
An Efficient Exact Algorithm for the Motif Stem
Search Problem over Large Alphabets

Qiang Yu, Hongwei Huo, Jeffrey Scott Vitter, Jun Huan, and Yakov Nekrich

Abstract—In recent years, there has been an increasing interest in planted (l, d) motif search (PMS) with applications to discovering

significant segments in biological sequences. However, there has been little discussion about PMS over large alphabets. This paper

focuses on motif stem search (MSS), which is recently introduced to search motifs on large-alphabet inputs. A motif stem is an l-length

string with some wildcards. The goal of the MSS problem is to find a set of stems that represents a superset of all (l, d) motifs present in

the input sequences, and the superset is expected to be as small as possible. The three main contributions of this paper are as follows:

(1) We build motif stem representation more precisely by using regular expressions. (2) We give a method for generating all possible

motif stems without redundant wildcards. (3) We propose an efficient exact algorithm, called StemFinder, for solving the MSS problem.

Compared with the previous MSS algorithms, StemFinder runs much faster and reports fewer stems which represent a smaller

superset of all (l, d) motifs. StemFinder is freely available at http://sites.google.com/site/feqond/stemfinder.

Index Terms—Motif stem search, pattern driven, regular expressions

Ç

1 INTRODUCTION

MOTIF search is to find short similar sequence segments
in a given set of sequences over an alphabet S, which

plays an important role in discovering significant segments
in biological sequences, such as transcription factor binding
sites [1] and linear protein motifs [2], [3]. The planted (l, d)
motif search (PMS) [4] is a widely accepted formulation of
the problem. A (l, d) motif is an l-mer (i.e., an l-length string
over S) that spans all input sequences with up to d mis-
matches. The goal of the PMS problem is to find all (l, d)
motifs present in the given sequences, and the PMS problem
has been proven to be NP-complete [5].

The key to motif search lies in two points: a) how to
represent the sequence motif using an appropriate model;
b) how to design an efficient motif search algorithm. The
most commonly used motif models are position weight
matrices (PWM) [6] and consensus sequences [7]. Based
on these two motif models, numerous motif search algo-
rithms have been proposed.

The algorithms that model motifs using PWM usually
employ statistical techniques [8], [9], [10]. These algorithms
can report results in a short time, but cannot guarantee a
global optimum. The exact algorithms, which use consensus
sequences to represent motifs, are guaranteed to report all
(l, d) motifs by traversing the whole search space. Most exact
algorithms are pattern-driven. They take all string patterns
of length l over S as candidate motifs, and output the

patterns that can span all input sequences. Typical pattern-
driven algorithms aim to reduce candidate motifs through
various means [11], [12], [13], [14], [15], [16], [17], [18]. Some
other pattern-driven algorithms represent the input sequen-
ces as a suffix tree to accelerate the verification of candidate
motifs [19], [20], [21]. The initial search space of pattern-
driven algorithms is OðjSjlÞ, which grows dramatically with
the increase of jS j . Therefore, most existing exact
algorithms are designed just for searching motifs in DNA
sequences where jSj ¼ 4, and they cannot search low-con-
served motifs within an acceptable time in the data sets
over large alphabets, such as the protein data sets where
jSj ¼ 20.

To improve the efficiency of the exact algorithms over
large alphabets, Kuksa and Pavlovic [22] introduced the
concept of motif stem in the field of motif search. A motif
stem is an l-length string that may contain some wildcards,
and it represents a set of candidate motifs. For example,
assume that A�GT is a motif stem over S ¼ fA;G;C;Tg
where � denotes a wildcard. Then, A�GT represents four
candidate motifs AAGT, AGGT, ACGT and ATGT. The
goal of motif stem search (MSS) is to find a set of stems that
represents a superset of all (l, d) motifs, and the superset is
expected to be as small as possible. The time complexity of
the MSS algorithms does not grow with the increase of the
size of the alphabet, since in generating candidate motifs,
the operation of expanding some positions to multiple
characters over S is replaced by placing wildcards in
these positions.

MSS algorithms are the main subject of this paper.
Stemming [22] is the first MSS algorithm, and it works as
follows: first, select the l-mers that may be motif instances
(i.e., motif occurrences) to form a set I by using a selection
algorithm [23]; second, for each pair of l-mers x and x0 in
I, generate motif stems from x and x0 by placing wild-
cards; third, verify motif stems and output the ones hav-
ing Hamming distance no more than d from input

� Q. Yu and H. Huo are with the School of Computer Science and Technol-
ogy, Xidian University, Xi’an 710071, China.
E-mail: qyu@mail.xidian.edu.cn, hwhuo@mail.xidian.edu.cn.

� J.S. Vitter, J. Huan, and Y. Nekrich are with the Information and Telecom-
munication of Technology Center, The University of Kansas, Lawrence,
KS 66047. E-mail: jsv@ittc.ku.edu, jhuan@ittc.ku.edu, yakov@ittc.ku.edu.

Manuscript received 12 Nov. 2013; revised 19 Aug. 2014; accepted 16 Sept.
2014. Date of publication 6 Oct. 2014; date of current version 3 Apr. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2014.2361668

384 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 2, MARCH/APRIL 2015

1545-5963� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

sequences. In a recent work [24], new MSS algorithms
MSS1 and MSS2 are proposed based on the assumption
that each input sequence contains at least one motif
instance. MSS1 constructs a smaller set I and generates
fewer stems than Stemming; also, MSS1 employs a differ-
ent method for placing wildcards. MSS2 is an improve-
ment of MSS1 obtained by accelerating the calculation of
Hamming distances from the l-mers in an input sequence
to that in another input sequence.

Despite the efforts for motif stem search, current MSS
algorithms have several notable limitations. First, motif
stems cannot be represented precisely with typical wild-
cards, since the wildcard � matches any character over S.
For example, when we hope a stem only matches AAGT
or AGGT, the stem A�GT fails to do so. The second limita-
tion comes from the methods used to generate motif
stems in current MSS algorithms. The current generation
methods either miss some possible motif stems or place
redundant wildcards, which is analyzed in detail in Sec-
tion 6.1. Third, there is great potential for designing more
efficient stem search algorithms. For example, as reported
in [24], the fastest stem search algorithm MSS2 is only
able to solve the challenging instance (11, 5) over jSj ¼ 20
around 1.5 hours, even if it does not perform a post-
processing (verifying candidate stems). Also, the reported
stems can be further reduced to represent a smaller
superset of all (l, d) motifs.

In this paper, we propose a new motif stem search algo-
rithm named StemFinder that overcomes these limitations.
To represent stems more precisely, we write stems as regu-
lar expressions by replacing typical wildcards � with the
negative character sets [^]. A negative character set [^]
matches any character not enclosed; for example, [^CT] rep-
resents any single character over S except for C and T.

StemFinder runs much faster than the previous stem search
algorithms, and reports fewer stems corresponding to a
smaller superset of all (l, d) motifs.

The rest of the paper is organized as follows. Section 2
gives the notations and problem definition, and reviews the
previous motif stem search methods. Section 3 describes
how to represent motif stems using regular expressions.
Section 4 introduces the method for generating motif stems.
In Section 5, several techniques used in StemFinder as well
as the StemFinder algorithm are described. Then, Section 6
presents the results and discussion. Finally, we conclude
the paper in Section 7.

2 PRELIMINARIES

2.1 Notations and Problem Definition

In this paper, an l-mer is an l-length string over an alphabet S
without wildcards; a motif stem is an l-length string over the
same alphabet that may contain wildcards. We say an l-mer x
is covered by a motif stem s, if x is in the set of l-mers repre-
sented by s. Hereafter, amotif stem is called simply as a stem.

The notations used in this paper are summarized in
Table 1. The probability p0k and pk are calculated by (1) and
(2), respectively. The notations RðiÞ, NsðiÞ and NrsðiÞ imply
the dependence of their values on the Hamming distance i
between two l-mers, which will be discussed in detail in
Section 4.

p0k ¼
l
k

� �
� ð Sj j � 1Þk

Sj jl
(1)

pk ¼
Xk
i¼0

p0k (2)

TABLE 1
Notations Used in This Paper

Notation Explanation

j x j The size of a set x or the length of a string x.
Pm(x, x’) The positions in the matching region of two l-mers x and x’. Pmðx; x’Þ ¼ fi : 1 � i � l; x½i� ¼ x’½i�g.
Pn(x, x’) The positions in the non-matching region of two l-mers x and x’. Pnðx; x’Þ ¼ fi : 1 � i � l; x½i� 6¼ x’½i�g.
Pmn(x, x’, y) The positions where xmatches x’, and ymatches neither x nor x’, for the given three l-mers x, x’ and y.

Pmnðx; x’; yÞ ¼ fi : 1 � i � l; x½i� ¼ x’½i�; y½i� 6¼ x½i� and y½i� 6¼ x’½i�g.
Pnn(x, x’, y) The positions where x, x’ and y are mismatched with each other, for the given three l-mers x, x’ and y.

Pnnðx; x’; yÞ ¼ fi : 1 � i � l; x½i� 6¼ x’½i�; y½i� 6¼ x½i� and y½i� 6¼ x’½i�g.
dH(x, x’) The Hamming distance between two l-mers x and x’. dHðx; x’Þ ¼ jPnðx; x’Þj ¼ l� jPmðx; x’Þj.
dis(x, D) The distance between an l-mer x and the set of input sequences D

disðx;DÞ ¼ maxi¼1;...;t disðx; SiÞ ¼ maxi¼1;...;t minx02lSi dHðx; x0Þ � 2d.
Md(x, x’) The common d-neighbors of two l-mers x and x’.Mdðx; x’Þ ¼ fy : jyj ¼ jxj ¼ jx’j; dHðy; xÞ � d and

dHðy; x’Þ � dg.
Cðx; SiÞ The l-mers in the sequence Si that are 2d-neighbors of the l-mer x. Cðx; SiÞ ¼ fy : jyj ¼ jxj; y 2l Si and

dHðy; xÞ � 2dg.
C(x, x’, Si) The l-mers in the sequence Si that are common 2d-neighbors of the l-mers x and x’.

Cðx; x’; SiÞ ¼ fy : jyj ¼ jxj ¼ jx’j, y 2l Si, dHðy; xÞ � 2d and dHðy; x’Þ � 2dg.
pk’ The probability that the Hamming distance between a fixed l-mer and a random l-mer is equal to k.
pk The probability that the Hamming distance between a fixed l-mer and a random l-mer is less than or equal

to k.
R(i) Given two l-mers x and x’ with dHðx; x’Þ ¼ i and an arbitrary l-mer y 2Mdðx; x’Þ, R(i) denotes the set of all

possible combinations of jPmnðx; x’; yÞj and jPnnðx; x’; yÞj.
Ns(i) The number of stems generated from two l-mers x and x’ with dHðx; x’Þ ¼ i.
Nrs(i) The number of rough stems generated from two l-mers x and x’ with dHðx; x’Þ ¼ i. The concept of rough

stem is described in Section 4.

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 385

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

Problem Definition: Motif Stem Search [24]. Given a set of
n-length sequences D ¼ fS1; S2; . . . ; Stg over an alphabet S
and nonnegative integers l and d, satisfying 0 � d <
l < n, a ðl; dÞ motif is an l-mer m such that each sequence
Si contains an l-mer mi differing from m in at most d posi-
tions. The MSS problem is to find a set of stems so that the
set of l-mers represented by these stems is a superset of all
(l, d) motifs present in the t sequences, and the superset is
expected to be as small as possible.

There are two key indicators used to assess the MSS
algorithms. One is the running time. The other is the num-
ber of l-mers covered by the reported stems. Although the
MSS algorithms should be guaranteed to report the stems
representing a superset of all (l, d) motifs, the size of the
superset is not fixed due to different methods used to gen-
erate stems. Therefore, an efficient MSS algorithm indi-
cates that it not only runs faster but also reports the stems
covering fewer l-mers.

2.2 Previous Motif Stem Search Methods

This section briefly reviews existing MSS algorithms: Stem-
ming [22] and MSS1/MSS2 [24]. Both the two algorithms, as
well as StemFinder, work through the following three steps.

Step 1 is to select a group of potential motif instances
from input sequences to construct a set I, based on the
observation that the Hamming distance between any two
motif instances is less than or equal to 2d. In Stemming, a
potential motif instance is an l-mer x that can occur in each
of input sequences with up to 2d mismatches, namely
disðx;DÞ � 2d. Stemming selects all such l-mer x from input
sequences to construct the set I. MSS1/MSS2 constructs the
set I as follows: for each l-mer x in S1, select a reference
sequence Sr such that Sr is the sequence in fS2; . . . ; Stg con-
taining the minimum number of l-mers x0 satisfying dH(x,
x0) � 2d; for each l-mer x0 2 Cðx; SrÞ, add the pair of l-mers x
and x0 to the set I.

Step 2 is to generate candidate stems from each pair of
l-mers x and x0 in the set I by placing wildcards. For this
step, Stemming and MSS1/MSS2 differ in the specific
meanings of the used wildcards and the ways that wild-
cards are placed.

Stemming allows the wildcard to match any character
over S and generate stems by changing x as follows: if
dHðx; x0Þ � d, set ið0 � i � dHðx; x0ÞÞ positions in Pnðx; x0Þ as
in x0, place að0 � a � dHðx; x0Þ � iÞ wildcards in
the remaining dHðx; x0Þ � i positions in Pnðx; x0Þ, and
place bð0 � b � d�maxðdHðx; x0Þ � i; aþ iÞÞ wildcards in
Pm(x, x

0); otherwise, set iðdHðx; x0Þ � d � i � dÞ positions in
Pnðx; x0Þ as in x0, and place að0 � a � d� iÞwildcards in the
remaining dHðx; x0Þ � i positions in Pnðx; x0Þ. We find that
Stemming in this way cannot generate all possible candidate
stems in some cases, and we give an example in Section 6.1.

In MSS1/MSS2, a wildcard matches any character over S
except for the character in the corresponding position of x.
MSS1/MSS2 generates stems s by placing a wildcards in
Pnðx; x0Þ of x and b wildcards in Pmðx; x0Þ of x. The range of
a is considered as follows. If dHðx; x0Þ � d, it is clear that a
can vary from 0 to dHðx; x0Þ, namely 0 � a � dHðx; x0Þ; oth-
erwise, at least dHðx; x0Þ � d wildcards have to be placed in
Pnðx; x0Þ, namely dHðx; x0Þ � d � a � d, to make dHðs; xÞ � d
and dHðs; x0Þ � d satisfied. Simultaneously, the range of b is

determined by satisfying the same condition that
dHðs; xÞ � d and dHðs; x0Þ � d, namely aþ b � d and
ðdHðx; x0Þ � aÞ þ b � d, so the maximum value of b is
minfd� a; d� ðdHðx; x0Þ � aÞg. Although MSS1/MSS2 can
generate all possible candidate stems, it may place redun-
dant wildcards, and thus the reported stems cover more
unnecessary l-mers. The associated example and more
detailed analysis are given in Section 6.1.

Step 3 is to verify candidate stems and output the ones
that can occur in each input sequence with up to d mis-
matches. MSS1/MSS2 takes this step as an optional post-
process phase with the time of verifying each candidate
stem O(tnl). Stemming selects valid stems as follows: itera-
tively remove d out of l positions from each of the candidate
stems and the l-mers in the input sequences; in each itera-
tion, sort the resulting (l – d)-mers lexicographically, and
then scan the sorted list to output the stems that can match
one of l-mers in each Siði ¼ 1; . . . ; tÞ in the corresponding l–
d positions.

3 STEM REPRESENTATION

In the previous MSS algorithms, for a stem s of length l,
s½i�ð0 � i � lÞ is either an exact character over S or a typi-
cal wildcard �. To represent stems more precisely, we
introduce two new regular expression operators, namely
the negative character set [^] and the choice operator j .
Both of the two operators are used in a rough stem,
which will be discussed in Section 4. Only the former
operator is involved in the representation of a final stem,
which is discussed in this section.

Specifically, we describe how to represent stems using
regular expressions, by analyzing the relationships among
three characters in a column of the alignment of three l-mers.
Given three l-mers x, x0 and y, assume that y is an arbitrary
candidate motif shared by x and x0, namely y 2Mdðx; x0Þ. For
the ith ð1 � i � lÞ column of the three l-mers, there are five
possible cases for the relationships among x[i], x0[i] and y[i],
as shown in Table 2. Under different cases, the number of
characters matched by y½i� is also different. For the Cases 1, 3
and 4, y[i] corresponds to a unique character. For the Cases 2
and 5, y[i] matches jS j – 1 and jS j – 2 characters, respec-
tively. When y[i] corresponds to multiple characters, we rep-
resent y[i] using the negative character set [^]. Specifically,
for Case 2, y[i] is represented as ½^x½i��, which matches any
character in S excluding x[i]; for Case 5, y[i] is represented as

TABLE 2
Represent y[i] Using x[i] and x0[i]

Relationships among x[i], x’[i]
and y[i]

#a y[i]

Case 1: x[i] ¼ x’[i] ¼ y[i] 1 x[i]
Case 2: x½i� ¼ x’½i�, y½i� 6¼ x½i�
and y½i� 6¼ x’½i�

jP j – 1 ½^x½i��
Case 3: x½i� 6¼ x’½i�, y½i� ¼ x½i�
and y½i� 6¼ x’½i�

1 x[i]

Case 4: x½i� 6¼ x’½i�, y½i� 6¼ x½i�
and y½i� ¼ x’½i�

1 x’[i]

Case 5: x½i� 6¼ x’½i�, y½i� 6¼ x½i�
and y½i� 6¼ x’½i�

jP j – 2 ½^x½i�x’½i��

aThe number of characters matched by y[i].

386 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 2, MARCH/APRIL 2015

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

½^x½i�x0½i��, which matches any character in S excluding x[i]
and x0[i].

According to the analysis above, assume that the regular
expression s is a stem obtained from two l-mers x and x0.
Then the ith position of s must fall into one of the three pat-
terns: a specific character (x[i] or x0[i]), a negative character
set [^x[i]] or a negative character set ½^x½i�x0½i��. In all the l
positions of s, if there is a position i that corresponds to

½^x½i�� or ½^x½i�x0½i��, then s represents multiple candidate
motifs; otherwise, s represents a single candidate motif. Let
ðl; dÞ ¼ ð7; 3Þ, x ¼ AAAAGGG and x0 ¼ AAAACCC; four
possible stems are AAAAGGC, AAAAG[^GC]C, AA[^A]
AGCC and A[^A]AAGC[^GC]. The method for generating
stems from x and x0 is described in the next section.

There are two benefits for the use of regular expressions
to represent stems. On the one hand, stems are represented
more precisely by using negative character sets than using
typical wildcards, since the former match the interest char-
acters and the latter match any character. On the other
hand, stems can be converted into finite automatas [25] so
that they can be verified efficiently in stem search.

4 STEM GENERATION

This section gives the method for generating all possible
stems s from two given l-mers x and x0. Assume that an l-mer
y is an arbitrary candidate motif covered by s, and y satisfies
dHðy; xÞ � d and dHðy; x0Þ � d. The key of the generation
method is to determine the positions corresponding to Case
2 and the positions corresponding to Case 5, namely
Pmnðx; x0; yÞ and Pnnðx; x0; yÞ, since these positions of swill be
represented as negative character sets. More precisely, we
obtain all possible combinations of jPmn(x, x

0, y) j and jPnn(x,
x0, y) j , namely R(dH(x, x

0)). Hereafter, Pmðx; x0Þ, Pnðx; x0Þ,
Pmnðx; x0; yÞ and Pnnðx; x0; yÞ are denoted simply as Pm, Pn,
Pmn and Pnn, respectively.

The possible combinations of jPmnj and jPnnj are calcu-
lated as follows. First, since Pmn is a subset of Pm, we have
0 � jPmnj � jPmj, namely 0 � jPmnj � l� dHðx; x0Þ; simi-
larly, 0 � jPnn j � dH(x, x

0). Second, since all positions i in
Pmn satisfy y½i� 6¼ x½i� and y½i� 6¼ x0½i�, we have jPmnj � d,
which is necessary for dHðy; xÞ � d and dHðy; x0Þ � d to be
satisfied; similarly, jPnnj � d. Third, dHðy; xÞþ dHðy; x0Þ � 2d
where dHðy; xÞ þ dHðy; x0Þ can be represented as 2jPmnj þ
2jPnnj þ ðdHðx; x0Þ � jPnnjÞ ¼ 2jPmnj þ jPnnj þ dHðx; x0Þ, so
we have 2jPmnj þ jPnnj þ dHðx; x0Þ � 2d, namely 2jPmnj þ
jPnnj � 2d� dHðx; x0Þ. Taking these considerations into
account, we obtain the following inequalities:

0 � Pmnj j � minfl� dHðx; x0Þ; dg;
0 � Pnnj j � minfdHðx; x0Þ; dg;
2 Pmnj j þ Pnnj j � 2d� dHðx; x0Þ:

8<
: (3)

Obviously, the values of jPmnj and jPnnj, which depend
on dHðx; x0Þ, can be calculated by solving (3). That is,
RðdHðx; x0ÞÞ ¼ f< jPmnj; jPnnj > : jPmnj and jPnnj satisfy
(3)}. For example, when (l, d) ¼ (7, 3) and dHðx; x0Þ ¼ 3, all
possible combinations of jPmnj and jPnnj form R(3) ¼ {<0,
0>, <0, 1>, <0, 2>, <0, 3>, <1, 0>, <1, 1>}.

For each possible combination of jPmnj and jPnnj, we gen-
erate the stems from x and x0 by rewriting a string s that is

initialized as x, through three steps shown in Fig. 1. (1) Select
jPmnj positions from Pm, and change the character of s in

each selected position i to ½^x½i��; at the same time, select jPnnj
positions from Pn, and change the character of s in each

selected position i to ½^x½i�x0½i��. (2) For each position i that is
in Pn but not selected in the previous step, change the corre-
sponding character of s to x½i� jx0½i�. (3) For each position i of
s that corresponds to x[i] j x0[i], expand it to x[i] and x0[i].

The stems obtained in the second step are called rough
stems, in regard to the stems obtained in the last step. Note
that, for each position i in Pn except for the positions selected
in the first step, the character of s (denoted by c) can be either
x[i] (corresponding to Case 3 in Table 2) or x0[i] (correspond-
ing to Case 4 in Table 2). In a rough stem, such character c is
represented using the choice operator of regular expressions,
namely x½i�jx0½i�. In a stem, such character c is represented
exactly as x[i] or x0[i]. Since the number of such characters c is
w ¼ dHðx; x0Þ � jPnnj, each rough stem can be decomposed
into 2w stems. For example, in Fig. 1, each rough stem
obtained through step 2 corresponds to w ¼ 2, and it is
decomposed or expanded to four stems through step 3.

Given two l-mers x and x0 with dHðx; x0Þ ¼ i, the number
of generated rough stems, NrsðiÞ, is calculated by (4), which
sums the number of rough stems over all possible combina-
tions of jPmnj and jPnnj; similarly, the number of generated
stems, Ns(i), is calculated by (5).

NrsðiÞ ¼
X

<a;b>2RðiÞ

l� i
a

� �
� i

b

� �
(4)

NsðiÞ ¼
X

<a;b>2RðiÞ

l� i
a

� �
� i

b

� �
� 2i�b: (5)

5 STEM SEARCH ALGORITHM

The framework of StemFinder is: extract some pairs of
l-mers from input sequences to form a set I so that at least
one pair of motif instances is included; then, for each pair of
l-mers in I, generate and verify stems; finally, report all
valid stems. Although this framework is somewhat similar
to that of the previous algorithms (Stemming [22] and
MSS1/MSS2 [24]), StemFinder performs more efficiently by
introducing several techniques described in Sections 5.1 to
5.3. The whole algorithm of StemFinder, as well as its com-
plexity analysis, is presented in Section 5.4.

5.1 Constructing Set I

The set I is composed of pairs of l-mers coming from differ-
ent input sequences, and contains at least one element that
is a pair of motif instances. According to the problem

Fig. 1. An example for generating stems from two l-mers.

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 387

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

definition, there is a motif instance in each input sequence,
and the Hamming distance between any two motif instan-
ces is less than or equal to 2d. Thus, a typical method for
constructing the set I is: for each l-mer x in S1, select a refer-
ence sequence Sr from fS2; . . . ; Stg; for each l-mer x0 in Sr, if
dHðx; x0Þ � 2d, namely x0 2 Cðx; SrÞ, then add the pair of
l-mers x and x0 to the set I.

Furthermore, a good set I is composed of pairs of
l-mers that correspond to as few stems as possible, which
depends on how to select the reference sequence Sr for
each l-mer x in S1. Unlike [24], in which the selected Sr is
the sequence in fS2; . . . ; Stg that contains the minimum
number of l-mers x0 satisfying dHðx; x0Þ � 2d, we select Sr

based on the following observation.

Observation 1. For two l-mers x and x0, both the number of
generated stems and the number of generated rough
stems are different for distinct dHðx; x0Þ.
We mainly consider the number of rough stems, since in

the StemFinder algorithm we verify rough stems firstly and
avoid the verification of most stems using pruning, which is
discussed in detail in Section 5.3. Fig. 2 shows the propor-
tion of rough stems generated from two l-mers under differ-
ent Hamming distances. Each stacked column in the figure
corresponds to a (l, 2) problem instance with Hamming dis-
tances ranging from 0 to 4 (2d). The proportion of rough
stems under the Hamming distance ið0 � i � 2dÞ is defined
to be NrsðiÞ=Ntotal, where Ntotal ¼ SNrsðjÞ for 0 � j � 2d.
These (l, 2) instances represent the general cases, since they
cover the instances from a low degenerate case (11, 2) to a
highly degenerate case (5, 2). We can see that the number of
rough stems differs greatly for distinct Hamming distances.
Particularly, the number of rough stems for dHðx; x0Þ ¼ 0 is
10 times greater than the number of rough stems for dH
ðx; x0Þ ¼ 4. Thus, the reference sequence Sr with a small
value of jCðx; SrÞjmay not correspond to a small number of
rough stems. For example, for two reference sequences Sr1
and Sr2 of the l-mer x for the problem instance (7, 2), assume
that Cðx; Sr1Þ ¼ fx1; x2; x3g; Cðx; Sr2Þ ¼ fx4g, dHðx; x1Þ ¼ 4,
dHðx; x2Þ ¼ 4, dHðx; x3Þ ¼ 3 and dHðx; x4Þ ¼ 0. Although
jCðx; Sr1Þj ¼ 3 is larger than jCðx; Sr2Þj ¼ 1, the number of
rough stems corresponding to Sr1 is much smaller than that
corresponding to Sr2.

In the light of the above, we select the reference sequence
Sr for the l-mer x by minimizing the right side of (6). The
selected Sr is the sequence in fS2; . . . ; Stg that corresponds
to the minimum number of rough stems.

X
x02Cðx;SrÞ

NrsðdHðx; x0ÞÞ ¼ min
2�i�t

X
x02Cðx;SiÞ

NrsðdHðx; x0ÞÞ: (6)

The main reason of extracting pairs of l-mers coming
from different input sequences to construct the set I is that
we can use the strict constraints given in (3) to generate
stems with as few wildcards as possible. Since the MSS
problem assumes that each input sequence contains at least
one motif instance, it seems that we can only use S1 to gen-
erate candidate stems. However, in this case, more
ð0 � a � dÞ wildcards need to be placed in each l-mer x in
S1. This could result in the fact that a lot of generated stems
may easily pass the stem verification and they represent a
large superset of all (l, d) motifs.

5.2 Verifying Stems

We convert stems into deterministic finite automatas
(DFA) and verify stems by scanning input sequences to
check whether there is an occurrence of the verified stem
in each sequence.

At first, let us determine the objects scanned by the DFA.
Assume that s is a stem generated from l-mers x and x0.
Then, only the l-mers zwith dHðz; xÞ � 2d and dHðz; x0Þ � 2d
in input sequences could be the occurrences of s. Since the
value of p2d is small and it is approximately equal to 10�2 or
10�3 for common problem instances, the number of l-mers
in input sequences that could be the occurrences of s is also
small. Thus, we only need to check the l-mers that could be
the occurrences of s, rather than the whole input sequences.
Specifically, for an input sequence Si, the scanned objects
are the l-mers in Cðx; x0; SiÞ.

Next, we introduce how to construct a DFA from a stem
s and how to perform scan. Scanning an l-mer z is to check
whether there are at most d positions where s mismatches
z. As shown in Fig. 3a, for the DFA directly constructed
from a stem, once a mismatch occurs in some position, the
DFA will immediately end the matching process. In order
to allow at most d mismatches, we add a counter initialized
as 0 to the DFA, as shown in Fig. 3b. For any state u except
for the end state, the next state is always uþ 1 via any
character c. If the character c is matched, the counter
remains unchanged; otherwise, it is incremented by one.
When arriving at the end state, if the counter is less than
or equal to d, then the scanned l-mer is an occurrence of
the stem s.

In order to scan l-mers more efficiently, we use a bitmap to
equivalently represent the DFA with counter. As shown in
Fig. 3c, any element e in the bitmap corresponds to a state u
and a character c; the value of e, either 0 or 1, records the incre-
ment of the counter when activating u via c. The bitmap for a
stem s is a two-dimensional table T. It is constructed as fol-
lows: first, initialize all elements in T to 1; then, for each posi-
tion ið1 � i � lÞ of s, change T according to the rules given in
Table 3. Through querying the table T, we can scan an l-mer z
with O(l) time, and the number of mismatches Nmis is calcu-
lated by (7), where T[i–1][z[i]] represents the element in

Fig. 2. Proportion of rough stems under different Hamming distances.

388 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 2, MARCH/APRIL 2015

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

T corresponding to the state i – 1 and the character z[i]. The
storage space of a DFAwith counter isO(l jS j).

Nmis ¼
X
1�i�l

T ½i� 1�½z½i��: (7)

5.3 Accelerating Verification via Pruning

This section introduces a pruning technique to reduce the
number of stems to be verified. As described in Section 4,
each rough stem s can be decomposed into 2w stems, where
w is the number of such position i of s that corresponds to
x[i] j x0[i]. For simplicity of explanation, let A denote the
array of these w positions. Thus, the search space of s is a
complete binary tree called search tree: the root is s; each
leaf is one of the 2w stems; in the ith ð0 < i < wÞ level of
the tree, there are 2i internal nodes, obtained by expanding
s in the positions A[1] ,. . ., A[i]. For example, assume that
the root s ¼ [^A]A[^GC](G jC)(G jC). Then the nodes in the
first and the second level are {[^A]A[^GC]G(G jC), [^A]A
[^GC]C(G jC)} and {[^A]A[^GC]GG, [^A]A[^GC]GC, [^A]A
[^GC]CG, [^A]A[^GC]CC}, respectively.

Observation 2. In the search tree of a rough stem, let q be
an internal node, let y be a child node of q, and let z
be a random l-mer. We have dHðy; zÞ ¼ dHðq; zÞ or
dHðy; zÞ ¼ dHðq; zÞ þ 1, namely dHðy; zÞ � dHðq; zÞ. Here,
dHðÞ denotes the number of positions where a stem
mismatches an l-mer, and it is calculated by (7).

In terms of Observation 2，if an internal node q fails to
span all input sequences, then the child nodes of q will also
fail to do so. Therefore, when we search valid stems in the
search tree, the subtrees of invalid nodes can be pruned.
This pruning technique facilitates avoiding the verification
of some invalid stems, especially for large alphabets.

Theorem 1. In the search tree of a rough stem, let q be an internal
node at level i, let y be a leaf in the subtree of q, and let z be a
random l-mer. We have

Pr dHðq; zÞ ¼ dHðy; zÞð Þ ¼ Sj j � 1

Sj j
� �w�i

: (8)

Proof. The nodes q and y differ in the positions A[iþ1], . . ., A
[w]; for any j 2 fA½iþ 1�; . . . ; A½w�g; q½j� is represented as
x½j�jx0½j�, while y½j� is an exact character, either x[j] or x0

[j]. Let us first consider dHðq; zÞ 6¼ dHðy; zÞ. It holds if and
only if there exists at least one position j 2 fA½i þ
1�; . . . ; A½w�g corresponding to the case that z½j� 6¼ y½j� but
z[j] can be matched by q[j]. For any position j 2
fA½iþ 1�; . . . ; A½w�g, the probability that this case occurs
is equal to 1=jSj. In other words, the probability that this
case does not occur for the position j is equal to
1� 1=jSj ¼ ðjSj � 1Þ=jSj. When this case does not occur
for all the positions A[iþ1], . . ., A[w], dH(q, z) ¼ dH(y, z)
holds. Therefore, the probability of dHðq; zÞ ¼ dHðy; zÞ is
ððjSj � 1Þ=jSjÞw�i. tu
By Theorem 1, when the l-mer z is not an occurrence of

the leaf y (a stem), the probability that z is not an occurrence
of the internal node q (a rough stem) is at least ððjSj �
1Þ=jSjÞw�i. This probability increases with the increase of
jSj. Assume that w� i ¼ 3. When jSj ¼ 4, the probability is
0.42; whereas, when jSj ¼ 40, the probability is 0.93. There-
fore, the pruning technique is more effective for searching
stems over large alphabets.

5.4 StemFinder

This section describes the whole algorithm of StemFinder by
using the pseudocode shown in Algorithm 1, Algorithm 2
and Algorithm 3. Algorithm 1 corresponds to the main
framework. Algorithm 2 and Algorithm 3 called by Algo-
rithm1, correspond to the construction of the set I and the
verification of the stems for a given rough stem, respec-
tively. In Algorithm 3, the pruning technique is applied to
searching the search tree in a depth-first manner.

For Algorithm 1, line 2 sorts the input sequences into
ascending order by length inO(t log(t)) time, which facilitates
forming a smaller set I for handling variable length sequen-
ces. Lines 3-5 calculate and cache the values of R(i) andNrs(i)
for all possible Hamming distances i. R(i) is obtained by list-
ing all jPmnj and jPnnj satisfying (3), and both jPmnj and jPnnj
are less than or equal to d, so the time complexity of calculat-

ing all R(i) for 0 � i � 2d is Oðd3Þ. NrsðiÞ is obtained along
with the calculation of R(i). Line 6 constructs the set of pairs
of l-mers I by calling Algorithm 2. In terms of the description
of Algorithm 2, the time complexity of constructing the set I

is Oðtn2lÞ, where l corresponds to the time of calculating the
Hamming distance between two l-mers. Lines 7-17 generate

Fig. 3. DFA of the stem [^A]D[^CG](E jF)A (a) Initial DFA (b) DFA with
counter (c) Bitmap of DFA with counter.

TABLE 3
Rules of Generating the Bitmap for a Stem s

s[i] Generation Rule

[
^
x[i]] Perform bitwise NOT on T[i–1], and then

set T[i–1][x[i]] as 1
[
^
x[i]x’[i]] Perform bitwise NOT on T[i–1], and then

set both T[i–1][x[i]] and T[i–1][x’[i]] as 1
x[i] j x’[i] Set both T[i–1][x[i]] and T[i–1][x’[i]] as 0
x[i] Set T[i–1][x[i]] as 0
x’[i] Set T[i–1][x’[i]] as 0

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 389

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

and verify stems; the time complexity is the number of stems
j stems j multiplied by the time of verifying each stem O(tnl),
where l corresponds to the time of querying the table Twhen
scanning an l-mer.

Algorithm 1. StemFinder

Input: l, d, fS1; S2; . . . ; Stg
Output: the set of stemsM that covers all (l, d) motifs
1: M F
2: sort input sequences into ascending order by length
3: for i 0 to 2d do
4: calculate RðiÞ
5: calculate NrsðiÞ
6: I GenerateSetI
7: for each ðx; x0Þ 2 I do
8: for each < a;b> 2 RðdHðx; x0Þ) do
9: s x
10: replace a characters of s in Pm with ½^x½i��, forming

the set of stringsM1

11: for each string s inM1 do
12: replace b characters of s in Pn with ½^x½i�x0½i��,

forming the set of stringsM2

13: for each string s inM2 do
14: replace each character of s in Pn that is x[i] with x

[i] j x0[i], forming the set of rough stemsM3

15: for each rough stem s inM3 do
16: ordered set A fi : 1 � i � l && s½i� is x½i�jx0½i�g
17: VerifyRoughStem(s, A, 0)
18: returnM

Algorithm 2. GenerateSetI

1: I F

2: for each l-mer x in S1 do
3: Nmin 1
4: for j 2 to t do
5: Cðx; SjÞ F

6: Nj 0
7: for each l-mer x0 in Sj do
8: if dHðx; x0Þ � 2d then
9: Cðx; SjÞ Cðx; SjÞ [fx0g
10: Nj Nj þNrsðdHðx; x0ÞÞ
11: if Nj < Nmin then
12: Nmin Nj

13: Smin Sj

14: for each l-mer x0 2 Cðx; SminÞ do
15: I I [fðx; x0Þg
16: return I

Algorithm 3. VerifyRoughStem(s, A, i)

1: if s cannot span {S1; S2; . . . ; St} then
2: return // perform pruning
3: else
4: if i < jAj then
5: j A½iþ 1� // the index of A begins with 1
6: s1 swith s[j] replaced by x[j]
7: s2 swith s[j] replaced by x0[j]
8: VerifyRoughStem(s1, A, iþ 1)
9: VerifyRoughStem(s2, A, iþ 1)
10: else
11: M M [fsg

According to the analysis above, the StemFinder algo-
rithm runs in Oðtlgtþ d3 þ tn2lþ jstemsjtnlÞ time. The
expected number of j stems j can be estimated as follows,
which decreaseswith the increase of the size of the alphabet.

Theorem 2. The expected number of stems generated by Stem-
Finder is

EðjstemsjÞ ¼ ðn� lþ 1Þ2
X2d
i¼0

p0iNsðiÞ: (9)

Proof. The result above is drawn from the assumption that
each input sequence is composed of independent, uni-
formly distributed random characters coming from an
alphabet S.

At first, let us briefly review the method for con-
structing the set I. For each of n – l þ 1 l-mers x in S1,
selects a reference sequence Sr. For each of n� lþ 1 l-
mers x0 in Sr, if dHðx; x0Þ � 2d, then add the pair of l-
mers x and x0 to the set I.

Next, we consider a fixed Hamming distance ið0 �
i � 2dÞ. Since pi

0, calculated by (1), denotes the probabil-
ity that the Hamming distance between two l-mers is i,
the expected number of pairs of l-mers in the set I with

Hamming distance i is ðn� lþ 1Þ2p0i. Moreover, the num-
ber of stems generated from a pair of l-mers with Ham-
ming distance i is NsðiÞ, which is calculated by (5). Thus,
the number of stems generated from all pairs of l-mers in

the set Iwith Hamming distance i is ðn� lþ 1Þ2p0iNsðiÞ.
Finally, we sum the number of generated stems for all

possible Hamming distance ið0 � i � 2dÞ and obtain the
value of EðjstemsjÞ shown in (9). Since pi

0 decreases with
the increase of the size of the alphabet, so does E
(j stems j). tu
For the storage space, in addition to Oðd3Þ words

which are used to cache R(i) and NrsðiÞ, we need to store
O(tn) l-mers in input sequences. Moreover, when we ver-
ify each stem, the space required to store the bitmap is O
(l jS j). Therefore, the space complexity of StemFinder is

Oðd3 þ tnþ ljSjÞ. Although the space complexity depends
on the size of alphabets, the value of l jS j increases line-
arly with the growth of jS j and it is small even for very
large alphabets.

6 RESULTS AND DISCUSSION

6.1 Comparison of Stems Generated
from Different Algorithms

In this section, we compare the stems generated by Stem-
Finder with that generated by previous MSS algorithms
(Stemming [22] and MSS1/MSS2 [24]). Assume that the l-
mers x and x0 are two instances of a motif y with (l, d) ¼ (7,
3). For different MSS algorithms, we give in Table 4 the
stem generated from x and x0 that can cover y; each row of
the table corresponds to a different motif y for fixed l-mers
x ¼ AAAGGGG and x0 ¼ AAACCCC. Here we do not con-
sider the stems that cannot cover y, since most of them are
filtered out in stem verification. We carry out comparisons
by answering the following two questions.

Does there always exist a generated stem that can cover
the motif y? The answer is yes for both StemFinder and

390 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 2, MARCH/APRIL 2015

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

MSS1/MSS2, because both of them consider all possible
stems s under the condition that dHðs; xÞ � d and
dHðs; x0Þ � d. However, it is not true for Stemming because
it does not place wildcards in the matching region of x and
x0 when dHðx; x0Þ > d. For example, in the last row of
Table 4, there is a position i (the second position) that
y½i� 6¼ x½i� ¼ x0½i�; in this case, the stems generated by Stem-
ming miss the one that covers y.

Does there exist a redundant wildcard in the generated
stem? The phenomenon that one stem representation con-
tains all instances of another stem representation is redun-
dant. Specifically, a wildcard in position i of the generated
stem covering the motif y is redundant, if it can be replaced
by x[i] or x0[i] to form a new stem that represents fewer
l-mers and can still cover the motif y. From Table 4, there are
no redundant wildcards in the stems generated by Stem-
Finder and Stemming. However, MSS1/MSS2 places at least
one redundant wildcard in each stem shown in Table 4. The
reason is that MSS1/MSS2 generates stems just by placing
wildcards in x, without setting some positions of x as in x0

(this operation is supported by both StemFinder and
Stemming); thus, in the non-matching region of x and x0,
some characters that could be represented as x0[i] are
replaced by wildcards. When dHðx; x0Þ is very small,
although more wildcards can be placed in the matching
region, all of the three algorithms ensure no redundant wild-
cards are placed by satisfying the constraints used in stem
generationmethods.

In summary, StemFinder not only generates all possible
stems, but also places non-redundantwildcards in them.More-
over, StemFinder represents stemsmore precisely by replacing
the typical wildcards �with negative character sets [^].

6.2 Comparison of Methods for Constructing Set I

In this section, we compare the methods for constructing the
set I by making an empirical statistical analysis on the size
of I and the number of generated candidate stems. The pur-
pose of constructing a good set I is to generate as few candi-
dates as possible.

Both MSS2 and StemFinder make a simplifying assump-
tion that each input sequence contains at least one motif
instance, and thereby they use selected reference sequences
to construct I; however, the original Stemming algorithm
[22] did not use this assumption. To fairly compare them,
we construct I for Stemming in the same setting, i.e., using
each l-mer x in S1 paired with l-mers at distance �2d in the

reference sequence of x; simultaneously, we ensure that
each l-mer x in I is a potential motif instance (i.e.,
disðx;DÞ � 2dÞ. More specifically, we construct I for Stem-
ming as follows: for each l-mer x in S1 satisfying
disðx;DÞ � 2d, randomly select a reference sequence Sr

from fS2; . . . ; Stg; for each l-mer x0 in Sr, add the pair of
l-mers x and x0 satisfying dHðx; x0Þ � 2d and disðx0; DÞ � 2d
to I. Note that, since Stemming does not provide a strategy
for selecting reference sequences, we implement Stemming
by randomly selecting reference sequences.

There are five compared methods. Their difference
mainly lies in how to select reference sequences. Our
method, denoted by method 1, selects reference sequences
by evaluating the number of generated candidates through
(6). The method used in MSS1/MSS2, denoted by method 2,
selects a reference sequence Sr in fS2; . . . ; Stg for each l-mer
x in S1 by ensuring Sr has the minimum number of l-mers x0

satisfying dHðx; x0Þ � 2d. The method that randomly selects
reference sequences is called method 3. Method 4 is the
method in the worst case, which selects reference sequences
leading to the maximum number of candidates. Method 5
corresponds to the method for Stemming described above,
which differs from method 3 by ensuring that each l-mer x
in I satisfies disðx;DÞ � 2d.

To clearly show the advantage of method 1 (our method)
compared to the others, we should obtain the number of
generated candidates using the same stem generation
method. Here we adopt the stem generation method pro-
posed in this paper, and mainly consider the number of
rough stems as described in Section 5.1. Note that, method 1
has advantages over the others not only for our stem gener-
ation method, but also for all existing stem generation meth-
ods [22], [24]; the reason is that method 1 is based on
Observation 1, and Observation 1 applies to all existing
stem generation methods.

Tables 5 and 6 show the size of the set I and the number
of generated candidates under these five methods, respec-
tively. The tested data are the simulated data described in
Section 6.3. We set the alphabet size as 20, and choose the (l,
d) problem instances corresponding to different values of
p2d. A large value of p2d indicates that there are more pairs
of l-mers x and x0 in the input sequences with
dHðx; x0Þ � 2d. From these two tables, we can see that

1) The size of the set I does not determine the number
of candidates directly. Although both method 2 (the
method used in MSS1/MSS2) and method 5 (the
method used in Stemming) have a smaller size of
the set I compared to method 1 (our method) for a
fraction of these (l, d) problem instances, they do not
correspond to a smaller number of candidates.

2) In these five methods, our method corresponds to
the smallest number of candidates for all of these
(l, d) problem instances, as shown in Table 6.

3) Method 5 is sensitive to the value of p2d. When p2d
is small (<0.001), the size of the set I under
method 5 is smallest in these five methods, and
the number of candidates under method 5 is also
small (it is smaller than that under all of the other
four methods except for method 1). When p2d
is large, method 5 does not show advantages,

TABLE 4
Stems Generated by Different Algorithms

Motif y Generated stem that can cover y

StemFinder Stemming MSS1/MSS2

AAAGGCC AAAGGCC AAAGGCC AAAGG��

AAATGGC AAA[^GC]GGC AAA�GGC AAA�GG�

AAATTGC AAA[^GC][^GC]GC AAA��GC AAA��G�

ATAGGCC A[^A]AGGCC None A�AGG��

For two fixed l-mers x ¼ AAAGGGG and x’ ¼ AAACCCC, this table gives
the generated stems that can cover the (7, 3) motif y under different MSS
algorithms. The wildcard � in the stems generated by Stemming matches any
character over S; the wildcard � in the ith position of the stems generated by
MSS1/MSS2 matches any character over S except for x[i].

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 391

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

because the constraint disðx;DÞ � 2d may filter out
few l-mers x or not work.

6.3 Results on Simulated Data

The simulated data sets over an alphabet S are generated
following [4], which are also used in [22] and [24]. First, ran-
domly generate a motif m of length l and t ¼ 20 sequences
of length n ¼ 600; second, for each sequence Si, randomly
generate a motif instance m0 differing from m in at most d
positions, and then implant m0 to a random position in Si.
We implement StemFinder using Cþþ and perform it on a
computer with 2.67 GHz processor and 4 Gbyte memory.
All results are the average obtained by running algorithms
on five random data sets. For the time units, s, m and h
denote seconds, minutes and hours, respectively; –o repre-
sents the running time that exceeds 10 hours.

We compare StemFinder with the previous MSS algo-
rithms, namely Stemming [22] and MSS1/MSS2 [24]. For
the work [24], we use MSS2 rather than MSS1 as the com-
parison object, since MSS2 is an improvement version of
MSS1. Neither Stemming nor MSS2 provides source code or
executable programs, so we also implement them using
Cþþ and perform them on the same experimental environ-
ment. We construct the set I for Stemming by using method
5 described in Section 6.2 to make fair comparisons. Consis-
tent with [22] and [24], the data sets used to test algorithms
are (7, 1), (9, 2) etc. over jS j ¼ 20.

We show in Table 7 the running time of different MSS
algorithms. We can see from the table that StemFinder
greatly outperforms MSS2 and Stemming, and is able to
solve all these problem instances within 10 minutes. Both
the running time of MSS2 and Stemming grows dramati-
cally with the increase of l and d; when (l, d) ¼ (23, 9), Stem-
ming and MSS2 both require more than 10 hours.

We show in Fig. 4 the total number of stems that are
reported by different MSS algorithms. We find that Stem-
Finder and MSS2 report a significantly smaller number of
stems compared to the method Stemming. The big differ-
ence may be caused by the placed wildcards. Unlike Stem-
Finder and MSS2, Stemming allows a wildcard match any
character over S, and thus it is easier for the generated
stems to pass the stem verification. For StemFinder and
MSS2, the former still reports a smaller number of stems,
owing to two factors: (i) the stems generated by StemFinder
contain fewer wildcards than MSS2, and have more chance
to be filtered out in stem verification; (ii) StemFinder select
the reference sequence Sr corresponding to the minimum
number of rough stems, which contributes to reducing the
number of possible candidate stems.

We show in Fig. 5 the number of l-mers that are covered
by the reported stems for different MSS algorithms. We use
the log-scale on the y-axis of the figure in order to better
compare different algorithms. Given a stem with i wild-
cards, the number of covered l-mers is Xi, where X is jS j ,

TABLE 5
Size of the Set I under Different Methods for Constructing the Set I

(l, d) p2d Size of the set I

Method 1 Method 2 Method 3 Method 4 Method 5

(21, 10) 0.6594 220,840 210,244 222,617 223,388 222,531
(20, 9) 0.2642 85,853 77,550 89,094 89,599 89,196
(19, 8) 0.0665 20,067 16,260 22,589 23,551 22,446
(18, 7) 0.0109 1,624 1,355 3,704 4,728 3,510
(16, 6) 0.0070 645 585 2,508 3,487 907
(15, 5) 0.0006 13 11 206 921 7
(13, 4) 0.0003 11 11 103 675 3
(11, 3) 0.0001 3 3 47 431 1
(10, 2) <0.0001 2 2 4 27 1

Method 1 is the method proposed in this paper. Method 2 is the method used in MSS1/MSS2. Method 3 constructs the set I by randomly
selecting reference sequences. Method 4 is the method in the worst case. Method 5 corresponds to the method used in Stemming.

TABLE 6
Number of Rough Stems under Different Methods for Constructing the Set I

(l, d) p2d Number of rough stems

Method 1 Method 2 Method 3 Method 4 Method 5

(21, 10) 0.6594 9,520,861 18,247,993 20,144,453 35,101,288 19,749,463
(20, 9) 0.2642 914,972 2,317,364 2,665,449 5,704,815 2,746,893
(19, 8) 0.0665 93,388 378,975 663,315 1,587,200 656,747
(18, 7) 0.0109 5,190 60,977 64,117 229,664 63,920
(16, 6) 0.0070 1,425 9,144 22,700 80,032 12,997
(15, 5) 0.0006 188 1,079 4,105 13,080 746
(13, 4) 0.0003 20 188 525 2,671 52
(11, 3) 0.0001 8 42 113 1,238 18
(10, 2) <0.0001 2 8 13 83 4

Method 1 is the method proposed in this paper. Method 2 is the method used in MSS1/MSS2. Method 3 constructs the set I by randomly select-
ing reference sequences. Method 4 is the method in the worst case. Method 5 corresponds to the method used in Stemming.

392 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 2, MARCH/APRIL 2015

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

jS j – 1, and jS j – 1 or jS j – 2 for the algorithms Stem-
ming, MSS2, and StemFinder, respectively. In particular we
find that the number of covered l-mers for StemFinder is
about 1 percent of that of MSS2 and Stemming. We believe
two factors play an important role in explaining the
observed huge difference. (i) StemFinder reports a small
number of stems and (ii) there is no redundancy of wild-
cards in the stems that are reported by StemFinder. For
MSS2 and Stemming, although MSS2 reports a significantly
smaller number of stems than Stemming, MSS2 does not
show obvious advantages in the number of covered l-mers
because of placing redundant wildcards.

From the above, we see that StemFinder performs better
than the previous MSS algorithms in all the following three
aspects: the running time, the number of reported stems and
the number of l-mers covered by the reported stems. In the
following discussion we focus on running time since for
exact algorithms, running time efficient is the most impor-
tant goal thatwe aim to achieve in designing new algorithms.

Moreover, we evaluate algorithms on the challenging
problem instances [24] over jS j ¼ 20, namely (7, 3), (9, 4)
etc. Here, challenging instances are used to test upper
bounds of the computation ability of an exact algorithm.
The results on these instances are shown in Table 8. We find
that StemFinder is able to solve very challenging instances
such as (21, 10) within 10 hours. Both MSS2 and Stemming
can only solve two instances (7, 3) and (9, 4).

We further evaluate algorithms over large alphabets. We
show the results in Table 9 with jSj ¼ 40, 60, 80 and 100.
From the table we see that with a fixed (l, d) instance, all the
algorithms have shorter running time when the alphabet is
large. This is not surprising since large alphabet leads to a
reduced p2d and hence we have smaller number of pairs of
l-mers to generate stems. Comparing the three algorithms,
we find that StemFinder is often an order of magnitude
faster than the other two algorithms.

To clearly show which part of the proposed algorithm
responsible for the significant advantage in the running
time, we break down the running time by steps in
Table 10 and report some key statistics in Table 11, by
testing the algorithms on the problem instance (9, 4) and
(15, 5) over jSj ¼ 20, 40, 60, 80 and 100. We find that
StemFinder has the similar time performance to the other
two algorithms in both step 1 (construct the set I) and
step 2 (generate candidate stems), but show significant
performance advantage in step 3 (verify candidate stems).
The time performance of step 3 is mainly determined by
the number of verified candidate stems. As shown in
Table 11, the number of candidate stems generated by
StemFinder is significantly smaller than that generated by
others, owing to: first, our method of constructing the set
I ensures the minimum number of rough stems; more
importantly, in expanding rough stems to candidate
stems, our pruning technique is very effective and avoids
the verification of more than 98 percent candidate stems.
Note that, the number of candidate stems generated by
StemFinder without pruning is larger than that generated

Fig. 4. The number of stems reported by different MSS algorithms.

Fig. 5. The number of l-mers covered by reported stems for different
MSS algorithms.

TABLE 7
Running Time of Stemfinder Compared with MSS2

and Stemming

(l, d) StemFinder MSS2 Stemming

(7, 1) 0.2 s 0.2 s 0.3 s
(9, 2) 0.2 s 0.2 s 0.3 s
(11, 3) 0.2 s 0.3 s 0.4 s
(13, 4) 0.2 s 1.9 s 5.0 s
(15, 5) 0.2 s 11.7 s 20.1 s
(17, 6) 0.2 s 1.1 m 1.7 m
(19, 7) 1.0 s 6.6 m 12.8 m
(21, 8) 5.6 s 2.1 h 3.4 h
(23, 9) 15.4 s -o -o
(25, 10) 3.5 m -o -o
(27, 11) 8.3 m -o -o
(29, 12) 8.2 m -o -o

TABLE 8
Results on Challenging Problem Instances

(l, d) StemFinder MSS2 Stemming

(7, 3) 2.6 m 26.7 m 22.2 m
(9, 4) 4.4 m 2.6 h 2.3 h
(11, 5) 6.9 m -o -o
(13, 6) 10.1 m -o -o
(15, 7) 13.6 m -o -o
(17, 8) 26.6 m -o -o
(19, 9) 53.9 m -o -o
(21, 10) 4.4 h -o -o

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 393

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

by others, which is not surprising because the stems
obtained by expanding rough stems are more specific
than that of MSS2 and Stemming.

6.4 Results on Real-World Data Sets
with Protein Sequences

We identify the known linear motifs in protein sequences.
There are several available linear motif databases, such as
the Eukaryotic Linear Motif (ELM) database (http://elm.eu.
org) [26], Minimotif Miner [27], [28], [29] and Scansite [2].
We choose the ELM database to collect our data sets, as it
contains comprehensive resource of biologically validated
linear motifs and provides detailed annotations for each
motif [30] [31]. Each motif corresponds to a unique ELM
identifier (ELM ID). We obtain 10 data sets with the latest
100 ELM motif instances and name them with the ELM ID.

We only select those data sets with at least three instances
of a motif.

We list the running time of different algorithms in
Table 12. We see that StemFinder is very efficient, and com-
pletes the computation for any data sets within 30 minutes.
As a comparison MSS2 and Stemming take more than
10 hours to process challenging cases LIG_PAM2_1, MOD_-
NEK2_1 and LIG_EABR_CEP55-1.

In addition,we demonstrate the validity ofMSS algorithms
for discovering motifs on real protein data sets. The exact
algorithms for motif search usually report more than one
motif, and some scoring scheme is needed to rank the
reported motifs [12], [19]; here we adopt consensus score, the
first scoring scheme given in [19]. We show in Table 13
the detected motifs, which are those with highest score in the
reported stems able to span all motif instances. From the table
we see a good matching between the detected motifs and
the ELM motifs in most of the data sets, except for LIG_-
USP7_1 and LIG_APCC_TPR_1, where we do not find an
appropriate (l, d) to carry out prediction. The differences
between the detected motifs and the ELM motifs are caused
by that the ELM motifs are curated by hand and our results
are completely obtained through computation without addi-
tional biological knowledge. Also, the rank of each detected
motif in all reported stems is shown in Table 13. We can see
that there are four data sets where our detected motifs have
the best score, and there are six data sets where our detected
motifs are included in the top 20 best reported stems.

TABLE 10
Running Time of Each Step on the (9, 4) and (15, 5) Problem Instance

(l, d) jS j Time of step 1 Time of step 2 Time of step 3

StemFinder MSS2 Stemming StemFinder MSS2 Stemming StemFinder MSS2 Stemming

(9, 4) 20 0.8 s 0.7 s 0.8 s 7.2 s 24.1 s 123.6 s 4.3 m 2.6 h 2.3 h
40 0.5 s 0.5 s 0.6 s 3.5 s 13.5 s 59.3 s 49.5 s 1.2 h 1.1 h
60 0.4 s 0.4 s 0.5 s 2.4 s 8.8 s 39.5 s 18.4 s 46.2 m 36.1 m
80 0.3 s 0.4 s 0.5 s 1.9 s 6.6 s 29.9 s 9.3 s 33.4 m 29.8 m
100 0.3 s 0.3 s 0.5 s 1.4 s 5.3 s 24.4 s 5.6 s 25.6 m 21.4 m

(15, 5) 20 0.2 s 0.2 s 0.2 s 0.1 s 0.1 s 1.1 s 0.1 s 11.4 s 18.8 s
40 0.2 s 0.2 s 0.2 s 0.1 s 0.1 s 0.3 s 0.1 s 2.5 s 5.9 s
60 0.2 s 0.2 s 0.2 s 0.1 s 0.1 s 0.2 s 0.1 s 11.6 s 12.8 s
80 0.2 s 0.2 s 0.2 s 0.1 s 0.1 s 0.6 s 0.1 s 9.2 s 15.0 s
100 0.2 s 0.2 s 0.2 s 0.1 s 0.1 s 0.5 s 0.1 s 9.7 s 13.9 s

TABLE 9
Results over Large Alphabets

jS j (7, 3) (9, 4)

SFa MSS2 SMb SFa MSS2 SMb

40 30.4 s 12.9 m 9.7 m 53.5 s 1.2 h 1.1 h
60 12.9 s 8.1 m 6.3 m 21.2 s 46.4 m 36.8 m
80 7.2 s 6.4 m 4.4 m 11.5 s 33.5 m 30.3 m
100 4.7 s 4.3 m 3.9 m 7.3 s 25.7 m 21.8 m

aSF is short-hand for StemFinder. bSM is short-hand for Stemming.

TABLE 11
Key Statistics on the (9, 4) and (15, 5) Problem Instance

(l, d) jS j Size of the set I Number of candidate stems

StemFinder MSS2 Stemming StemFinder (without pruning) StemFinder MSS2 Stemming

(9, 4) 20 122,997 116,577 129,708 37,768,122 600,880 8,376,208 12,267,751
40 65,442 59,756 70,950 18,025,040 95,710 4,196,924 5,822,322
60 43,396 38,438 48,442 11,527,712 52,969 2,692,593 3,826,118
80 31,940 28,563 38,379 8,344,006 36,988 2,105,329 2,951,130
100 24,801 23,170 29,919 6,407,584 26,528 1,621,961 2,268,904

(15, 5) 20 13 11 7 19,606 635 9,754 14,917
40 4 4 3 6,938 316 2,510 5,339
60 7 7 4 20,601 838 11,391 12,200
80 7 7 4 16,719 683 9,031 13,077
100 7 7 4 17,277 875 9,765 12,470

394 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 2, MARCH/APRIL 2015

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

7 CONCLUSION

This paper focuses on the exact algorithms for searching
motif stems over large alphabets. To represent stems more
precisely and concisely, we write stems as regular expres-
sions by replacing typical wildcards with the negative char-
acter sets, and place as few negative character sets as
possible. Then, a new exact algorithm called StemFinder is
proposed. Experimental results on simulated data show
that StemFinder outperforms the previous algorithms on
both the time performance and the ability to report fewer
stems. Moreover, the validity of StemFinder is demon-
strated on real protein data sets.

A limitation of our current study is that StemFinder does
not support searching stems on data sets where some input
sequences may contain no motif instances. We plan to con-
centrate our future work on solving this problem.

ACKNOWLEDGMENTS

This research was supported in part by the National Natural
Science Foundation of China (61173025 and 61373044), the
Fundamental Research Funds for the Central Universities
(K5051303032, K5051303002 and K50513100011), and the
Natural Science Foundation of Shaanxi (2013JQ8037). A pre-
liminary version [32] of this work appeared in the proceed-
ings of IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), 18-21 December 2013, Shanghai,
China. Hongwei Huo is the corresponding author.

REFERENCES

[1] P. D’haeseleer, “What are DNA sequence motifs?”Nat. Biotechnol.,
vol. 24, no. 4, pp. 423–425, 2006.

[2] J. C. Obenauer, L. C. Cantley, and M. B. Yaffe, “Scansite 2.0: Prote-
ome-wide prediction of cell signaling interactions using short
sequence motifs,”Nucleic Acids Res., vol. 31, pp. 3635–3641, 2003.

[3] N. E. Davey, N. J. Haslam, D. C. Shields, and R. J. Edwards,
“SLiMSearch 2.0: Biological context for short linear motifs
in proteins,”Nucleic Acids Res., vol. 39, pp. W56–W60, 2011.

[4] P. A. Pevzner and S. Sze, “Combinatorial approaches to finding
subtle signals in DNA sequences,” in Proc. 8th Int. Conf. Intell.
Syst. Molecular Biol., 2000, pp. 269–278.

[5] P. A. Evans, A. D. Smith, and H. T. Wareham, “On the complexity
of finding common approximate substrings,” Theor. Comput. Sci.,
vol. 306, pp. 407–430, 2003.

[6] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W:
Improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties
and weight matrix choice,” Nucleic Acids Res., vol. 22, pp. 4673–
4680, 1994.

[7] T. D. Schneider, “Consensus sequence zen,” Appl. Bioinformat.,
vol. 1, pp. 111–119, 2002.

[8] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and
J. Wootton, “Detecting subtle sequence signals: A gibb’s sampling
strategy for multiple alignment,” Science, vol. 262, pp. 208–214,
1993.

[9] T. Bailey and C. Elkan, “Fitting a mixture model by expectation
maximization to discover motifs in biopolymers,” in Proc. 2nd Int.
Conf. Intell. Syst. Molecular Biol., 1994, pp. 28–36.

[10] Y. Zhang, H. Huo, and Q. Yu, “A heuristic cluster-based em algo-
rithm for the planted (l, d) problem,” J. Bioinformat. Comput. Biol.,
vol. 11, no. 4, p. 1350009, 2013.

[11] F. Y.L. Chin and H. C. M. Leung, “Voting algorithms for discover-
ing long motifs,” in Proc. 3rd Asia Pacific Bioinformat. Conf., 2005,
pp. 261–271.

TABLE 12
Running Time on ELM Data Sets

Data set (# instances) ELMMotif (l, d) StemFinder MSS2 Stemming

LIG_EVH1_1 (18) ([FYWL]P.PP) j ([FYWL]PP[ALIVTFY]P) (5, 1) 0.1 s 0.1 s 0.1 s
LIG_WW_1 (3) PP.Y (4, 1) 0.1 s 0.4 s 0.4 s
LIG_14-3-3_1 (3) R.[^P]([ST])[^P]P (6, 2) 0.1 s 0.3 s 1.0 s
LIG_MYND_2 (3) PP.LI (5, 1) 0.3 s 1.4 s 3.7 s
LIG_USP7_1 (3) [PA][^P][^FYWIL]S[^P] (5, 2) 0.5 s 0.7 s 2.4 s
LIG_APCC_TPR_1 (22) .[ILM]R$ (3, 1) 10.3 s 3.9 s 3.9 s
LIG_MYND_1 (6) P.L.P (5, 2) 25.6 s 25.9 s 2.2 m
LIG_PAM2_1 (4) ..[LFP][NS][PIVTAFL].A..(([FY].[PYLF]) j (W..)). (13, 6) 1.0 m -o -o
MOD_NEK2_1 (3) [FLM][^P][^P]([ST])[^DEP][^DE] (6, 3) 10.3 m -o -o
LIG_EABR_CEP55-1 (6) .A.GPP.{2,3}Y. (11, 5) 24.2 m -o -o

TABLE 13
Detected Motifs on ELM Data Sets

Data set Detected Motif Rank of detected motif

StemFinder MSS2 Stemming StemFinder MSS2 Stemming

LIG_EVH1_1 FPPPP FP�PP FPPPP 1 5 1
LIG_WW_1 PPVY PPVY PP�Y 1 1 1
LIG_14-3-3_1 RSSSSP RT�SSP RSSSSP 344 148 771
LIG_MYND_2 PPPLI PPPLI PPPLI 1 1 1
LIG_USP7_1 - - - - - -
LIG_APCC_TPR_1 - - - - - -
LIG_MYND_1 PPLAP PPLAP PPLAP 2 2 2
LIG_PAM2_1 SAFNPNAKEFVPI - - 17 - -
MOD_NEK2_1 FAESFS - - 1 - -
LIG_EABR_CEP55-1 QAVGPPSLSYM - - 79 - -

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 395

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

[12] J. Davila, S. Balla, and S. Rajasekaran, “Fast and practical algo-
rithms for planted (l, d) motif search,” IEEE/ACM Trans. Comput.
Biol. Bioinformat., vol. 4, no. 4, pp. 544–552, Oct.–Dec. 2007.

[13] E. S. Ho, C. D. Jakubowski, and S. I. Gunderson, “iTriplet, A rule-
based nucleic acid sequence motif finder,” Algorithms Molecular
Biol., vol. 4, p. 14, 2009.

[14] Z. Chen and L. Wang, “Fast exact algorithms for the closest string
and substring problems with application to the planted (l, d)-motif
model,” IEEE/ACM Trans. Comput. Biol. Bioinformat., vol. 8, no.5,
pp. 1400–1410, Sep./Oct. 2011.

[15] H. Dinh, S. Rajasekaran, and V. K. Kundeti, “PMS5: An efficient
exact algorithm for the (l, d)-motif finding problem,” BMC Bioin-
format., vol. 12, p. 410, 2011.

[16] Q. Yu, H. Huo, Y. Zhang, and H. Guo, “PairMotif: A new pattern-
driven algorithm for planted (l, d) DNA motif search,” PLoS One,
vol. 7, no. 10, p. e48442, 2012.

[17] H. Dinh, S. Rajasekaran, and J. Davila, “qPMS7: A fast algorithm
for finding (l, d)-motifs in DNA and protein sequences,” PLoS
One, vol. 7, no. 7, p. e41425, 2012.

[18] Y. Xu, J. Yang, Y. Zhao, and Y. Shang, “An improved voting algo-
rithm for planted (l, d) motif search,” Inf. Sci., vol. 237, pp. 305–
312, 2013.

[19] G. Pavesi, G. Mauri, and G. Pesole, “An algorithm for finding sig-
nals of unknown length in DNA sequences,” Bioinformatics,
vol. 17, no. Suppl 1, pp. S207–S214, 2001.

[20] E. Eskin and P. A. Pevzner, “Finding composite regulatory pat-
terns in DNA sequences,” Bioinformatics, vol. 18, no. 1, pp. 354–
363, 2002.

[21] N. Pisanti, A. M. Carvalho, L. Marsan, and M. Sagot, “RISOTTO:
Fast extraction of motifs with mismatches,” in Proc. 7th Latin
Amer. Symp.: Theor. Informat., 2006, pp. 757–768.

[22] P. Kuksa and V. Pavlovic, “Efficient motif finding algorithms for
large-alphabet inputs,” BMC Bioinformat., vol. 11, no. Suppl 8,
p. S1, 2010.

[23] P. Kuksa and V. Pavlovic, “Fast motif selection for biological
sequences,” in Proc. IEEE Int. Conf. Bioinformat. Biomed., 2009,
pp. 79–82.

[24] T. Mi and S. Rajasekaran, “Efficient algorithms for biological
stems search,” BMC Bioinformat., vol. 14, p. 161, 2013.

[25] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation, 2nd ed. Reading,
MA, USA: Addison Wesley, 2001, pp. 83–122.

[26] H. Dinkel, S. Michael, R. J. Weatheritt, N. E. Davey, K. V. Roey,
B. Altenberg, G. Toedt, B. Uyar, M. Seiler, A. Budd, L. Jo¨dicke, M.
A. Dammert, C. Schroeter, M. Hammer, T. Schmidt, P. Jehl, C.
McGuigan, M. Dymecka, C. Chica, K. Luck, A. Via, A. Chatr-arya-
montri, N. Haslam, G. Grebnev, R. J. Edwards, M. O. Steinmetz,
H. Meiselbach, F. Diella, and T. J. Gibson, “ELM - The database of
eukaryotic linear motifs,” Nucleic Acids Res., vol. 40, pp. D242–
D251, 2012.

[27] S. Rajasekaran, S. Balla, P. Gradie, M. R. Gryk, K. Kadaveru, V.
Kundeti, M. W. Maciejewski, T. Mi, N. Rubino, J. Vyas, and M. R.
Schiller, “Minimotifminer 2nd release: A database andweb system
formotif search,”Nucleic Acids Res., vol. 37, pp. D185–D190, 2009.

[28] T. Mi, S. Rajasekaran, J. C. Merlin, M. Gryk, and M. R. Schiller,
“Achieving high accuracy prediction of minimotifs,” PLoS One,
vol. 7, no. 9, p. e45589, 2012.

[29] T. Mi, J. C. Merlin, S. Deverasetty, M. R. Gryk, T. J. Bill, A. W.
Brooks, L. Y. Lee, V. Rathnayake, C. A. Ross, D. P. Sargeant, C. L.
Strong, P. Watts, S. Rajasekaran, and M. R. Schiller, “Minimotif
miner 3.0: Database expansion and significantly improved reduc-
tion of false-positive predictions from consensus sequences,”
Nucleic Acids Res., vol. 40, pp. D252–D260, 2012.

[30] R. J. Edwards, N. E. Davey, and D. C. Shields, “SLiMFinder: A
probabilistic method for identifying over-represented, conver-
gently evolved, short linear motifs in proteins,” PLoS One, vol. 2,
p. e967, 2007.

[31] N. E. Davey, N. J. Haslam, D. C. Shields, and R. J. Edwards,
“SLiMFinder: A web server to find novel, significantly over-repre-
sented, short protein motifs,” Nucleic Acids Res., vol. 38,
pp. W534–W549, 2010.

[32] Q. Yu, H. Huo, J. S. Vitter, J. Huan, and Y. Nekrich,
“StemFinder: An efficient algorithm for searching motif stems
over large alphabets,” in Proc. IEEE Int. Conf. Bioinformat.
Biomed., 2013, pp. 473–476.

Qiang Yu received the BS degree and the MS
degree from Xidian University in 2006 and 2009,
respectively, where he is currently working
toward the PhD degree. His research interests
include design and analysis of algorithms, bioin-
formatics, and parallel and distributed computing.

Hongwei Huo received the BS degree in mathe-
matics from Northwest University, the MS degree
in computer science and the PhD degree in elec-
tronic engineering from Xidian University, China.
She is a professor and a chair in the Department
of Computer Science at Xidian University. Her
research interests include the design and analy-
sis of algorithms, bioinformatics algorithms,
external memory algorithms and compressed
indexes, data compression, parallel and distrib-
uted algorithms, algorithm engineering. She is a

member of the IEEE and the IEEE Computer Society.

Jeffrey Scott Vitter received the BS degree in
mathematics with highest honors from the Uni-
versity of Notre Dame in 1977, the PhD degree in
computer science from Stanford University in
1980, and the MBA degree from Duke University
in 2002. He is provost and executive vice chan-
cellor and Roy A. Roberts distinguished professor
at the University of Kansas. His academic home
is the Department of Electrical Engineering and
Computer Science, and he is a member of the
Information and Telecommunication Technology

Center. From 2008 to 2010, he was in the faculty at TexasA&M Univer-
sity, where he served as provost and executive vice president for aca-
demics. From 2002 to 2008, he was the Frederick L. Hovde dean of the
College of Science and professor of Computer Science at Purdue
University. From 1993 to 2002, he held the Gilbert, Louis, and Edward
Lehrman distinguished professorship at Duke University, where he also
served as chair of the Department of Computer Science and co-director
of Duke’s Center for Geometric and Biological Computing. From 1980
to1992, he advanced through the faculty ranks in computer science at
Brown University. He is a Guggenheim fellow, ACM fellow, AAAS fellow,
US National Science Foundation (NSF) Presidential Young Investigator,
and Fulbright Scholar. He has received the IBM Faculty Development
Award, ACM Recognition of Service Award (twice), and 2009 ACM SIG-
MOD Test of Time Award. He sits on the board of advisors of the School
of Science and Engineering at Tulane University. From 2000 to 2009, he
served on the board of directors of the Computing Research Association
(CRA), where he continues to co-chair the Government Affairs Commit-
tee. He has served as chair of ACM SIGACT and on the EATCS execu-
tive committee. He is author of the book Algorithms and Data Structures
for External Memory, coauthor of the books Design and Analysis of Coa-
lesced Hashing and Efficient Algorithms for MPEG Video Compression,
co-editor of the collections External Memory Algorithms and Algorithm
Engineering, and coholder of patents in the areas of external sorting,
prediction, and approximate data structures. His research interests span
the design and analysis of algorithms, external memory algorithms, data
compression, databases, compressed data structures, parallel algo-
rithms, machine learning, random variate generation, and sampling. He
serves or has served on the editorial boards of Algorithmica, Communi-
cations of the ACM, IEEE Transactions on Computers, Theory of Com-
puting Systems, and SIAM Journal on Computing, and has edited
several special issues. He proposed the concept and participated in the
design of what has become the Purdue University Research Expertise
database (PURE) and the Indiana Database for University Research
Expertise (INDURE), www.indure.org. He is a fellow of the IEEE.

396 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 2, MARCH/APRIL 2015

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

Jun Huan received the BS degree in biochemis-
try & molecular biology from Peking University,
China, in 1997. He received the MS in computer
science from the Oklahoma State University in
2000, and the PhD degree in computer science
from the University of North Carolina, Chapel Hill,
in 2006. He joined the Department of Electrical
Engineering and Computer Science at the Uni-
versity of Kansas in 2006 and is currently a pro-
fessor. At KU, he directs the Bioinformatics and
Computational Life Sciences Laboratory at KU

Information and Telecommunication Technology Center (ITTC) and the
Cheminformatics core at KU Specialized Chemistry Center, funded by
NIH. He holds courtesy appointments at the KU Bioinformatics Center,
the KU Bioengineering Program, and a visiting professorship from Glax-
oSmithKline plc. He received the National Science Foundation Faculty
Early Career Development Award in 2009. His group won the Best Stu-
dent Paper Award at the IEEE International Conference on Data Mining
in 2011 and the Best Paper Award (runner-up) at the ACM International
Conference on Information and Knowledge Management in 2009. He is
a member of IEEE.

Yakov Nekrich received the BS and MS degrees
in computer science from the University of Latvia
and the PhD in computer science from the Uni-
versity of Bonn. He is a researcher at the Univer-
sity of Waterloo. He has published 60 conference
and journal papers in leading international ven-
ues. His main research interests are design of
efficient algorithms and data structures, data
compression, external memory algorithms, and
compressed data structures.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YU ET AL.: AN EFFICIENT EXACT ALGORITHM FOR THE MOTIF STEM SEARCH PROBLEM OVER LARGE ALPHABETS 397

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:34:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

