
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 1

An Efficient Exact Algorithm for the Motif
Stem Search Problem over Large Alphabets

Qiang Yu, Hongwei Huo, Jeffrey Scott Vitter, Jun Huan, and Yakov Nekrich

Abstract—In recent years, there has been an increasing interest in planted (l, d) motif search (PMS) with applications to
discovering significant segments in biological sequences. However, there has been little discussion about PMS over large
alphabets. This paper focuses on motif stem search (MSS), which is recently introduced to search motifs on large-alphabet
inputs. A motif stem is an l-length string with some wildcards. The goal of the MSS problem is to find a set of stems that
represents a superset of all (l, d) motifs present in the input sequences, and the superset is expected to be as small as possible.
The three main contributions of this paper are as follows: (1) We build motif stem representation more precisely by using regular
expressions. (2) We give a method for generating all possible motif stems without redundant wildcards. (3) We propose an
efficient exact algorithm, called StemFinder, for solving the MSS problem. Compared with the previous algorithms, StemFinder
runs much faster and first solves the (17, 8), (19, 9) and (21, 10) challenging instances on protein sequences; moreover,
StemFinder reports fewer stems which represent a smaller superset of all (l, d) motifs. StemFinder is freely available at
http://sites.google.com/site/feqond/stemfinder.

Index Terms—Exact algorithms, motif stem search, planted (l, d) motif search

——————————  ——————————

1 INTRODUCTION

otif search is to find short similar sequence seg-
ments in a given set of sequences over an alphabet ∑,

which plays an important role in discovering significant
segments in biological sequences, such as transcription
factor binding sites in DNA sequences [1]. The planted (l,
d) motif search (PMS) [2] is a widely accepted formulation
of the problem. A (l, d) motif is an l-mer (i.e., an l-length
string over ∑) that spans all input sequences with up to d
mismatches. The goal of the PMS problem is to find all (l,
d) motifs present in the given sequences, and the PMS
problem has been proven to be NP-complete [3].

The key to motif search lies in two points: a) how to
represent the sequence motif using an appropriate model;
b) how to design an efficient motif search algorithm. The
most commonly used motif models are position weight
matrices (PWM) [4] and consensus sequences [5]. Based
on these two motif models, numerous motif search algo-
rithms have been proposed.

The algorithms that model motifs using PWM usually
employ statistical techniques [6], [7], [8]. These algorithms
can report results in a short time, but cannot guarantee a
global optimum. The exact algorithms, which use consen-
sus sequences to represent motifs, are guaranteed to re-
port all (l, d) motifs by traversing the whole search space.
Most exact algorithms are pattern-driven. They take all
string patterns of length l over ∑ as candidate motifs, and
output the patterns that can span all input sequences.

Typical pattern-driven algorithms aim to reduce candi-
date motifs through various means [9], [10], [11], [12], [13],
[14], [15], [16]. Some other pattern-driven algorithms
represent the input sequences as a suffix tree to accelerate
the verification of candidate motifs [17], [18], [19]. The
initial search space of pattern-driven algorithms is O(|∑|l),
which grows dramatically with the increase of |∑|. There-
fore, most existing exact algorithms are designed just for
searching motifs in DNA sequences where |∑| = 4, and
they cannot search low-conserved motifs within an ac-
ceptable time in the data sets over large alphabets, such as
the protein data sets where |∑| = 20.

To improve the efficiency of the exact algorithms over
large alphabets, Kuksa and Pavlovic [20] introduced the
concept of motif stem in the field of motif search. A motif
stem is an l-length string that may contain some wild-
cards, and it represents a set of candidate motifs. For ex-
ample, assume that A*GT is a motif stem over ∑ = {A, G,
C, T} where * denotes a wildcard. Then, A*GT represents
four candidate motifs AAGT, AGGT, ACGT and ATGT.
The goal of motif stem search (MSS) is to find a set of
stems that represents a superset of all (l, d) motifs, and the
superset is expected to be as small as possible. The time
complexity of the MSS algorithms does not grow with the
increase of the size of the alphabet, since in generating
candidate motifs, the operation of expanding some posi-
tions to multiple characters over ∑ is replaced by placing
wildcards in these positions.

MSS algorithms are the main subject of this paper.
Stemming [20] is the first MSS algorithm, and it works as
follows: first, select the l-mers that may be motif instances
(i.e., motif occurrences) to form a set I; second, for each
pair of l-mers x and x' in I, generate motif stems from x
and x' by placing wildcards; third, verify motif stems and
output the ones that occur in each input sequence. In a

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
 Q. Yu is with the School of Computer Science and Technology, Xidian

University, Xi’an, 710071, China. E-mail: qyu@mail.xidian.edu.cn.
 H. Huo is with the School of Computer Science and Technology, Xidian

University, Xi’an, 710071, China, and the Information and Telecommuni-
cation of Technology Center, The University of Kansas, Lawrence, 66047,
USA. E-mail: hwhuo@mail.xidian.edu.cn.

 J.S. Vitter, J. Huan and Y. Nekrich are with the Information and Telecom-
munication of Technology Center, The University of Kansas, Lawrence,
66047, USA. E-mail: {jsv, jhuan, yakov}@ittc.ku.edu.

M

2 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

recent work [21], more efficient MSS algorithms MSS1
and MSS2 are proposed. MSS1 constructs a smaller set I
and generates fewer stems than Stemming; also, MSS1
employs a different method for placing wildcards. MSS2
is an improvement of MSS1 obtained by accelerating the
calculation of Hamming distances from the l-mers in an
input sequence to that in another input sequence.

Despite the efforts for motif stem search, current MSS
algorithms have several notable limitations. First, motif
stems cannot be represented precisely with typical wild-
cards, since the wildcard * matches any character over ∑.
For example, when we hope a stem only matches AAGT
or AGGT, the stem A*GT fails to do so. The second limita-
tion comes from the methods used to generate motif
stems in current MSS algorithms. The current generation
methods either miss some possible motif stems or place
redundant wildcards, which is analyzed in detail in Sec-
tion 6.1. Third, there is great potential for designing more
efficient stem search algorithms. For example, as reported
in [21], the fastest stem search algorithm MSS2 is only
able to solve the challenging instance (11, 5) over |∑| = 20
within four hours, even if it does not perform a post-
processing (verifying candidate stems). Also, the reported
stems can be further reduced to represent a smaller su-
perset of all (l, d) motifs.

In this paper, we propose a new motif stem search al-
gorithm named StemFinder that overcomes these limita-
tions. To represent stems more precisely, we write stems
as regular expressions by replacing typical wildcards *
with the negative character sets [^]. A negative character
set [^] matches any character not enclosed; for example,
[^CT] represents any single character over ∑ except for C
and T. StemFinder runs much faster than the previous
stem search algorithms, and reports fewer stems corres-
ponding to a smaller superset of all (l, d) motifs.

The rest of the paper is organized as follows. Section 2
gives the notations and problem definition, and reviews
the previous stem generation methods. Section 3 de-
scribes how to represent motif stems using regular ex-
pressions. Section 4 introduces the method for generating
motif stems. In Section 5, several techniques used in
StemFinder as well as the StemFinder algorithm are de-
scribed. Then, Section 6 presents the results and discus-
sion. Finally, we conclude the paper in Section 7.

2 PRELIMINARIES

2.1 Notations and Problem Definition
In this paper, an l-mer is an l-length string over an alpha-
bet ∑ without wildcards; a motif stem is an l-length string
over the same alphabet that may contain wildcards. We
say an l-mer x is covered by a motif stem s, if x is in the
set of l-mers represented by s. Hereafter, a motif stem is
called simply as a stem.

The notations used in this paper are summarized in
Table 1. The probability pk' and pk are calculated by (1)
and (2), respectively. The notations R(i), Ns(i) and Nrs(i)
imply the dependence of their values on the Hamming
distance i between two l-mers, which will be discussed in
detail in Section 4.

TABLE 1
Notations Used in This Paper

Notation Explanation
|x| The size of a set x or the length of a string x.

Pm(x, x')
The positions in the matching region of two l-mers x and
x'. Pm(x, x') = {i: 1 ≤ i ≤ l, x[i] = x'[i]}.

Pn(x, x')
The positions in the non-matching region of two l-mers x
and x'. Pn(x, x') = {i: 1 ≤ i ≤ l, x[i] ≠ x'[i]}.

Pmn(x, x', y)
The positions where x matches x', and y matches neither
x nor x', for the given three l-mers x, x' and y. Pmn(x, x', y)
= {i: 1 ≤ i ≤ l, x[i] = x'[i], y[i] ≠ x[i] and y[i] ≠ x'[i]}.

Pnn(x, x', y)
The positions where x, x' and y are mismatched with
each other, for the given three l-mers x, x' and y. Pnn(x, x',
y) = {i: 1 ≤ i ≤ l, x[i] ≠ x'[i], y[i] ≠ x[i] and y[i] ≠ x'[i]}.

dH(x, x')
The Hamming distance between two l-mers x and x'.
dH(x, x') = |Pn(x, x')| = l – |Pm(x, x')|.

Md(x, x')
The common d-neighbors of two l-mers x and x'. Md(x,
x') = {y: |y| = |x| = |x'|, dH(y, x) ≤ d and dH(y, x') ≤ d}.

C(x, Si)

The l-mers in the sequence Si that are 2d-neighbors of

the l-mer x. C(x, Si) = {y: |y| = |x|, y l Si and dH(y, x) ≤

2d}.

C(x, x', Si)

The l-mers in the sequence Si that are common 2d-
neighbors of the l-mers x and x'. C(x, x', Si) = {y: |y| = |x|

= |x'|, y l Si, dH(y, x) ≤ 2d and dH(y, x') ≤ 2d}.

pk'
The probability that the Hamming distance between a
fixed l-mer and a random l-mer is equal to k.

pk
The probability that the Hamming distance between a
fixed l-mer and a random l-mer is less than or equal to k.

R(i)
Given two l-mers x and x' with dH(x, x') = i and an
arbitrary l-mer y∈Md(x, x'), R(i) denotes the set of all
possible combinations of |Pmn(x, x', y)| and |Pnn(x, x', y)|.

Ns(i)
The number of stems generated from two l-mers x and x'
with dH(x, x') = i.

Nrs(i)
The number of rough stems generated from two l-mers x
and x' with dH(x, x') = i. The concept of rough stem is
described in Section 4.

l

k

k k

l
p














)1(
' (1)





k

i
kk pp

0

' (2)

Problem Definition: Motif Stem Search (MSS) [21].
Given a set of n‐length sequences {S1, S2, …, St} over an
alphabet ∑ and nonnegative integers l and d, satisfying 0
≤ d < l < n, a (l, d) motif is an l‐mer m such that each se‐
quence Si contains an l‐mer mi differing from m in at
most d positions. The MSS problem is to find a set of
stems so that the set of l‐mers represented by these
stems is a superset of all (l, d) motifs present in the t se‐
quences.

There are two key indicators used to assess the MSS
algorithms. One is the running time. The other is the
number of l‐mers covered by the reported stems. Al‐
though the MSS algorithms should be guaranteed to
report the stems representing a superset of all (l, d) mo‐
tifs, the size of the superset is not fixed due to different
methods used to generate stems. Therefore, an efficient
MSS algorithm indicates that it not only runs faster but
also reports the stems covering fewer l‐mers.

2.2 Previous Stem Generation Methods
This section briefly reviews the stem generation methods
used in existing MSS algorithms, Stemming [20] and

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 3

MSS1/MSS2 [21]. The stem generation method is the core
module of an MSS algorithm and it affects the number of
l-mers covered by the reported stems.

Existing MSS algorithms as well as StemFinder first
select multiple pairs of l-mers from input sequences. Then,
for each selected pair of l-mers x and x', they generate the
candidate stems by placing wildcards in x, differing only
in the specific meanings of the used wildcards and the
ways that wildcards are placed.

Stemming allows the wildcard to match any character
over ∑ and generate stems by changing x as follows: if
dH(x, x') ≤ d, set i (0 ≤ i ≤ dH(x, x')) positions in Pn(x, x') as in
x', place α (0 ≤ α ≤ dH(x, x') – i) wildcards in the remaining
dH(x, x') – i positions in Pn(x, x'), and place β (0 ≤ β ≤ d –
max(dH(x, x') – i, α + i)) wildcards in Pm(x, x'); otherwise,
set i (dH(x, x') – d ≤ i ≤ d) positions in Pn(x, x') as in x', and
place α (0 ≤ α ≤ d – i) wildcards in the remaining dH(x, x') –
i positions in Pn(x, x'). We find that Stemming in this way
cannot generate all possible candidate stems in some cas-
es, and we give an example in Section 6.1.

In MSS1/MSS2, a wildcard matches any character
over ∑ except for the character in the corresponding posi-
tion of x. MSS1/MSS2 generates stems s by placing α
wildcards in Pn(x, x') of x and β wildcards in Pm(x, x') of x.
The range of α is considered as follows. If dH(x, x') ≤ d, it is
clear that α can vary from 0 to dH(x, x'), namely 0 ≤ α ≤ dH(x,
x'); otherwise, at least dH(x, x') – d wildcards have to be
placed in Pn(x, x'), namely dH(x, x') – d ≤ α ≤ d, to make dH(s,
x) ≤ d and dH(s, x') ≤ d satisfied. Simultaneously, the range
of β is determined by satisfying the same condition that
dH(s, x) ≤ d and dH(s, x') ≤ d, namely α + β ≤ d and (dH(x, x')
– α) + β ≤ d, so the maximum value of β is min{d – α, d –
(dH(x, x') – α)}. Although MSS1/MSS2 can generate all
possible candidate stems, it may place redundant wild-
cards, and thus the reported stems cover more unneces-
sary l-mers. The associated example and more detailed
analysis are given in Section 6.1.

3 STEM REPRESENTATION

In the previous MSS algorithms, for a stem s of length l,
s[i] (0 ≤ i ≤ l) is either an exact character over ∑ or a typi-
cal wildcard *. To represent stems more precisely, we in-
troduce two new regular expression operators, namely
the negative character set [^] and the choice operator |.
Both of the two operators are used in a rough stem, which
will be discussed in Section 4. Only the former operator is
involved in the representation of a final stem, which is
discussed in this section.

Specifically, we describe how to represent stems using
regular expressions, by analyzing the relationships
among three characters in a column of the alignment of
three l-mers. Given three l-mers x, x' and y, assume that y
is an arbitrary candidate motif shared by x and x', namely
y∈Md(x, x'). For the ith (1 ≤ i ≤ l) column of the three l-
mers, there are five possible cases for the relationships
among x[i], x'[i] and y[i], as shown in Table 2. Under dif-
ferent cases, the number of characters matched by y[i] is
also different. For the Cases 1, 3 and 4, y[i] corresponds to
a unique character. For the Cases 2 and 5, y[i] matches |∑|

TABLE 2
Represent y[i] Using x[i] and x'[i]

Relationships among x[i], x'[i] and y[i] #a y[i]
Case 1: x[i] = x'[i] = y[i] 1 x[i]
Case 2: x[i] = x'[i], y[i] ≠ x[i] and y[i] ≠ x'[i] |∑| – 1 [^x[i]]
Case 3: x[i] ≠ x'[i], y[i] = x[i] and y[i] ≠ x'[i] 1 x[i]
Case 4: x[i] ≠ x'[i], y[i] ≠ x[i] and y[i] = x'[i] 1 x'[i]
Case 5: x[i] ≠ x'[i], y[i] ≠ x[i] and y[i] ≠ x'[i] |∑| – 2 [^x[i]x'[i]]

aThe number of characters matched by y[i].

– 1 and |∑| – 2 characters, respectively. When y[i] corres-
ponds to multiple characters, we represent y[i] using the
negative character set [^]. Specifically, for Case 2, y[i] is
represented as [^x[i]], which matches any character in ∑
excluding x[i]; for Case 5, y[i] is represented as [^x[i]x'[i]],
which matches any character in ∑ excluding x[i] and x'[i].

According to the analysis above, assume that the regu-
lar expression s is a stem obtained from two l-mers x and
x'. Then the ith position of s must fall into one of the three
patterns: a specific character (x[i] or x'[i]), a negative cha-
racter set [^x[i]] or a negative character set [^x[i]x'[i]]. In
all the l positions of s, if there is a position i that corres-
ponds to [^x[i]] or [^x[i]x'[i]], then s represents multiple
candidate motifs; otherwise, s represents a single candi-
date motif. Let (l, d) = (7, 3), x = AAAAGGG and x' =
AAAACCC; four possible stems are AAAAGGC,
AAAAG[^GC]C, AA[^A]AGCC and A[^A]AAGC[^GC].
The method for generating stems from x and x' is de-
scribed in the next section.

There are two benefits for the use of regular expres-
sions to represent stems. On the one hand, stems are
represented more precisely by using negative character
sets than using typical wildcards, since the former match
the interest characters and the latter match any character.
On the other hand, stems can be converted into finite au-
tomatas [22] so that they can be verified efficiently in stem
search.

4 STEM GENERATION

This section gives the method for generating all possible
stems s from two given l-mers x and x'. Assume that an l-
mer y is an arbitrary candidate motif covered by s, and y
satisfies dH(y, x) ≤ d and dH(y, x') ≤ d. The key of the gener-
ation method is to determine the positions corresponding
to Case 2 and the positions corresponding to Case 5,
namely Pmn(x, x', y) and Pnn(x, x', y), since these positions
of s will be represented as negative character sets. More
precisely, we obtain all possible combinations of |Pmn(x, x',
y)| and |Pnn(x, x', y)|, namely R(dH(x, x')). Hereafter, Pm(x,
x'), Pn(x, x'), Pmn(x, x', y) and Pnn(x, x', y) are denoted simp-
ly as Pm, Pn, Pmn and Pnn, respectively.

The possible combinations of |Pmn| and |Pnn| are cal-
culated as follows. First, since Pmn is a subset of Pm, we
have 0 ≤ |Pmn| ≤ |Pm|, namely 0 ≤ |Pmn| ≤ l – dH(x, x');
similarly, 0 ≤ |Pnn| ≤ dH(x, x'). Second, since all positions i
in Pmn satisfy y[i] ≠ x[i] and y[i] ≠ x'[i], we have |Pmn| ≤ d,
which is necessary for dH(y, x) ≤ d and dH(y, x') ≤ d to be
satisfied; similarly, |Pnn| ≤ d. Third, dH(y, x) + dH(y, x') ≤
2d where dH(y, x) + dH(y, x') can be represented as 2|Pmn|

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

Fig. 1. An example for generating stems from two l-mers.

+ 2|Pnn| + (dH(x, x') – |Pnn|) = 2|Pmn| + |Pnn| + dH(x, x'),
so we have 2|Pmn| + |Pnn| + dH(x, x') ≤ 2d, namely 2|Pmn|
+ |Pnn| ≤ 2d – dH(x, x'). Taking these considerations into
account, we obtain the following inequalities:














).',(22

},),',(min{0

},),',(min{0

xxddPP

dxxdP

dxxdlP

Hnnmn

Hnn

Hmn

 (3)

Obviously, the values of |Pmn| and |Pnn|, which depend
on dH(x, x'), can be calculated by solving (3). That is,
R(dH(x, x')) = {<|Pmn|, |Pnn|>: |Pmn| and |Pnn| satisfy
(3)}. For example, when (l, d) = (7, 3) and dH(x, x') = 3, all
possible combinations of |Pmn| and |Pnn| form R(3) = {<0,
0>, <0, 1>, <0, 2>, <0, 3>, <1, 0>, <1, 1>}.

For each possible combination of |Pmn| and |Pnn|, we
generate the stems from x and x' by rewriting a string s
that is initialized as x, through three steps shown in Fig. 1.
(1) Select |Pmn| positions from Pm, and change the charac-
ter of s in each selected position i to [^x[i]]; at the same
time, select |Pnn| positions from Pn, and change the cha-
racter of s in each selected position i to [^x[i]x'[i]]. (2) For
each position i that is in Pn but not selected in the previous
step, change the corresponding character of s to x[i]|x'[i].
(3) For each position i of s that corresponds to x[i]|x'[i],
expand it to x[i] and x'[i].

The stems obtained in the second step are called rough
stems, in regard to the stems obtained in the last step.
Note that, for each position i in Pn except for the positions
selected in the first step, the character of s (denoted by c)
can be either x[i] (corresponding to Case 3 in Table 2) or
x'[i] (corresponding to Case 4 in Table 2). In a rough stem,
such character c is represented using the choice operator
of regular expressions, namely x[i]|x'[i]. In a stem, such
character c is represented exactly as x[i] or x'[i]. Since the
number of such characters c is w = dH(x, x') – |Pnn|, each
rough stem can be decomposed into 2w stems. For exam-
ple, in Fig. 1, each rough stem obtained through step 2
corresponds to w = 2, and it is decomposed or expanded
to four stems through step 3.

Given two l-mers x and x' with dH(x, x') = i, the num-
ber of generated rough stems, Nrs(i), is calculated by (4),
which sums the number of rough stems over all possible
combinations of |Pmn| and |Pnn|; similarly, the number
of generated stems, Ns(i), is calculated by (5).



















 


)(,

)(
iR

rs

iil
iN

 
 (4)

 

















 


)(,

2)(
iR

i
s

iil
iN






 (5)

5 STEM SEARCH ALGORITHM
The framework of StemFinder is: extract some pairs of l-
mers from input sequences to form a set I so that at least
one pair of motif instances is included; then, for each pair
of l-mers in I, generate and verify stems; finally, report all
valid stems. Although this framework is somewhat simi-
lar to that of the previous algorithms (Stemming [20] and
MSS1/MSS2 [21]), StemFinder performs more efficiently
by introducing several techniques described in Section 5.1
to 5.3. The whole algorithm of StemFinder, as well as its
complexity analysis, is presented in Section 5.4.

5.1 Constructing Set I
The set I is composed of pairs of l-mers coming from dif-
ferent input sequences, and contains at least one element
that is a pair of motif instances. According to the problem
definition, there is a motif instance in each input sequence,
and the Hamming distance between any two motif in-
stances is less than or equal to 2d. Thus, a typical method
for constructing the set I is: for each l-mer x in S1, select a
reference sequence Sr from {S2, …, St}; for each l-mer x' in
Sr, if dH(x, x') ≤ 2d, namely x'∈C(x, Sr), then add the pair of
l-mers x and x' to the set I.

Furthermore, a good set I is composed of pairs of l-
mers that correspond to as few stems as possible, which
depends on how to select the reference sequence Sr for
each l-mer x in S1. Unlike [21], in which the selected Sr is
the sequence in {S2, …, St} that contains the minimum
number of l-mers x' satisfying dH(x, x') ≤ 2d, we select Sr
based on the following observation.

Observation 1. For two l-mers x and x', both the number of
generated stems and the number of generated rough stems
are different for distinct dH(x, x').

We mainly consider the number of rough stems, since
in the StemFinder algorithm we verify rough stems firstly
and avoid the verification of most stems using pruning,

Fig. 2. Proportion of rough stems under different Hamming dis-

tances.

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 5

which is discussed in detail in Section 5.3. Fig. 2 shows
the proportion of rough stems generated from two l-mers
under different Hamming distances. Each stacked column
in the figure corresponds to a (l, 2) problem instance with
Hamming distances ranging from 0 to 4 (2d). The propor-
tion of rough stems under the Hamming distance i (0 ≤ i ≤
2d) is defined to be Nrs(i)/Ntotal, where Ntotal = ∑Nrs(j) for 0
≤ j ≤ 2d. These (l, 2) instances represent the general cases,
since they cover the instances from a low degenerate case
(11, 2) to a highly degenerate case (5, 2). We can see that
the number of rough stems differs greatly for distinct
Hamming distances. Particularly, the number of rough
stems for dH(x, x') = 0 is ten times greater than the number
of rough stems for dH(x, x') = 4. Thus, the reference se-
quence Sr with a small value of |C(x, Sr)| may not corres-
pond to a small number of rough stems. For example, for
two reference sequences Sr1 and Sr2 of the l-mer x for the
problem instance (7, 2), assume that C(x, Sr1) = {x1, x2, x3},
C(x, Sr2) = {x4}, dH(x, x1) = 4, dH(x, x2) = 4, dH(x, x3) = 3 and
dH(x, x4) = 0. Although |C(x, Sr1)| = 3 is larger than |C(x,
Sr2)| = 1, the number of rough stems corresponding to Sr1

is much smaller than that corresponding to Sr2.
In the light of the above, we select the reference se-

quence Sr for the l-mer x by minimizing the right side of
(6). The selected Sr is the sequence in {S2, …, St} that cor-
responds to the minimum number of rough stems.








),('

2
),('

))',((min))',((
ir SxCx

Hrsti
SxCx

Hrs xxdNxxdN (6)

5.2 Verifying Stems
We convert stems into deterministic finite automatas
(DFA) and verify stems by scanning input sequences to
check whether there is an occurrence of the verified stem
in each sequence.

At first, let us determine the objects scanned by the
DFA. Assume that s is a stem generated from l-mers x and
x'. Then, only the l-mers z with dH(z, x) ≤ 2d and dH(z, x') ≤
2d in input sequences could be the occurrences of s. Since
the value of p2d is small and it is approximately equal to
10-2 or 10-3 for common problem instances, the number of
l-mers in input sequences that could be the occurrences of
s is also small. Thus, we only need to check the l-mers that
could be the occurrences of s, rather than the whole input
sequences. Specifically, for an input sequence Si, the
scanned objects are the l-mers in C(x, x', Si).

Next, we introduce how to construct a DFA from a
stem s and how to perform scan. Scanning an l-mer z is to
check whether there are at most d positions where s mis-
matches z. As shown in Fig. 3(a), for the DFA directly
constructed from a stem, once a mismatch occurs in some
position, the DFA will immediately end the matching
process. In order to allow at most d mismatches, we add a
counter initialized as 0 to the DFA, as shown in Fig. 3(b).
For any state u except for the end state, the next state is
always u + 1 via any character c. If the character c is
matched, the counter remains unchanged; otherwise, it is
incremented by one. When arriving at the end state, if the
counter is less than or equal to d, then the scanned l-mer
is an occurrence of the stem s.

Fig. 3. DFA of the stem [^A]D[^CG](E|F)A (a) Initial DFA (b) DFA

with counter (c) Bitmap of DFA with counter.

TABLE 3
Rules of Generating the Bitmap for a Stem s

s[i] Generation Rule

[^x[i]]
Perform bitwise NOT on T[i–1], and then
set T[i–1][x[i]] as 1

[^x[i]x'[i]]
Perform bitwise NOT on T[i–1], and then
set both T[i–1][x[i]] and T[i–1][x'[i]] as 1

x[i]|x'[i] Set both T[i–1][x[i]] and T[i–1][x'[i]] as 0
x[i] Set T[i–1][x[i]] as 0
x'[i] Set T[i–1][x'[i]] as 0

In order to scan l-mers more efficiently, we use a bit-
map to equivalently represent the DFA with counter. As
shown in Fig. 3(c), any element e in the bitmap corres-
ponds to a state u and a character c; the value of e, either 0
or 1, records the increment of the counter when activating
u via c. The bitmap for a stem s is a two-dimensional table
T, which is constructed as follows: first, initialize all ele-
ments in T to 1; then, for each position i (1 ≤ i ≤ l) of s,
change T according to the rules given in Table 3. Through
querying the table T, we can scan an l-mer z with O(l)
time, and the number of mismatches Nmis is calculated by
(7), where T[i–1][z[i]] represents the element in T corres-
ponding to the state i – 1 and the character z[i]. The sto-
rage space of a DFA with counter is O(l|∑|).





li

mis iziTN
1

]][][1[(7)

5.3 Accelerating Verification via Pruning
This section introduces a pruning technique to reduce the
number of stems to be verified. As described in Section 4,
each rough stem s can be decomposed into 2w stems,
where w is the number of such position i of s that corres-
ponds to x[i]|x'[i]. For simplicity of explanation, let A
denote the array of these w positions. Thus, the search
space of s is a complete binary tree called search tree: the
root is s; each leaf is one of the 2w stems; in the ith (0 < i <
w) level of the tree, there are 2i internal nodes, obtained

6 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

by expanding s in the positions A[1], …, A[i]. For example,
assume that the root s = [^A]A[^GC](G|C)(G|C). Then
the nodes in the first and the second level are
{[^A]A[^GC]G(G|C), [^A]A[^GC]C(G|C)} and
{[^A]A[^GC]GG, [^A]A[^GC]GC, [^A]A[^GC]CG,
[^A]A[^GC]CC}, respectively.

Observation 2. In the search tree of a rough stem, let q be an
internal node, let y be a child node of q, and let z be a ran-
dom l-mer. We have dH(y, z) = dH(q, z) or dH(y, z) = dH(q, z)
+ 1, namely dH(y, z) ≥ dH(q, z). Here, dH() denotes the num-
ber of positions where a stem mismatches an l-mer, and it is
calculated by (7).

In terms of Observation 2，if an internal node q fails to
span all input sequences, then the child nodes of q will
also fail to do so. Therefore, when we search valid stems
in the search tree, the subtrees of invalid nodes can be
pruned. This pruning technique facilitates avoiding the
verification of some invalid stems, especially for large
alphabets.

Theorem 1. In the search tree of a rough stem, let q be an in-
ternal node at level i, let y be a leaf in the subtree of q, and
let z be a random l-mer. We have

 
iw

HH zydzqd


















1

),(),(Pr . (8)

Proof. The nodes q and y differ in the positions A[i+1], …,
A[w]; for any j∈{A[i+1], …, A[w]}, q[j] is represented as
x[j]|x'[j], while y[j] is an exact character, either x[j] or
x'[j]. Let us first consider dH(q, z) ≠ dH(y, z). It holds if and
only if there exists at least one position j∈{A[i+1], …,
A[w]} corresponding to the case that z[j] ≠ y[j] but z[j]
can be matched by q[j]. For any position j∈{A[i+1], …,
A[w]}, the probability that this case occurs is equal to
1/|∑|. In other words, the probability that this case does
not occur for the position j is equal to 1 – 1/|∑| = (|∑| –
1)/|∑|. When this case does not occur for all the posi-
tions A[i+1], …, A[w], dH(q, z) = dH(y, z) holds. Therefore,
the probability of dH(q, z) = dH(y, z) is ((|∑| – 1)/|∑|)w–i. 

By Theorem 1, when the l-mer z is not an occurrence of
the leaf y (a stem), the probability that z is not an occur-
rence of the internal node q (a rough stem) is at least ((|∑|
– 1)/|∑|)w–i. This probability increases with the increase of
|∑|. Assume that w – i = 3. When |∑| = 4, the probability is
0.42; whereas, when |∑| = 40, the probability is 0.93.
Therefore, the pruning technique is more effective for
searching stems over large alphabets.

5.4 StemFinder
This section describes the whole algorithm of StemFinder
by using the pseudocode shown in Algorithm 1, Algo-
rithm 2 and Algorithm 3. Algorithm 1 corresponds to the
main framework. Algorithm 2 and Algorithm 3 called by
Algorithm1, correspond to the construction of the set I
and the verification of the stems for a given rough stem,
respectively. In Algorithm 3, the pruning technique is
applied to searching the search tree in a depth-first man-
ner.

Algorithm 1 StemFinder
Input：l, d, {S1, S2, … , St}
Output：the set of stems M that covers all (l, d) motifs
1: M ← Ф
2: sort input sequences into ascending order by length
3: for i ← 0 to 2d do
4: calculate R(i)
5: calculate Nrs(i)
6: I ← GenerateSetI
7: for each (x, x')∈I do
8: for each <α, β>∈R(dH(x, x')) do
9: s ← x

10: replace α characters of s in Pm with [^x[i]], forming the
set of strings M1

11: for each string s in M1 do
12: replace β characters of s in Pn with [^x[i]x'[i]], form-

ing the set of strings M2

13: for each string s in M2 do
14: replace each character of s in Pn that is x[i] with

x[i]|x'[i], forming the set of rough stems M3
15: for each rough stem s in M3 do
16: ordered set A ← {i: 1 ≤ i ≤ l && s[i] is x[i]|x'[i]}
17: VerifyRoughStem(s, A, 0)
18: return M

Algorithm 2 GenerateSetI
1: I ← Ф
2: for each l-mer x in S1 do
3: Nmin ← ∞
4: for j ← 2 to t do
5: C(x, Sj) ← Ф
6: Nj ← 0
7: for each l-mer x' in Sj do
8: if dH(x, x') ≤ 2d then
9: C(x, Sj) ← C(x, Sj)∪{x'}

10: Nj = Nj + Nrs(dH(x, x'))
11: if Nj < Nmin then
12: Nmin ← Nj
13: Smin ←Sj

14: for each l-mer x'∈C(x, Smin) do
15: I ← I ∪{(x, x')}
16: return I

Algorithm 3 VerifyRoughStem(s, A, i)
1: if s cannot span {S1, S2, … , St} then
2: return // perform pruning
3: else
4: if i < |A| then
5: j ← A[i+1] // the index of A begins with 1
6: s1 ← s with s[j] replaced by x[j]
7: s2 ← s with s[j] replaced by x'[j]
8: VerifyRoughStem(s1, A, i+1)
9: VerifyRoughStem(s2, A, i+1)

10: else
11: M ←M ∪{s}

For Algorithm 1, line 2 sorts the input sequences into
ascending order by length in O(t log(t)) time, which facili-
tates forming a smaller set I for handling variable length
sequences. Lines 3-5 calculate and cache the values of R(i)
and Nrs(i) for all possible Hamming distances i. R(i) is
obtained by listing all |Pmn| and |Pnn| satisfying (3), and
both |Pmn| and |Pnn| are less than or equal to d, so the
time complexity of calculating all R(i) for 0 ≤ i ≤ 2d is O(d3).
Nrs(i) is obtained along with the calculation of R(i). Line 6
constructs the set of pairs of l-mers I by calling Algorithm
2. In terms of the description of Algorithm 2, the time
complexity of constructing the set I is O(tn2l), where l cor-
responds to the time of calculating the Hamming distance

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 7

between two l-mers. Lines 7-17 generate and verify stems;
the time complexity is the number of stems |stems| mul-
tiplied by the time of verifying each stem O(tnl), where l
corresponds to the time of querying the table T when
scanning an l-mer.

According to the analysis above, the StemFinder algo-
rithm runs in O(tlgt + d3 + tn2l + |stems|tnl) time. The
expected number of |stems| can be estimated as follows,
which decreases with the increase of the size of the al-
phabet.

Theorem 2. The expected number of stems generated by Stem-
Finder is





d

i
si iNplnstemsE

2

0

2)(')1(|)(| . (9)

Proof. The result above is drawn from the assumption that
each input sequence is composed of independent, un-
iformly distributed random characters coming from an
alphabet ∑.

 At first, let us briefly review the method for constructing
the set I. For each of n – l + 1 l-mers x in S1, selects a ref-
erence sequence Sr. For each of n – l + 1 l-mers x' in Sr, if
dH(x, x') ≤ 2d, then add the pair of l-mers x and x' to the
set I.

 Next, we consider a fixed Hamming distance i (0 ≤ i ≤
2d). Since pi', calculated by (1), denotes the probability
that the Hamming distance between two l-mers is i, the
expected number of pairs of l-mers in the set I with
Hamming distance i is (n – l + 1)2pi'. Moreover, the
number of stems generated from a pair of l-mers with
Hamming distance i is Ns(i), which is calculated by (5).
Thus, the number of stems generated from all pairs of l-
mers in the set I with Hamming distance i is (n – l +
1)2pi'Ns(i).

 Finally, we sum the number of generated stems for all
possible Hamming distance i (0 ≤ i ≤ 2d) and obtain the
value of E(|stems|) shown in (9). Since pi' decreases with
the increase of the size of the alphabet, so does
E(|stems|). 

For the storage space, in addition to O(d3) words which
are used to cache R(i) and Nrs(i), we need to store O(tn) l-
mers in input sequences. Moreover, when we verify each
stem, the space required to store the bitmap is O(l|∑|).
Therefore, the space complexity of StemFinder is O(d3 + tn
+ l|∑|). Although the space complexity depends on the
size of alphabets, the value of l|∑| increases linearly with
the growth of |∑| and it is small even for very large alpha-
bets.

6 RESULTS AND DISCUSSION

6.1 Comparison of Stems Generated from Different
Algorithms

In this section, we compare the stems generated by Stem-
Finder with that generated by previous MSS algorithms
(Stemming [20] and MSS1/MSS2 [21]). Assume that the l-
mers x and x' are two instances of a motif y with (l, d) = (7,

TABLE 4
Stems Generated by Different Algorithms

Motif y
Generated stem that can cover y

StemFinder Stemming MSS1/MSS2

AAAGGCC AAAGGCC AAAGGCC AAAGG**
AAATGGC AAA[^GC]GGC AAA*GGC AAA*GG*
AAATTGC AAA[^GC][^GC]GC AAA**GC AAA**G*
ATAGGCC A[^A]AGGCC None A*AGG**

For two fixed l-mers x = AAAGGGG and x' = AAACCCC, this table gives
the generated stems that can cover the (7, 3) motif y under different MSS
algorithms. The wildcard * in the stems generated by Stemming matches any
character over ∑; the wildcard * in the ith position of the stems generated by
MSS1/MSS2 matches any character over ∑ except for x[i].

3). For different MSS algorithms, we give in Table 4 the
stem generated from x and x' that can cover y; each row of
the table corresponds to a different motif y for fixed l-
mers x = AAAGGGG and x' = AAACCCC. Here we do
not consider the stems that cannot cover y, since most of
them are filtered out in stem verification. We carry out
comparisons by answering the following two questions.

Does there always exist a generated stem that can cov-
er the motif y? The answer is yes for both StemFinder and
MSS1/MSS2, because both of them consider all possible
stems s under the condition that dH(s, x) ≤ d and dH(s, x') ≤
d. However, it is not true for Stemming because it does
not place wildcards in the matching region of x and x'
when dH(x, x') > d. For example, in the last row of Table 4,
there is a position i (the second position) that y[i] ≠ x[i] =
x'[i]; in this case, the stems generated by Stemming miss
the one that covers y.

Does there exist a redundant wildcard in the generat-
ed stem? A wildcard in position i is redundant if it can be
replaced by x[i] or x'[i], and a stem with redundant wild-
cards covers more l-mers that are not motif instances.
From Table 4, there are no redundant wildcards in the
stems generated by StemFinder and Stemming. However,
MSS1/MSS2 places at least one redundant wildcard in
each stem shown in Table 4. The reason is that
MSS1/MSS2 generates stems just by placing wildcards in
x, without setting some positions of x as in x' (this opera-
tion is supported by both StemFinder and Stemming);
thus, in the non-matching region of x and x', some charac-
ters that could be represented as x'[i] are replaced by
wildcards.

In summary, StemFinder not only generates all possi-
ble stems, but also places non-redundant wildcards in
them. Moreover, StemFinder represents stems more pre-
cisely by replacing the typical wildcards * with negative
character sets [^].

6.2 Results on Simulated Data
The simulated data sets over an alphabet ∑ are generated
following [2], which are also used in [20] and [21]. First,
randomly generate a motif m of length l and t = 20 se-
quences of length n = 600; second, for each sequence Si,
randomly generate a motif instance m' differing from m in
at most d positions, and then implant m' to a random po-
sition in Si.

We implement StemFinder using C++ and perform it

8 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

on a computer with 2.67 GHz processor and 4 Gbyte
memory. All results are the average obtained by running
algorithms on five random data sets. For the time units, s,
m and h denote seconds, minutes and hours, respectively;
-o represents the running time that exceeds ten hours.

First, we compare StemFinder with the algorithm de-
signed for searching DNA motifs. PairMotif [14], our pre-
vious work, is selected as the comparison object, which
can be downloaded from
http://files.figshare.com/294289/Program_S1.rar. As
shown in Table 5, StemFinder does not show its perfor-
mance advantages on DNA data, because it is not specifi-
cally optimized for |∑| = 4. However, for large alphabets
(|∑| ranging from 10 to 100), StemFinder runs much faster
than PairMotif; the reason is that StemFinder verifies all
possible stems rather than all possible motifs, and the
number of possible stems is much smaller than the num-
ber of possible motifs, especially for large alphabets.

Second, we compare StemFinder with the previous
MSS algorithms, namely Stemming [20] and MSS2 [21].
For the work [21], we use MSS2 rather than MSS1 as the
comparison object, since MSS2 is an improvement version
of MSS1. Neither Stemming nor MSS2 provides source
code or executable programs, so we also implement them
using C++ and perform them on the same experimental
environment. Consistent with [20] and [21], the data sets
used to test algorithms are (7, 1), (9, 2) etc. over |∑| = 20.

We show in Table 6 the running time of different MSS
algorithms. We can see from the table that StemFinder
greatly outperforms MSS2 and Stemming, and is able to
solve all these problem instances with l < 30 within ten
minutes. Both the running time of MSS2 and Stemming
grows dramatically with the increase of l and d; when (l, d)
= (15, 5) and (l, d) = (23, 9), Stemming and MSS2 both re-
quire more than ten hours.

TABLE 5
Running Time of StemFinder Compared with PairMotif

|∑| = 4 (l, d) = (15, 5)
(l, d) StemFinder PairMotif |∑| StemFinder PairMotif

(7, 1) 0.4s 0.5s 10 0.5s 5.5h
(9, 2) 3.5s 0.9s 20 0.2s -o

(11, 3) 28.9s 2.7s 40 0.2s -o
(13, 4) 4.9m 43.2s 60 0.2s -o
(15, 5) 1.0h 4.5m 80 0.2s -o
(17, 6) -o 53.2m 100 0.2s -o

TABLE 6
Running Time of StemFinder Compared with MSS2 and

Stemming

(l, d) StemFinder MSS2 Stemming
(7, 1) 0.2s 0.2s 1.8m
(9, 2) 0.2s 0.2s 6.1m

(11, 3) 0.2s 0.3s 30.0m
(13, 4) 0.2s 1.9s 4.4h
(15, 5) 0.2s 11.7s -o
(17, 6) 0.2s 1.1m -o
(19, 7) 1.0s 6.6m -o
(21, 8) 5.6s 2.1h -o
(23, 9) 15.4s -o -o

(25, 10) 3.5m -o -o
(27, 11) 8.3m -o -o
(29, 12) 8.2m -o -o

We show in Fig. 4 the total number of stems that are
reported by different MSS algorithms. We find that Stem-
Finder and MSS2 report a much smaller number of stems
compared to the method Stemming. Our explanation is
that the two methods use a much smaller number of pairs
of l-mers to generate the stems. Particularly, for Stem-
Finder and MSS2, the former reports a smaller number of
stems, owing to two factors: (i) the stems generated by
StemFinder contain fewer wildcards than MSS2, and have
more chance to be filtered out in stem verification; (ii)
StemFinder select the reference sequence Sr correspond-
ing to the minimum number of rough stems, which con-
tributes to reducing the number of possible candidate
stems.

We show in Fig. 5 the number of l-mers that are cov-
ered by the reported stems for different MSS algorithms.
We use the log-scale on the y-axis of the figure in order to
better compare different algorithms. Given a stem with i
wildcards, the number of covered l-mers is Xi, where X is
|∑|, |∑| – 1, and |∑| – 1 or |∑| – 2 for the algorithms Stem-
ming, MSS2, and StemFinder, respectively. In particular
we find that the number of covered l-mers for StemFinder
is about 1% of that of MSS2 and 0.01% of that of Stem-
ming. We believe two factors play an important role in
explaining the observed huge difference. (i) StemFinder
reports a small number of stems and (ii) there is no re-
dundancy of wildcards in the stems that are reported by
StemFinder.

Fig. 4. The number of stems reported by different MSS algorithms.

Fig. 5. The number of l-mers covered by reported stems for different

MSS algorithms.

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 9

Fig. 6. The trend of running time and that of the number of reported

stems for StemFinder.

TABLE 7
Results on Challenging Problem Instances

(l, d) StemFinder qPMS7 MSS2 Stemming
(7, 3) 2.6m 0.2m 26.7m -o
(9, 4) 4.4m 1.3m 2.6h -o

(11, 5) 6.9m 4.6m -o -o
(13, 6) 10.1m 2.4m -o -o
(15, 7) 13.6m 3.5m -o -o
(17, 8) 26.6m -o -o -o
(19, 9) 53.9m -o -o -o

(21, 10) 4.4h -o -o -o

Moreover, we show in Fig. 6 the running time and the
number of reported stems for StemFinder with the prob-
lem instances with l < 30. It is clear from the figure that
the running time is highly correlated with the number of
reported stems. We see that StemFinder has improved
running time performance partially due to the fact that it
reports a smaller number of stems comparing to the other
two methods.

From the above, we see that StemFinder performs bet-
ter than the previous MSS algorithms in all the following
three aspects: the running time, the number of reported
stems and the number of l-mers covered by the reported
stems. In the following discussion we focus on running
time since for exact algorithms, running time efficient is
the most important goal that we aim to achieve in design-
ing new algorithms.

Third, we evaluate algorithms on the challenging
problem instances [21] over |∑| = 20, namely (7, 3), (9, 4)
etc. Here, challenging instances are used to test upper

TABLE 8
Results over Large Alphabets

|∑|
(7, 3) (9, 4) (11, 5)

SFa MSS2 SFa MSS2 SFa MSS2

40 30.4s 12.9m 53.5s 1.2h 76.9s 6.4h
60 12.9s 8.1m 21.2s 46.4m 31.4s 4.6h
80 7.2s 6.4m 11.5s 33.5m 17.1s 3.1h

100 4.7s 4.3m 7.3s 25.7m 11.1s 2.6h

aSF is short-hand for StemFinder.

bounds of the computation ability of an exact algorithm.
The results on these instances are shown in Table 7. We
find that StemFinder is able to solve very challenging in-
stances such as (21, 10) within ten hours. MSS2 can only
solve two instances (7, 3) and (9, 4). Stemming fails to
solve any challenging instances. In addition we test an
efficient PMS algorithm qPMS7, downloaded from
http://pms.engr.uconn.edu/downloads/qPMS7.zip,
because it can be used to solve problems over |∑| = 20.
The algorithm qPMS7 has better running time efficiency
when l ≤ 15. This may be due to the fact that qPMS7 con-
siders the common d-neighbors shared by three l-mers
rather than two. However, when l > 15, qPMS7 takes a
very long running time, since a huge number of candidate
motifs need to be verified.

At last, we further evaluate algorithms over large al-
phabets. We show the results in Table 8 with |∑| = 40, 60,
80 and 100. From the table we see that with a fixed (l, d)
instance, both StemFinder and MSS2 have shorter run-
ning time when the alphabet is large. This is not surpris-
ing since large alphabet leads to a reduced p2d and hence
we have smaller number of pairs of l-mers to generate
stems. Comparing StemFinder and MSS2, we find that
StemFinder is often an order of magnitude faster than
MSS2.

6.3 Results on Real-world Data Sets with Protein
Sequences

We collect our data sets from the Eukaryotic Linear Motif
(ELM) database (http://elm.eu.org) [23]. ELM database con-
tains multiple short protein motifs given in the form of regu-
lar expressions. Each motif corresponds to a unique ELM
identifier (ELM ID). We obtain ten data sets with the latest
100 ELM motif instances and name them with the ELM ID.
We only select those data sets with at least three instances of
a motif.

TABLE 9
Results on ELM Data Sets

Data set (# instances) (l, d) SFa MSS Stemming ELM Motif Detected Motif
LIG_EVH1_1 (18) (5, 1) 0.1s 0.1s 0.1s ([FYWL]P.PP)|([FYWL]PP[ALIVTFY]P) FPPPP
LIG_WW_1 (3) (4, 1) 0.1s 0.4s 2.0s PP.Y PPVY
LIG_14-3-3_1 (3) (6, 2) 0.1s 0.3s 1.4s R.[^P]([ST])[^P]P RSSSSP
LIG_MYND_2 (3) (5, 1) 0.3s 1.4s 7.1s PP.LI PPPLI
LIG_USP7_1 (3) (5, 2) 0.5s 0.7s 38.2s [PA][^P][^FYWIL]S[^P] Null
LIG_APCC_TPR_1 (22) (3, 1) 10.3s 3.9s 1.1h .[ILM]R$ Null
LIG_MYND_1 (6) (5, 2) 25.6s 25.9s 1.9h P.L.P P[^CG]LAP
LIG_PAM2_1 (4) (13, 6) 1.0m -o -o ..[LFP][NS][PIVTAFL].A..(([FY].[PYLF])|(W..)). SAFNPNAKEFVPI
MOD_NEK2_1 (3) (6, 3) 10.3m -o -o [FLM][^P][^P]([ST])[^DEP][^DE] FAESFS
LIG_EABR_CEP55-1 (6) (11, 5) 24.2m -o -o .A.GPP.{2,3}Y. [^MT]AVGPPQLSYM

aSF is short-hand for StemFinder.

10 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

We first demonstrate the validity of StemFinder for
searching motifs on these real protein data sets. We show in
Table 9 the detected stems, which are those spanning all
motif instances under the used (l, d). From the table we see a
good matching between our results and the ELM motifs in
most of the data sets, except for LIG_USP7_1 and
LIG_APCC_TPR_1, where we do not find an appropriate (l,
d) to carry out prediction. There are subtle differences be-
tween the detected motifs and the ELM motifs, since the
ELM motifs are curated by hand and our results are com-
pletely obtained through computation without additional
biological knowledge.

In addition, we list the running time of different algo-
rithms at the same table. We see that StemFinder is very effi-
cient, and completes the computation for any data sets with-
in 30 minutes. As a comparison MSS2 and Stemming take
more than 10 hours to process challenging cases
LIG_PAM2_1, MOD_NEK2_1 and LIG_EABR_CEP55-1.

7 CONCLUSION
This paper focuses on the exact algorithms for searching
motif stems over large alphabets. To represent stems
more precisely and concisely, we write stems as regular
expressions by replacing typical wildcards with the nega-
tive character sets, and place as few negative character
sets as possible. Then, a new exact algorithm called Stem-
Finder is proposed. Experimental results on simulated
data show that StemFinder outperforms the previous al-
gorithms on both the time performance and the ability to
report fewer stems. Moreover, the validity of StemFinder
is demonstrated on real protein data sets.

A limitation of our current study is that StemFinder
does not support searching stems on data sets where
some input sequences may contain no motif instances. We
plan to concentrate our future work on solving this prob-
lem.

ACKNOWLEDGMENT

This research was supported in part by the National Nat-
ural Science Foundation of China (61173025 and
61373044), the Research Fund for the Doctoral Program of
Higher Education of China (20100203110010), the Fun-
damental Research Funds for the Central Universi-
ties(K5051303032, K5051303002 and K50513100011), and
the Natural Science Foundation of Shaanxi (2013JQ8037).
A preliminary version [24] of this work appeared in the
proceedings of IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), 18-21 December 2013,
Shanghai, China. Hongwei Huo is the corresponding au-
thor.

REFERENCES

[1] P. D’haeseleer, “What Are DNA Sequence Motifs?” Nature
Biotechnology, vol. 24, no. 4, pp. 423-425, 2006.

[2] P.A. Pevzner and S. Sze, “Combinatorial Approaches to Find-
ing Subtle Signals in DNA Sequences,” Proc. Eighth Int’l Conf.
Intelligent Systems for Molecular Biology, pp. 269-278, 2000.

[3] P.A. Evans, A.D. Smith, and H.T. Wareham, “On the Complexity of
Finding Common Approximate Substrings,” Theoretical Computer
Science, vol. 306, pp. 407-430, 2003.

[4] J.D. Thompson, D.G. Higgins, and T.J. Gibson, “CLUSTAL W: Im-
proving the Sensitivity of Progressive Multiple Sequence Alignment
through Sequence Weighting, Positionspecific Gap Penalties and
Weight Matrix Choice,” Nucleic Acids Research, vol. 22, pp. 4673–4680,
1994.

[5] T.D. Schneider, “Consensus sequence Zen,” Applied bioinformatics, vol.
1, pp. 111-119, 2002.

[6] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J.
Wootton, “Detecting Subtle Sequence Signals: a Gibb's Sampling
Strategy for Multiple Alignment,” Science, vol. 262, pp. 208-214, 1993.

[7] T. Bailey and C. Elkan, “Fitting a Mixture Model by Expectation
Maximization to Discover Motifs in Biopolymers,” Proc. Second Int’l
Conf. Intelligent Systems for Molecular Biology, pp. 28-36, 1994.

[8] Y. Zhang, H. Huo, and Q. Yu, “A Heuristic Cluster-based EM Algo-
rithm for the Planted (l, d) Problem,” J. Bioinformatics and Computation-
al Biology, vol. 11, no. 4, art. no. 1350009, 2013.

[9] F.Y.L. Chin and H.C.M. Leung, “Voting Algorithms for Discovering
Long Motifs,” Proc. Third Asia Pacific Bioinformatics Conference, pp. 261-
271, 2005.

[10] J. Davila, S. Balla, and S. Rajasekaran, “Fast and Practical Algorithms
for Planted (l, d) Motif Search,” IEEE/ACM Trans. Computational Biolo-
gy and Bioinformatics, vol. 4, no. 4, pp. 544–552, 2007.

[11] E.S. Ho, C.D. Jakubowski, and S.I. Gunderson, “iTriplet, a Rule-based
Nucleic Acid Sequence Motif Finder,” Algorithms for Molecular Biology,
vol. 4, art. no. 14, 2009.

[12] Z. Chen and L. Wang, “Fast Exact Algorithms for the Closest String
and Substring Problems with Application to the Planted (L, d)-Motif
Model,” IEEE/ACM Trans. Computational Biology and Bioinformatics,
vol. 8, no.5, pp. 1400-1410, 2011.

[13] H. Dinh, S. Rajasekaran, and V.K. Kundeti, “PMS5: an Efficient Exact
Algorithm for the (l, d)-Motif Finding Problem,” BMC Bioinformatics,
vol. 12, art. no. 410, 2011.

[14] Q. Yu, H. Huo, Y. Zhang, and H. Guo, “PairMotif: a New Pattern-
Driven Algorithm for Planted (l, d) DNA Motif Search,” PLoS ONE,
vol. 7, no. 10, art. no. e48442, 2012.

[15] H. Dinh, S. Rajasekaran, and J. Davila, “qPMS7: a Fast Algorithm for
Finding (l, d)-Motifs in DNA and Protein Sequences,” PLoS ONE, vol.
7, no. 7, art. no. e41425, 2012.

[16] Y. Xu, J. Yang, Y. Zhao, and Y. Shang, “An Improved Voting Algo-
rithm for Planted (l, d) Motif Search,” Information Sciences, vol. 237, pp.
305-312, 2013.

[17] G. Pavesi, G. Mauri, and G. Pesole, “An Algorithm for Finding Sig-
nals of Unknown Length in DNA Sequences,” Bioinformatics, vol.
17(Suppl 1), pp. S207–S214, 2001.

[18] E. Eskin and P.A. Pevzner, “Finding Composite Regulatory Patterns
in DNA Sequences,” Bioinformatics, vol. 18, no. 1, pp. 354-363, 2002.

[19] N. Pisanti, A.M. Carvalho, L. Marsan, and M. Sagot, “RISOTTO: Fast
Extraction of Motifs with Mismatches,” Proc. Seventh Latin American
Symposium: Theoretical Informatics, pp. 757-768, 2006.

[20] P.P. Kuksa and V. Pavlovic, “Efficient Motif Finding Algorithms for
Large-alphabet Inputs,” BMC Bioinformatics, vol. 11(Suppl 8), art. no.
S1, 2010.

[21] T. Mi and S. Rajasekaran, “Efficient Algorithms for Biological Stems
Search,” BMC Bioinformatics, vol. 14, art. no. 161, 2013.

[22] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Second Edition. Addison Wesley,
pp. 83-122, 2001.

[23] H. Dinkel, S. Michael, R.J. Weatheritt, N.E. Davey, K.V. Roey, B. Al-
tenberg, G. Toedt, B. Uyar, M. Seiler, A. Budd, L. Jo¨dicke, M.A.
Dammert, C. Schroeter, M. Hammer, T. Schmidt, P. Jehl, C. McGui-
gan, M. Dymecka, C. Chica, K. Luck, A. Via, A. Chatr-aryamontri, N.
Haslam, G. Grebnev, R.J. Edwards, M.O. Steinmetz, H. Meiselbach, F.
Diella, and T.J. Gibson, “ELM - The Database of Eukaryotic Linear
Motifs,” Nucleic Acids Research, vol. 40(Database issue), pp. 242-251,
2012.

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 11

[24] Q. Yu, H. Huo, J.S. Vitter, J. Huan, and Y. Nekrich, “StemFinder: An
Efficient Algorithm for Searching Motif Stems over Large Alphabets,”
Proc. IEEE Int’l Conf. Bioinformatics and Biomedicine (BIBM), submitted
for publication, 2013.

