time.
In the case of high conservation, the running time of MCES is
obviously larger than the other two cases; the reason is that in
this case the mining step mines more emerging substrings and
the combining step needs to take more time to process them.
As well as MCES, some other motif discovery algo-

rithms can also find the implanted motifs successfully in large

TABLE IV
RUNNING TIME ON CHALLENGING PROBLEM INSTANCES

TABLE V
RESULTS ON DATA SETS OF DIFFERENT SIZES

data sets, such as F-motif [18]. In this case, the running time is
a key indicator used to assess these algorithms. We compare the
running time of MCES with two recent and representative
motif discovery algorithms, namely F-motif [18] and Traver-
StringsR [11]. F-motif is a more powerful exhaustive method
for finding motifs in large data sets compared to previous
heuristic and exhaustive search algorithms. TraverStringsR is
the fastest exact algorithm for identifying motifs in dozens
of promoter sequences so far. Here, we do not select CisFinder,
a fast motif discovery algorithm, as a comparison object, since
CisFinder cannot report specified motifs.
We show in Table IV the comparisons of running time on dif-

ferent challenging problem instances with fixed
and . MCES runs much faster than the other two algo-
rithms and is able to complete computation on all these instances
within one minute. The huge difference of running time is de-
termined by the used algorithm frameworks. For MCES, the
mining step is based on the optimal string mining and its running
time is fixed for the input data of the same scale; the combining
step is based on clustering and its running time depends on the
number of mined emerging substrings. The total running time of
MCES grows slightly with the increase of and , since when
handling sequences with large motif instances MCES will
obtain more emerging substrings and take more time in the com-
bining step. Both F-motif and TraverStringsR are pattern-driven
algorithms, and their running time grows dramatically with the
increase of and . Particularly, TraverStringsR fails to solve
any of these problem instances; the reason is that its time com-
plexity under ZOOPS sequence model is times
that under OOPS sequence model, where represents the per-
centage of input sequences containing motif instances [11], and
the value of is very large for ChIP-seq data sets.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

542 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 5, JULY 2015

TABLE VI
EFFECT OF THE PARAMETER ON THE PERFORMANCE OF MCES

Fig. 2. Comparisons of MCES and CisFinder.

We also list the running time of TraverStringsR under OOPS
sequence model and use it as a reference; the results show that,
even in this case, TraverStringsR still cannot identify large
motifs in a practical amount of time.
We show in Table V the comparisons on the data sets of dif-

ferent sizes with fixed and . MCES
is able to identify motifs on all of these data sets and orders of
magnitude faster than F-motif. Besides the running time, we
also list the required storage space. Although the storage space
of MCES and F-motif grows linearly with the data set size , the
storage space ofMCES is an order ofmagnitude smaller than that
of F-motif. Our explanation is that MCES and F-motif construct
the suffix array and the suffix tree for the input sequences, respec-
tively; the suffix array takes less storage space than the suffix tree.
2) Identifying General Motifs: In this section, we test MCES

without giving the length of the implanted motifs. In reality,
the length of the identified motifs is unknown in advance, which
increases the problem difficulty, and we call such motifs general
motifs. We select compared algorithms according to the follow-
ings principles: they can analyze full-size ChIP-seq data sets,
can complete the calculation in a short time and can make iden-
tification without giving the motif length in advance. As a result,
we only select CisFinder as the compared algorithm.
First, we carry out comparisons on different problem in-

stances with fixed and . For each problem
instance, the results are the average of ones obtained by running
algorithms on three random data sets that correspond to three
types of conservation. The running time and identification accu-
racy are plotted in Figs. 2(a) and 2(b), respectively. Although the

running time ofMCESgrowswith the increase of (this phenom-
enon has been explained in Section III-C1), it is still small for the
maximum and is competitive with that of CisFinder, a constant
running time for fixed . The identification accuracy ofMCES is
stablewith a slowdownward trend andobviously higher than that
of CisFinder. We believe this is due to the fact that MCESmines
all emerging substrings of different lengths, so as to make use of
more information in sequences than CisFinder.
Second, we carry out comparisons on different data set size

(number of sequences) with fixed and .
The running time and identification accuracy are plotted in
Figs. 2(c) and 2(d), respectively. As our expectations,MCES has
a better identification accuracy than CisFinder. For the running
time,MCES shows a small upward trend with the increase of the
data set size and outperforms CisFinder on the data sets of large
size.
3) Identifying Motifs in Larger Data Sets: As shown in

Table V, when handling very large data set, the storage space of
MCES will exceed the memory capacity of a single machine.
We use MapReduce-based strategy to solve this problem. It
is interesting to note that, in contrast to our previous work
using MapReduce to accelerate motif search in solving difficult
problem instances [30], we now use MapReduce mainly to
tackle the storage limitation of a single machine in the case of
very large inputs.
Our experiments of MapReduce are conducted on a Hadoop

cluster with eight personal computers. Each computer has a
2.67 GHz CPU and a 4 Gbyte Memory, and runs the ubuntu
12.04 operating system, JDK1.7 and hadoop 1.2.1. We use the
data sets of varied size and fixed and .
We set the size of each data block as 20 Mbytes.
We first test the effect of the parameter on the performance

of MCES. The parameter is used to reduce the intermediate
results generated from each map task, so as to improve the
time performance of I/O operations. We expect we can filter out
some unnecessary substrings and simultaneously retain inter-
esting substrings. Table VI shows the running time, the size of
the intermediate results and the number of mined emerging sub-
strings under different values of , as well as the case without
. In the case without , we can obtain all emerging substrings

safely, but both the running time and the size of the intermediate
results are significantly larger than the case using , especially
for large data set. Also, we can see that although a large cor-
responds to a smaller size of intermediate results and a smaller
running time, it may miss some emerging substrings. In order to
retain as many emerging substrings as possible, we use a small
and set it as 0.1 in practice.
We show in Table VII the running time of MCES obtained by

varying the number of nodes in the Hadoop cluster. We can find
that i)MCES on a single machine without usingMapReduce has
a good time performance but cannot handle the data set with very

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

YU et al.: AN EFFICIENT ALGORITHM FOR DISCOVERING MOTIFS IN LARGE DNA DATA SETS 543

TABLE VII
RUNNING TIME OF MCES USING MAPREDUCE

Fig. 3. Results on the mouse embryonic stem cell data sets.

large size; ii) when the data set size is small, the running time
on different number of nodes differs slightly, because the total
number of partitioned data block is small in this case and not all
nodes are used adequately; iii) the advantages of MCES using
MapReduce are obvious when the data set size is large and the
speedup is almost linearly proportional to the number of nodes.

D. Results on Real Data
Unlike the data sets of promoter sequences, there have been

no standard benchmarks for ChIP-seq data sets. Alternatively,
we adopt the widely used mESC (mouse embryonic stem cell)
data [25], which include 12 ChIP-seq data sets of different sizes
for 12 TFBSs. In mESC data, the test sets are composed of peak
regions of length 200, and the control sets are composed of back-
ground sequences of length 200 starting from 400 base pairs
away from both ends of peak regions.
The aim of experiments in this section is to test the validity of

MCES for identifying real motifs. Following the previous works
using mESC data [18], [20]–[22], we also report the detected
motifs in the form of sequence logos, which graphically show
the degree of motif conservation measured by relative entropy
[31], and then compare them with the motifs published in [25].
We show in Fig. 3 the running time ofMCES and the detected

motifs. For each of these data sets, MCES is able to find the
motif similar to the published one and runs in a short time. For

the Nanog, Smad1 and Sox2 data sets, the running time is larger
than the simulated data of the same scale; the reason is that
MCES obtains a large set of dispersive substrings due to low
conservation of motifs in these data sets and needs more time to
cluster these dispersive substrings.
It should be pointed out that, besides the published motifs,

MCES also reports some new motifs, which are potential DNA
binding sites of other transcription factors that bind in complex
or in conjunctionwith theChIPed transcription factor [14]. In the
real world, the transcription factors and the DNA binding sites
are not always in the form of one-to-one mapping, and multiple
transcription factors may be coupled with multiple binding sites
[32], [33]. Multiple conserved sites separated by non-conserved
spacers may form a structured motif [34]. Therefore, MCES is
helpful for discovering structured motifs in large data sets.

IV. CONCLUSION
We propose a new word counting based algorithm named

MCES for identifying motifs in large DNA data sets. MCES
offers anewperspectivebyminingall emerging substringsofdif-
ferent lengths to fullyuse the informationcontained in sequences.
Experimental results show that MCES is able to efficiently and
effectively identify motifs in full-size ChIP-seq data sets.

ACKNOWLEDGMENT

A preliminary version [35] of this work appeared in the pro-
ceedings of IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), 2–5 November 2014, Belfast, UK.
Hongwei Huo is the corresponding author.

REFERENCES
[1] P. A. Pevzner and S. H. Sze, “Combinatorial approaches to finding

subtle signals in DNA sequences,” in Proc. ISMB, 2000, pp. 269–278.
[2] P. A. Evans, A. D. Smith, and H. T. Wareham, “On the complexity of

finding common approximate substrings,” Theoretical Comput. Sci.,
vol. 306, pp. 407–430, 2003.

[3] T. L. Bailey and C. Elkan, “Fitting a mixture model by expectation
maximization to discover motifs in biopolymers,” inProc. ISMB, 1994,
pp. 28–36.

[4] F. Zambelli, G. Pesole, and G. Pavesi, “Motif discovery and transcrip-
tion factor binding sites before and after the next-generation sequencing
era,”Briefings Bioinformat., vol. 14, no. 2, pp. 225–237, 2013.

[5] T. D. Schneider, “Consensus sequence zen,” Appl. Bioinformat., vol.
1, pp. 111–119, 2002.

[6] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties andweight
matrix choice,” Nucleic Acids Res., vol. 22, pp. 4673–4680, 1994.

[7] Q. Yu, H. Huo, Y. Zhang, and H. Guo, “PairMotif: a new pattern-driven
algorithm for planted DNAmotif search,” PLoS ONE, vol. 7, no.
10, p. E48442, 2012.

[8] Q. Yu, H. Huo, Y. Zhang, H. Z. Guo, and H. T. Guo, “PairMotif+:
a fast and effective algorithm for de novo motif discovery in DNA
sequences,” Int. J. Biol. Sci., vol. 9, no. 4, pp. 412–424, 2013.

[9] G. Pavesi, G. Mauri, and G. Pesole, “An algorithm for finding signals
of unknown length in DNA sequences,” Bioinformatics, vol. 17, pp.
S207–S214, 2001.

[10] H. Dinh, S. Rajasekaran, and J. Davila, “qPMS7: a fast algorithm for
finding -motifs in DNA and protein sequences,” PLoS ONE, vol.
7, no. 7, p. E41425, 2012.

[11] S. Tanaka, “Improved exact enumerative algorithms for the planted
-motif search problem,” IEEE/ACM Trans. Comput. Biol. Bioin-

format., vol. 11, no. 2, pp. 361–374, 2014.
[12] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald,

and J. C.Wootton, “Detecting subtle sequence signals: a gibb's sampling
strategy formultiple alignment,” Science, vol. 262, pp. 208–214, 1993.

[13] K. Wong, T. Chan, C. Peng, Y. Li, and Z. Zhang, “DNA motif eluci-
dation using belief propagation,” Nucleic Acids Res., vol. 41, no. 16, p.
E153, 2013.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

544 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 5, JULY 2015

[14] T. L. Bailey, P. Krajewski, I. Ladunga, C. Lefebvre, Q. Li, T. Liu, P.
Madrigal, C. Taslim, and J. Zhang, “Practical guidelines for the com-
prehensive analysis of ChIP-seq data,” PLoS Comput. Biol., vol. 9, no.
11, p. E1003326, 2013.

[15] P. Machanick and T. L. Bailey, “MEME-ChIP: motif analysis of large
DNA datasets,” Bioinformatics, vol. 27, no. 12, pp. 1696–1697, 2011.

[16] M.Hu, J. Yu, J.M. Taylor, A.M. Chinnaiyan, and Z.Qin, “On the detec-
tion and refinement of transcription factor binding sites using ChIP-seq
data,”Nucleic Acids Res., vol. 38, no. 7, pp. 2154–2167, 2010.

[17] D. Quang and X. Xie, “EXTREME: an online EM algorithm for motif
discovery doi:10.1093/bioinformatics/btu093,” Bioinformatics, 2014.

[18] C. Jia, M. Carson, Y. Wang, Y. Lin, and H. Lu, “A new exhaustive
method and strategy for finding motifs in ChIP-enriched regions,”
PLoS ONE, vol. 9, no. 1, p. E86044, 2014.

[19] F. Zambelli and G. Pavesi, “A faster algorithm for motif finding in
sequences from ChIP-seq data,” in Proc. CIBB, 2011, pp. 201–212.

[20] T. L. Bailey, “DREME:motif discovery in transcription factor ChIPseq
data,” Bioinformatics, vol. 27, no. 12, pp. 1653–1659, 2011.

[21] M. Thomas-Chollier, C. Herrmann, M. Defrance, O. Sand, D. Thi-
effry, and J. v. Helden, “RSAT peak-motifs: motif analysis in full-size
ChIPseq datasets,” Nucleic Acids Res., vol. 40, p. E31, 2012.

[22] A. A. Sharov and M. S. Ko, “Exhaustive search for over-represented
DNA sequencemotifswithCisFinder,”DNARes., vol. 16, pp. 261–273,
2009.

[23] J. Fischer, V. Heun, and S. Kramer, “Optimal string mining under fre-
quency constraints,” in Proc. PKDD, 2006, pp. 139–150.

[24] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[25] X. Chen, H. Xu, P. Yuan, F. Fang, M. Huss, V. B. Vega, E. Wong, Y. L.
Orlov, W. Zhang, J. Jiang, Y. H. Loh, H. C. Yeo, Z. X. Yeo, V. Narang,
K. R. Govindarajan, B. Leong, A. Shahab, Y. Ruan, G. Bourque, W. K.
Sung, N. D. Clarke, C. L. Wei, and H. H. Ng, “Integration of external
signaling pathways with the core transcriptional network in embryonic
stem cells,” Cell, vol. 133, pp. 1106–1117, 2008.

[26] S. van Dongen, “Graph clustering by flow simulation,” Ph.D. disserta-
tion, Univ. Utrecht, Utrecht, The Netherlands, 2000.

[27] S. Brohee and J. v. Helden, “Evaluation of clustering algorithms for
protein-protein interaction,” BMC Bioinformat., vol. 7, p. 488, 2006.

[28] T.Wang and G. D. Stormo, “Combining phylogenetic data with co-reg-
ulated genes to identify regulatory motifs,” Bioinformatics, vol. 19, no.
18, pp. 2369–2380, 2003.

[29] M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. D. Moor, E. Eskin, A.
V. Favorov,M.C. Frith, Y. Fu,W. J. Kent, V. J.Makeev,A.A.Mironov,
W. S. Noble, G. Pavesi, G. Pesole, M. Régnier, N. Simonis, S. Sinha,
G. Thijs, J. v. Helden,M. Vandenbogaert, Z.Weng, C.Workman, C. Ye,
and Z. Zhu, “Assessing computational tools for the discovery of tran-
scription factor binding sites,”NatureBiotechnol., vol. 23, pp. 137–144,
2005.

[30] H. Huo, S. Lin, Q. Yu, Y. Zhang, and V. Stojkovic, “A MapRe-
duce-based algorithm for motif search,” in Proc. IPDPSW, 2012, pp.
2046–2054.

[31] G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, “Weblogo: a
sequence logo generator,” Genome Res., vol. 14, no. 6, pp. 1188–1190,
2004.

[32] Y. Guo, S. Mahony, and D. K. Gifford, “High resolution genome
wide binding event finding and motif discovery reveals transcription
factor spatial binding constraints,” PLoS Comput. Biol., vol. 8, no. 8,
p. E1002638, 2012.

[33] K.Wong, C. Peng,M.Wong, and K. Leung, “Generalizing and learning
protein-DNA binding sequence representations by an evolutionary al-
gorithm,” Soft Comput., vol. 15, pp. 1631–1642, 2011.

[34] S. Pissis, “MoTeX-II: structured motif extraction from large-scale
datasets,” BMC Bioinformat., vol. 15, p. 235, 2014.

[35] Q. Yu, H. Huo, X. Chen, H. Guo, J. S. Vitter, and J. Huan, “An efficient
motif finding algorithm for large DNA data sets,” in Proc. BIBM, 2014,
pp. 397–402.

Qiang Yu received the B.S. degree, the M.S. degree
and the Ph.D. degree from Xidian University, China,
in 2006, 2009, and 2014. He is currently working
in the Department of Computer Science at Xidian
University. His research interests include design and
analysis of algorithms, bioinformatics, and parallel
and distributed computing.

Hongwei Huo (M’06) received the B.S. degree in
mathematics from Northwest University, China,
and the M.S. degree in computer science and the
Ph.D. degree in electronic engineering from Xidian
University, China. She is a Professor and Chair
in the Department of Computer Science at Xidian
University. Her research interests include the design
and analysis of algorithms, bioinformatics algo-
rithms, external memory algorithms and compressed
indexes, data compression, parallel and distributed
algorithms, algorithm engineering. She is a member

of the IEEE Computer Society.

Xiaoyang Chen received the B.S. degree in 2013
from Xidian University, China, where he is currently
working toward the Ph.D. degree. His research
interests include design and analysis of algorithms,
parallel and distributed computing, and graph search.

Haitao Guo received the B.S. degree in 2004 from
Anhui Polytechnic University, China, and the M.S.
degree in 2007 from Xidian University, China, where
he is currently working toward the Ph.D. degree. His
research interests include design and analysis of al-
gorithms, and bioinformatics.

Dr. Jeffrey Scott Vitter (F’93) received the B.S. de-
gree with highest honors in mathematics from Notre
Dame, South Bend, IN, USA, in 1977; a Ph.D. degree
in computer science from Stanford University, Stan-
ford, CA, USA, in 1980; and an M.B.A. degree from
Duke University, Durham, NC, USA, in 2002. He is
provost and executive vice chancellor and Roy A.
Roberts Distinguished Professor at the University of
Kansas (KU), Lawrence, KS, USA. He co-led KU's
strategic planning and has overseen the first-ever uni-
versity-wide KUCore curriculum, expansion in engi-

neering and business, multidisciplinary research, major growth of commercial-
ization and corporate partnerships, and administrative efficiency. Since 1980
he has served in administrative leadership and faculty roles at Brown, Duke,
Purdue, and Texas A&M. He has over 300 publications, primarily dealing with
algorithmic aspects of big data, and is a fellow of the Guggenheim Society,
AAAS, and ACM.

Jun Huan (M’11) received his B.S. degree in
biochemistry and molecular biology from Peking
University, China, in 1997, his M.S. degree in com-
puter science from the Oklahoma State University,
Stillwater, OK, USA, in 2000, and his Ph.D. degree
in computer science from the University of North
Carolina, Chapel Hill, NC, USA, in 2006. Dr. Huan
joined the Department of Electrical Engineering and
Computer Science at the University of Kansas (KU),
Lawrence, KS, USA, in 2006 and is now a professor.
At KU Dr. Huan directs the Bioinformatics and

Computational Life Sciences Laboratory at KU Information and Telecommu-
nication Technology Center (ITTC). He holds courtesy appointments at the
KU Bioinformatics Center, the KU Bioengineering Program, and a visiting
professorship from GlaxoSmithKline plc.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:26:44 UTC from IEEE Xplore. Restrictions apply.

