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Abstract. We explore the question of determining the source language
of program binaries. Programs compiled from different source languages
are susceptible to different classes of software attacks. Therefore, know-
ing the source language can help the end-users assess the security risk
of the binary software and allow human experts and automated binary
analysis tools focus their efforts to adequately protect the software from
the appropriate classes of attacks. Previous works in the related area of
program provenance use complex analysis over the binary code to de-
termine the compiler and flags used to generate the binary, but do not
attempt to identify the source language of the binary. In this work we
develop a simple approach that only uses the strings exposed by the
binary to reliably determine the source language without requiring anal-
ysis of the underlying binary code, even when the binary is stripped. Our
technique employs different machine-learning based classifiers over this
simple program meta-data to accurately determine the source language
over a large real-world benchmark set and 6 programming languages. We
find that our simple approach can achieve an accuracy of over 98% to
determine the source language over a large real-world benchmark set in
all stripped and unstripped binary configurations.
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1 Introduction

Different high-level programming languages have differing properties, strengths
and weaknesses with regards to security, robustness, resilience, and performance
of the resulting binary software. Binaries from different source languages are
susceptible to distinct classes of security vulnerabilities and exploits. Therefore,
knowledge of the source language can provide much useful information to the
customers and end-users of binary software. This knowledge can also inform se-
curity experts and automated binary analysis tools on how to best audit, protect
and harden the binary against potential security relevant bugs and attacks.

Yet, to our knowledge, there is no current approach that attempts to deter-
mine the source language of the binary. Related techniques have been developed
that can identify the compiler suite used to build the binary program. These
techniques may use customized signature files [16] or employ complex analysis
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over the binary code [27] to determine the source compiler. Techniques employ-
ing signatures need a specific code pattern for each compiler. Many compiler
frameworks, including GCC [15] and LLVM [29], provide frontends for multiple
source languages and it is unclear if techniques to identify the source compiler
can be directly used to also determine the source language.

In this work we explore this important issue of identifying the source language
for software binaries. We found that a simple approach that only uses easily
extracted binary meta-data and does not require complex analysis of the binary
code to search for patterns is sufficient in most cases to identify the source
language.

Many programs have external dependencies on library functions that are
resolved at run-time. The binary needs to hold this information for the runtime
system. This information along with other language and compiler specific meta-
data is encoded as strings in the binary, and is present even when the binary is
stripped of all symbol information. Simple OS tools can extract this information
from the binary. Our technique uses these extracted string identifiers (using the
Linux ‘strings’ tool) and encodes the relevant information as a vector. This vector
is then fed into machine-learning (ML) based classification algorithms.

We use three ML classification algorithms: Multinomial Naive Bayes, Ran-
dom Forest Classifier, and the Bernoulli Classifier for this work. Our experiments
use hundreds of open-source binaries generated from six source languages and
multiple compilers. We experimented with binaries generated with embedded
symbol information and those that were stripped of all (unneeded) symbol and
metadata information. We found that the best ML models can identify the source
language of the binary with an accuracy of over 98% in most cases.

Thus, our objective in this work is to explore and develop techniques to
identify the source language of any given binary software. We find that simple
ML based techniques that only study the binary meta-data, and do not analyze
the binary code, are sufficient in most cases to identify the source language, even
for stripped binaries. We make the following contributions in this work.

1. To our knowledge, this is the first work that attempts to develop generalized
techniques to reliably recover the source language information from binaries.

2. We develop several machine-learning based models to resolve this challenge
and evaluate and compare their performance.

3. We compile a comprehensive benchmark set comprising hundreds of open-
source programs over six source languages (C, C++, Fortran, Swift, Rust
and Go) and multiple compilers for this work.

The rest of this paper is organized as follows. We present background on
the security properties of our selected languages in Section 2. We describe our
approach using ML based classification models to determine source language
information from binaries in Section 3. We describe our experimental setup,
benchmarks, experiments and results in Section 4. We present related work in
Section 5. Finally conclusions and future work are presented in Section 6.
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2 Background

Our primary goal in this work is to develop techniques to identify the source
language of binary software. Several academic [3] and industry [34,36,22] stud-
ies report that binaries generated from different programming languages expose
the end-users to different kinds and levels of security threats. For instance, one
study found that programs written in the ‘C’ language account for the highest
fraction of open-source security vulnerabilities [36]. Another study reports that
while CWE-400 1, CWE-125 2, and CWE-20 3 are the most common errors in
C programs, CWE-119 4 dominates C++ program errors, while CWE-400 is
most common in Go programs. We also know that while buffer overflow errors
(CWE-119) are common in C/C++ programs [36], these errors are not possible
in memory-safe languages, like Rust and Go. Thus, knowledge of the source lan-
guage can prove immensely useful for manual and automated efforts to develop
the most effective strategy to secure binary software.

For this work we experiment with six popular compiled programming lan-
guage binaries according to the TIOBE language index 5 that also have a large
open-source code base. The compiled languages we selected (along with their
most recent TIOBE index) are: C (ranked #2), C++ (ranked #4), Go (ranked
#13), Swift (ranked #14), Rust (ranked #28), and Fortran (ranked #31). All
these six are compiled languages that generate native binary executables. In
the remainder of this section we describe important security relevant properties
about these six languages used in this work.

C : ‘C’ is a low level programming language popular in computer and em-
bedded systems applications. It can achieve high performance and is widely
supported. However, memory unsafe languages, like C and C++, score poorly
for security and safety [13]. These languages do not natively guaranty memory or
type safety. Memory management is the responsibility of the programmer [23].
It does not support exceptions so programs may unintentionally ignore critical
errors [37] (chapter 11 Error Handling). Secure libraries have been recently made
available that can, for instance, replace vulnerable functions like strcpy with
more secure variants, like strncpy and strcpy_s.

C++ : C++ is an object oriented extension to the ‘C’ language that sup-
ports encapsulation, abstraction, inheritance and polymorphism. C++ suffers
from many of the same security properties and challenges as C. C++ too does
not impose memory safety and there is no garbage collector in typical imple-
mentations [11]. C++ is also not type safe, and the misuse of casts and unions
can lead to type and memory violations. Safer APIs are also available for use in
C++ programs.

Fortran : FORTRAN is popular in the domain of high-performance scien-
tific and numeric computing. Buffer overflows are relatively harder to execute as
1 https://cwe.mitre.org/data/definitions/400.html
2 https://cwe.mitre.org/data/definitions/125.html
3 https://cwe.mitre.org/data/definitions/20.html
4 https://cwe.mitre.org/data/definitions/119.html
5 https://www.tiobe.com/tiobe-index/
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Source Memory Type Thread Availability Overall
Language Safety Safety Safety safe APIs Security
C X X Y Y Low
C++ X X Y Y Low
Fortran Some X Y Y Medium
Swift Some Some Y Y Medium
Go Y Y Y Y High
Rust Y Y Y Y High

Table 1: Summary and comparison of the safety properties of the programming
languages employed in this work

strings have defined length and arrays statically specify upper and lower bounds
that a compiler can check for errors. However, Fortran cannot resolve invalid
memory access at run-time. There is greater type safety in Fortran, and is typi-
cally considered safer as compared to C/C++ [19].

Swift : Swift is a general-purpose, powerful and popular compiled language
developed by Apple Inc. as a replacement to ‘Objective-C’. When ‘pure’ Swift
is used, overflows and underflows cause a runtime trap. But interaction of Swift
code with C-style pointers is permitted, and could be unsafe. Swift provides more
secure library functions. Memory management is automatic. While there is no
garbage collection, ARC (or Automatic Reference Counting) is used to manage
memory. Swift is generally safe, but the possibility of interaction with C code
can introduce hazards. Swift also suffers from insecure cryptography.

Go : Go is a compiled programming language designed at Google. This is a
fairly new language that is gaining popularity in recent years. ‘Go’ is memory and
type-safe. Bounds checking is automatic and pointer arithmetic is not permitted.
Memory safety is ensured by a built-in garbage collector. However, Go programs
can have data races that could be exploited to cause memory corruption. Safe
API functions are available. The Go language aims to achieve both program
safety and high performance.

Rust : Rust is a relatively new, open-source, statically typed programming
language designed for performance and safety. Both type safety and memory
management are supported by the language. Rust can guarantee memory safety
by using a borrow checker to validate references. Rust is also a type safe language.
It enforces thread safety of all code and data. Rust does not use null, so accidental
null dereference errors are avoided. Safe APIs are available for programming in
Rust. A Rust program is safe against data races, unlike Go.

Table 1 summarizes the safety properties of the six chosen programming lan-
guages. Among the programming languages chosen for this study, we categorize
C and C++ as low-security languages, Fortran and Swift as moderately secure,
and the newer Go and Rust as highly secure languages.

3 Source language classification model

In this section we explain our machine-learning (ML) based approach for de-
termining the source programming language for a given binary executable. We
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Fig. 1: Phases in our algorithm to identify the source language for binaries

can organize our approach in the following steps or phases: (a) Collect a large
dataset of binary executables for each chosen source language, (b) Extract meta-
data information from the binary using the available strings information, select
and extract relevant features, and (c) Develop and explore machine-learning
based classification algorithms for experimentation. These steps are illustrated
in Figure 1 and explained in more detail in the remainder of this section.

3.1 Gathering Binary Executables

We collect a large and diverse benchmark set for experimentation. We use the
open-source project repository, Github to find representative programs for each
of our six selected programming languages. We compile a comprehensive set of
120 benchmark programs for each of these 6 languages for experimentation.

All the open-source projects used in this work were distributed as source-
code files, with scripts to build them into binary executables included in many
cases. The choice of the compilation framework can not only affect the generated
binary code, but also the binary meta-data. To study the effect of the compilation
framework on the ability of ML models to correctly identify the source language,
we employ multiple compilers for our C, C++ and Fortran language programs.
For C and C++ we use three compiler frameworks: the GNU Compiler, Clang
and ICC (Intel C++ Compiler) compilation frameworks. We use two compilers
for building Fortran binaries: GNU Fortran and Intel Fortran compilers.

The older C, C++, and Fortran programming languages have a highly di-
verse compiler ecosystem. In contrast, a single reference compiler is usually used
to build programs written in the three newer programming languages in our
set, Swift, Go and Rust. We use the reference ‘Swift’ [30] compiler, the default
‘Go’ [9,14] compiler, and the standard ‘rustc’ [28] compiler for building the Swift,
Go and Rust programs, respectively. In the future, we will also experiment with
alternative compiler frameworks for these languages.

Thus, in this phase, we gathered all the benchmark programs, generated or
updated the build scripts, installed the compiler frameworks, and then built the
executables for each configuration. The binaries were built with compiler opti-
mizations switched on and the binaries were optionally stripped of all symbol
information. All our programs were built for the x86-64 instruction set architec-
ture running the Ubuntu Linux version 20.04 LTS.
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3.2 Extract Meta-Data Information

We use the meta-data information extracted by the Unix strings tools from
each (stripped) binary program. The strings tool outputs all printable character
sequences in the binary that are at least 4 characters long (and are followed by
an unprintable character). We process the raw strings output to remove strings
that are not directly useful for our task.

In this processing step, we manually identify ‘string’ sequences that seem
useful to identify the source language. For instance, strings describing the com-
piler, libraries (like libstdc++.so, GLIBC, etc.), number of libraries were deemed
useful. We use a simple regular expression combined with string manipulation
to process the raw strings data. This extracted information is then represented
in a vector form to input to our machine learning models.

3.3 Machine-learning Based Classification

There are multiple machine-learning based classification models that could be
used for this work [7]. We arbitrarily choose the following 3 popular classification
algorithms for this study. The first, called Multinomial Naive Bayes classifier, is
suitable for classification with discrete features of strings. Since our feature set
includes the frequency of certain strings that appear in the binary, this classi-
fication scheme seems useful. The second model we use is called the Random
Forest classifier. This model uses several decision tree classifiers on various sub-
samples of the datasets and improves its accuracy by using averaging and control
over-fitting. The third classification model we use is the popular Bernoulli model.

Each of these ML models need to be trained first to build the classifier models,
which can then be tested for accuracy in detecting the source language of the
binary. For our experiments in this work, we select 20% of our feature sets as
test cases, and use the remaining 80% of the sets to train the model.

4 Experimental Results

In this section we present results of our experiments that use the trained ML
models to identify the source language of binary executables. We configure three
different datasets. The first dataset uses binaries that are unstripped. Unstripped
binaries may embed more useful ‘strings’ information. Our second dataset uses
only the stripped binaries. Finally, a more diverse third dataset combines binaries
from both the stripped and unstripped categories in equal proportions.

As mentioned earlier, multiple compilers are used to build binaries for the C,
C++ and Fortran programs. In these cases, we include an equal number of pro-
grams from each compiler in our dataset for that source language. For instance,
the dataset for the C source language contains an equal number (one-third) of
binaries built by the GNU GCC, Intel ICC and Clang compiler frameworks. Each
compiler may use different libraries and embed different metadata strings in the
binary. A more diverse dataset should improve the robustness of the machine
learning models when encountering the test binaries.
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Fig. 2: Accuracy of our ML models on different datasets

Figure 2 shows the overall results of our experiments with the 3 selected clas-
sification models. Thus, we find that the best ML models achieve an accuracy of
up to 99.3% when identifying the source language using the unstripped dataset.
The best models achieve an overall accuracy of 98.61% when using the stripped
and diverse datasets.

The results show that the Multinomial Naive Bayes algorithm achieves the
poorest accuracy among all our models. While the other two ML models perform
better, the Random Forest classifier achieves accuracy that is marginally higher
than the Bernoulli classifier in the stripped and unstripped configurations.

Figures 3, 4, and 5 show further details about cases when the ML models fail
to detect the correct source language for a binary in the unstripped, stripped and
diverse experimental configurations, respectively. These figures employ a matrix
representation, where the the X- and Y-axis refer to the programming languages
C, C++, Go, Rust, Fortran and Swift, respectively.

The numerals along the diagonal show the number of programs that are
correctly identified, in each case. Thus, Figure 3(a) shows that there are 28 C
binaries, 22 C++ binaries, 22 Go binaries, 21 Rust binaries, 25 Fortran binaries,
and 19 Swift binaries that are correctly identified by the Multinomial Naive
Bayes algorithm in the unstripped benchmark configuration. Likewise, there are
4 C++ binaries that are misclassified as C binaries, and 2 C++ binaries that
are misclassified as Fortran binaries in this same configuration.

Overall, we find that most of the misclassifications occur due to C++ binaries
identified as C programs. Also, as expected, the unstripped and diverse datasets
achieve accurate classification due to the availability of more useful meta-data
information. However, it was surprising to find that the models achieve high
accuracy even in the stripped configuration. Thus, our findings indicate that
distinctive features are retained in the binary meta-data even after it is stripped
of all symbol information (that is not needed at run-time), which allows these
ML models to accurately detect the source language even for stripped binaries.
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(a) Multinomial (b) Random Forest (c) Bernoulli

Fig. 3: In an Unstrippped dataset

(a) Multinomial (b) Random Forest (c) Bernoulli

Fig. 4: In a strippped dataset

(a) Multinomial (b) Random Forest (c) Bernoulli

Fig. 5: In a Diverse dataset

5 Related Works

In this section we discuss prominent research in areas that are related to this
work. While there is limited research to identify the source programming lan-
guage from a given binary, there is much prior research work in the related areas
of compiler provenance and code authorship identification.

Research in program or compiler provenance attempts to identify the com-
piler tool-chain and/or optimization levels used to generate a binary program.
These methods take a signature-matching or a machine-learning based approach.
Signature matching methods search the binary against a set of code signatures
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manually generated by experts to identify the compiler used. PEiD [4] and IDA
Pro [17] are examples of tools that use this signature-based method. This method
relies on expert knowledge and can be easily confused by small differences in
signatures. The other strategy employs ML based models to capture compiler-
specific patterns from the binary code [27,6,24,33,1]. These patterns include in-
struction sequences or idioms [27], instruction type and frequency [5], and sub-
graphs from the program’s CFG [25]. All these approaches require looking and
deciphering properties about the binary code. Our work has a different goal and
does not rely on parsing the binary code.

The topic of identifying the author of a given binary software is also related to
our work [20,26,21,1,2]. This problem, called code authorship attribution, aims
to categorize the authors of malware. This categorization along with information
about the tools and techniques used by a set of malware that is written by the
same author can help determine how the malware can spread and evolve and
help in cyber-crime investigations. Most of these approaches also employ ML
based methods to model various aspects of the binary code and control-flow to
accurately predict the binary code authors or if different software are written by
the same author.

Machine-learning based approaches are also popular is other binary analysis
problems, including the detection of a virus in binary software [31], code clone
detection to find the same source code in binaries compiled for different architec-
tures [39], detection of malicious software [8,10,18], function recognition [35] and
similarity [12] in binaries, and many others [38]. We too use a machine-learning
based approach for this work.

Finally, Tian et al. proposed a classification system of identifying trojan and
virus families based on printable strings [32]. We too employ the strings available
in program binaries in this work to identify the source language of binaries.

6 Conclusions and Future Work

In this paper we explore the issue of identifying the source programming language
for any given binary software. We build an experimental framework that we
populate with binaries from 6 different source languages and compiled using
multiple different compilers. We found that our simple machine-learning based
approach that only considers the strings exposed by the binary and does not
analyze the binary code is sufficient to accurately identify the source language,
even for binaries that are optimized and stripped of all symbol information.

In the future, we will study if this approach continues to work with more
programming languages. We will also experiment with binaries that may contain
complex code that is obfuscated, hand-written and constructed using multiple
different languages. Finally, we will explore the performance and accuracy of
other ML models, including ensemble ML to further improve results.
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