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Abstract. Our goal in this work is to develop a mechanism to determine
the presence of targeted compiler-based or automated rules-based run-
time security checks in any given binary. Our generalized approach relies
on several key insights. First, instructions added by automated checks
likely follow just one or only a few fixed patterns or templates at every
insertion point. Second, any security check will guard some interesting or
vulnerable program structure, like return addresses, indirect jumps/calls,
etc., and the placement of the security check will inform about the na-
ture of the check. By contrast, we would not expect ordinary user code
to follow any single pattern at every such interesting program location.
Our technique to detect automated security checks in binary code does
not rely on known code signatures that can change depending on the
language, the compiler, and the security check. We implement and eval-
uate our technique, and present our results, observations, and challenges
in this work.

Keywords: Program binary · Security check · Automated security as-
sessment.

1 Introduction

Most software available to ordinary customers are shipped without any quality
control indicators or metrics regarding the security and reliability properties
of that software. Likewise, software are often shipped and distributed in their
binary form without access to the original source code, which makes it especially
challenging for customers to independently verify their security properties. End-
users have limited means and few accessible tools to validate binary software
security. This state of security validation for software customers persists even
as the number of reported vulnerabilities have been increasing in number and
severity for many years [11] and software vulnerabilities have been found to cause
many disastrous real-world attacks [10,37].

To mitigate this concerning state of affairs for deployed software, researchers
have developed techniques that identify and trigger potential vulnerabilities in
software binaries without availability of source code or debug symbol informa-
tion [26,6,4]. However, even when applied, these tools may not find all the vul-
nerabilities present in that software. Attackers can exploit these software vul-
nerabilities to compromise user systems and expose sensitive customer data.
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Unfortunately, there is considerably little prior work on automatically iden-
tifying provisions employed by the software developer and present in the binary
software to detect and prevent such attacks even when software vulnerabilities
are exploited. Many such provisions to thwart software attacks are available to
developers, including techniques to detect and prevent all memory attacks [21],
that use stack canaries to detect some buffer overflows [7], and to prevent control-
flow attacks [1], etc. To be most effective, rather than being applied manually
and in an ad-hoc manner by the software developer, such security techniques
must be applied automatically and systematically by a tool like the compiler
during the software build process. The knowledge that the given software is pro-
tected from attacks, even in the presence of software bugs, can relieve customers
and increase their confidence and comfort to use the software.

In this work we explore and develop a generalized technique to identify secu-
rity checks inserted by compilers and other automated tools in binary software.
Our techniques do not depend on knowledge of the source programming lan-
guage, or the compiler used to insert the check, or (the signature of) the specific
security check implemented. Rather, our techniques to detect security checks in
binaries employ insights that we expect (and aim to verify in this work) are
typical to most such checks that are inserted by automated tools, like compilers.
Our experiments in this paper focus on memory-related attacks and vulnerabil-
ities, which are dominant is binary code built from memory unsafe languages,
like C/C++ [32].

Our approach employs the following unique insights to detect security checks
in binaries. We hypothesize that security checks applied by automated tools will
be inserted at code sites just before the interesting or vulnerable code construct
they are designed to protect, like return addresses, indirect calls/jumps, and
array/buffer references. We also reason that the code inserted by any specific
automated security check will display a similar instruction pattern or a few sets
of patterns across its multiple deployment code sites. For the class of memory-
related attacks we study in this work, we also speculate that the security checks
will validate the vulnerable memory address that must be protected. Finally,
we hypothesize that, by contrast, code that is built without the security check
will not typically contain any uniform code pattern across the multiple potential
deployment code sites in the binary.

Our novel technique then uses these insights to identify compiler-inserted
security checks in any given arbitrary binary software by following these gen-
eral steps: (a) employ a reverse engineering tool (Ghidra [22], in this work)
to detect the potential deployment sites in the given binary (also called inter-
esting instructions or constructs in this work) for any specific security check,
(b) fetch and dump disassembled code blocks around the interesting program
points, (c) process the dumped instruction traces to normalize constants, regis-
ter numbers, labels, etc., and (d) validate and find common instruction patterns
across collected traces. Our technique uses the presence of common instruction
sequences/patterns across traces to deduce the likelihood of compiler checks to
protect against attacks related to that code construct.
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Thus, our primary contribution in this work is the conception, development,
and detailed assessment of a novel and all-inclusive technique to determine the
presence of security checks inserted by automatic tools in binary software. Our
work has the potential to benefit the customers and end-users of software that
can now independently verify certain security aspects of the binary program
without relying on information (that is mostly not) provided by the software
developer.

The remainder of this paper is organized as follows. We describe background
information and related works in Section 2. We present our experimental and
benchmark configuration in Section 3. We explain the insights for this work in
Section 4. We describe our technique in Section 5. We present our experimental
results and observations in Section 6. Finally, we discuss avenues for future work
and state our conclusions in Sections 7 and 8, respectively.

2 Background and Related Works

Code bugs and missing safety oversight for vulnerable code constructs are wide-
spread [23], especially in software built using memory and type unsafe languages,
like C/C++. Memory corruption errors have consistently ranked in the top
three most dangerous software weaknesses [9]. Memory bugs can be exploited
to alter the program behavior and take over program control [32], and launch
many critical software attacks [36,8]. While memory-safe language alternatives
are available, C/C++ remain popular 1 due to the large amount of existing legacy
code, and low-level features of these languages that are desired by performance
and memory critical systems.

Modern compilers provide a number of security checks to protect software
and end-users from attacks that target such code vulnerabilities. Many checks are
applied completely statically or at compile-time. For example, most compilers
use warnings to indicate some potential code bugs to developers. Likewise, static
analyzers can also provide algorithms to perform deeper syntactic and semantic
analysis of the code to find more complex coding bugs without running the
program 2. By contrast, some security checks require run-time support and add
instrumentation code in the binary to detect problems during execution. Such
security checks are called run-time checks. In this work we focus on run-time
checks that may be inserted by compile-time tools in the binary object files or
executables.

For ordinary users, it is typically up to the software developers to enable
(static or run-time) security checks for their software. Moreover, in most cases
the software companies do not indicate whether their products were built with
security checks enabled. There is also currently no way (to our knowledge) for
end-users to independently determine or verify the presence of security measures
in the software they own or use. Knowing this information will be useful for end-
users to select the appropriate software product and use it more confidently.
1 https://www.tiobe.com/tiobe-index/
2 https://clang-analyzer.llvm.org/
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To our knowledge, this is first work that aims to develop an automated
algorithm to identify the presence of any general run-time security check in the
distributed binary software. Related to our present work is prior research in
binary analysis methods to address security issues, including code vulnerability
detection [26,4], malware identification [35,2], and code similarity analysis.

Vulnerability detection attempts to find exploitable bugs in the binary us-
ing static binary analysis [12,14], symbolic execution [5,6], or run-time analy-
sis [27,31] Detecting and eliminating vulnerable code from binaries will deny
attackers the opportunities to compromise software, and thus protect end-user
systems and data. In this respect, our work shares a similar goal with these ap-
proaches. However, our directions differ considerably. Our work is based on the
assumption that vulnerability detection systems cannot detect all vulnerabilities
in the binary. Indeed, none of the existing approaches claim to find all code vul-
nerabilities. Therefore, security checks will remain relevant, and their presence
in binaries can provide end-users the assurance that their system and data will
still be protected if any (remaining) vulnerabilities are exploited.

Common malware detection software, including virus scanners [3,33], employ
signature based methods that identify unique strings or byte patterns in the
binary code [30,15]. Signature based methods cannot protect against advanced
malware that employ obfuscation, or polymorphic and metamorphic malware
variants that can change their code, signatures, or other identifiable patterns to
evade detection [25]. Signature based methods to detect the presence of a few
known security checks in binary programs have also been developed [19], and
suffer from similar issues regarding generality. To avoid a similar limitation, we
do not employ signature-based methods in this work. Also different from our
work, the malware detection methods rely on prior knowledge that the analyzed
software is malicious and the techniques need to detect patterns that the malware
is specifically attempting to hide.

Somewhat related to our current work is research in code similarity analysis
that attempts to determine if distinct code regions or software are derived from
the same code base [18,12,24,13]. However, research in code similarity analysis
needs to address a vastly different set of challenges to identify similar codes when
their representations are expected to be significantly different due to variations
in, for example, hardware architectures and compiler configurations. Instead, our
goal is to identify security checks inserted by automated tools that we expect
will exhibit similar code patterns.

3 Evaluation Framework

In this section we describe our experimental configuration and the benchmarks
used for this work. To evaluate our hypothesis and approach, we design a con-
trolled experiment by selecting a fixed set of compiler inserted security checks
in the Clang/LLVM tool-chain [28] that we can explicitly enable or disable. The
first column in Table 1 lists the three security checks that we use for our exper-
iments in this work. These are: (a) the stack canary check, Stackguard [20], (b)
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the Control Flow Integrity (CFI) protection [34], and (c) a fast memory error
detector, AddressSanitizer (Adsan) [29]. The final two columns in Figure 1 show
the Clang/LLVM flags we use to explicitly enable or disable the respective secu-
rity check. Additionally, all benchmarks were compiled with optimizations (-O2)
ON.

Sec. Check Enable Flag Disable Flag
Stackguard -fstack-protector-all -fno-stack-protector
CFI -flto -fsanitize=cfi fvisibility=default -flto
Adsan -fsanitize=address -fno-omit-frame-pointer -fno-omit-frame-pointer

Table 1: Clang/LLVM security checks and flags to enable/disable each check

We employ twelve C/C++ programs from the SPEC cpu2006 benchmark
suite for experimentation [17]. Binaries are generated for the x86-64-Linux plat-
form. We expect our observations from this work to extend generally to other
compilers, programs, and platforms.

Static analysis on the binary executables is conducted by extending the
Ghidra reverse engineering framework [22]. Scripts to extend Ghidra’s function-
ality are written in Python.

4 Insight

Code to check for program safety and security conditions may be added by
the human developers or by automated tools, like the compiler. Our approach
to detect security checks in binary code is guided by a few key principles and
insights. We hypothesize that security checks inserted by automated algorithms
follow a small number of well-defined rules with regards to when and where they
are inserted and the actual instructions used at the instrumentation points, which
can enable us to detect their presence in binaries. Firstly, security checks will be
placed close to the actual code construct that is being protected. For example,
checks to detect memory-related errors are likely to be placed just before the
code that references the vulnerable memory address. Conversely, the location of
the security check code can reveal the purpose of the security check. Secondly,
the inserted security check code will follow a single pattern or one from a small
number of code templates/patterns. Thirdly, we expect the inserted security
check code to perform some operation on the protected memory address and/or
test it for correctness. Finally, the inserted code will likely accomplish a task
that is orthogonal or different than the primary program logic.

To verify these hypotheses we first conducted a small manual study with a
few security checks inserted by standard C/C++ compilers, like GNU GCC [16]
and LLVM [28], to prevent common memory corruption attacks. Figure 1 shows
(portions of) the security check code inserted by three different protection mech-
anisms in the Clang/LLVM compiler. Figure 1(a) shows the pattern for the se-
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mov %rcx, chk_addr_imm

cmp %rax, %rcx

...

L1:

call %rax

jz L1

ud2

mov %rax, (ind_call_addr)

mov %rbx, (ind_call_addr)

mov %rax, chk_addr_imm

mov %rcx, %rbx

sub %rcx, %rax

mov %rax, %rcx

shr %rax, 0x3

shl %rcx, 0x3d

or  %rax, %rcx

cmp %rax, const_imm

jbe L1

UD2

...

L1:

call %rbx

(c) CFI check pattern − 2

mov %rax, %rdi

shr %rax, 0x3

mov %al, (%rax+const)

test %al, %al

jnz L2

L1:

...

L2:

mov %ecx, %edi

and %cl, 0x7

add %cl, 0x3

cmp %cl, %al

jl  L1

call <asan_chk_fail>

...

reference to (%rdi)

(d) AddressSanitizer check pattern

...

L1:

jnz L1

mov %rax, (gbl_can_addr)

mov %rax, (%rax)

cmp %rax, (%rbp − lcl_can_off)

Call <stack_chk_fail>

(a) Stackguard check pattern

(b) CFI check pattern − 1

Fig. 1: Portions of security check code inserted by different security mechanisms
built into the Clang/LLVM compiler (determined by manual code analysis)

curity check code inserted by Clang’s stack canary check [20], Figure 1(b) and
Figure 1(c) show two code patterns used by the control-flow integrity protec-
tion [34], and Figure 1(d) shows one of the instruction patterns used by the
AddressSanitizer memory error detector [29].

We find that the instrumentation codes added by these three security tech-
niques largely support our key insights that we presented earlier. By design, we
do not attempt to decipher the logic of the checks, but only look for common in-
struction patterns. We observe specific instructions added by each security check
immediately prior to the protected memory address dereference. For instance,
with Stackguard, the instrumentation code is inserted in the (function prologue
and) epilogue before the return instruction. With CFI, the security check is in-
serted before the indirect branch and indirect call instructions. All the security
check codes we studied also perform a compare-branch to either the original
(protected) program code on success, or the exception checking code on failure.

This manual study also revealed several factors the can complicate auto-
mated analysis to detect security checks patterns in binaries. Even when the
instruction patterns are consistent, register and constant operands vary from
one instance of the check to another. The security check is not added at ev-
ery point of interest, but only when deemed necessary by the compiler to limit
run-time overhead. Many security checks, including CFI and AddressSanitizer,
may introduce multiple code patterns for different cases. Compiler optimizations
may intersperse the instruction pattern with (unrelated) program instructions
and make them harder to detect. We employ these observations to develop our
algorithm to automatically detect security check code patterns in binaries.

We only perform this manual identification of security check pat-
terns to confirm our hypothesis. Our technique described and evalu-
ated in the remainder of the paper does not rely on any manual work,
and attempts to automatically identify all targeted security checks
and corresponding instruction patterns, when present in the binary.
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Fig. 2: Approach to detect compiler-inserted security checks in binary code

Execute exception
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Fig. 3: Typical code structure when a security check is inserted before the inter-
esting code construct in binaries

5 Technique to Detect Security Checks in Binaries

In this section we explain our approach to automatically detect compiler-inserted
security checks in the binary code. A signature based method that manually
collects and stores each security check pattern, and later attempts to detect
the signatures in a given binary to identify enabled security checks is plausible.
However, this method is tedious and intrinsically limited to only the collected
instruction signatures and harder to generalize to different languages, compil-
ers, and checks. We therefore propose a method to automatically determine the
security checks without any a prior knowledge of known signature patterns.

Figure 2 illustrates our automatic technique to detect compiler-inserted se-
curity checks in binary object/executable files. We employ the observations and
insights explained in the previous section to guide our approach. We explain
each step of our technique in the remainder of this section.

5.1 Generate Interesting Code Snippets

The first step of our technique uses Ghidra to statically analyze the given binary
and locate the memory operands, or code constructs, or instructions of inter-
est. For the security checks against memory corruption attacks we selected for
this work, our Ghidra scripts find (a) the return instruction for the (stackguard)
checks to prevent control-flow hijacking by overflowing the ‘return’ address, (b)
the indirect branch/call instruction for the (CFI ) checks related to confirming
control-flow integrity, and (c) any memory address dereference for the (Address-
Sanitizer) checks attempting to detect other memory errors, like out-of-bound
memory access.

We hypothesize that the security check instructions are typically placed just
before the interesting code and contain a compare-branch construct. The typical
code structure is illustrated in Figure 3, where the nodes are basic blocks and
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Algorithm 1: Validation of the code snippet
Input: Vulnerable memory address
Input: Original block containing the interesting instruction, srcBlk

1 predBlk ← getPredecessorBlock(srcBlk) ;
2 if predBlk == Null then return False ;
3 NormInsList ← Concatenate(predBlk, srcBlk) ;
4 InsList ← Reverse(NormInsList) ;
5 intOperList ← Vulnerable memory address ;
6 validated ← False ;
7 foreach ins ∈ InsList do
8 if ins is Compare/test instruction then
9 cmpOperList ← getOperands(ins) ;

10 if cmpOperList contains operand from intOperList then
11 validated ← True ;
12 return ;
13 end
14 break ;
15 end
16 else
17 dstOper ← getDestinationOperands(ins) ;
18 srcOper ← getSourceOperands(ins) ;
19 if intOperList contains operand from dstOper then
20 delete(intOperList, dstOper) ;
21 append(intOperList, srcOper) ;
22 end
23 end
24 end
25 foreach remaining ins ∈ InsList do
26 dstOper ← getDestinationOperands(ins) ;
27 srcOper ← getSourceOperands(ins) ;
28 if cmpOperList contains dstOper then
29 if intOperList contains any srcOper then
30 validated ← True ;
31 return ;
32 end
33 delete(cmpOperList, dstOper) ;
34 append(cmpOperList, srcOper) ;
35 end
36 end
37 return False ;

edges represent the control-flow between blocks. The instruction that is high-
lighted in red indicates the interesting code construct that is detected by our
Ghidra based scripts for each security check. When an interesting code construct
is located in the binary, we suppose the security check code to be present (at the
bottom) of the predecessor block, and the exception code that is reached when
the security check condition fails to be placed in the other successor block. If
the security check is successful, the original program instructions are executed,
but if the check fails, then the exception condition is reached.

Then, our Ghidra script concatenates the instructions in the predecessor and
‘other successor’ blocks to form the interesting code snippet for that instance of
the interesting code construct. We refer to them as ‘instances’. Similarly, our
analysis will find and output all the interesting code snippets in the binary for
further analysis.
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5.2 Normalize Interesting Code Snippets

Next, we generalize the instruction operands that can vary between the different
occurrences of the same security check. We call this process normalization of the
code snippets, and it is done to make it easier for automated algorithms to find
common patterns in the code snippets extracted in the previous step.

We experimented with different modes of aggressiveness in this phase. The
most aggressive mode eliminates all instruction operands and only keeps the op-
codes in the code snippets. We settled on a less aggressive mode that maintains
most of the operand context information to better balance the two objectives
of reducing false positive matches while still enabling detection of similar in-
struction patterns. We make the following changes to the instruction operands
during the normalization phase: (a) delete address offsets, (b) generalize all regis-
ter names, except the stack pointer (%rsp) and the base pointer (%rbp) registers
that are used to access local variables on the stack, (c) generalize the different
JUMP statements (like JNE, JZ, JGE, etc.), (d) remove most constants and im-
mediate operands, and (e) replace distinct label names with a constant string.

5.3 Validate Interesting Code Snippets

In our next optional step, we statically analyze the code snippet using another
key insight of this work. Specifically, we hypothesize that, for the memory cor-
ruption attacks selected in this work, the security check codes will perform some
computation on and/or comparison with the vulnerable memory address to con-
firm that it is not corrupted. We call this step the validation of the code snippet.
We can see from Figure 1 that this insight is true for all the security check mech-
anisms employed in this work. We expect a higher likelihood of validations when
the security check is enabled (in the compiler) compared to code snippets col-
lected from binaries with the security check flags disabled.

Algorithm 1 describes the high-level steps performed during the validation
process. The validation check is performed over all the code in the block con-
taining the interesting instruction and its predecessor block. The algorithm first
checks if the protected memory address or a value derived from it (dependent) is
used directly in a comparison statement. If not, then the algorithm checks if the
operands used in the comparison statement are derived from the protected mem-
ory address or its dependents. If true, then the algorithm declares the memory
address to be validated.

5.4 Recognize Common Instruction Patterns

After generating, normalizing and validating the code snippets, our next task
is to detect common instruction patterns over all snippets. We expect a single
or a small number of dominating instruction patterns when a security check is
enabled, and no single instruction pattern to dominate, otherwise. We experi-
mented with several different pattern matching algorithms to find one that best
differentiates the two categories of binaries. We describe two such algorithms in
this section.
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Algorithm 2: Pattern Recognition using String Compare
Input: Instances of Interesting Snippets
Input: Count of the instructions −→ N(1≤ N ≤ 10)

1 Let Id −→ Set of interesting snippets;
2 Let M −→ Set of instruction patterns of length N ;
3 Let Count −→ Set of count of matched patterns of length N ;
4 Let LeftOut −→ Set of instances containing the most matched instructions of length N ;
5 Let InsCount −→ Count of the total number of instances;
6 foreach n ∈ N (10 −→ 3) do
7 compare ← 0;
8 foreach i ∈ Id do
9 foreach j ∈ Id do

10 Mi ← last n instructions of i not in LeftOut;
11 if Last n instructions of i == Last n instructions of j then
12 counti ← counti + 1
13 end
14 end
15 end
16 ratio ← count[index(maximum(count))]/InsCount;
17 if ratio > compare then
18 Final ← M.index(maximum(count));
19 M.emptyList();
20 Count.emptyList();
21 n ← n-1;
22 compare ← ratio;
23 end
24 else
25 n ← 10;
26 LeftOut ← instances whose last n instructions are identical to final;
27 end
28 end

Pattern Matching Using Simple String Comparison
Algorithm 2 explains our first pattern matching algorithm. Each iteration of

this algorithm uses a simple string comparison over the last ‘N’ ((3 ≤ N ≥ 10)
instructions of all (unmatched) instances of interesting code snippets to find
the longest string (sequence of instructions) that has the highest number of
matches. The match ratio is computed for this string by dividing the number
of code snippets it matched by the total number of interesting code snippets.
Then, all the code snippets that contain this longest string are removed from
consideration, and the next iteration of this algorithm is performed to find the
next longest string (sequence of instructions) with the highest number of matches
among the remaining code snippets. This process is repeated until the algorithm
cannot find any string with at least two matches.

This algorithm is simple and fast, yet can automatically vary the pattern
length (‘N’) across its successive iterations to find successive longest strings of
matches. However, it may not work well when instruction patterns are hindered
by code reordering and other compiler optimizations. Next, we describe an al-
gorithm to overcome this limitation.

Using Longest Common Subsequence Algorithm
Our next approach uses the longest common subsequence (LCS) algorithm to

find potentially non-sequential common instruction patterns across code snip-
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Algorithm 3: Pattern Recognition using Longest Common subse-
quence

Input: Instances of Interesting Snippets

1 Let Id −→ Set of the last 15 instructions of each instance of interesting snippets;
2 Let LCS −→ Set of longest common subsequences between instance i and all the other

instances till n(i)≤ n(Id) , where n(X)−→ Count of instructions in X;
3 Let Y −→ Nested list of set of largest subsequences for each instance i;
4 Let Eqclasses −→ Final list of equivalence classes i;
5 foreach i ∈ Id do
6 foreach j ∈ Id do
7 LCS ← FindLongestCommonSubsequence(i,j);
8 end
9 Y ← FindSetOfLargestSubsequences(LCS);

10 end
11 foreach Ys ∈ Y do
12 Eqclasses ← FindEquivanceClasses(Ys)
13 end

14 FindEquivalenceClass(a)
15 currentString ← a;
16 foreach equalString ∈ Eqclasses do
17 if Levenshtein.ratio(currentString,equalString) ≤ 0.9 found FALSE then
18 Eqclasses ← currentString;
19 end
20 end
21 return eqclasses

pets. Algorithm 3 explains the main steps in this technique. The algorithm is
given the set of the last 15 instructions of all code snippets collected by Ghidra
for the targeted vulnerability protection (Id). Following our hypotheses for the
interesting snippets generation, the security check codes, if present, should be
observed at the end of the interesting code snippet.

The technique begins the first iteration by using the standard LCS algorithm
to compare the first code snippet (N = 0) with all other code snippets (1 ≤ N ≤
Id) to generate (N −1) LCS strings. It then finds the (set of) LCS string(s) with
the maximum length. There could be more than one longest distinct LCS string.
The first longest LCS string is put into a new equivalence class. Each successive
longest LCS string is compared with all pre-existing equivalence classes using the
Levenshtein’s distance formula. 3 If the Levenshtein distance ratio is greater than
0.9, then this longest LCS string is considered to be part of the same equivalence
class, and the hit-count of the equivalence class is incremented by one. If this
longest LCS string does not match any existing equivalence class, then a new
class for this LCS string is created.

Successive iterations of this algorithm repeat this process for all the other
code snippets in the set. Finally, for each equivalence class, we compute the match
ratio, which is its hit-count divided by the total hit-count over all equivalence

3 The Levenshtein distance is a string metric for measuring the difference between
two sequences. Levenshtein distance between two words is the minimum number of
single-character edits required to change one word into the other. An “edit” is defined
by either an insertion, a deletion, or a replacement of a character.
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Fig. 4: Results using the simple string comparison algorithm for Stackguard.

Fig. 5: Results using the simple string comparison algorithm for CFI.

classes for that benchmark. The set of equivalence classes is sorted using this
“match ratio” metric to output the set of dominating instruction patterns.

6 Experimental Results and Observations

In this section we present the results of experiments we conducted using the
framework, approach and benchmarks described earlier. First, we only present
the results with the two pattern matching algorithms in Sections 6.1 and 6.2,
respectively. Then, we discuss our overall observations in Section 6.3.

6.1 Results with the Simple String Comparison Algorithm

We first present results with our approach using the simple string comparison
algorithm for pattern matching. Figures 4 and 5 plot the sorted cumulative match
ratio for each benchmark with the Stackguard and CFI security check enabled,
respectively. In both these cases, our address validation check was very effective
at eliminating almost all code snippets for most benchmarks when the respective
security check was turned OFF. For the few code snippets that remained for some
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(a) AddressSanitizer ON (b) AddressSanitizer OFF

Fig. 6: Results using the simple string comparison algorithm for the AddressSan-
itizer security check enabled and disabled.

benchmarks after validation, there were no dominant code patterns detected.
Therefore, we do not plot the corresponding (blank) graphs with the Stackguard
and CFI checks turned OFF.

Also, for the CFI check in Figure 5, we only plot results for seven of the eleven
total benchmarks. The remaining 4 benchmarks generate very few code snippets
(typically, less than 5), almost none of which are validated. Wherever fewer code
constructs are generated, the curves stop after the few instances present. We
manually looked at these cases and found that the compiler did not apply the
CFI check for these cases even with the flag turned ON.

Figures 6(a) and 6(b) plot the sorted cumulative match ratio over the vali-
dated code snippets for AddressSanitizer with the check turned ON and OFF,
respectively. We note that we have currently implemented a simplistic Ghidra-
based binary analysis script for AddressSanitizer. Rather than only detecting the
potentially vulnerable memory dereferences (vectors and pointers), our script is
overly aggressive and currently detects all memory dereferences (even scalars) in
the binary as opportunities for protection. We then rely on the validation algo-
rithm to eliminate many of the spurious instances. Even then, we are left with
a significant number of code snippets to analyze even with the AddressSanitizer
security check turned OFF.

6.2 Results with the LCS Pattern Matching Algorithm

In this section we present the results of experiments that use the LCS algorithm
for pattern matching. Similar to the previous section, Figures 7 and 8 plot the
sorted cumulative match ratio for each benchmark with the Stackguard and CFI
security check enabled, respectively, and using the LCS algorithm. Likewise, Fig-
ures 9(a) and 9(b) plot the sorted cumulative match ratio over the validated code
snippets for AddressSanitizer with the check turned ON and OFF, respectively.

6.3 Observations

We can make a number of important observations from our experimental re-
sults. First, for the automated run-time security checks we study in this work,
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Fig. 7: Cumulative match ratio of top ten equi. classes with Stackguard ON

Fig. 8: Cumulative match ratio of the top ten equi. classes with CFI ON

the combination of the validation and pattern matching components of our tech-
nique can clearly indicate when and which security check is enabled or disabled.
We find that both our pattern matching algorithms obtain results that show a
starkly different trajectory of the graph for each benchmark when the respec-
tive security check is ON, as compared to when the check is OFF. Even so, the
LCS algorithm appears to be more adept at finding the common instruction
patterns. Thus, while both algorithms perform well for Stackguard (Figures 4
and 7), the LCS algorithm detects pattern matches more efficiently for the CFI
and AddressSanitizer checks (Figures 5 and 8, and Figures 6(a) and 9(a)).

However, the greater adeptness of LCS can also sometimes be a disadvantage.
Thus, we find that the LCS algorithm produces a few false positives in the
AddressSanitizer OFF case (Figure 9(b)) for bzip and povray). We analyzed the
bzip benchmark and found that there is indeed a high-frequency pattern that is
produced by a set of three frequently used macros. While compiler optimizations
sufficiently interleave this pattern with other instructions in several cases to hide
it from the simpler string comparison algorithm, the LCS algorithm finds it even
when the instructions in the pattern are not consecutive.
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(a) AddressSanitizer ON (b) AddressSanitizer OFF

Fig. 9: Cumulative match ratio of the top ten equivalence classes with the Ad-
dressSanitizer flags turned ON and OFF, respectively.

(a) Security check ON (b) Security check OFF

Fig. 10: Validation ratio of interesting code snippets when the respective security
check is either ON or OFF

Second, the validation algorithm can effectively weed out the spurious code
snippets. For stackguard and CFI OFF cases, the validation algorithm elimi-
nates most of the code snippets (that do not contain the check) from further
analysis. Figures 10(a) and (b) illustrate the validation ratio when each security
check is either ON or OFF, respectively. The validation ratio is computed by di-
viding the number of validated code snippets by the total number of interesting
code snippets generated by the Ghidra script for each security check. Assuming
that our hypothesis that a security check should test the protected/vulnerable
memory address is correct, a low validation ratio in the security check OFF case
correctly indicates that no code is inserted at interesting points in the binary.

Third, the validation algorithm is consistently low in the AddressSanitizer
ON case. This effect is due to the simplistic binary analysis (Ghidra) script
we developed for this check, as was mentioned earlier. Improving this script to
correctly locate only the vulnerable code locations is part of our future work.

Fourth, we find that the most common security patterns found by our algo-
rithms in the security check ON cases closely match the expected patterns from
the manual study in Section 4.

Fifth, we observed several cases where there are fewer interesting code con-
structs detected and interesting code snippets generated in the security check
OFF case, compared to when the security check is ON. This discrepancy hap-



16 Pramanick and Kulkarni

pens for two reasons. First, enabling the security check sometimes requires the
compiler/linker to create or link additional code and functions in the binary.
Our Ghidra script can then detect additional interesting code locations in the
binary generated with the security check ON. Second, in some cases, especially
when the security check is OFF, no interesting snippet may be generated at
an interesting code location, if the code layout does not match that illustrated
earlier in Figure 3.

7 Future Work

There are several avenues for future work. First, one limitation of our approach
that is based on finding common instruction patterns over multiple code snippets
is that a very small number of instances could generate results that produce
misleading conclusions. Our current approach benefits from having a sizeable
number of instances of each interesting code construct to detect patterns. We
plan to address this limitation in future work by also developing some other
indicators for detecting security checks. Second, we hypothesize that compiler-
added security checks will perform tasks that are orthogonal to the primary
function of the program. But, we do not yet apply and use this hypothesis.
We plan to implement this measure in our future techniques. Third, we plan to
improve our validation algorithm to eliminate even more spurious code snippets
and improve pattern identification. Likewise, we will also develop and evaluate
other pattern recognition algorithms. Finally, we would like to develop a more
comprehensive metric to rate the security properties of any arbitrary binary.

8 Conclusion

Our goal in this work is to develop a generalized technique to detect compiler-
based run-time security checks in any given binary. We develop several hypothesis
regarding the properties of such security checks in binary code. We then devise
a detailed mechanism that employs these hypothesis to achieve our goal, and
conduct a comprehensive evaluation. Overall, we find that our technique is able
to largely achieve our goal and in doing so, validates and confirms our hypotheses.
Thus, security checks indeed appear to be consistently inserted immediately
before the dereference of the protected memory address and contain a compare-
branch sequence, which we use for our code snippet extraction. Likewise, we
can deduce that the inserted security check code follows a small number of
regular templates. Overall, our technique detects consistent instruction patterns
much more regularly in the code snippets extracted when the security checks are
ON, compared to when the checks are OFF. Our technique in almost all cases
can correctly deduce if the respective security check is present in the binary.
We expect our work will greatly benefit automated and independent security
analysis of binary code for end-users when source code is unavailable.
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