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An Efficient Exact Algorithm for the Motif 
Stem Search Problem over Large Alphabets 

Qiang Yu, Hongwei Huo, Jeffrey Scott Vitter, Jun Huan, and Yakov Nekrich 

Abstract—In recent years, there has been an increasing interest in planted (l, d) motif search (PMS) with applications to 
discovering significant segments in biological sequences. However, there has been little discussion about PMS over large 
alphabets. This paper focuses on motif stem search (MSS), which is recently introduced to search motifs on large-alphabet 
inputs. A motif stem is an l-length string with some wildcards. The goal of the MSS problem is to find a set of stems that 
represents a superset of all (l, d) motifs present in the input sequences, and the superset is expected to be as small as possible. 
The three main contributions of this paper are as follows: (1) We build motif stem representation more precisely by using regular 
expressions. (2) We give a method for generating all possible motif stems without redundant wildcards. (3) We propose an 
efficient exact algorithm, called StemFinder, for solving the MSS problem. Compared with the previous algorithms, StemFinder 
runs much faster and first solves the (17, 8), (19, 9) and (21, 10) challenging instances on protein sequences; moreover, 
StemFinder reports fewer stems which represent a smaller superset of all (l, d) motifs. StemFinder is freely available at 
http://sites.google.com/site/feqond/stemfinder. 

Index Terms—Exact algorithms, motif stem search, planted (l, d) motif search 
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1 INTRODUCTION

otif search is to find short similar sequence seg-
ments in a given set of sequences over an alphabet ∑, 

which plays an important role in discovering significant 
segments in biological sequences, such as transcription 
factor binding sites in DNA sequences [1]. The planted (l, 
d) motif search (PMS) [2] is a widely accepted formulation 
of the problem. A (l, d) motif is an l-mer (i.e., an l-length 
string over ∑) that spans all input sequences with up to d 
mismatches. The goal of the PMS problem is to find all (l, 
d) motifs present in the given sequences, and the PMS 
problem has been proven to be NP-complete [3]. 

The key to motif search lies in two points: a) how to 
represent the sequence motif using an appropriate model; 
b) how to design an efficient motif search algorithm. The 
most commonly used motif models are position weight 
matrices (PWM) [4] and consensus sequences [5]. Based 
on these two motif models, numerous motif search algo-
rithms have been proposed. 

The algorithms that model motifs using PWM usually 
employ statistical techniques [6], [7], [8]. These algorithms 
can report results in a short time, but cannot guarantee a 
global optimum. The exact algorithms, which use consen-
sus sequences to represent motifs, are guaranteed to re-
port all (l, d) motifs by traversing the whole search space. 
Most exact algorithms are pattern-driven. They take all 
string patterns of length l over ∑ as candidate motifs, and 
output the patterns that can span all input sequences. 

Typical pattern-driven algorithms aim to reduce candi-
date motifs through various means [9], [10], [11], [12], [13], 
[14], [15], [16]. Some other pattern-driven algorithms 
represent the input sequences as a suffix tree to accelerate 
the verification of candidate motifs [17], [18], [19]. The 
initial search space of pattern-driven algorithms is O(|∑|l), 
which grows dramatically with the increase of |∑|. There-
fore, most existing exact algorithms are designed just for 
searching motifs in DNA sequences where |∑| = 4, and 
they cannot search low-conserved motifs within an ac-
ceptable time in the data sets over large alphabets, such as 
the protein data sets where |∑| = 20. 

To improve the efficiency of the exact algorithms over 
large alphabets, Kuksa and Pavlovic [20] introduced the 
concept of motif stem in the field of motif search. A motif 
stem is an l-length string that may contain some wild-
cards, and it represents a set of candidate motifs. For ex-
ample, assume that A*GT is a motif stem over ∑ = {A, G, 
C, T} where * denotes a wildcard. Then, A*GT represents 
four candidate motifs AAGT, AGGT, ACGT and ATGT. 
The goal of motif stem search (MSS) is to find a set of 
stems that represents a superset of all (l, d) motifs, and the 
superset is expected to be as small as possible. The time 
complexity of the MSS algorithms does not grow with the 
increase of the size of the alphabet, since in generating 
candidate motifs, the operation of expanding some posi-
tions to multiple characters over ∑ is replaced by placing 
wildcards in these positions. 

MSS algorithms are the main subject of this paper. 
Stemming [20] is the first MSS algorithm, and it works as 
follows: first, select the l-mers that may be motif instances 
(i.e., motif occurrences) to form a set I; second, for each 
pair of l-mers x and x' in I, generate motif stems from x 
and x' by placing wildcards; third, verify motif stems and 
output the ones that occur in each input sequence. In a 
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recent work [21], more efficient MSS algorithms MSS1 
and MSS2 are proposed. MSS1 constructs a smaller set I 
and generates fewer stems than Stemming; also, MSS1 
employs a different method for placing wildcards. MSS2 
is an improvement of MSS1 obtained by accelerating the 
calculation of Hamming distances from the l-mers in an 
input sequence to that in another input sequence. 

Despite the efforts for motif stem search, current MSS 
algorithms have several notable limitations. First, motif 
stems cannot be represented precisely with typical wild-
cards, since the wildcard * matches any character over ∑. 
For example, when we hope a stem only matches AAGT 
or AGGT, the stem A*GT fails to do so. The second limita-
tion comes from the methods used to generate motif 
stems in current MSS algorithms. The current generation 
methods either miss some possible motif stems or place 
redundant wildcards, which is analyzed in detail in Sec-
tion 6.1. Third, there is great potential for designing more 
efficient stem search algorithms. For example, as reported 
in [21], the fastest stem search algorithm MSS2 is only 
able to solve the challenging instance (11, 5) over |∑| = 20 
within four hours, even if it does not perform a post-
processing (verifying candidate stems). Also, the reported 
stems can be further reduced to represent a smaller su-
perset of all (l, d) motifs. 

In this paper, we propose a new motif stem search al-
gorithm named StemFinder that overcomes these limita-
tions. To represent stems more precisely, we write stems 
as regular expressions by replacing typical wildcards * 
with the negative character sets [^]. A negative character 
set [^] matches any character not enclosed; for example, 
[^CT] represents any single character over ∑ except for C 
and T. StemFinder runs much faster than the previous 
stem search algorithms, and reports fewer stems corres-
ponding to a smaller superset of all (l, d) motifs. 

The rest of the paper is organized as follows. Section 2 
gives the notations and problem definition, and reviews 
the previous stem generation methods. Section 3 de-
scribes how to represent motif stems using regular ex-
pressions. Section 4 introduces the method for generating 
motif stems. In Section 5, several techniques used in 
StemFinder as well as the StemFinder algorithm are de-
scribed. Then, Section 6 presents the results and discus-
sion. Finally, we conclude the paper in Section 7. 

2 PRELIMINARIES 

2.1 Notations and Problem Definition 
In this paper, an l-mer is an l-length string over an alpha-
bet ∑ without wildcards; a motif stem is an l-length string 
over the same alphabet that may contain wildcards. We 
say an l-mer x is covered by a motif stem s, if x is in the 
set of l-mers represented by s. Hereafter, a motif stem is 
called simply as a stem. 

The notations used in this paper are summarized in 
Table 1. The probability pk' and pk are calculated by (1) 
and (2), respectively. The notations R(i), Ns(i) and Nrs(i) 
imply the dependence of their values on the Hamming 
distance i between two l-mers, which will be discussed in 
detail in Section 4. 

TABLE 1 
Notations Used in This Paper 

Notation Explanation 
|x| The size of a set x or the length of a string x. 

Pm(x, x') 
The positions in the matching region of two l-mers x and 
x'. Pm(x, x') = {i: 1 ≤ i ≤ l, x[i] = x'[i]}. 

Pn(x, x') 
The positions in the non-matching region of two l-mers x 
and x'. Pn(x, x') = {i: 1 ≤ i ≤ l, x[i] ≠ x'[i]}. 

Pmn(x, x', y) 
The positions where x matches x', and y matches neither 
x nor x', for the given three l-mers x, x' and y. Pmn(x, x', y) 
= {i: 1 ≤ i ≤ l, x[i] = x'[i], y[i] ≠ x[i] and y[i] ≠ x'[i]}. 

Pnn(x, x', y) 
The positions where x, x' and y are mismatched with 
each other, for the given three l-mers x, x' and y. Pnn(x, x', 
y) = {i: 1 ≤ i ≤ l, x[i] ≠ x'[i], y[i] ≠ x[i] and y[i] ≠ x'[i]}. 

dH(x, x') 
The Hamming distance between two l-mers x and x'. 
dH(x, x') = |Pn(x, x')| = l – |Pm(x, x')|. 

Md(x, x') 
The common d-neighbors of two l-mers x and x'. Md(x, 
x') = {y: |y| = |x| = |x'|, dH(y, x) ≤ d and dH(y, x') ≤ d}. 

C(x, Si) 

The l-mers in the sequence Si that are 2d-neighbors of 

the l-mer x. C(x, Si) = {y: |y| = |x|, y l Si and dH(y, x) ≤ 

2d}. 

C(x, x', Si) 

The l-mers in the sequence Si that are common 2d-
neighbors of the l-mers x and x'. C(x, x', Si) = {y: |y| = |x| 

= |x'|, y l Si, dH(y, x) ≤ 2d and dH(y, x') ≤ 2d}. 

pk' 
The probability that the Hamming distance between a 
fixed l-mer and a random l-mer is equal to k. 

pk 
The probability that the Hamming distance between a 
fixed l-mer and a random l-mer is less than or equal to k.

R(i) 
Given two l-mers x and x' with dH(x, x') = i and an 
arbitrary l-mer y∈Md(x, x'), R(i) denotes the set of all 
possible combinations of |Pmn(x, x', y)| and |Pnn(x, x', y)|. 

Ns(i) 
The number of stems generated from two l-mers x and x' 
with dH(x, x') = i. 

Nrs(i) 
The number of rough stems generated from two l-mers x 
and x' with dH(x, x') = i. The concept of rough stem is 
described in Section 4. 
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Problem Definition: Motif Stem Search (MSS) [21]. 
Given a set of n‐length sequences {S1, S2, …, St} over an 
alphabet ∑ and nonnegative integers l and d, satisfying 0 
≤ d < l < n, a (l, d) motif is an l‐mer m such that each se‐
quence  Si  contains  an  l‐mer  mi  differing  from  m  in  at 
most  d  positions.  The MSS  problem  is  to  find  a  set  of 
stems  so  that  the  set  of  l‐mers  represented  by  these 
stems is a superset of all (l, d) motifs present in the t se‐
quences. 

There are two key indicators used to assess the MSS 
algorithms. One  is  the  running  time.  The  other  is  the 
number  of  l‐mers  covered  by  the  reported  stems.  Al‐
though  the  MSS  algorithms  should  be  guaranteed  to 
report the stems representing a superset of all (l, d) mo‐
tifs, the size of the superset is not fixed due to different 
methods used  to generate stems. Therefore, an efficient 
MSS algorithm  indicates  that  it not only runs faster but 
also reports the stems covering fewer l‐mers. 

2.2 Previous Stem Generation Methods 
This section briefly reviews the stem generation methods 
used in existing MSS algorithms, Stemming [20] and 
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MSS1/MSS2 [21]. The stem generation method is the core 
module of an MSS algorithm and it affects the number of 
l-mers covered by the reported stems.  

Existing MSS algorithms as well as StemFinder first 
select multiple pairs of l-mers from input sequences. Then, 
for each selected pair of l-mers x and x', they generate the 
candidate stems by placing wildcards in x, differing only 
in the specific meanings of the used wildcards and the 
ways that wildcards are placed. 

Stemming allows the wildcard to match any character 
over ∑ and generate stems by changing x as follows: if 
dH(x, x') ≤ d, set i (0 ≤ i ≤ dH(x, x')) positions in Pn(x, x') as in 
x', place α (0 ≤ α ≤ dH(x, x') – i) wildcards in the remaining 
dH(x, x') – i positions in Pn(x, x'), and place β (0 ≤ β ≤ d – 
max(dH(x, x') – i, α + i)) wildcards in Pm(x, x'); otherwise, 
set i (dH(x, x') – d ≤ i ≤ d) positions in Pn(x, x') as in x', and 
place α (0 ≤ α ≤ d – i) wildcards in the remaining dH(x, x') – 
i positions in Pn(x, x'). We find that Stemming in this way 
cannot generate all possible candidate stems in some cas-
es, and we give an example in Section 6.1. 

In MSS1/MSS2, a wildcard matches any character 
over ∑ except for the character in the corresponding posi-
tion of x. MSS1/MSS2 generates stems s by placing α 
wildcards in Pn(x, x') of x and β wildcards in Pm(x, x') of x. 
The range of α is considered as follows. If dH(x, x') ≤ d, it is 
clear that α can vary from 0 to dH(x, x'), namely 0 ≤ α ≤ dH(x, 
x'); otherwise, at least dH(x, x') – d wildcards have to be 
placed in Pn(x, x'), namely dH(x, x') – d ≤ α ≤ d, to make dH(s, 
x) ≤ d and dH(s, x') ≤ d satisfied. Simultaneously, the range 
of β is determined by satisfying the same condition that 
dH(s, x) ≤ d and dH(s, x') ≤ d, namely α + β ≤ d and (dH(x, x') 
– α) + β ≤ d, so the maximum value of β is min{d – α, d – 
(dH(x, x') – α)}. Although MSS1/MSS2 can generate all 
possible candidate stems, it may place redundant wild-
cards, and thus the reported stems cover more unneces-
sary l-mers. The associated example and more detailed 
analysis are given in Section 6.1. 

3 STEM REPRESENTATION 

In the previous MSS algorithms, for a stem s of length l, 
s[i] (0 ≤ i ≤ l) is either an exact character over ∑ or a typi-
cal wildcard *. To represent stems more precisely, we in-
troduce two new regular expression operators, namely 
the negative character set [^] and the choice operator |. 
Both of the two operators are used in a rough stem, which 
will be discussed in Section 4. Only the former operator is 
involved in the representation of a final stem, which is 
discussed in this section. 

Specifically, we describe how to represent stems using 
regular expressions, by analyzing the relationships 
among three characters in a column of the alignment of 
three l-mers. Given three l-mers x, x' and y, assume that y 
is an arbitrary candidate motif shared by x and x', namely 
y∈Md(x, x'). For the ith (1 ≤ i ≤ l) column of the three l-
mers, there are five possible cases for the relationships 
among x[i], x'[i] and y[i], as shown in Table 2. Under dif-
ferent cases, the number of characters matched by y[i] is 
also different. For the Cases 1, 3 and 4, y[i] corresponds to 
a unique character.  For the Cases 2 and 5, y[i] matches |∑|  

TABLE 2 
Represent y[i] Using x[i] and x'[i] 

Relationships among x[i], x'[i] and y[i] #a y[i] 
Case 1: x[i] = x'[i] = y[i] 1 x[i] 
Case 2: x[i] = x'[i], y[i] ≠ x[i] and y[i] ≠ x'[i] |∑| – 1 [^x[i]] 
Case 3: x[i] ≠ x'[i], y[i] = x[i] and y[i] ≠ x'[i] 1 x[i] 
Case 4: x[i] ≠ x'[i], y[i] ≠ x[i] and y[i] = x'[i] 1 x'[i] 
Case 5: x[i] ≠ x'[i], y[i] ≠ x[i] and y[i] ≠ x'[i] |∑| – 2 [^x[i]x'[i]]

aThe number of characters matched by y[i]. 

– 1 and |∑| – 2 characters, respectively. When y[i] corres-
ponds to multiple characters, we represent y[i] using the 
negative character set [^]. Specifically, for Case 2, y[i] is 
represented as [^x[i]], which matches any character in ∑ 
excluding x[i]; for Case 5, y[i] is represented as [^x[i]x'[i]], 
which matches any character in ∑ excluding x[i] and x'[i]. 

According to the analysis above, assume that the regu-
lar expression s is a stem obtained from two l-mers x and 
x'. Then the ith position of s must fall into one of the three 
patterns: a specific character (x[i] or x'[i]), a negative cha-
racter set [^x[i]] or a negative character set [^x[i]x'[i]]. In 
all the l positions of s, if there is a position i that corres-
ponds to [^x[i]] or [^x[i]x'[i]], then s represents multiple 
candidate motifs; otherwise, s represents a single candi-
date motif. Let (l, d) = (7, 3), x = AAAAGGG and x' = 
AAAACCC; four possible stems are AAAAGGC, 
AAAAG[^GC]C, AA[^A]AGCC and A[^A]AAGC[^GC]. 
The method for generating stems from x and x' is de-
scribed in the next section. 

There are two benefits for the use of regular expres-
sions to represent stems. On the one hand, stems are 
represented more precisely by using negative character 
sets than using typical wildcards, since the former match 
the interest characters and the latter match any character. 
On the other hand, stems can be converted into finite au-
tomatas [22] so that they can be verified efficiently in stem 
search. 

4 STEM GENERATION 

This section gives the method for generating all possible 
stems s from two given l-mers x and x'. Assume that an l-
mer y is an arbitrary candidate motif covered by s, and y 
satisfies dH(y, x) ≤ d and dH(y, x') ≤ d. The key of the gener-
ation method is to determine the positions corresponding 
to Case 2 and the positions corresponding to Case 5, 
namely Pmn(x, x', y) and Pnn(x, x', y), since these positions 
of s will be represented as negative character sets. More 
precisely, we obtain all possible combinations of |Pmn(x, x', 
y)| and |Pnn(x, x', y)|, namely R(dH(x, x')). Hereafter, Pm(x, 
x'), Pn(x, x'), Pmn(x, x', y) and Pnn(x, x', y) are denoted simp-
ly as Pm, Pn, Pmn and Pnn, respectively. 

The possible combinations of |Pmn| and |Pnn| are cal-
culated as follows. First, since Pmn is a subset of Pm, we 
have 0 ≤ |Pmn| ≤ |Pm|, namely 0 ≤ |Pmn| ≤ l – dH(x, x'); 
similarly, 0 ≤ |Pnn| ≤ dH(x, x'). Second, since all positions i 
in Pmn satisfy y[i] ≠ x[i] and y[i] ≠ x'[i], we have |Pmn| ≤ d, 
which is necessary for dH(y, x) ≤ d and dH(y, x') ≤ d to be 
satisfied; similarly, |Pnn| ≤ d. Third, dH(y, x) + dH(y, x') ≤ 
2d where dH(y, x) + dH(y, x')  can  be represented as 2|Pmn|  
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Fig. 1.  An example for generating stems from two l-mers. 

+ 2|Pnn| + (dH(x, x') – |Pnn|) = 2|Pmn| + |Pnn| + dH(x, x'), 
so we have 2|Pmn| + |Pnn| + dH(x, x') ≤ 2d, namely 2|Pmn| 
+ |Pnn| ≤ 2d – dH(x, x'). Taking these considerations into 
account, we obtain the following inequalities: 
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Obviously, the values of |Pmn| and |Pnn|, which depend 
on dH(x, x'), can be calculated by solving (3). That is, 
R(dH(x, x')) = {<|Pmn|, |Pnn|>: |Pmn| and |Pnn| satisfy 
(3)}. For example, when (l, d) = (7, 3) and dH(x, x') = 3, all 
possible combinations of |Pmn| and |Pnn| form R(3) = {<0, 
0>, <0, 1>, <0, 2>, <0, 3>, <1, 0>, <1, 1>}. 

For each possible combination of |Pmn| and |Pnn|, we 
generate the stems from x and x' by rewriting a string s 
that is initialized as x, through three steps shown in Fig. 1. 
(1) Select |Pmn| positions from Pm, and change the charac-
ter of s in each selected position i to [^x[i]]; at the same 
time, select |Pnn| positions from Pn, and change the cha-
racter of s in each selected position i to [^x[i]x'[i]]. (2) For 
each position i that is in Pn but not selected in the previous 
step, change the corresponding character of s to x[i]|x'[i]. 
(3) For each position i of s that corresponds to x[i]|x'[i], 
expand it to x[i] and x'[i]. 

The stems obtained in the second step are called rough 
stems, in regard to the stems obtained in the last step. 
Note that, for each position i in Pn except for the positions 
selected in the first step, the character of s (denoted by c) 
can be either x[i] (corresponding to Case 3 in Table 2) or 
x'[i] (corresponding to Case 4 in Table 2). In a rough stem, 
such character c is represented using the choice operator 
of regular expressions, namely x[i]|x'[i]. In a stem, such 
character c is represented exactly as x[i] or x'[i]. Since the 
number of such characters c is w = dH(x, x') – |Pnn|, each 
rough stem can be decomposed into 2w stems. For exam-
ple, in Fig. 1, each rough stem obtained through step 2 
corresponds to w = 2, and it is decomposed or expanded 
to four stems through step 3. 

Given two l-mers x and x' with dH(x, x') = i, the num-
ber of generated rough stems, Nrs(i), is calculated by (4), 
which sums the number of rough stems over all possible 
combinations of |Pmn| and |Pnn|; similarly, the number 
of generated stems, Ns(i), is calculated by (5). 
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5 STEM SEARCH ALGORITHM 
The framework of StemFinder is: extract some pairs of l-
mers from input sequences to form a set I so that at least 
one pair of motif instances is included; then, for each pair 
of l-mers in I, generate and verify stems; finally, report all 
valid stems. Although this framework is somewhat simi-
lar to that of the previous algorithms (Stemming [20] and 
MSS1/MSS2 [21]), StemFinder performs more efficiently 
by introducing several techniques described in Section 5.1 
to 5.3. The whole algorithm of StemFinder, as well as its 
complexity analysis, is presented in Section 5.4. 

5.1 Constructing Set I 
The set I is composed of pairs of l-mers coming from dif-
ferent input sequences, and contains at least one element 
that is a pair of motif instances. According to the problem 
definition, there is a motif instance in each input sequence, 
and the Hamming distance between any two motif in-
stances is less than or equal to 2d. Thus, a typical method 
for constructing the set I is: for each l-mer x in S1, select a 
reference sequence Sr from {S2, …, St}; for each l-mer x' in 
Sr, if dH(x, x') ≤ 2d, namely x'∈C(x, Sr), then add the pair of 
l-mers x and x' to the set I. 

Furthermore, a good set I is composed of pairs of l-
mers that correspond to as few stems as possible, which 
depends on how to select the reference sequence Sr for 
each l-mer x in S1. Unlike [21], in which the selected Sr is 
the sequence in {S2, …, St} that contains the minimum 
number of l-mers x' satisfying dH(x, x') ≤ 2d, we select Sr 
based on the following observation. 

Observation 1. For two l-mers x and x', both the number of 
generated stems and the number of generated rough stems 
are different for distinct dH(x, x'). 

We mainly consider the number of rough stems, since 
in the StemFinder algorithm we verify rough stems firstly 
and  avoid  the  verification  of  most stems using pruning,  

Fig. 2.  Proportion of rough stems under different Hamming dis-

tances. 
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which is discussed in detail in Section 5.3. Fig. 2 shows 
the proportion of rough stems generated from two l-mers 
under different Hamming distances. Each stacked column 
in the figure corresponds to a (l, 2) problem instance with 
Hamming distances ranging from 0 to 4 (2d). The propor-
tion of rough stems under the Hamming distance i (0 ≤ i ≤ 
2d) is defined to be Nrs(i)/Ntotal, where Ntotal = ∑Nrs(j) for 0 
≤ j ≤ 2d. These (l, 2) instances represent the general cases, 
since they cover the instances from a low degenerate case 
(11, 2) to a highly degenerate case (5, 2). We can see that 
the number of rough stems differs greatly for distinct 
Hamming distances. Particularly, the number of rough 
stems for dH(x, x') = 0 is ten times greater than the number 
of rough stems for dH(x, x') = 4. Thus, the reference se-
quence Sr with a small value of |C(x, Sr)| may not corres-
pond to a small number of rough stems. For example, for 
two reference sequences Sr1 and Sr2 of the l-mer x for the 
problem instance (7, 2), assume that C(x, Sr1) = {x1, x2, x3}, 
C(x, Sr2) = {x4}, dH(x, x1) = 4, dH(x, x2) = 4, dH(x, x3) = 3 and 
dH(x, x4) = 0. Although |C(x, Sr1)| = 3 is larger than |C(x, 
Sr2)| = 1, the number of rough stems corresponding to Sr1 

is much smaller than that corresponding to Sr2. 
In the light of the above, we select the reference se-

quence Sr for the l-mer x by minimizing the right side of 
(6). The selected Sr is the sequence in {S2, …, St} that cor-
responds to the minimum number of rough stems. 


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5.2 Verifying Stems 
We convert stems into deterministic finite automatas 
(DFA) and verify stems by scanning input sequences to 
check whether there is an occurrence of the verified stem 
in each sequence. 

At first, let us determine the objects scanned by the 
DFA. Assume that s is a stem generated from l-mers x and 
x'. Then, only the l-mers z with dH(z, x) ≤ 2d and dH(z, x') ≤ 
2d in input sequences could be the occurrences of s. Since 
the value of p2d is small and it is approximately equal to 
10-2 or 10-3 for common problem instances, the number of 
l-mers in input sequences that could be the occurrences of 
s is also small. Thus, we only need to check the l-mers that 
could be the occurrences of s, rather than the whole input 
sequences. Specifically, for an input sequence Si, the 
scanned objects are the l-mers in C(x, x', Si). 

Next, we introduce how to construct a DFA from a 
stem s and how to perform scan. Scanning an l-mer z is to 
check whether there are at most d positions where s mis-
matches z. As shown in Fig. 3(a), for the DFA directly 
constructed from a stem, once a mismatch occurs in some 
position, the DFA will immediately end the matching 
process. In order to allow at most d mismatches, we add a 
counter initialized as 0 to the DFA, as shown in Fig. 3(b). 
For any state u except for the end state, the next state is 
always u + 1 via any character c. If the character c is 
matched, the counter remains unchanged; otherwise, it is 
incremented by one. When arriving at the end state, if the 
counter is less than or equal to d, then the scanned l-mer 
is an occurrence of the stem s. 

Fig. 3.  DFA of the stem [^A]D[^CG](E|F)A  (a) Initial DFA  (b) DFA 

with counter  (c) Bitmap of DFA with counter. 

TABLE 3 
Rules of Generating the Bitmap for a Stem s 

s[i] Generation Rule 

[^x[i]] 
Perform bitwise NOT on T[i–1], and then 
set T[i–1][x[i]] as 1 

[^x[i]x'[i]] 
Perform bitwise NOT on T[i–1], and then 
set both T[i–1][x[i]] and T[i–1][x'[i]] as 1 

x[i]|x'[i] Set both T[i–1][x[i]] and T[i–1][x'[i]] as 0 
x[i] Set T[i–1][x[i]] as 0 
x'[i] Set T[i–1][x'[i]] as 0 

In order to scan l-mers more efficiently, we use a bit-
map to equivalently represent the DFA with counter. As 
shown in Fig. 3(c), any element e in the bitmap corres-
ponds to a state u and a character c; the value of e, either 0 
or 1, records the increment of the counter when activating 
u via c. The bitmap for a stem s is a two-dimensional table 
T, which is constructed as follows: first, initialize all ele-
ments in T to 1; then, for each position i (1 ≤ i ≤ l) of s, 
change T according to the rules given in Table 3. Through 
querying the table T, we can scan an l-mer z with O(l) 
time, and the number of mismatches Nmis is calculated by 
(7), where T[i–1][z[i]] represents the element in T corres-
ponding to the state i – 1 and the character z[i]. The sto-
rage space of a DFA with counter is O(l|∑|). 


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5.3 Accelerating Verification via Pruning 
This section introduces a pruning technique to reduce the 
number of stems to be verified. As described in Section 4, 
each rough stem s can be decomposed into 2w stems, 
where w is the number of such position i of s that corres-
ponds to x[i]|x'[i]. For simplicity of explanation, let A 
denote the array of these w positions. Thus, the search 
space of s is a complete binary tree called search tree: the 
root is s; each leaf is one of the 2w stems; in the ith (0 < i < 
w) level of the tree, there are 2i internal nodes, obtained 
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by expanding s in the positions A[1], …, A[i]. For example, 
assume that the root s = [^A]A[^GC](G|C)(G|C). Then 
the nodes in the first and the second level are 
{[^A]A[^GC]G(G|C), [^A]A[^GC]C(G|C)} and 
{[^A]A[^GC]GG, [^A]A[^GC]GC, [^A]A[^GC]CG, 
[^A]A[^GC]CC}, respectively. 

Observation 2. In the search tree of a rough stem, let q be an 
internal node, let y be a child node of q, and let z be a ran-
dom l-mer. We have dH(y, z) = dH(q, z) or dH(y, z) = dH(q, z) 
+ 1, namely dH(y, z) ≥ dH(q, z). Here, dH() denotes the num-
ber of positions where a stem mismatches an l-mer, and it is 
calculated by (7). 

In terms of Observation 2，if an internal node q fails to 
span all input sequences, then the child nodes of q will 
also fail to do so. Therefore, when we search valid stems 
in the search tree, the subtrees of invalid nodes can be 
pruned. This pruning technique facilitates avoiding the 
verification of some invalid stems, especially for large 
alphabets. 

Theorem 1. In the search tree of a rough stem, let q be an in-
ternal node at level i, let y be a leaf in the subtree of q, and 
let z be a random l-mer. We have 
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Proof. The nodes q and y differ in the positions A[i+1], …, 
A[w]; for any j∈{A[i+1], …, A[w]}, q[j] is represented as 
x[j]|x'[j], while y[j] is an exact character, either x[j] or 
x'[j]. Let us first consider dH(q, z) ≠ dH(y, z). It holds if and 
only if there exists at least one position j∈{A[i+1], …, 
A[w]} corresponding to the case that z[j] ≠  y[j] but z[j] 
can be matched by q[j]. For any position j∈{A[i+1], …, 
A[w]}, the probability that this case occurs is equal to 
1/|∑|. In other words, the probability that this case does 
not occur for the position j is equal to 1 – 1/|∑| = (|∑| – 
1)/|∑|. When this case does not occur for all the posi-
tions A[i+1], …, A[w], dH(q, z) = dH(y, z) holds. Therefore, 
the probability of dH(q, z) = dH(y, z) is ((|∑| – 1)/|∑|)w–i. 

By Theorem 1, when the l-mer z is not an occurrence of 
the leaf y (a stem), the probability that z is not an occur-
rence of the internal node q (a rough stem) is at least ((|∑| 
– 1)/|∑|)w–i. This probability increases with the increase of 
|∑|. Assume that w – i = 3. When |∑| = 4, the probability is 
0.42; whereas, when |∑| = 40, the probability is 0.93. 
Therefore, the pruning technique is more effective for 
searching stems over large alphabets. 

5.4 StemFinder 
This section describes the whole algorithm of StemFinder 
by using the pseudocode shown in Algorithm 1, Algo-
rithm 2 and Algorithm 3. Algorithm 1 corresponds to the 
main framework. Algorithm 2 and Algorithm 3 called by 
Algorithm1, correspond to the construction of the set I 
and the verification of the stems for a given rough stem, 
respectively. In Algorithm 3, the pruning technique is 
applied to searching the search tree in a depth-first man-
ner. 

Algorithm 1 StemFinder 
Input：l, d, {S1, S2, … , St} 
Output：the set of stems M that covers all (l, d) motifs 
1: M  ← Ф 
2: sort input sequences into ascending order by length 
3: for i ← 0 to 2d do 
4:       calculate R(i) 
5:       calculate Nrs(i)  
6: I  ← GenerateSetI 
7: for each (x, x')∈I do 
8:       for each <α, β>∈R(dH(x, x')) do 
9:             s ← x 

10:             replace α characters of s in Pm with [^x[i]], forming the 
set of strings M1 

11:             for each string s in M1 do 
12:                   replace β characters of s in Pn with [^x[i]x'[i]], form-

ing the set of strings M2 

13:             for each string s in M2 do 
14:                   replace each character of s in Pn that is x[i] with 

x[i]|x'[i], forming the set of rough stems M3 
15:             for each rough stem s in M3 do 
16:                   ordered set A ← {i: 1 ≤ i ≤ l && s[i] is x[i]|x'[i]} 
17:                   VerifyRoughStem(s, A, 0) 
18: return M 

Algorithm 2 GenerateSetI 
1: I  ← Ф 
2: for each l-mer x in S1 do 
3:       Nmin ← ∞ 
4:       for j ← 2 to t do 
5:             C(x, Sj) ← Ф 
6:             Nj ← 0 
7:             for each l-mer x' in Sj do 
8:                   if dH(x, x') ≤ 2d then 
9:                         C(x, Sj) ← C(x, Sj)∪{x'} 

10:                         Nj = Nj + Nrs(dH(x, x')) 
11:             if Nj < Nmin then 
12:                   Nmin ← Nj 
13:                   Smin ←Sj 

14:       for each l-mer x'∈C(x, Smin) do 
15:             I ← I ∪{(x, x')} 
16: return I 

Algorithm 3 VerifyRoughStem(s, A, i) 
1: if s cannot span {S1, S2, … , St} then 
2:       return // perform pruning 
3: else 
4:       if i < |A| then 
5:              j ← A[i+1] // the index of A begins with 1 
6:             s1 ← s with s[j] replaced by x[j] 
7:             s2 ← s with s[j] replaced by x'[j] 
8:             VerifyRoughStem(s1, A, i+1) 
9:             VerifyRoughStem(s2, A, i+1) 

10:      else 
11:             M ←M ∪{s} 

For Algorithm 1, line 2 sorts the input sequences into 
ascending order by length in O(t log(t)) time, which facili-
tates forming a smaller set I for handling variable length 
sequences. Lines 3-5 calculate and cache the values of R(i) 
and Nrs(i) for all possible Hamming distances i. R(i) is 
obtained by listing all |Pmn| and |Pnn| satisfying (3), and 
both |Pmn| and |Pnn| are less than or equal to d, so the 
time complexity of calculating all R(i) for 0 ≤ i ≤ 2d is O(d3). 
Nrs(i) is obtained along with the calculation of R(i). Line 6 
constructs the set of pairs of l-mers I by calling Algorithm 
2. In terms of the description of Algorithm 2, the time 
complexity of constructing the set I is O(tn2l), where l cor-
responds to the time of calculating the Hamming distance 
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between two l-mers. Lines 7-17 generate and verify stems; 
the time complexity is the number of stems |stems| mul-
tiplied by the time of verifying each stem O(tnl), where l 
corresponds to the time of querying the table T when 
scanning an l-mer. 

According to the analysis above, the StemFinder algo-
rithm runs in O(tlgt + d3 + tn2l + |stems|tnl) time. The 
expected number of |stems| can be estimated as follows, 
which decreases with the increase of the size of the al-
phabet. 

Theorem 2. The expected number of stems generated by Stem-
Finder is 
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Proof. The result above is drawn from the assumption that 
each input sequence is composed of independent, un-
iformly distributed random characters coming from an 
alphabet ∑. 

 At first, let us briefly review the method for constructing 
the set I. For each of n – l + 1 l-mers x in S1, selects a ref-
erence sequence Sr. For each of n – l + 1 l-mers x' in Sr, if 
dH(x, x') ≤ 2d, then add the pair of l-mers x and x' to the 
set I. 

 Next, we consider a fixed Hamming distance i (0 ≤ i ≤ 
2d). Since pi', calculated by (1), denotes the probability 
that the Hamming distance between two l-mers is i, the 
expected number of pairs of l-mers in the set I with 
Hamming distance i is (n – l + 1)2pi'. Moreover, the 
number of stems generated from a pair of l-mers with 
Hamming distance i is Ns(i), which is calculated by (5). 
Thus, the number of stems generated from all pairs of l-
mers in the set I with Hamming distance i is (n – l + 
1)2pi'Ns(i). 

 Finally, we sum the number of generated stems for all 
possible Hamming distance i (0 ≤ i ≤ 2d) and obtain the 
value of E(|stems|) shown in (9). Since pi' decreases with 
the increase of the size of the alphabet, so does 
E(|stems|).  

For the storage space, in addition to O(d3) words which 
are used to cache R(i) and Nrs(i), we need to store O(tn) l-
mers in input sequences. Moreover, when we verify each 
stem, the space required to store the bitmap is O(l|∑|). 
Therefore, the space complexity of StemFinder is O(d3 + tn 
+ l|∑|). Although the space complexity depends on the 
size of alphabets, the value of l|∑| increases linearly with 
the growth of |∑| and it is small even for very large alpha-
bets. 

6 RESULTS AND DISCUSSION 

6.1 Comparison of Stems Generated from Different 
Algorithms 

In this section, we compare the stems generated by Stem-
Finder with that generated by previous MSS algorithms 
(Stemming [20] and MSS1/MSS2 [21]). Assume that the l-
mers x and x' are two instances of a motif y with (l, d) = (7,  

TABLE 4 
Stems Generated by Different Algorithms 

Motif y 
Generated stem that can cover y 

StemFinder Stemming MSS1/MSS2

AAAGGCC AAAGGCC AAAGGCC AAAGG**
AAATGGC AAA[^GC]GGC AAA*GGC AAA*GG*
AAATTGC AAA[^GC][^GC]GC AAA**GC AAA**G*
ATAGGCC A[^A]AGGCC None A*AGG**

For two fixed l-mers x = AAAGGGG and x' = AAACCCC, this table gives 
the generated stems that can cover the (7, 3) motif y under different MSS 
algorithms. The wildcard * in the stems generated by Stemming matches any 
character over ∑; the wildcard * in the ith position of the stems generated by 
MSS1/MSS2 matches any character over ∑ except for x[i]. 

3). For different MSS algorithms, we give in Table 4 the 
stem generated from x and x' that can cover y; each row of 
the table corresponds to a different motif y for fixed l-
mers x = AAAGGGG and x' = AAACCCC. Here we do 
not consider the stems that cannot cover y, since most of 
them are filtered out in stem verification. We carry out 
comparisons by answering the following two questions. 

Does there always exist a generated stem that can cov-
er the motif y? The answer is yes for both StemFinder and 
MSS1/MSS2, because both of them consider all possible 
stems s under the condition that dH(s, x) ≤ d and dH(s, x') ≤ 
d. However, it is not true for Stemming because it does 
not place wildcards in the matching region of x and x' 
when dH(x, x') > d. For example, in the last row of Table 4, 
there is a position i (the second position) that y[i] ≠ x[i] = 
x'[i]; in this case, the stems generated by Stemming miss 
the one that covers y. 

Does there exist a redundant wildcard in the generat-
ed stem? A wildcard in position i is redundant if it can be 
replaced by x[i] or x'[i], and a stem with redundant wild-
cards covers more l-mers that are not motif instances. 
From Table 4, there are no redundant wildcards in the 
stems generated by StemFinder and Stemming. However, 
MSS1/MSS2 places at least one redundant wildcard in 
each stem shown in Table 4. The reason is that 
MSS1/MSS2 generates stems just by placing wildcards in 
x, without setting some positions of x as in x' (this opera-
tion is supported by both StemFinder and Stemming); 
thus, in the non-matching region of x and x', some charac-
ters that could be represented as x'[i] are replaced by 
wildcards. 

In summary, StemFinder not only generates all possi-
ble stems, but also places non-redundant wildcards in 
them. Moreover, StemFinder represents stems more pre-
cisely by replacing the typical wildcards * with negative 
character sets [^]. 

6.2 Results on Simulated Data 
The simulated data sets over an alphabet ∑ are generated 
following [2], which are also used in [20] and [21]. First, 
randomly generate a motif m of length l and t = 20 se-
quences of length n = 600; second, for each sequence Si, 
randomly generate a motif instance m' differing from m in 
at most d positions, and then implant m' to a random po-
sition in Si. 

We implement StemFinder using C++ and perform it 
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on a computer with 2.67 GHz processor and 4 Gbyte 
memory. All results are the average obtained by running 
algorithms on five random data sets. For the time units, s, 
m and h denote seconds, minutes and hours, respectively; 
-o represents the running time that exceeds ten hours. 

First, we compare StemFinder with the algorithm de-
signed for searching DNA motifs. PairMotif [14], our pre-
vious work, is selected as the comparison object, which 
can be downloaded from 
http://files.figshare.com/294289/Program_S1.rar. As 
shown in Table 5, StemFinder does not show its perfor-
mance advantages on DNA data, because it is not specifi-
cally optimized for |∑| = 4. However, for large alphabets 
(|∑| ranging from 10 to 100), StemFinder runs much faster 
than PairMotif; the reason is that StemFinder verifies all 
possible stems rather than all possible motifs, and the 
number of possible stems is much smaller than the num-
ber of possible motifs, especially for large alphabets. 

Second, we compare StemFinder with the previous 
MSS algorithms, namely Stemming [20] and MSS2 [21]. 
For the work [21], we use MSS2 rather than MSS1 as the 
comparison object, since MSS2 is an improvement version 
of MSS1. Neither Stemming nor MSS2 provides source 
code or executable programs, so we also implement them 
using C++ and perform them on the same experimental 
environment. Consistent with [20] and [21], the data sets 
used to test algorithms are (7, 1), (9, 2) etc. over |∑| = 20. 

We show in Table 6 the running time of different MSS 
algorithms. We can see from the table that StemFinder 
greatly outperforms MSS2 and Stemming, and is able to 
solve all these problem instances with l < 30 within ten 
minutes. Both the running time of MSS2 and Stemming 
grows dramatically with the increase of l and d; when (l, d) 
= (15, 5) and (l, d) = (23, 9), Stemming and MSS2 both re-
quire more than ten hours. 

TABLE 5 
Running Time of StemFinder Compared with PairMotif 

|∑| = 4 (l, d) = (15, 5) 
(l, d) StemFinder PairMotif |∑| StemFinder PairMotif

(7, 1) 0.4s 0.5s 10 0.5s 5.5h
(9, 2) 3.5s 0.9s 20 0.2s -o

(11, 3) 28.9s 2.7s 40 0.2s -o
(13, 4) 4.9m 43.2s 60 0.2s -o
(15, 5) 1.0h 4.5m 80 0.2s -o
(17, 6) -o 53.2m 100 0.2s -o

TABLE 6 
Running Time of StemFinder Compared with MSS2 and 

Stemming 

(l, d) StemFinder MSS2 Stemming
(7, 1) 0.2s 0.2s 1.8m
(9, 2) 0.2s 0.2s 6.1m

(11, 3) 0.2s 0.3s 30.0m
(13, 4) 0.2s 1.9s 4.4h
(15, 5) 0.2s 11.7s -o
(17, 6) 0.2s 1.1m -o
(19, 7) 1.0s 6.6m -o
(21, 8) 5.6s 2.1h -o
(23, 9) 15.4s -o -o

(25, 10) 3.5m -o -o
(27, 11) 8.3m -o -o
(29, 12) 8.2m -o -o

We show in Fig. 4 the total number of stems that are 
reported by different MSS algorithms. We find that Stem-
Finder and MSS2 report a much smaller number of stems 
compared to the method Stemming. Our explanation is 
that the two methods use a much smaller number of pairs 
of l-mers to generate the stems. Particularly, for Stem-
Finder and MSS2, the former reports a smaller number of 
stems, owing to two factors: (i) the stems generated by 
StemFinder contain fewer wildcards than MSS2, and have 
more chance to be filtered out in stem verification; (ii) 
StemFinder select the reference sequence Sr correspond-
ing to the minimum number of rough stems, which con-
tributes to reducing the number of possible candidate 
stems. 

We show in Fig. 5 the number of l-mers that are cov-
ered by the reported stems for different MSS algorithms. 
We use the log-scale on the y-axis of the figure in order to 
better compare different algorithms. Given a stem with i 
wildcards, the number of covered l-mers is Xi, where X is 
|∑|, |∑| – 1, and |∑| – 1 or |∑| – 2 for the algorithms Stem-
ming, MSS2, and StemFinder, respectively. In particular 
we find that the number of covered l-mers for StemFinder 
is about 1% of that of MSS2 and 0.01% of that of Stem-
ming. We believe two factors play an important role in 
explaining the observed huge difference. (i) StemFinder 
reports a small number of stems and (ii) there is no re-
dundancy of wildcards in the stems that are reported by 
StemFinder. 

Fig. 4.  The number of stems reported by different MSS algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  The number of l-mers covered by reported stems for different 

MSS algorithms. 
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Fig. 6.  The trend of running time and that of the number of reported 

stems for StemFinder. 

TABLE 7 
Results on Challenging Problem Instances 

(l, d) StemFinder qPMS7 MSS2 Stemming
(7, 3) 2.6m 0.2m 26.7m -o
(9, 4) 4.4m 1.3m 2.6h -o

(11, 5) 6.9m 4.6m -o -o
(13, 6) 10.1m 2.4m -o -o
(15, 7) 13.6m 3.5m -o -o
(17, 8) 26.6m -o -o -o
(19, 9) 53.9m -o -o -o

(21, 10) 4.4h -o -o -o

Moreover, we show in Fig. 6 the running time and the 
number of reported stems for StemFinder with the prob-
lem instances with l < 30. It is clear from the figure that 
the running time is highly correlated with the number of 
reported stems. We see that StemFinder has improved 
running time performance partially due to the fact that it 
reports a smaller number of stems comparing to the other 
two methods. 

From the above, we see that StemFinder performs bet-
ter than the previous MSS algorithms in all the following 
three aspects: the running time, the number of reported 
stems and the number of l-mers covered by the reported 
stems. In the following discussion we focus on running 
time since for exact algorithms, running time efficient is 
the most important goal that we aim to achieve in design-
ing new algorithms. 

Third, we evaluate algorithms on the challenging 
problem instances [21] over |∑| = 20, namely (7, 3), (9, 4) 
etc.  Here,  challenging  instances  are  used  to  test upper  

TABLE 8 
Results over Large Alphabets 

|∑|
(7, 3) (9, 4) (11, 5) 

SFa MSS2 SFa MSS2 SFa MSS2

40 30.4s 12.9m 53.5s 1.2h 76.9s 6.4h
60 12.9s 8.1m 21.2s 46.4m 31.4s 4.6h
80 7.2s 6.4m 11.5s 33.5m 17.1s 3.1h

100 4.7s 4.3m 7.3s 25.7m 11.1s 2.6h

aSF is short-hand for StemFinder. 

bounds of the computation ability of an exact algorithm. 
The results on these instances are shown in Table 7. We 
find that StemFinder is able to solve very challenging in-
stances such as (21, 10) within ten hours. MSS2 can only 
solve two instances (7, 3) and (9, 4). Stemming fails to 
solve any challenging instances. In addition we test an 
efficient PMS algorithm qPMS7, downloaded from 
http://pms.engr.uconn.edu/downloads/qPMS7.zip, 
because it can be used to solve problems over |∑| = 20. 
The algorithm qPMS7 has better running time efficiency 
when l ≤ 15. This may be due to the fact that qPMS7 con-
siders the common d-neighbors shared by three l-mers 
rather than two. However, when l > 15, qPMS7 takes a 
very long running time, since a huge number of candidate 
motifs need to be verified. 

At last, we further evaluate algorithms over large al-
phabets. We show the results in Table 8 with |∑| = 40, 60, 
80 and 100. From the table we see that with a fixed (l, d) 
instance, both StemFinder and MSS2 have shorter run-
ning time when the alphabet is large. This is not surpris-
ing since large alphabet leads to a reduced p2d and hence 
we have smaller number of pairs of l-mers to generate 
stems. Comparing StemFinder and MSS2, we find that 
StemFinder is often an order of magnitude faster than 
MSS2. 

6.3 Results on Real-world Data Sets with Protein 
Sequences 

We collect our data sets from the Eukaryotic Linear Motif 
(ELM) database (http://elm.eu.org) [23]. ELM database con-
tains multiple short protein motifs given in the form of regu-
lar expressions. Each motif corresponds to a unique ELM 
identifier (ELM ID). We obtain ten data sets with the latest 
100 ELM motif instances and name them with the ELM ID. 
We only select those data sets with at least three instances of 
a motif. 

TABLE 9 
Results on ELM Data Sets 

Data set (# instances) (l, d) SFa MSS Stemming ELM Motif Detected Motif 
LIG_EVH1_1 (18) (5, 1) 0.1s 0.1s 0.1s ([FYWL]P.PP)|([FYWL]PP[ALIVTFY]P) FPPPP 
LIG_WW_1 (3) (4, 1) 0.1s 0.4s 2.0s PP.Y PPVY 
LIG_14-3-3_1 (3) (6, 2) 0.1s 0.3s 1.4s R.[^P]([ST])[^P]P RSSSSP 
LIG_MYND_2 (3) (5, 1) 0.3s 1.4s 7.1s PP.LI PPPLI 
LIG_USP7_1 (3) (5, 2) 0.5s 0.7s 38.2s [PA][^P][^FYWIL]S[^P] Null 
LIG_APCC_TPR_1 (22) (3, 1) 10.3s 3.9s 1.1h .[ILM]R$ Null 
LIG_MYND_1 (6) (5, 2) 25.6s 25.9s 1.9h P.L.P P[^CG]LAP 
LIG_PAM2_1 (4) (13, 6) 1.0m -o -o ..[LFP][NS][PIVTAFL].A..(([FY].[PYLF])|(W..)). SAFNPNAKEFVPI 
MOD_NEK2_1 (3) (6, 3) 10.3m -o -o [FLM][^P][^P]([ST])[^DEP][^DE] FAESFS 
LIG_EABR_CEP55-1 (6) (11, 5) 24.2m -o -o .A.GPP.{2,3}Y. [^MT]AVGPPQLSYM

aSF is short-hand for StemFinder. 
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We first demonstrate the validity of StemFinder for 
searching motifs on these real protein data sets. We show in 
Table 9 the detected stems, which are those spanning all 
motif instances under the used (l, d). From the table we see a 
good matching between our results and the ELM motifs in 
most of the data sets, except for LIG_USP7_1 and 
LIG_APCC_TPR_1, where we do not  find an appropriate (l, 
d) to carry out prediction. There are subtle differences be-
tween the detected motifs and the ELM motifs, since the 
ELM motifs are curated by hand and our results are com-
pletely obtained through computation without additional 
biological knowledge. 

In addition, we list the running time of different algo-
rithms at the same table. We see that StemFinder is very effi-
cient, and completes the computation for any data sets with-
in 30 minutes. As a comparison MSS2 and Stemming take 
more than 10 hours to process challenging cases 
LIG_PAM2_1, MOD_NEK2_1 and LIG_EABR_CEP55-1. 

7 CONCLUSION 
This paper focuses on the exact algorithms for searching 
motif stems over large alphabets. To represent stems 
more precisely and concisely, we write stems as regular 
expressions by replacing typical wildcards with the nega-
tive character sets, and place as few negative character 
sets as possible. Then, a new exact algorithm called Stem-
Finder is proposed. Experimental results on simulated 
data show that StemFinder outperforms the previous al-
gorithms on both the time performance and the ability to 
report fewer stems. Moreover, the validity of StemFinder 
is demonstrated on real protein data sets. 

A limitation of our current study is that StemFinder 
does not support searching stems on data sets where 
some input sequences may contain no motif instances. We 
plan to concentrate our future work on solving this prob-
lem. 
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