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Controlling the distribution and usage of memory power is often difficult, because these effects typically

depend on activity across multiple layers of the vertical execution stack. To address this challenge, we con-

struct a novel and collaborative framework that employs object placement, cross-layer communication, and

page-level management to effectively distribute application objects in the DRAM hardware to achieve desired

power/performance goals. This work describes the design and implementation of our framework, which is the

first to integrate automatic object profiling and analysis at the application layer with fine-grained manage-

ment of memory hardware resources in the operating system. We demonstrate the utility of this framework

by employing it to control memory power consumption more effectively. First, we design a custom memory-

intensive workload to show the potential of this approach to reduce DRAM energy consumption. Next, we

develop sampling and profiling-based analyses and modify the code generator in the HotSpot VM to under-

stand object usage patterns and automatically control the placement of hot and cold objects in a partitioned

VM heap. This information is communicated to the operating system, which uses it to map the logical appli-

cation pages to the appropriate DRAM modules according to user-defined provisioning goals. The evaluation

shows that our Java VM-based framework achieves our goal of significant DRAM energy savings across a

variety of workloads, without any source code modifications or recompilations.
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deallocation strategies; Software performance;
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Oriented Programming Systems Languages and Applications (OOPSLA) (Jantz et al. 2015). New contributions include the

following: (a) we update the original MemBench benchmark and experimental framework to investigate the potential of

our approach on NUMA-based platforms, (b) we extend our online profiling approach to enable higher-frequency sampling

and to make it more suitable for multi-threaded applications, (c) we design and build a sampling-based tool to monitor the

system’s bandwidth and use this tool to regulate the number of memory devices available for hot application data and

automatically eliminate performance losses, without sacrificing energy improvements, and (d) we evaluate our approach

with additional benchmarks and several new experimental configurations that explore the impact of varying parameters

for each partitioning strategy and different memory resource constraints. Additionally, we port our complete experimen-

tal framework and conduct our experiments on the latest HotSpot Java VM (migrate from v. 1.6 to v. 1.9) and memory

hardware (migrate from DDR3 to DDR4-based system).
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1 INTRODUCTION

Rising demands for high-volume, high-velocity data analytics have led to a greater reliance on
in-memory data processing to achieve performance goals. These trends are driving bandwidth
and capacity requirements to new heights and have led to the adoption of memory systems with
larger power, bandwidth, and capacity requirements. However, as memory systems continue to
scale, DRAM energy consumption has become a major concern. Previous studies have found
that memory devices account for about 30–50% of overall power consumption in a typical server
node (Lefurgy et al. 2003; Hoelzle and Barroso 2009; Ware et al. 2010; Vetter and Mittal 2015).
Furthermore, since memory power is directly related to the number and size of DRAM modules,
this fraction is expected to remain significant with continued scaling.

Unfortunately, it is very challenging to obtain precise control over the distribution and usage
of memory power or bandwidth when virtualizing system memory. These effects depend on the
assignment of virtual addresses to the application’s data objects, the OS binding of virtual to phys-
ical addresses, and the mapping of physical pages to hardware DRAM devices. Furthermore, due to
the use of virtual memory, most systems abstract away information during memory management
that could be used to bring about a more efficient distribution of memory resources.

We contend that, to overcome these challenges, we need a cross-layer framework, where
(a) the application-layer determines data object usage patterns, assigns objects to appropriate
locations/pages in the virtual address space, and conveys corresponding page-level memory usage
information to the OS; and (b) the OS-layer incorporates this guidance when deciding which phys-
ical page to use to back a particular virtual page, according to user-specified power/performance
goals.

Some OS-level system calls, such as madvise (Gomez 2001) and mbind (Kleen 2004a), and frame-
works have been developed to facilitate communication across multiple layers of the vertical ex-
ecution stack during memory management (Jantz et al. 2013; Cantalupo et al. 2015; Dulloor et al.
2016; Kleen 2004b). In particular, the framework proposed by Jantz et al. (2013) allows applications
to communicate to the OS how they intend to use portions of the virtual address space and then
uses this information to guide low-level memory management decisions.

However, all such frameworks require the application to determine the set of memory usage
guidance to provide to the OS, which may be infeasible for many complex applications and work-
loads. It is often also necessary to update and re-apply usage guidance as the program executes
to reflect changes in application behavior. Furthermore, where relevant, memory usage guidance
has to be manually inserted into the source code and modified applications must be recompiled.

Our work aims to address the limitations of such OS-level frameworks by developing a corre-
sponding automated application-layer mechanism to appropriately empower and guide the OS-
layer actions without any additional program recompilations. Our work, implemented in the stan-
dard HotSpot Java Virtual Machine (VM), divides the application’s heap into separate regions for
objects with different (expected) usage patterns. At application runtime, our custom VM automat-
ically partitions and allocates heap data into separate regions using an integrated object parti-
tioning strategy. Our framework adopts a recent Linux OS extension and its associated API (Jantz
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et al. 2013) to transfer this information to the OS, where it is used to guide physical memory
management. This work extends HotSpot with two new object partitioning strategies: an offline

profiling-based approach that classifies program allocation sites statically, as well as an online

sampling-based approach that segregates data objects at runtime. For this journal extension, we
have also integrated our approach with hardware-based sampling to detect shifting bandwidth
requirements and use this information to adapt data management policies at runtime.

In this article, we describe the various components of our cross-layer framework and then
demonstrate its utility to explore configurations designed to reduce DRAM energy consumption.
We construct and use custom benchmarks to conduct experiments that reveal interesting aspects
of the power-performance tradeoff in the memory subsystem and the potential for our approach
to achieve DRAM energy savings on uniform and non-uniform memory access (NUMA) architec-
tures. We also present detailed evaluation of the proposed partitioning schemes and cross-layer
policies using a standard set of Java benchmarks. For these experiments, we isolate the impact of
different parameters and strategies from resource sharing and/or NUMA effects by executing each
workload one at a time in a uniform memory access environment.

This work makes the following important contributions: (1) We develop, implement, and evalu-
ate a framework to automatically partition application data objects into distinct sets based on their
expected usage patterns; (2) we analyze the potential of memory power savings and the interplay
between program performance, memory power, and bandwidth requirements by designing and
employing a custom benchmark program; (3) we build profiling and sampling routines into the
HotSpot VM to automatically predict and react to memory usage behavior; and (4) we provide de-
tailed experimental results, including analysis of DRAM energy and performance, to evaluate our
cross-layer policies using a standard set of Java applications with a range of power, bandwidth,
and capacity requirements.

2 RELATED WORK

A few projects have used architectural- and/or OS-based profiling and analysis to guide low-level
memory management. Some researchers have proposed custom hardware counters (Meswani et al.
2015), or lightweight sampling techniques (Agarwal and Wenisch 2017), to identify and keep hot
pages in a tier of high-bandwidth memory devices. The Carrefour system (Dashti et al. 2013) em-
ployed similar strategies to reduce access congestion in NUMA systems. These approaches are
similar to ours in that they re-locate data in the physical address space to increase efficiency.
However, they rely on coarse-grained profiling of physical memory pages and may require non-
standard hardware. Our approach enables the runtime to consider more fine-grained profiling of
application data objects and is entirely software based.

Some other approaches also integrate guidance from the application runtime with management
of physical resources. Agarwal et al. (2015) and Dulloor et al. (2016) used a profiling tool to assign
pre-tagged data structures to the appropriate tier in a heterogeneous memory system. Guo et al.
(2015) integrated reactive profiling with memory allocation to reduce pollution in a shared cache.
While these studies demonstrate some of the benefits of application feedback during memory
management, they have different goals than our approach and do not provide any mechanism for
migrating program data as usage patterns change.

A number of other works have proposed integrating information at the application-level with
the OS and hardware to aid resource management (Engler et al. 1995; Belay et al. 2012; Banga
et al. 1999; Liu et al. 2011). Prior system calls, such as madvise (Gomez 2001) and mbind (Kleen
2004a), and various libraries and APIs (Kleen 2004b; Gonzalez 2010; Magenheimer et al. 2009) have
allowed applications to provide hints to the memory management system. Similar frameworks
were recently developed to allow applications to directly control the placement of their data on
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Fig. 1. Organization of devices in a DDR-style memory system.

heterogeneous memory systems through hints in their source code (Cantalupo et al. 2015;
Dulloor et al. 2016) . In contrast, our approach obtains the needed guidance directly from light-
weight execution profiling and eschews the need to recompile.

Prior work has also explored techniques and policies for making the virtual memory system
power aware (Lebeck et al. 2000; Huang et al. 2003; Garg 2011). Others have proposed keeping
track of various metrics, such as page miss ratios (Zhou et al. 2004) or memory module accesses
(Delaluz et al. 2002), to guide allocation and reduce DRAM energy. These works highlight the
importance and advantages of power-awareness in the virtual memory system—and explore the
potential energy savings. In contrast to our work, these systems do not employ integration between
upper- and lower-level memory management and thus are vulnerable to inefficiencies resulting
from the OS and applications working at cross purposes.

3 MEMORY ORGANIZATION AND POWER CONSUMPTION

3.1 Organization of the Memory Subsystem

Although our cross-layer framework has the potential to benefit numerous memory technolo-
gies, we focus our current study on today’s pervasive JEDEC-style DDR memory systems (JEDEC
2009). Figure 1 shows the organization of devices in a typical DDR memory system. In standard
DDR-style systems, each processor employs a memory controller that sends commands to its as-
sociated DIMMs across a memory bus. To enable greater parallelism, the width of the bus is split
into multiple independent channels, which are each connected to one or more DIMMs. Each DIMM
comprises a printed circuit board with various devices as well as a set of ranks, which constitute
the actual memory storage. Each rank can be further subdivided into a set of banks, which contain
independent DRAM storage arrays and share circuitry to interface with the memory bus.

3.2 DRAM Power Consumption

DRAM power consumption can be divided into two main components: operation power, which is
the power required for active memory operations, and background power, which accounts for all
other power in the memory system.1 Operation power is primarily driven by the rate of memory
accesses to each device, while background power depends solely on the operating frequency and

1For a full accounting of the factors that contribute to DDR memory power, see Micron Technology Inc. [2001].
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the current power-down state of the memory devices. Modern memory devices perform aggres-
sive power management to automatically transition from high power to low power states when
either all or some portion of the memory is not active. For general purpose DDR devices, ranks are
the smallest power manageable unit, which implies that transitioning between power states is per-
formed at the rank level (Bhati et al. 2016). As with other power-management techniques, placing
a portion of the device into a power-down state incurs a wakeup penalty the next time the device is
accessed. Current DDR3/4 technology supports multiple power-down states, each of which poses
a different tradeoff between power savings and wakeup latency. Table 3 in David et al. (2011) pro-
vides a summary of power requirements and wakeup latencies for the various power-down states
for a typical DDR device. Thus, controlling memory power requires understanding how memory
accesses are distributed across memory devices. Configurations tuned to maximize performance
attempt to distribute accesses evenly across the ranks and channels to improve bandwidth, while
low-power configurations attempt to minimize the number of active memory devices.

4 CROSS-LAYER MEMORY MANAGEMENT

Controlling the placement of program objects/data in memory to achieve power or performance
efficiency requires collaboration between multiple layers of the vertical execution stack, including
the application, operating system, and DRAM hardware. Our approach uses a custom Java VM
(based off the open source HotSpot VM) that divides its application heap into separate regions for
objects with different expected usage patterns. We integrate our modified VM with the OS-based
framework proposed by Jantz et al. (2013), which allows application-level software to communicate
usage intents and provisioning goals to the OS-level memory manager. In this section, we briefly
describe our adopted OS framework before explaining our VM-based approach.

4.1 Guiding Memory Management with Colors

Our adopted OS framework provides two major components for this work: (1) an application pro-
gramming interface (API) for communicating to the OS information about how applications intend
to use memory resources (usage patterns) and (2) an operating system with the ability to keep
track of which memory hardware units host which physical pages and to use this detail in tailor-
ing memory allocation to usage patterns. The framework implements a memory coloring interface
to facilitate communication of memory usage guidance from applications to the operating system.
In this approach, a color is an abstraction that enables applications to indicate to the operating
system that some common behavior or intention spans a set of virtual pages.

4.2 Organizing Memory Objects in HotSpot

This work complements the OS framework by integrating application guidance with a custom Java
VM that automatically partitions program objects into separately colored regions. Each region is
colored to indicate how the application intends to use objects within the region. For example, in
our current configuration, we divide the application’s heap into two regions: one for objects that
are accessed relatively frequently (i.e., hot objects) and another for objects that are relatively cold.
Colors are applied to each space during initialization and whenever region boundaries change due
to heap resizing. As the application runs, the OS interprets colors supplied by the VM and attempts
to select physical memory scheduling strategies tailored to the expected usage behavior of each
region. The VM is free to allocate and move objects among the colored spaces, but it makes every
effort possible to ensure that the objects reside in the appropriate space. Depending on the chosen
coloring, this might require additional profiling and/or analysis to be effective.

For our implementation, we use the standard HotSpot Java VM with the “parallel-scavenge”
garbage collector (PS-GC), which is typical for server-class applications (Sun-Microsystems 2006).
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Fig. 2. Colored spaces in our VM framework. Dotted lines indicate possible paths for objects to move from

one colored space to another.

PS-GC is a generational, “stop-the-world” collector (i.e., application threads do not run during GC),
that is capable of spawning multiple concurrent scavenging threads during GC. Our implementa-
tion, illustrated in Figure 2, subdivides each heap space into two equal-sized regions2: one colored
orange for hot (frequently accessed) objects and the other colored blue for cold objects.

We implement two distinct strategies for ensuring objects reside in the correct space: (1) an
offline strategy that uses profiling information from a previous run to guide object coloring deci-
sions in later runs and (2) an online strategy that collects samples of program activity to predict
memory usage in the same run. The VM consults the available usage information at each object
allocation site to determine which color to assign the new object. During GC, colors are used to
copy surviving objects to the appropriate space but do not otherwise impact how or which objects
are collected. For instance, if an object allocation triggers a GC cycle (e.g., because its color’s eden
space is full), then the VM will collect the entire young generation (for minor GC) or entire heap
(for major GC) regardless of the color of the new object.

5 EXPERIMENTAL FRAMEWORK

Platform. The experiments in this article use a Microway NumberSmasher Xeon Server machine
with two sockets, each with their own Intel E5-2620v3 (Haswell-EP) processor. Each socket has
six 2.4GHz cores with hyperthreading enabled (for a total of 12 hardware threads) and four 16GB
DIMMs of Samsung DDR4 SDRAM with a clock speed of 2133MHz (product #: M393A2G40DB0-
CPB). Each DIMM is connected to its own channel and is composed of two 8GB ranks. All experi-
ments execute on an otherwise idle machine and, aside from Section 6.2, use only one socket and
its local memory. We install 64-bit CentOS 6.6 and select Linux kernel version 2.6.32-431 (released
in 2013) as our default operating system. Oracle’s HotSpot Java VM (build 1.9.0-ea-b76) (Paleczny
et al. 2001) provides the base for our VM implementation.

Performance, power, and bandwidth measurement. Performance for each benchmark is reported
in terms of throughput or execution time, depending on the benchmark set. To estimate mem-
ory power and bandwidth, we employ Intel’s Performance Counter Monitor (PCM) tool (Willhalm
et al. 2012). PCM is a sampling-based tool that reads various activity counters (registers) to pro-
vide details about how internal resources are used by Intel devices. At every sample, PCM reports
a variety of counter-based statistics, including the average read/write bandwidth on each memory
channel (in MB/s), cache hit ratios, and an estimate (in Joules) of energy consumed by the CPU
(cores and caches) and memory system. We use PCM to collect these statistics once per second

2The default PS-GC uses heuristics to dynamically tune the size of each heap region for throughput or pause time goals. To

simplify our implementation, all of our experiments use static heap sizes, which are computed for each benchmark using

a prior run with the default configuration.
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Fig. 3. Power (W) of one 16GB DDR4 DIMM with different amounts of time between accesses.

during each program run and aggregate the collected data in post-processing. All experimental
results report an average of five program runs. Other details regarding the benchmarks and evalu-
ation methodology for a particular set of experiments are presented later in the relevant sections.

To estimate the degree of variability in our performance and energy results, we compute 95%
confidence intervals for the difference between the means (Georges et al. 2007) and display these
intervals as error bars on the appropriate graphs. In several cases, we omit these intervals for every
other bar in the graph to reduce clutter and improve presentation. Overall, performance variability
is quite low (typically <2%), and in some cases, such as in Figures 4(a) and 5(a), confidence intervals
are not visible in print. However, some benchmarks and configurations, such as the multi-threaded
SciMark benchmarks with the online partitioning strategies, exhibit larger variations from run
to run. Our methodology for measuring CPU and DRAM energy relies on architectural counters,
which are known to have additional sources of error, such as non-determinism and overcounting
(Weaver et al. 2013). While these issues do increase the variability of our energy results, in general,
we find that this approach is precise enough for clear comparisons between configurations.

6 POTENTIAL OF CROSS-LAYER MANAGEMENT TO REDUCE DRAM ENERGY

To better understand the relationship between application data usage and DRAM power, we cre-
ated a custom benchmark, called MemBench. On initialization, MemBench creates a set of objects,
each with a single integer field, and stores them in an in-memory array. The array is divided into
12 roughly equal parts (one for each hardware thread on one server node) that are each passed
to their own software thread. The software threads then (simultaneously) iterate over their own
portion of the array and write a new value to the integer stored with each object they pass. Be-
tween integer stores, MemBench (optionally) spins each thread in a loop to vary the rate of access
to data in the object array. Spinning for a larger number of iterations increases the delay between
memory accesses and reduces the average bandwidth requirements for the workload.

For our initial experiments, we configure MemBench to allocate approximately 2.5GB of data
objects and to iterate over the object array for 100s.3 The entire object array is assigned to a sin-
gle DRAM module using the cross-layer framework. We also vary the number of iterations each
thread spins between memory accesses, and use the system timer (i.e., System.nanoTime()) to se-
lect numbers that induce delays at regular intervals. All reported measurements are collected only
during the portion of the run where software threads iterate over the object array.

Figure 3 plots the average bandwidth to the DRAM module (in GB/s) on the left y-axis (log
scale) and the average DRAM power (in W) on the right y-axis with different delays between

3All experiments in this section allocate 2.5GB of objects to ensure out-of-cache accesses. We did not vary the amount of

data allocated, because capacity utilization is not a significant factor of DRAM power.
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object accesses. We find that increasing the delay between accesses significantly reduces DRAM
power. However, the power consumption of the DRAM module is not directly proportional to its
bandwidth. The device transitions to a lower power state if the time between accesses exceeds
some fixed threshold value, which results in a power profile resembling a step function. Addition-
ally, even relatively low-bandwidth configurations consume significantly more power than the idle
configuration. For instance, bandwidths of 160MB/s (delay = 2.5μs) and 32MB/s (delay = 0.1ms),
require more than 4× and 3× DRAM power than idle, respectively. Thus, achieving power ef-
ficiency requires a system that can identify and isolate objects that will only be accessed very
infrequently. In the most extreme case, a completely idle DDR4 module consumes about 15% of
the power of a fully active module.

6.1 Extending MemBench with Hot and Cold Objects

Our next experiments evaluate the potential of using object placement to control DRAM power
using a simple workload with pre-defined sets of hot and cold objects. We extended MemBench
to differentiate hot and cold data statically by declaring objects with distinctive program types in
its source code. The extended MemBench creates and stores two types of objects in a single array:
HotObject and ColdObject. Each object contains a single integer value representing the memory
associated with the object. As the benchmark threads iterate over their portion of the object array,
they pass over the cold objects and write new integer values to the hot objects.

We constructed three configurations for these experiments: (1) default employs the unmodified
Linux kernel with the default HotSpot VM, (2) tray-based kernel runs MemBench with the unmodi-
fied HotSpot VM on the custom kernel framework described in Section 4.1, and (3) hot/cold organize

uses the custom kernel with the custom Java VM with separate spaces for hot and cold objects.
We configure MemBench to allocate roughly 2GB of cold program objects and 200MB of hot pro-
gram objects. Objects with different types are allocated in random order. Hence, in the default and
tray-based kernel configurations, HotObjects and ColdObjects are stored intermittently through-
out the application heap and ultimately, across all four memory modules. In hot/cold organize, the
modified VM allocates hot and cold objects to separate heap regions, and the OS co-locates data in
the hot heap region onto a single DRAM module. Hot objects are shuffled and accessed in random
order (using the same random seed for each experiment) to ensure comparable cache utilization
across all configurations. Similarly to the original MemBench experiments, we iterate the accessor
threads for 100 seconds and measure performance as the number of hot objects processed. We test
each configuration with a range of delay factors and report all results as the average of five runs
with each configuration-delay pair.

The lines in Figure 4(a) (plotted on the left y-axis) compare the performance (throughput) of the
tray-based kernel and hot/cold organize configurations to the default performance with the same
delay. (Higher values indicate better performance.) Thus, we can see that tray-based kernel per-
forms about the same as the default regardless of the delay factor. In contrast, the hot/cold organize
configuration exhibits relatively poor performance when there is little delay between memory ac-
cesses but performs more like the default configuration as the delay is increased. Not surprisingly,
this observed difference in throughput is directly related to bandwidth on the memory controller.
The bars in Figure 4(a) show the average read/write bandwidth (in GB/s) for MemBench with
each configuration at varying delays. Notice that the default and tray-based kernel configurations
exhibit much higher bandwidth than hot/cold organize when the delay factor is low. These config-
urations both distribute hot objects across the memory devices, allowing the system to exploit rank
and channel parallelism to achieve higher bandwidths. Alternatively, hot/cold organize co-locates
all the hot objects onto a single DIMM on a single channel and cannot attain the same bandwidth
as the other configurations when the delay is low. Increasing the delay between memory accesses
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Fig. 4. MemBench evaluation. (a) Plots performance relative to the default configuration as lines on the left

y-axis (higher is better) and average bandwidth as bars on the right y-axis. (b) DRAM energy relative to

default (lower is better).

reduces the bandwidth requirements for the workload, which enables hot/cold organize to achieve
performance similar to the other configurations.

While co-locating the hot objects onto a single DIMM restricts bandwidth, it also consumes
much less power, on average, than distributing accesses across all the memory devices. This power
differential persists even when the bandwidth requirements are reduced and the performance of
the different configurations is similar. Thus, there is a significant potential for DRAM energy sav-
ings with the hot/cold organize configuration. Figure 4(b) shows the DRAM energy consumed
with the tray-based kernel and hot/cold organize configurations compared to default with differ-
ent delay factors. Thus, while hot/cold organize may hurt both performance and energy efficiency
for very high bandwidth workloads (with delay <75ns), this approach can significantly reduce
DRAM energy with little or no impact on performance for lower-bandwidth workloads (with delay
≥150ns). At a maximum, the hot/cold organize configuration achieves 41% DRAM energy savings
with delay = 250ns. Increasing the delay beyond 250ns allows the default configuration to tran-
sition memory hardware to lower power states more frequently, which diminishes the relative
energy savings of this technique.

It is important to consider how these DRAM energy savings impact the total energy consump-
tion of the system. We find that memory power contributes between 10.6% (with delay = 2,000ns)
and 25.5% (with delay = 0ns) of the combined CPU+DRAM power on our single node platform
with 64GB of DDR4 memory. Thus, this technique reduces the CPU+DRAM power of MemBench
by about 2% to 8% with delays ≥150ns and achieves a best case reduction of 8.8% with delay =
250ns. Older systems that use DDR3 memory, which operates at a higher voltage than DDR4 will
achieve more substantial overall energy savings using this technique. For instance, a similar ex-
periment in the previous version of this work (Jantz et al. 2015) found that this approach reduces
CPU+DRAM energy consumption by more than 15% on a DDR3-based machine.

6.2 Implications of Cross-Layer Management for NUMA-Based Platforms

The experimental platform we use in this work contains less capacity than many enterprise and
scientific computing systems. Modern and future systems with larger memory capacities will nec-
essarily consume more power in the memory subsystem, and so, increasing memory efficiency in
these systems will lead to greater reductions in overall energy consumption. One potential compli-
cation of realizing these energy savings is that such systems often employ a non-uniform memory
access (NUMA) architecture to accommodate the additional capacity. To better understand the im-
pact and implications of our approach with larger capacity, NUMA-based systems, we designed
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Fig. 5. NUMABench evaluation. (a) Performance relative to the default configuration as lines on the left

y-axis and average bandwidth as stacked bars on the right y-axis. The lower (darker) bar is NUMA-local

bandwidth, and the upper (lighter) bar is NUMA-remote bandwidth. (b) DRAM energy and CPU+DRAM

energy relative to default.

and conducted another series of experiments that use all 128GB of memory on both nodes of our
experimental platform.

These experiments use another custom benchmark called NUMABench. NUMABench is identi-
cal to MemBench with one important difference: rather than only one type of hot program objects,
it includes two distinct types for NUMA-local and NUMA-remote hot objects. Arguments to NUM-
ABench control the number of threads created on each NUMA node, the amount of hot and cold
objects, as well as the proportion of NUMA-remote hot objects. To complete the implementation,
we modified our custom Java VM to divide each colored region into separate spaces for each NUMA
node. Specifically, on our platform with two NUMA nodes, each heap region contains four spaces
each with their own distinct color: a hot and cold space for node 0 and a hot and cold space for
node 1.

The experiments with NUMABench use parameters and configurations similar to those used in
the previous subsection for MemBench. The default and tray-based kernel configurations for NUM-
ABench use the custom Java VM to assign program threads and data to the appropriate node but
are otherwise identical to the earlier experiments. hot/cold organize is also similar, and uses a single
DIMM on each node to fill demands for hot program data. Each NUMABench experiment spawns
a number of software threads to access the hot program data and allocates the same amount and
proportion of hot and cold program data as MemBench. All of the threads are bound to the same
NUMA node and continuously access the (local or remote) hot program objects with some spin-
delay between each access for 100 seconds. For presentation purposes, we only show detailed
results for experiments that use 12 software threads on one compute node with no spin-delay
between memory accesses. Later in this subsection, we summarize and discuss results for config-
urations that use threads on both compute nodes and vary the delay between memory accesses.

Figure 5(a) presents the performance (throughput) and bandwidth of NUMABench with the per-
centage of NUMA-remote hot data varied between 0% and 100%. The figure uses stacked bars to
distinguish bandwidth on the local node (the lower, darker bar) from bandwidth on the remote
node (the upper, lighter bar). As expected, NUMABench exhibits similar bandwidth as the earlier
MemBench experiments when there are no hot objects on the remote node. Increasing the propor-
tion of remote hot objects does increase system throughput up to a point–default and tray-based
kernel perform best with 5% of hot objects on the remote node, while hot/cold organize is best with
30% remote hot objects—but these improvements quickly diminish as the percentage of traffic on
the local node is reduced. Furthermore, assigning more hot objects to the remote node degrades
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Table 1. NUMABench Bandwidth

with No Remote Data

# Hot Total GB/s Hot GB/s

1 11.7 11.7
2 23.2 11.6
3 32.1 10.7
4 39.5 9.9

total system bandwidth (due to the heavy remote traffic) and ultimately reduces the performance
difference between the configurations.

Surprisingly, we find that hot/cold organize actually performs about 10% better than default
when 40% or more of the hot objects are assigned to the remote node. This result suggests that
confining the remote data accesses to a single DRAM module reduces the amount of time between
accesses to the module and prevents it from transitioning to a lower power (longer latency) state.
For NUMABench, reducing latency to the remote data increases bandwidth and performance. In-
terestingly, this effect also occurs on the local NUMA node even when there is no traffic on the
remote memory devices. For example, consider Table 1, which shows the total bandwidth and the
average bandwidth of only the hot DRAM modules for four runs of NUMABench that place all hot
objects on the local node and use a different number of hot modules for each run. Thus, although
using all four DRAM modules for the hot objects produces the highest total bandwidth (due to
increased channel parallelism), the average bandwidth for each hot DRAM module is 1.5%, 10%,
and 19% higher when only one hot module is used as compared to configurations with two, three,
and four hot modules, respectively.

Figure 5(b) plots lines showing the average CPU+DRAM energy and DRAM-only energy of
NUMABench with hot/cold organize with different percentages of remote hot objects relative to
the default configuration. Thus, in the best-case with 40% of hot objects on the remote node,
hot/cold organize reduces CPU+DRAM energy by over 15% on our platform. Comparing to the
results in Figure 4(b), we see that hot/cold organize yields even greater energy savings with NUM-
ABench than with MemBench. These increased energy savings are not only due to better perfor-
mance but also because memory power is a larger component of total system power when DRAM
on both nodes is in use. In the best-case configurations for hot/cold organize, memory is only 15.2%
of CPU+DRAM power with MemBench (delay = 250ns), while it is 22.9% of CPU+DRAM power
with NUMABench (40% remote accesses).

In addition to the experiments described above, which use only 12 software threads bound to a
single compute node, we ran several other sets of experiments with NUMABench using 24 soft-
ware threads (one per hardware thread) across both compute nodes. As expected, increasing the
number of software threads raises the total power and bandwidth requirements for the application,
especially when most memory accesses are local and there is little or no delay between accesses.
In 24-thread experiments with no remote data accesses, hot/cold organize exhibits similar perfor-
mance and energy effects as in the MemBench experiments with all threads and data bound to
a single NUMA node. Specifically, performance of hot/cold organize with no remote accesses is
68.1% worse than default with no delay between accesses and no worse than default with delays
≥150ns. In the best case with delay = 400ns, hot/cold organize with no remote accesses consumes
43.4% less DRAM energy and 6.9% less CPU+DRAM energy than the default configuration.

We also find that placing some portion of the data accesses on the remote nodes with the 24-
thread experiments causes similar performance/energy effects as we observed with the single-node
NUMABench experiments when there are no delays between memory accesses. However, due to the
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increased bandwidth on both nodes, hot/cold organize does not achieve the same performance
as default until at least 70% to 80% of accesses are on the remote node. Additionally, increasing
the delay between accesses diminishes the impact that NUMA effects have on this workload. For
instance, with delay = 250ns, hot/cold organize consistently yields similar performance and better
energy efficiency (29% to 44% less DRAM energy, 5% to 9% less CPU+DRAM energy) than the
default configuration, regardless of the portion of NUMA-remote data accesses.

While these results demonstrate that there is potential for cross-layer management to produce
substantial energy savings on NUMA platforms, a number of challenges still remain for real-world
applications. In addition to knowing data access rates, achieving efficiency in NUMA systems
requires knowledge of which compute resources (i.e., software or hardware threads) drive traffic
to which data objects or addresses. There are some existing NUMA management strategies that
rely on heuristics and/or profiling techniques to predict this information and use it to improve
performance. For instance, since version 6u2, HotSpot includes an option for NUMA-aware data
allocation with the PS-GC (Oracle 2017). Some recent Linux distributions also include OS-level
optimizations to improve access locality in NUMA systems (Corbet 2012; van Riel 2014). There
is some potential to combine cross-layer management with these existing strategies to achieve
the benefits of multiple approaches. For example, one possible configuration might be to use a
NUMA management strategy to assign data to each node and to use cross-layer management to
assign objects to the devices within each node to improve efficiency. Since the primary focus of
this work is to understand the effectiveness of the proposed approaches without NUMA effects,
the remainder of this study uses only a single node of our experimental platform.

7 AUTOMATED COLLECTION OF MEMORY USAGE GUIDANCE

7.1 Object Partitioning Strategies

7.1.1 Offline Profiling for Hot and Cold Allocation Sites. Our offline partitioning strategy pro-
files memory usage activity related to program allocation sites. For this approach, we instrument
the HotSpot bytecode interpreter to construct a hash table relating objects and their usage activity
to their allocation sites in the interpreted code. The hash table is indexed by program allocation
sites (identified by method and bytecode index) and values are a list of records describing the size
and access count of each object created at that site. The modified interpreter intercepts each object
allocation request (_new and its variants) and each object reference (getfield, putfield, etc.) to
compute sizes and access counts for each allocation site.

With the profiling collected, the next step is to derive a placement decision, across allocation
sites, that distinguishes the hot and cold objects. For this analysis, we are interested in maximizing
the size of the cold space, because a larger space of cold objects ensures that a larger portion of
DRAM devices will be able to reside in a low power state. We express this problem as an instance
of the classical 0/1 knapsack optimization problem. In this formulation, each allocation site is an
item with a value equal to the total size of its objects, and a weight equal to the sum of its ac-
cess counts. The optimization problem then is to select sites such that the combined size (value) is
maximized without the combined access counts (weight) exceeding the some pre-defined capacity
limit. Although the knapsack problem is NP-complete, there exist well-known polynomial-time
algorithms that can approximate the solution to any specified degree. We employ a popular dy-
namic programming algorithm to find a partitioning that (nearly) maximizes the size of the cold
space (Martello and Toth 1990). To compare colorings across different workloads, we select knap-
sack capacities as a fraction of the total number of accesses, D. Thus, if this fraction is 10%, the
knapsack approach ensures that the aggregate access count for the sites assigned to the cold set is
just below D/10.
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At the start of any guided/measured program run, the VM loads the partitioning information
from a file into memory. Each method object maintains a list of its associated allocation sites with
their hot/cold classification. Since each node in this list requires only a few (16, currently) bytes
of space, and since each method has only a few allocation sites (see Table 3), the space overhead
is small. At each object allocation, the VM checks the appropriate list to determine whether the
allocation site has a known color. If so, then the new object is allocated to this color’s eden space,
and otherwise, to some default color’s eden space. For this work, we opt to assign unknown (un-
colored) allocation sites to the orange, or hot, space. Thus, if an unknown object is actually hot, it
will not thwart our power-saving strategy of keeping hot objects off the cold DIMMs.

7.1.2 Call Stack Sampling to Distinguish Hot Methods and Classes. Our online approach is in-
spired by a technique proposed by Huang et al. (2004). Huang et al.’s strategy uses bytecode anal-
ysis during JIT compilation to mark data classes and fields as hot if they are accessed by frequently
executing program methods. In contrast to this earlier work, which used this information to re-
order fields within each object and improve data locality, our approach aims to partition the appli-
cation’s data objects into hot and cold sets and does not alter the structure of individual objects.

Specifically, our approach works as follows. The VM maintains a temperature field for each
method and class object that indicates whether the data associated with these constructs is cur-
rently “hot” or “cold.” Initially, all methods and classes are considered cold. When a method is JIT
compiled, the VM analyzes its bytecodes and records the list of classes (data types) that it might
access. As the program executes, a separate profiling thread periodically examines the call stacks
of each application thread and marks the methods at the top of each stack, as well as the classes
that they access, as hot. If a method or class is not sampled for some pre-defined number of inter-
vals, then the VM may also reset its temperature to cold. Then, whenever a method allocates a
new object, the allocator examines the temperature of the method and of the new object’s class.
If either field indicates that the new object is likely to be hot, then the VM allocates it to the hot
space and, otherwise, to the cold space. In contrast to the offline approach, which is completely
static, the online approach also reassigns surviving objects’ colors at each GC cycle according to
the temperature of their classes.

The original implementation of the online partitioning strategy, presented in Jantz et al. (2015),
used a timer-driven signal to pause the application threads and read their call stacks at regular
intervals. While this “stop-the-world”-style approach allows the VM to parse the call stacks with-
out error, it also degrades performance when the sampling rate is increased. For this extension,
we have updated the implementation of the online strategy to enable high-frequency profiling
without slowing down the application. During initialization, the VM pins the sampling thread to
a single core and then ensures that all other VM and application threads use only the remain-
ing compute cores. During execution, the sampling thread attempts to read each active call stack
without stopping or interrupting the application threads.

While this design enables faster sampling rates, it may cause errors if a call stack changes as the
profiling thread attempts to read it. To handle such cases, the VM employs a custom signal handler
to catch and discard SIGSEGV signals raised by the profiling thread and uses internal checks to
verify that the sampled stack frame corresponds to a valid program method.4 We found that the
proportion of successful call stack samples varies significantly depending on the benchmark. In
the best case, with tomcat, less than 20% of attempts to read the application call stack result in
error, while in the worst case, with fft (11-thread), call stack sampling fails more than 99% of the

4Specifically, these checks (1) ensure the address of the sampled frame is within the appropriate heap region and (2) cast the

sampled address to a Method object and verify that the virtual table pointer (__vptr) associated with this object matches

that of the Method class.
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Table 2. Number of Hot

DIMMs for Each

Bandwidth Range

# Hot BW (GB/s)

1 <10.1
2 10.1−12.5
3 12.5−16.3
4 >16.3

time. Even with large error rates, this implementation enables the collection of a few thousand to
over 1.5M valid samples per second (as shown in Table 3) with very little impact on performance
in most cases.

7.2 Sampling Architectural Counters to Estimate Bandwidth Requirements

If an application requires high bandwidth, then co-locating its hot objects onto a small set of
devices (and channels) may actually hurt performance and efficiency. To address this issue, we
have integrated our framework with a custom tool that monitors the system’s bandwidth using
architectural counters. With this information, the framework can remap application data across
different sets of DRAM devices depending on the current requirements.

The remapping policy relies on the construction of an offline model to determine the best config-
uration for applications with different bandwidth requirements. We can construct the model for a
given machine using the extended MemBench workload from Section 6.1. For each possible device
configuration (i.e., using 1, 2, 3, or 4 DIMMs for the hot objects on our platform), we ran Mem-
Bench with varying delays and recorded the average bandwidth during the run. We then mapped
the observed bandwidth to the most energy efficient device configuration. Specifically, if Mem-
Bench with a particular delay performs worse with a limited number of devices, then the model
assumes that additional devices are necessary to sustain the observed bandwidth. Otherwise, it
recommends to assign data with similar or lower bandwidth requirements to the limited number
of devices, since doing so will not hurt performance and will reduce energy consumption. Table 2
shows the number of hot devices for each bandwidth range as recommended by the MemBench
model on our platform.

During subsequent program executions, the VM periodically samples hardware activity coun-
ters to compute an estimate of current bandwidth.5 If the model indicates that the current config-
uration with the observed bandwidth is not optimal, then the VM will invoke the OS to unmap all
of the pages associated with colored heap regions and then remap them to a different set of hot
and cold devices depending on the model’s recommendation before resuming the program. Since
these remapping operations are expensive,6 our implementation is conservative: It samples system
bandwidth only once per second and will only remap to a new configuration if two consecutive
samples fall within its corresponding bandwidth range.

5This mechanism is similar to the approach used by the Intel PCM tool described in Section 5. At each sampling interval,

the VM reads the CAS_COUNT.RD and CAS_COUNT.WR events for each channel and uses these to compute an estimate

of the total bandwidth on the platform (see Intel (2015)).
6We found that remapping overhead is 0.75 to 1.15 seconds/GB with a microbenchmark on our platform.
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Table 3. Benchmark Statistics

Benchmark Perf. GB/s DRAM W OA (GB) # Sites S/M # Hot # Types Samps/s

DaCapo

avrora 4.999 0.042 3.786 0.344 3,476 2.82 1,108 892 151,803

fop 0.416 1.631 7.188 0.754 10,228 5.66 1,200 1,443 133,406

h2 8.613 0.420 5.218 4.721 3,361 2.59 932 814 118,324

jython 4.257 0.837 6.862 11.194 11,470 4.71 707 2,593 155,383

luindex 0.699 0.333 5.247 0.195 2,968 2.71 739 715 167,691

lusearch 0.996 8.565 8.628 35.765 2,628 2.73 836 642 521,303

pmd 3.445 0.958 5.884 4.376 3,516 2.45 1,311 1,156 239,909

sunflow 2.247 1.905 7.388 14.472 3,895 2.72 842 919 408,436

tomcat 2.187 1.879 5.518 4.067 8,510 2.61 1,049 2,212 551,227

tradebeans 13.492 0.418 5.235 16.314 16,148 2.39 494 4,978 1,517,788

tradesoap 6.441 2.083 6.461 35.250 16,266 2.37 492 5,212 1,095,354

xalan 0.749 4.068 7.878 6.381 3,587 2.84 1,185 939 360,641

SciMark

fft-1T 2.586 8.118 8.432 3.015 6,588 3.05 551 1,528 4,140

lu-1T 4.427 14.087 8.848 3.495 6,593 3.05 550 1,527 4,052

sor-1T 5.254 3.231 7.380 0.074 6,583 3.05 544 1,528 3,193

sparse-1T 2.478 10.753 7.726 4.745 6,585 3.06 547 1,527 4,334

fft-11T 0.633 34.899 14.506 12.697 6,588 3.05 549 1,528 6,272

lu-11T 2.460 38.785 14.325 7.268 6,593 3.05 555 1,527 88,991

sor-11T 0.644 25.753 12.404 0.416 6,583 3.05 550 1,528 57,585

sparse-11T 0.851 35.853 13.374 14.156 6,585 3.06 549 1,527 97,998

Note: For each benchmark, the columns show performance (execution time (seconds) for DaCapo and throughput

(ops/minute) for SciMark), bandwidth (GB/s), DRAM power (W), objects allocated (GB), number of allocation sites, al-

location sites per method, number of methods compiled in steady state, number of unique program types, and valid call

stack samples per second with continuous online profiling.

8 EVALUATION

8.1 Benchmarks and Experimental Configuration

We employ 12 of 14 benchmarks from the DaCapo benchmark suite (v. 9.12) (Blackburn et al.
2006) as well as four of the SciMark computational kernels from SPECjvm2008 (SPEC2008 2008)
to evaluate our cross-layer framework.7 Table 3 shows all of the selected benchmarks along with
relevant performance, usage, and runtime statistics. Some of the experiments require the collec-
tion of information during a profile run with a small input size to guide coloring decisions in a run
with a default or large input size. Thus, all of the benchmarks we selected for this study include
at least two inputs, and we omit benchmarks from SPECjvm2008 with only one input size. The

7The two DaCapo benchmarks that we omit from this study, batik and eclipse, fail to run with the default configuration

of HotSpot-9 due to incompatibilities that were introduced in OpenJDK 8 and have been observed and reported by others

(github.com 2014a, 2014b).
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SciMark kernels also include a parameter to duplicate their workload across multiple, concurrent
application threads within a single VM instance. Thus, to test our framework with a wider range
of usage requirements, we include two configurations of each SciMark kernel: a lower-bandwidth
single-threaded version and a higher-bandwidth multi-threaded version. Although our platform
includes 12 hardware threads, the high-bandwidth experiments use only 11 workload threads to
allow for evaluation of the online approach without contention between the application and sam-
pling threads. We examine the performance overhead of reserving one hardware thread for online
sampling in Section 8.2.1.

All of our experiments measure steady-state performance and energy consumption. For each
DaCapo run, we iterate the workload a total of seven times. We use two initial iterations to put the
benchmark into steady state and record the median execution time of the final five iterations as the
benchmark’s performance. For each SciMark run, the harness continuously iterates the workload,
starting a new operation as soon as a previous operation completes. Each run includes a warmup
period of 1 minute and an iteration period of at least 4 minutes. The score for each SciMark run is
the average time it takes to complete one operation during the iteration period.

Baseline configuration. Our cross-layer framework disables channel interleaving in the system
BIOS and uses a custom Linux kernel to allocate physical memory pages to individual DRAM
modules. Since we wish to isolate the performance and energy impact of our custom Java VM and
data partitioning strategies, our baseline configuration uses the same platform and custom kernel
configuration. To approximate the effect of channel interleaving, the baseline configuration fills
demands with physical memory from alternating channels using a round-robin policy. For our
benchmarks, this configuration exhibits very similar performance and energy as a system with an
unmodified Linux kernel with channel interleaving enabled (Jantz et al. 2015), which is the default
for most commercial off-the-shelf server systems.

8.2 Evaluation of Different Partitioning Strategies

To evaluate the offline partitioning strategy, we profile each application using the small program
input and partition their allocation sites using knapsack capacities of 1%, 2%, 5%, 10%, and 20%. We
then use these partitionings to color object allocations during an evaluation run with a larger input
size. For the online approach, we implement a mechanism to vary the rate of call stack sampling
by programming the profiling thread to sleep for different amounts of time between samples. We
evaluate the online approach with a continuous sampling configuration that does not sleep at all
between samples as well as with six other configurations that use the following sleep intervals:
10μs, 100μs, 1ms, 10ms 100ms, and 1 second. Each online configuration also uses a “cool down”
mechanism that periodically marks all methods and classes that were not sampled in the previous
interval as cold. After some experimentation, we opted to use a constant cool down rate of 0.1
seconds. This approach allows for a reasonable rate of adaptation and makes it easy to control and
compare the aggressiveness of the different sampling frequencies.

We evaluated the partitioning schemes using three different cross-layer configurations. While
each configuration may reserve a different number of memory devices (DIMMs) for the hot or cold
space, all of the experiments use similar physical page allocation strategies for mapping colored
data to the memory hardware. For data in the cold space, the OS allocates all of the pages from
one DIMM before moving on to the next DIMM and therefore minimizes the number of modules
in use. In contrast, the demands for the hot space are filled using physical pages from alternating
memory channels (in a round-robin fashion) to maximize bandwidth to the hot program objects.

8.2.1 Overhead of Online Sampling. We first evaluate the performance overhead of sampling in
our online approach. For these experiments, the VM samples the application call stacks at different
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Fig. 6. Performance (execution time) with online sampling relative to default.

Fig. 7. Performance with online sampling relative to default with 12 application threads.

Table 4. Performance/Energy of 11-Thread

SciMark Relative to 12-Thread SciMark

Bench Perf CPU J DRAM J

fft 1.031 1.028 1.020
lu 0.999 0.988 0.994
sor 1.080 1.050 1.025
sparse 1.000 0.994 0.986
geomean 1.027 1.015 1.006

rates but does not enforce object placement decisions. Figure 6 displays the performance of each
benchmark with each sampling rate. Thus, in most cases, the online profiler has little to no impact
on program performance. In a few cases, especially with very high frequency sampling, perfor-
mance improves, perhaps due to interactions with processor caches or JIT compilation heuristics.

This result makes sense, because none of the selected benchmarks use more than 11 applica-
tion threads, and so there is always at least one hardware thread available for online sampling.
However, reserving one core for online sampling may still hurt performance if the application is
well-parallelized and utilizes all available computing cores. To evaluate the impact of our approach
on such programs, we conducted another set of experiments with SciMark using 12 concurrent
software threads for each workload. Figure 7 shows the performance of the online approach with
the 11-thread and 12-thread versions of SciMark relative to the 12-thread configuration with no
online sampling. Table 4 also gives the performance, CPU energy, and DRAM energy of the default

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 2, Article 20. Publication date: April 2018.



20:18 M. B. Olson et al.

Fig. 8. Portion of cold data with offline partitioning strategies with different knapsack capacities.

Fig. 9. Portion of cold data with online partitioning strategies with different sampling frequencies.

11-thread SciMark relative to the default 12-thread version (lower is better). The results show that
two workloads, fft and sor, exhibit some performance and energy penalties when only 11 software
threads are used, regardless of whether online sampling is enabled (at any frequency). For sor,
the 12-thread configuration with online sampling yields even larger performance losses (of about
14%).8 Thus, it is important to consider the availability of compute resources when applying the
online approach. The remaining evaluation assumes that there is at least one hardware thread
available for online sampling, and therefore uses the 11-thread configuration as baseline for the
multi-threaded SciMark experiments.

8.2.2 Cold Heap Size. Figures 8 and 9 show the aggregate size of objects assigned to the cold
space as a percentage of the total size with each of the object partitioning strategies. For example,
Figure 8 shows that the 1% knapsack partitioning scheme for the sor (1-thread) workload finds a
set of allocation sites that accounts for about 32% of total heap size. In the profile run with smaller
input, these same allocation sites account for less than 1% of memory accesses.

We can make a few observations from these results. First, with the DaCapo benchmarks, in-
creasing the knapsack capacity increases the cold space size for the offline partitioning strategy

8There is not much performance variation between sampling rates, because our current profiler always reserves an entire

core for the sampling thread, even when it uses a very low frequency. We use this approach because it makes it easier to

control the amount of time between each sample and compare different sampling frequencies. We have also found that

removing this restriction, and allowing the OS to schedule each thread on any core, eliminates about half of the performance

losses with lower frequency sampling (≥10ms).
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Fig. 10. Performance of offline partitioning strategies with unconstrained capacity relative to default.

Fig. 11. Performance of online partitioning strategies with unconstrained capacity relative to default.

as expected. Second, however, with the exception of the very smallest capacity (1%), the knapsack
capacity has very little effect on the SciMark benchmarks. These workloads allocate the vast ma-
jority of their heap objects from only a few allocation sites, and so there is less distinction between
different knapsack sizes. Third, increasing the sampling interval for the online approach reduces
the portion of objects assigned to the hot space, as expected. Fourth, however, the effect of differ-
ent sampling intervals can vary significantly depending on the benchmark. For some benchmarks,
such as lusearch, relatively long sampling intervals (≤100ms) assign most program data to the hot
space, while for others, such as fft (1-thread), even the most aggressive sampling rate assigns most
of the objects to the cold space.

8.2.3 Performance and Energy Evaluation.

Evaluation with Unconstrained Capacity. The first configuration models the scenario where there
is always enough capacity in a fixed set of memory devices to contain all of the application’s hot
program data. Since the capacity of each DRAM module in our platform is always larger than the
requirements of hot program data, the implementation of this configuration is straightforward.
All hot program data are simply placed on a single DIMM, and the cold data are assigned to the
other three DIMMs.

Figures 10 and 11 display the performance of the offline and online partitioning strategies
with unconstrained capacity relative to the baseline configuration. In general, most of the low-
to-medium bandwidth benchmarks (i.e., DaCapo and single-threaded SciMark) experience little
to no performance losses compared to default. For these workloads, only one memory channel is

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 2, Article 20. Publication date: April 2018.



20:20 M. B. Olson et al.

Fig. 12. DRAM energy with offline partitioning strategies with unconstrained capacity relative to default.

Fig. 13. DRAM energy with online partitioning strategies with unconstrained capacity relative to default.

sufficient to provide all of the necessary bandwidth. Some of these benchmarks, such as lu (1-

thread), do exhibit performance losses due to their higher-bandwidth requirements. Others, such
as fop and tradebeans, show that, even if one memory channel is sufficient to support all of the
application’s memory traffic, the overhead of classifying objects at runtime can still cause slow-
downs, in some cases. On average, the offline approach performs slightly better than the online
approach for the low-bandwidth benchmarks. The best case offline configuration is, on average,
7.6% (knapsack capacity = 20%) and 5.1% (knapsack capacity = 2%) slower than default with the
DaCapo and single-threaded SciMark benchmarks, respectively, while the best case online ap-
proach is 9.0% (100ms sampling) and 9.0% (continuous sampling) slower than default with these
benchmark sets.

In contrast, the multi-threaded SciMark workloads often exhibit severe performance losses (2×
to 3× worse than default), because one memory channel does not provide enough bandwidth for
their hot data. Interestingly, some configurations of the online approach are able to obtain better
performance by more evenly distributing memory traffic to the hot and cold devices. Later in this
section, we describe a technique that relies on a similar effect to mitigate most of these performance
losses.

Figures 12 and 13 show the DRAM energy of the custom partitioning strategies relative to the
default configuration. Thus, the framework clearly achieves our goal of DRAM energy savings
for the low-bandwidth workloads. On average, the best partitioning strategy for DaCapo (online,
1ms sampling rate) reduces DRAM energy by 19.8%, and by 25.5% for the single-threaded SciMark
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Fig. 14. Performance of different partitioning strategies with capacity constraints relative to default.

workloads (with the offline, 5% knapsack). For the high-bandwidth multi-threaded SciMark bench-
marks, although the average rate of DRAM power consumption is significantly reduced (by more
than 50%, on average), all of the strategies actually increase energy consumption due to the large
performance losses incurred by these workloads.

We find that the partitioning strategies have almost no impact on CPU power, with two ex-
ceptions. Multi-threaded SciMark performs so poorly that the rate of CPU energy consumption
decreases by 15%, on average, compared to default. Despite this reduction, these benchmarks still
consume 2× more CPU energy per operation than default, on average. We also find that continu-
ous online sampling increases CPU power by more than 22.2% and 24.4% for the single-threaded
SciMark and DaCapo benchmarks, respectively. In many cases, continuous sampling prevents the
CPU from transitioning more frequently into low-power states. Reducing the sampling rate to
only once every 10μs completely eliminates the additional power consumption. Thus, if the CPU
is under-utilized, using an “always-on” strategy for online profiling can thwart potential energy
savings.

Evaluation with capacity constraints. The next set of experiments simulates a constrained capacity

environment where each application must use all of the platform’s DRAM modules to satisfy its
capacity requirements. To implement this configuration, we first measure the peak resident set size
(RSS) of each benchmark using a separate (default) run. For each experimental run, the framework
configures the hot memory devices to have a maximum capacity of only 25% of the peak RSS.
During execution, if the partitioning scheme allocates more data in the hot space than is able to fit
in the current set of hot devices, then the OS will interrupt the application, add a new (previously
cold) DIMM to the hot set of memory devices, and then remap the application’s data across the
new set of hot and cold devices. Thus, partitioning strategies that assign more data to the hot space
will spread their data across more DRAM devices, potentially driving energy costs higher.

Figures 14 and 15 show the performance and DRAM energy of the partitioning strategies with
the constrained capacity configuration. To simplify presentation and reduce clutter, these figures
only show results for a subset of partitioning strategies. To present a range of tuning options, we
selected configurations that are (1) very aggressive (1% knapsack, continuous sampling), (2) some-
what aggressive (5% knapsack, 100μs sampling), and (3) more conservative (20% knapsack, 100ms
sampling) when assigning application data to the hot space.

In general, the lower-bandwidth (DaCapo and single-threaded SciMark) benchmarks exhibit
similar performance with capacity constraints as with unconstrained capacity. In a few cases, such
as fop and tradebeans, remapping the application’s data to model capacity constraints significantly
degrades performance relative to the unconstrained capacity configuration. Other benchmarks,
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Fig. 15. DRAM energy of different partitioning strategies with capacity constraints relative to default.

Fig. 16. Performance of partitioning strategies with automatic bandwidth monitoring relative to default.

such as fft (1-thread) and lu (1-thread), show significant performance improvements for both the
offline and online approaches. For these workloads, the partitioning schemes often assign more
than 25% of application data to the hot space, and thus, the cross-layer framework allocates their
data across multiple DRAM modules. Since the data actually does require frequent access, remap-
ping it across multiple channels increases bandwidth and improves performance. A similar effect
improves performance for several of the higher-bandwidth multi-threaded SciMark benchmarks,
especially in cases where the partitioning scheme is more aggressive in assigning data to the hot
space, such as with offline-1% and online-ct.

The DRAM energy results in Figure 15 show that capacity constraints can reduce the energy
benefits of our approach or may even make it counterproductive. For instance, several DaCapo
workloads, such as jython and sunflow, consume 20% to 50% more DRAM energy in a constrained
capacity environment. The results also show some variation in the effectiveness of different par-
titioning schemes. For example, with the DaCapo benchmarks, partitioning schemes that are less
aggressive in assigning data to the hot space, such as offline-20% and online-100ms, tend to consume
less DRAM energy than more aggressive schemes. Since most of these benchmarks do not actu-
ally require much bandwidth, distributing their data across additional DRAM channels increases
power consumption without improving performance. In contrast, workloads that require higher
bandwidths, such as fft (11-thread) and lu (11-thread), achieve better performance and efficiency
by increasing the number of active channels.

Evaluation with automatic bandwidth monitoring and remapping. Figures 16 and 17 show the
performance and DRAM energy of the partitioning strategies with the automatic bandwidth
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Fig. 17. DRAM energy of partitioning strategies with automatic bandwidth monitoring relative to default.

monitoring and remapping tool with no constraints on the capacity of the hot devices. Thus, in
most cases, the bandwidth monitoring tool successfully mitigates the performance losses of the
multi-threaded SciMark benchmarks. As expected, these high-bandwidth benchmarks consume
about the same amount of DRAM energy as the default configuration, because the bandwidth tool
distributes their hot objects across the same number of memory devices. For the offline approach,
CPU power is also similar to the default, while the online approach may still require additional
CPU power (1.3% more, on average) with the continuous sampling configuration. The less
aggressive online strategies still exhibit significant performance losses with the high-bandwidth
workloads. Due to their low frequency, these strategies are unable to accurately distinguish hot
and cold program data. Thus, remapping the hot space to a larger number of devices fails to redis-
tribute the workload’s memory traffic, because most of the accesses are to data in the cold space.

As expected, this technique has less performance or energy impact on the lower-bandwidth
benchmarks. With the exception of lusearch, which exhibits a 10% performance improvement with
data remapping, the DaCapo workloads do not generate enough bandwidth for the tool to remap
their data from the initial configuration with only one hot device. With SciMark, the tool remaps
the data of both lu-1t and sparse-1t to a larger number of devices early in the run, regardless of the
partitioning strategy. In the case of sparse-1t, this remapping increases DRAM energy but does not
have any beneficial impact on performance. This result demonstrates a limitation of our current
approach, which is that it cannot distinguish cases where bandwidth is limited by the application,
and therefore should not be remapped, from when it is limited by the current hot/cold device
configuration. One potential avenue to overcome this limitation would be to extend our tool to
undo a remapping operation if the new device configuration does not actually increase system
bandwidth.

Although some benchmarks, such as lusearch, exhibit brief spikes in bandwidth, the conservative
remapping policy prevents a series of expensive migrations. We did find that a more aggressive
scheme, which remaps data after observing only one sample outside the current bandwidth range,
results in substantial performance losses in some cases (e.g., lusearch degrades by more than 107%),
with no additional benefits. Additionally, we observed that all of our benchmarks exhibit relatively
stable bandwidth throughout the entire run. Indeed, in every case that a benchmark remaps its
data, it only does so early in the run and quickly settles into a single configuration that it uses for
the rest of the run.

To evaluate the effectiveness of this approach when application bandwidth changes over time,
we modified the SciMark harness to run 10 iterations of each benchmark within a single VM in-
stance. Each iteration executes the benchmark for 1 minute with a different random number of
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Fig. 18. Performance and DRAM energy of SciMark with changing bandwidth relative to default.

Table 5. Number of Remapping Operations and

Gigabytes Remapped for Each SciMark Workload

offline-5% online-ct
Benchmark # ops GBs # ops GBs

fft 12 1.09 11 15.14
lu 3 8.63 2 7.71
sor 11 3.26 8 2.42
sparse 3 9.01 3 7.48

(up to 10) threads to induce changing bandwidth requirements. For comparisons across runs, we
use the same random seed for each experiment. Figure 18 shows the performance and DRAM en-
ergy of the offline (5% knapsack) and online (continuous sampling) approaches with and without
the bandwidth tool relative to default. Not only does the bandwidth tool achieve similar perfor-
mance as the default configuration, it also reduces DRAM energy (by 16.7% and 13.8%, on average).
This finding indicates that the sampling tool is able to automatically and seamlessly adapt data
mapping policies to current usage requirements, enabling energy savings during low-bandwidth
periods without sacrificing performance during high-bandwidth periods. However, since these ex-
periments have relatively long and stable execution phases, the tool induces only a few remapping
operations for each program run, as shown in Table 5. Applications with shorter phase intervals
or with more frequent fluctuations in bandwidth will likely induce additional remapping opera-
tions, which may reduce the effectiveness of this approach. Similar to results presented earlier in
this section, the offline approach does not require any additional CPU energy, while the online
approach with continuous sampling consumes almost 4% more CPU power, negating some of the
combined energy savings.

9 CONCLUSIONS AND FUTURE WORK

Memory efficiency has become a very important factor for a wide range of computing domains. We
contend that power and performance efficiency cannot be achieved by either the operating system
(OS) or the architecture acting alone, but needs guidance from the application and communication
with the OS and hardware to ideally allocate and recycle physical memory. In this work, we design
the first application-level framework that automatically collects information about data object
usage patterns to steer low-level memory management. Our cross-layer approach integrates the
HotSpot VM and a custom Linux kernel to automatically provide efficient distribution of memory
resources for a wide range of managed language applications.
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While this work primarily focuses on the impact and effectiveness of cross-layer data man-
agement on systems with uniform access, there is greater potential for this approach on NUMA
systems with larger and more complex memory architectures. In the future, we plan to evaluate
this approach with realistic applications in a NUMA environment with hundreds or thousands of
GBs of DRAM, and explore the potential challenges and energy savings. Another potential appli-
cation is for emerging hybrid memory systems, such as those that package conventional DRAM
with high-performance “on-chip” memories (Sodani 2015) and/or durable in-memory storage
(Intel 2016). Implementing cross-layer management on such heterogeneous memories will allow
applications to automatically adapt to the underlying hardware, potentially exposing powerful
new efficiencies. Overall, our cross-layer framework shows great promise for enabling existing
applications to use memory resources more efficiently, without requiring any source code modifi-
cations or recompilations.
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